

Global United Technology Services Co., Ltd.

Report No.: GTSL202104000288F01

TEST REPORT

Applicant: Hunan GM innovation technology co.,Ltd

No.46 Jiefang East Road, Furong District, Changsha City, Hunan **Address of Applicant:**

Province, China

Hunan GM innovation technology co.,Ltd Manufacturer/Factory:

No.46 Jiefang East Road, Furong District, Changsha City, Hunan Address of

Province, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Vaxis wireless video system

Model No .: Vaxis Atom 600 KV TX; Vaxis Atom 600 KG TX

Vaxis Atom 600 ZV TX; Vaxis Atom 600 ZG TX

Trade Mark: N/A

FCC ID: 2AJOF-ATOM600KV-TX

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: April 28, 2021

Date of Test: April 28 ~ May 12, 2021

Date of report issue: May 12, 2021

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 76

2 Version

Version No.	Date	Description			
00	2021-5-12	Original			
2 2 2 2 2	2 2 2 2 2	9 2 2 2 2			
0 2 2 2 2	12 12 12 12				

Prepared By:	Trankly	Date:	2021-5-12
	Project Engineer		
Check By:	Latingon lund	Date:	2021-5-12
	Paviower		

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT 5.2 TEST MODE 5.3 TEST FACILITY 5.4 TEST LOCATION 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 DEVIATION FROM STANDARDS 5.7 ABNORMALITIES FROM STANDARD CONDITIONS	6 6 6
6	6 TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT: 7.2 CONDUCTED EMISSIONS 7.3 EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	11
	7.4 PEAK TRANSMIT POWER	
	7.6 BAND EDGE	
	7.7 RADIATED EMISSION	
0	8 TEST SETUP PHOTO	
0	0 1E31 3E10F FNOTO	/6
9	9 FUT CONSTRUCTIONAL DETAILS	76

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.407(b)(1)	PASS
Frequency Stability	15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

(A) (A) (A)		.00	(4)			
Vaxis wireless video system						
Vaxis Atom 600 K	V TX; Vaxis Atom 600 KG	ΓX				
Vaxis Atom 600 Z	V TX; Vaxis Atom 600 ZG 1	ГХ				
N/A	N/A					
HDIP_SDI_TX						
1.1.5S						
GTSL202104000288-1						
Engineer sample						
Band	Mode	Frequency Range(MHz)	Number of channels			
U-NII Band I	IEEE 802.11a	5180-5240	4			
	IEEE 802.11n/ac 20MHz	5180-5240	4			
OFDM(BPSK/QPS	OFDM(BPSK/QPSK/16QAM/64QAM)					
MIMO: 802.11n						
SISO: 802.11a,80	SISO: 802.11a,802.11n					
External Antenna	9 2 2 2	9 9				
Antenna number:	2 / / /	19 19	0 0			
ANTA:2.96dBi						
ANTB:2.96dBi						
MIMO technology	Directional gain=5.97dBi					
DC 16.8V		7 6				
	Vaxis Atom 600 K Vaxis Atom 600 Z N/A HDIP_SDI_TX 1.1.5S GTSL2021040002 Engineer sample Band U-NII Band I OFDM(BPSK/QPSMIMO: 802.11n SISO: 802.11a,80 External Antenna Antenna number: ANTA:2.96dBi ANTB:2.96dBi MIMO technology	Vaxis Atom 600 KV TX; Vaxis Atom 600 KG Vaxis Atom 600 ZV TX; Vaxis Atom 600 ZG TAXIS Atom 600 ZG TAXI	Vaxis Atom 600 KV TX; Vaxis Atom 600 KG TX Vaxis Atom 600 ZV TX; Vaxis Atom 600 ZG TX N/A HDIP_SDI_TX 1.1.5S GTSL202104000288-1 Engineer sample Band Mode Frequency Range(MHz) U-NII Band I IEEE 802.11a 5180-5240 IEEE 802.11n/ac 20MHz 5180-5240 OFDM(BPSK/QPSK/16QAM/64QAM) MIMO: 802.11n SISO: 802.11a,802.11n External Antenna Antenna number: 2 ANTA:2.96dBi ANTB:2.96dBi MIMO technology Directional gain=5.97dBi			

Channel list for 802.11a/802.11n (HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz	

5.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation...

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a (SISI mode)	6 Mbps
802.11n(HT20) (SISI mode)	MCS 0
802.11n(HT20) (MIMO mode)	MCS 8

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang

Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None. 1. Vaxis wireless video system

Manufacturer: Lenovo Model: Vaxis Atom 500 SDI S/N: K600R21010063

2. LED TV

Manufacturer: Hisense Model: LED32K300

S/N: N/A

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

3. Digital high definition infrared hemisphere camera

Manufacturer: OSUN

Model: HD-SD S/N: N/A

4. HDMI Cable

Manufacturer: PHILIPS

Model: 6118E S/N: N/A

5. Lithium Ion Rechargeable Battery

Manufacturer: YINCHEM

Model: YC-135S Output: DC 16.8V

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	iated Emission:	9 9 8	9 29 2		9 9	e d
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1 6	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged SCHWARZBECK waveguide horn MESS-ELEKTRONIK		BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna ETS-LINDGREN		3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8			N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP @	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Con	ducted Emission		6 6 6	£ 6,	6 6	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	Ø KTJ Ø	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antennas are external antenna, the best case gain of the antennas are 2.96dBi.

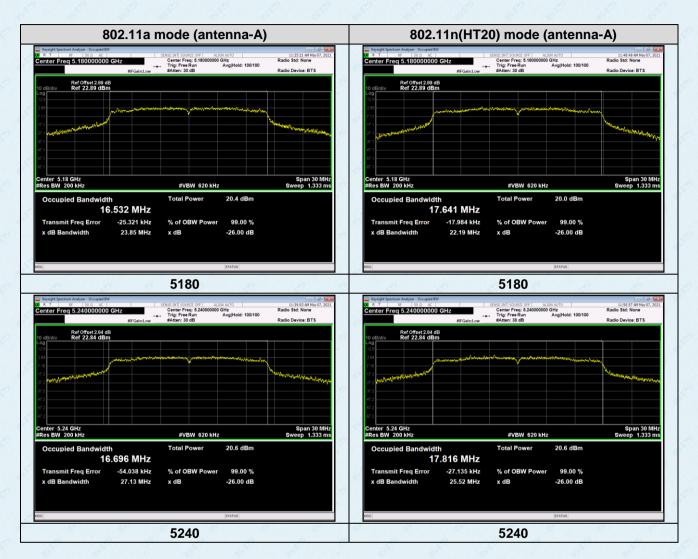

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

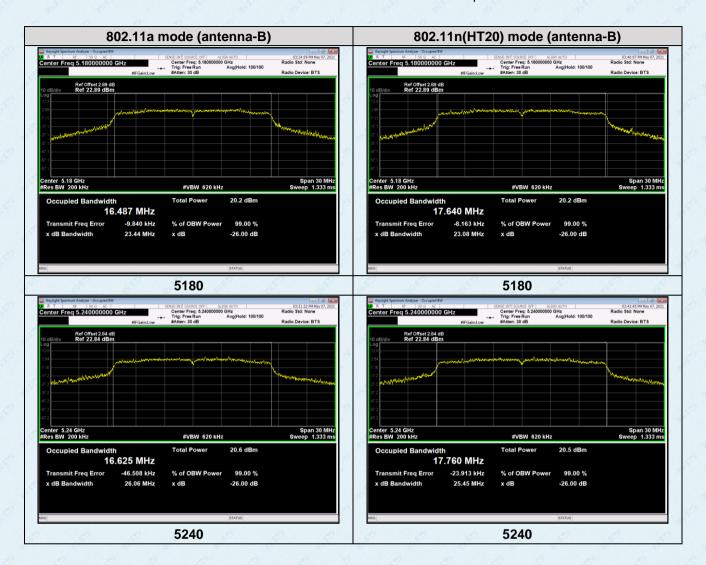
Test Requirement:	FCC Part15 C Section 15.207			6 6
Test Method:	ANSI C63.10:2013		2 2	- 20
Test Frequency Range:	150KHz to 30MHz		4 - K ^S	6
Class / Severity:	Class B	<i>20</i>	9 9	20
Receiver setup:	RBW=9KHz, VBW=30KHz			-
Limit:	Frequency range (MHz)		imit (dBuV)	8
	0.45.0.5	Quasi-peak		Average
	0.15-0.5	66 to 56*	5	6 to 46*
	0.5-5	56 60	9 29	46
	* Decreases with the logarithm			50
	impedance stabilization network coupling impedance for the material are also connected to the material 500hm/50uH coupling impedate to the block diagram of the tease. A.C. line are checked for maximum emission, the interface cables must be conducted measurement.	neasuring equipments in power through a sance with 50ohm to st setup and photokimum conducted in the relative position	ent. The peripe a LISN that permination. (ographs). Bot interference. ns of equipm	oheral devi- rovides a Please refe th sides of In order to ent and all
Test setup:	Refer	ence Plane		
	AUX Equipment E. Test table/Insulation pl Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiv		AC power
	Refer to section 6 for details		9 10	
Test Instruments:	Refer to section 6 for details			290
Test Instruments: Test mode:	Refer to section 5.2 for details	3	9 9	20
	Refer to section 5.2 for details	s mid.: 52%	Press.:	1012mba
Test mode:	Refer to section 5.2 for details		Press.:	1012mba

7.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407						
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01						
Limit:	N/A						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.						
Test Instruments:	Refer to section 6 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						



Measurement Data:


		99% (Occupied E	Bandwidth	(MHz)	26dB Occupied Bandwidth (MHz)					
CH. No.	Frequency (MHz)	802	.11a	802.111	n(HT20)	802	.11a	802.11n(HT20)			
9	(11112)	ANT-A	ANT-B	ANT-A	ANT-B	ANT-A	ANT-B	ANT-A	ANT-B		
36	5180	16.532	16.487	17.641	17.640	23.85	23.44	22.19	23.08		
48	5240	16.696	16.625	17.816	17.760	27.13	26.06	25.52	25.45		

Test plots as followed:

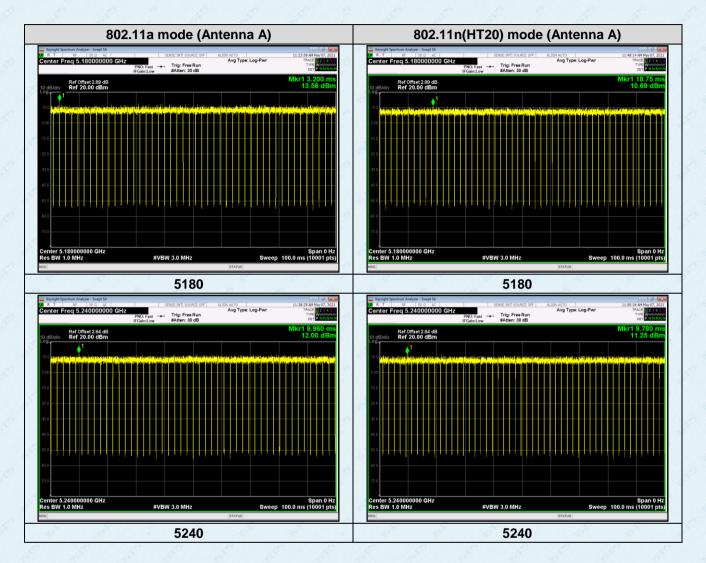
Note: We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.

7.4 Peak Transmit Power

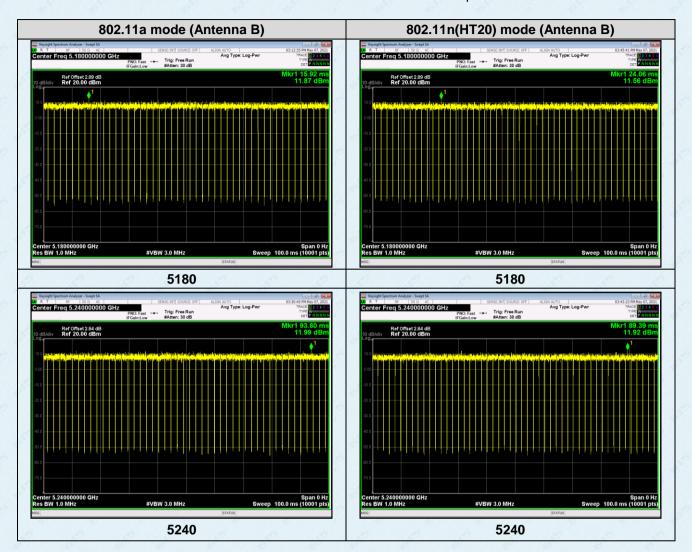
Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
Limit:	Frequency band Limit
	5150-5250 ≤1W(30dBm) for master device ≤250mW(23.98dBm) for client device
	5250-5350 ≤250mW(23.98dBm) for client device or
	11dBm+10logB* ≤250mW(23.98dBm) for client device or
	Remark: *Where B is the 26dB emission bandwidth in MHz.
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
Test setup:	Power Meter
	Non-Conducted Table
	Ground Reference Plane
Test procedure:	Measurement using an RF average power meter
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
	b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
	c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
	(iii) Measure the average power of the transmitter. This measureme is an average over both the on and off periods of the transmitter.
	is an average over both the on and on periods of the transmitter
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is
Test Instruments:	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is
Test Instruments: Test mode:	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).

Measurement Data

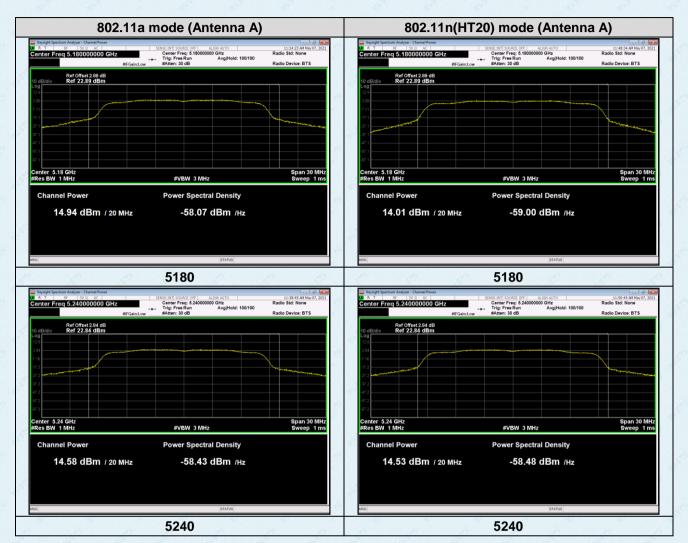
	Frequency	Duty c	ycle	Duty Factor		
Modulation	(MHz)	ANTENNA-A	ANTENNA-B	ANTENNA-A	ANTENNA-B	
2 2 2	5180	95.18%	95.26%	0.21	0.21	
802.11a	5240	95.14%	95.28%	0.21	0.21	
£	5180	95.17%	95.29%	0.21	0.21	
802.11n(HT20)	5240	95.26%	95.30%	0.21	0.21	

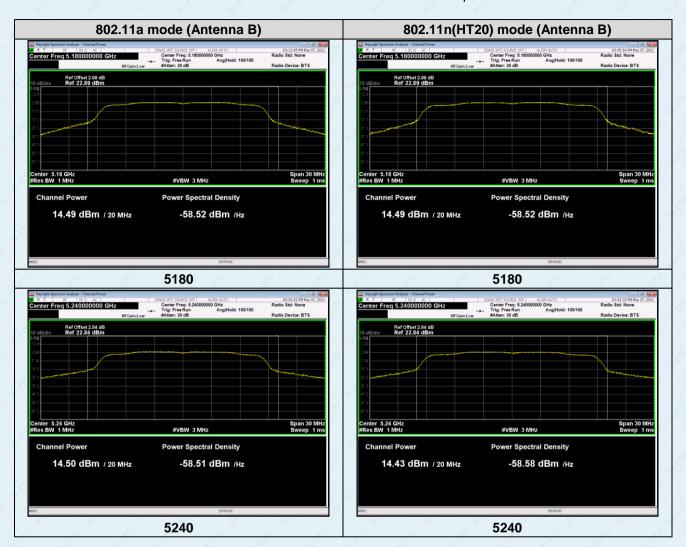

				8	02.11a mode)				
СН	Frequency	Measu	red Powe	r (dBm)	Duty		t Power (d	Bm)	Limit (dBm	Pocult
No.	(MHz)	ANT A	ANT B	ANT A+B	Factor	ANT A	ANT B	ANT A+B) (aBm	Result
36	5180	14.94	14.49	e	0.21	15.15	14.70) - G	23.98	Pass
48	5240	14.58	14.50	g	0.21	14.71	14.99	9	23.96	Fass
				802.	11n(HT20) m	ode				
СН	Frequency	Measu	red Powe	r (dBm)	Duty	Ou	tput Powe (dBm)	r Se	Limit	Daguit
No.	(MHz)	ANT A	ANT B	ANT A+B	Factor	ANT A	ANT B	ANT A+B	(dBm)	Result
36	5180	14.01	14.49	16.22	0.21	14.22	14.70	16.43	23.98	Pass
48	5240	14.53	14.43	15.93	0.21	14.74	14.64	16.14	20.00	2

Note: Output Power = Measured Power + Duty Factor


Duty Factor = 10 log (1/Duty Cycle)

Test plots as followed:





Note: We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.

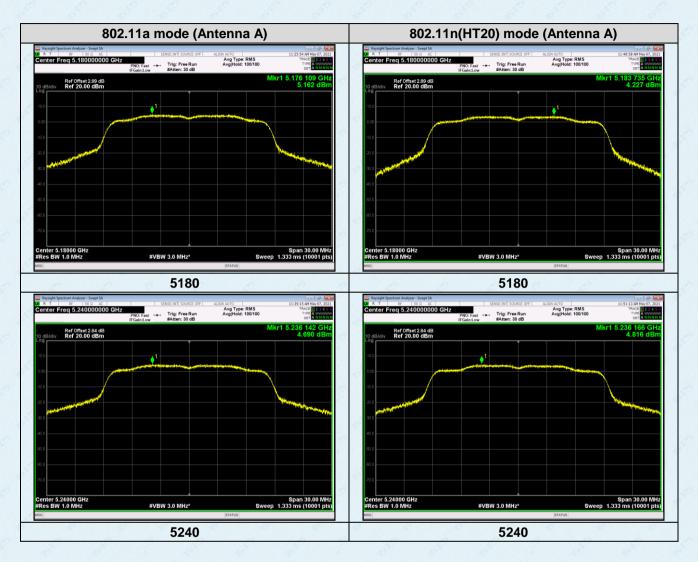
Note: We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.

7.5 Power Spectral Density

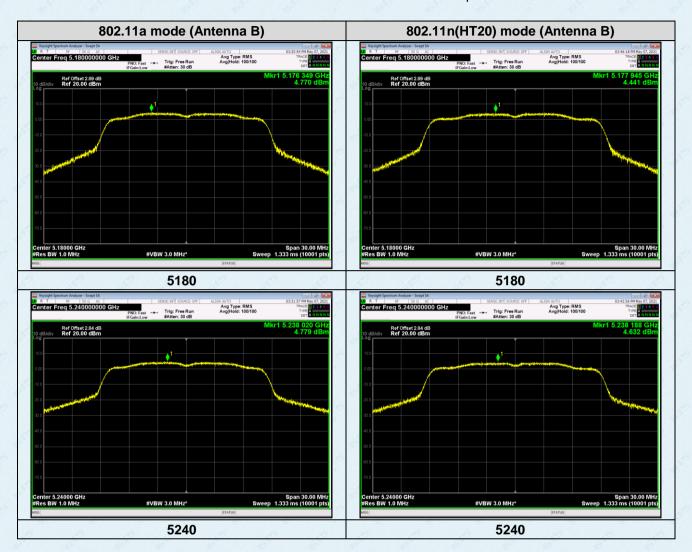
Test Requirement:	FCC Part15 E Section 15.407						
Test Method:	KDB 789033 D02 General	U-NII Test Procedures New Rules v02r01					
Limit:	Frequency band (MHz)	Limit					
	5150-5250	≤17dBm in 1MHz for master device					
		≤11dBm in 1MHz for client device					
	5250-5350	≤11dBm in 1MHz for client device					
	5470-5725 ≤11dBm in 1MHz for client device						
		ower spectral density is measured as a rect connection of a calibrated test instrument st.					
Test setup:	Spectrum Analyzer						
	Non-Con	E.U.T					
	Ground Ro	eference Plane					
Test procedure:	being tested by followin maximum conducted o receiver: select the app alternatives to each) ar labeled, "Compute pow						
	Use the peak search fu spectrum.	inction on the instrument to find the peak of the					
	Make the following adjution applicable:	ustments to the peak value of the spectrum, if					
		A-2 Alternative was used, add 10 log(1/x), le, to the peak of the spectrum.					
	used in step E)2)g)(viii)	native was used and the linear mode was), add 1 dB to the final result to compensate for linear averaging and power averaging.					
	4) The result is the PSD.	and the second second second second					
Test Instruments:	Refer to section 6 for detail	s 8					
Test mode:	Refer to section 5.2 for deta	ails @ @ @ @					
Test results:	Pass						

Measurement Data

2 2	Frequency	Duty c	ycle	Duty Factor		
Modulation	(MHz)	ANTENNA-A	ANTENNA-B	ANTENNA-A	ANTENNA-B	
	5180	95.18%	95.26%	0.21	0.21	
802.11a	5240	95.14%	95.28%	0.21	0.21	
	5180	95.17%	95.29%	0.21	0.21	
802.11n(HT20)	5240	95.26%	95.30%	0.21	0.21	


					802.11a r	node				
СН	Frequency	Measured PSD (dBm/MHz)			Duty		Total PSD ver(dBm/N		Limit	Pocult
No.	(MHz)	ANT A	ANT B	ANT A+B	Factor	ANT A	ANT B	ANT A+B	(dBm/MHz)	Result
36	5180	5.162	4.770	77	0.21	5.372	4.980	8 (11	Pass
48	5240	4.690	4.779	3	0.21	4.900	4.989		11	Pass
	87			802	2.11n(HT2	0) mode				
СН	Frequency	Measured PS Frequency (dBm/MHz)				Total PSD Duty Power(dBm/MHz) Limit				
No.	(MHz)	ANT A	ANT B	ANT A+B	Factor	2 0.1)	(dBm/MHz)	Result		
36	5180	4.227	4.441	6.264	0.21	4.437	4.651	6.474	11	Pass
48	5240	4.816	4.632	5.819	0.21	5.026	4.842	6.029	11	Pass

Note: Output Power = Measured Power + Duty Factor


Duty Factor = 10 log (1/Duty Cycle)

Test plots as followed:

Note: We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.

7.6 Band Edge

	FCC Part15 E Se		000					
Test Method:	ANSI C63.10:2013 Measurement Distance: 3m (Semi-Anechoic Chamber)							
Test site:								
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	ABOVE TOTIZ	AV	1MHz	3MHz	Average Value			
Limit:	Francisco		innit (dD: \/	/m @ 2 m)	Damark			
	Frequer		imit (dBuV		Remark			
	30MHz-88 88MHz-210		40.0		Quasi-peak Value Quasi-peak Value			
	216MHz-96	400	46.0	4.645	Quasi-peak Value			
	960MHz-1		54.0		Quasi-peak Value			
	The second second second	6	54.0		Average Value			
	Above 10	GHz	68.2		Peak Value			
					band: all emissions eed an EIRP of -27			
	(2) For transmitte outside of the dBm/MHz. I generate en applicable te band (include emission EIF (3) For transmitte	ne 5.15-5.35 G Devices opera missions in the echnical require ding indoor us RP limit of -27 cers operating in	Hz band shating in the 5.15-5.2 ements for se) or alted the 5.47-the 5.47-the band of the 5.47-the band shadow and the 5.47-the band shadow and the band shadow are the band shadow and the band shadow and the band shadow and the band shadow are the band shadow and the band shadow and the band shadow are the band shadow are the band shadow and the band shadow are the band shadow are the band shadow and the band shadow are th	nall not exc se 5.25-5.3 5 GHz bases operation in rnatively m on the 5.15-5 5.725 GHz				

	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
Test setup:	For radiated emissions above 1GHz Comparison of the content of
Test Instruments:	Refer to section 6 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

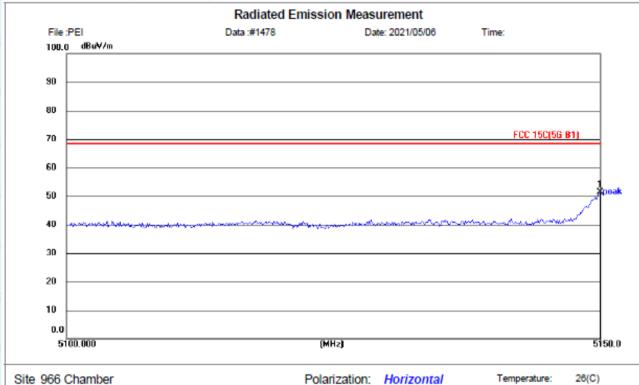
Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.


Humidity:

54 %

Measurement Data:

Radiated Band Edge Result

Horizontal: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC 15C(5G B1)

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

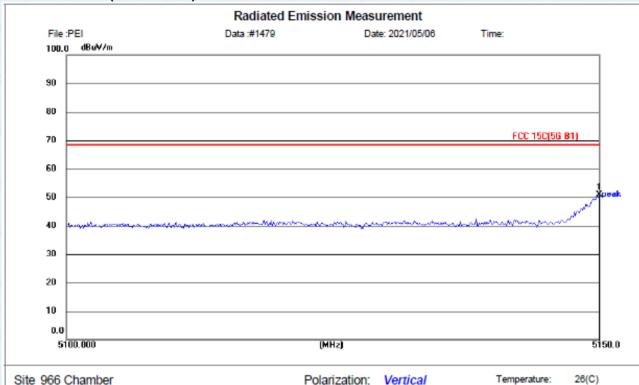
Note: GM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5150.000	55.48	-3.99	51.49	68.23	16.74	peak			Р	

Power:

Distance: 3m

DC 16.8V



Temperature:

54 %

Humidity:

Vertical: 802.11a (TX 5180MHz)

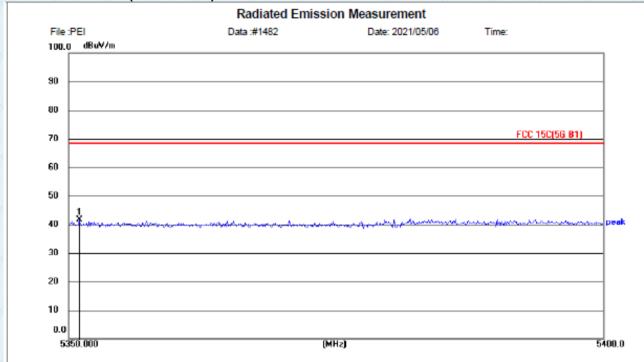
Site 966 Chamber Limit: FCC 15C(5G B1)

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

W.	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	5150.000	54.91	-3.99	50.92	68.23	17.31	peak			Р	


Polarization: Vertical

Power: DC 16.8V

Distance: 3m

Horizontal: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC 15C(5G B1)

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

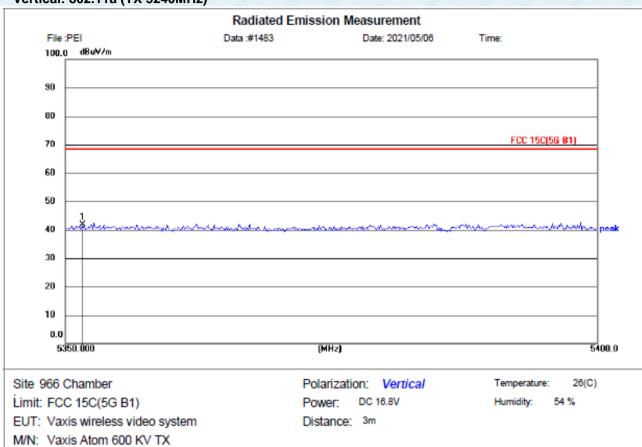
<u> </u>											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5351.002	44.87	-3.30	41.57	68.23	26.66	peak			Р	

Power:

Distance: 3m

Polarization: Horizontal

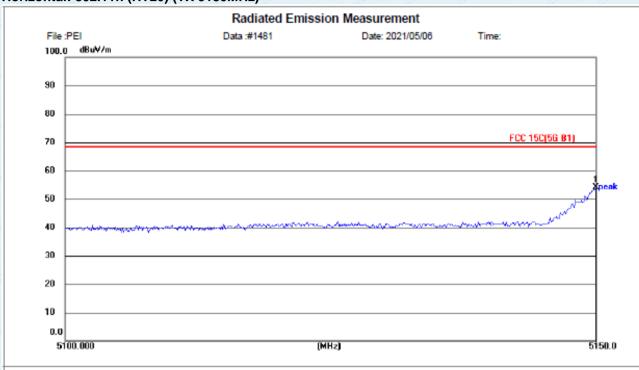
DC 16.8V


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

26(C)

Humidity:

Vertical: 802.11a (TX 5240MHz)


M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5351.603	45.15	-3.30	41.85	68.23	26.38	peak			Р	

Horizontal: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC 15C(5G B1)

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

Mode: 802.11n (TX 5180MHz)

Note: GM

l												
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1 *	5150.000	58.20	-3.99	54.21	68.23	14.02	peak			Р		

Power:

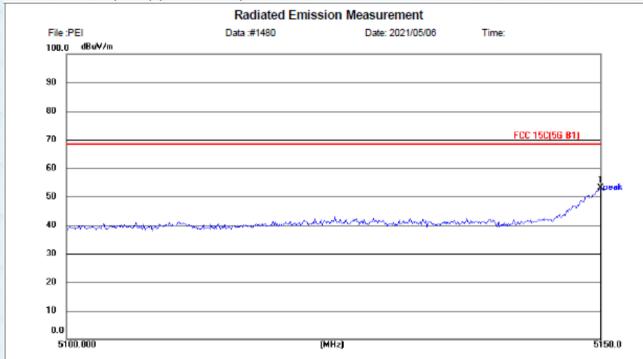
Distance: 3m

Polarization: Horizontal

DC 16.8V

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

26(C)


54 %

Temperature:

Humidity:

Vertical: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC 15C(5G B1)

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5150.000	57.22	-3.99	53.23	68.23	15.00	peak			Р	

Power:

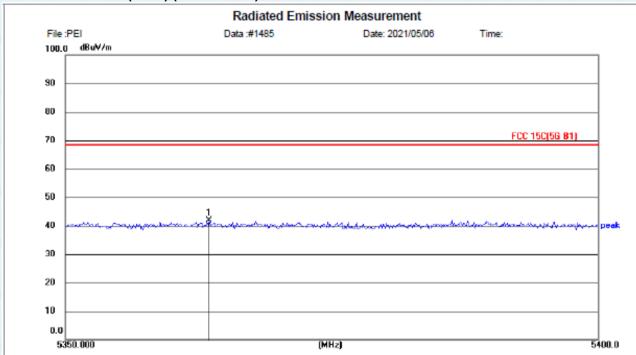
Distance: 3m

Polarization: Vertical

DC 16.8V

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

26(C)


54 %

Temperature:

Humidity:

Horizontal: 802.11n (HT20) (TX 5240MHz)

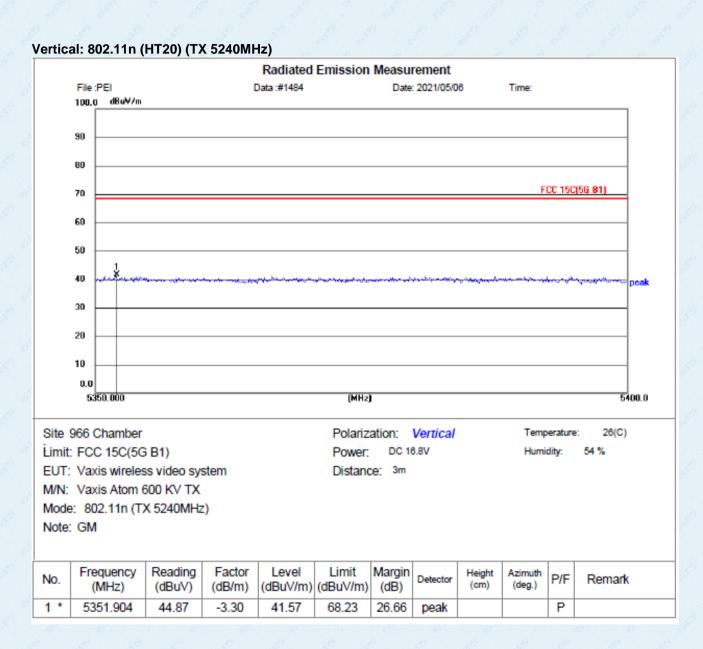
Site 966 Chamber

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5240MHz)

Note: GM

Limit: FCC 15C(5G B1) Power: DC 16.8V Humidity: 54 % Distance: 3m

Polarization: Horizontal

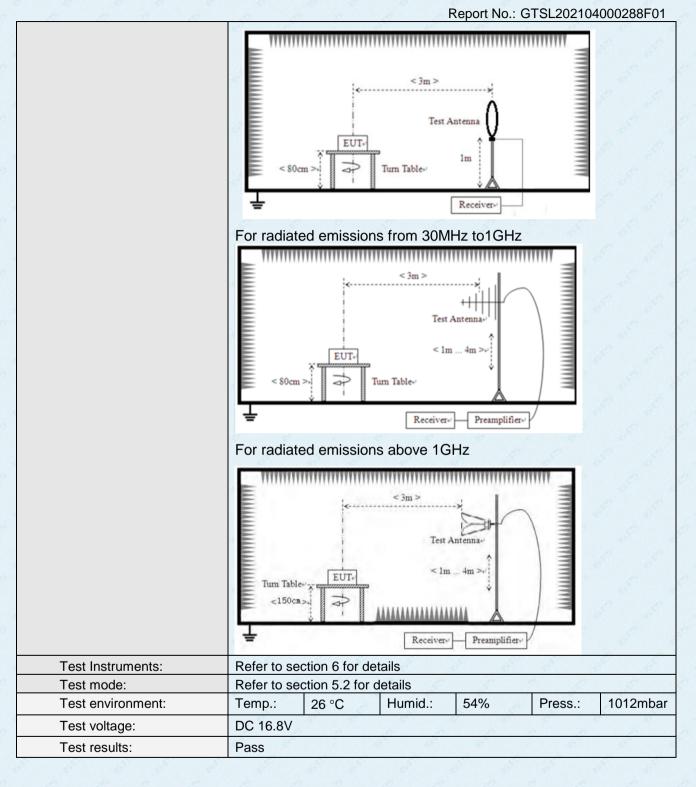

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5363.527	45.04	-3.26	41.78	68.23	26.45	peak			Р	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Temperature:

26(C)

Note: We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.


7.7 Radiated Emission

Test Requirement:	FCC Part15 C Sec	tion 15.209 ar	nd 15.205	9	10 10
Test Method:	ANSI C63.10:2013		6" 6"		
Test Frequency Range:	9kHz to 40GHz	6 6	6		
Test site:	Measurement Dist	ance: 3m (Ser	mi-Anechoid	Chamber)	2 2
Receiver setup:	Frequency	Detector	RBW	VBW	Value
·	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
	150kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	7.0010 10112	AV	1MHz	3MHz	Average Value
Limit:	Frequency	Limit	t (uV/m)	Value	Measurement Distance
	0.009MHz-0.490	MHz 2400	/F(KHz)	QP	300m
	0.490MHz-1.705	MHz 2400	O/F(KHz)	QP	300m
	1.705MHz-30M	1Hz	30	QP	30m
	30MHz-88MH	łz	100	QP	
	88MHz-216MI	-lz	150	QP	8 8
	216MHz-960M	Hz :	200	QP	8 8
	960MHz-1GH	lz 🥒	500	QP	3m
	6	61	500	Average	
	Above 1GHz	5	5000	Peak	
Test Procedure:	Substitution methor emission levels of The following test 1>.Below 1GHz test 1. The EUT was 1GHz and 1.5 meter camber position of the	the EUT. procedure as I st procedure: placed on the meters for ab	pelow: top of a rot ove 1GHz)	ating table ((0.8m for below ground at a 3

	Report No.: GTSL202104000288F01
	 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 2>.Above 1GHz test procedure:
	 On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) where: Pg is the generator output power into the substitution antenna.
Test setup:	For radiated emissions from 9kHz to 30MHz

Remarks:

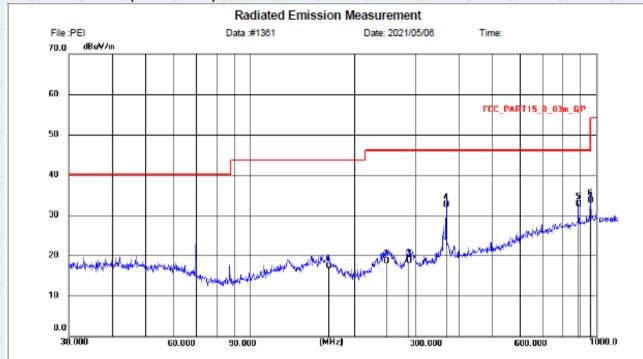
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Temperature:


Humidity:

26(C)

54 %

30MHz~1GHz

Horizontal: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP EUT: Vaxis wireless video system

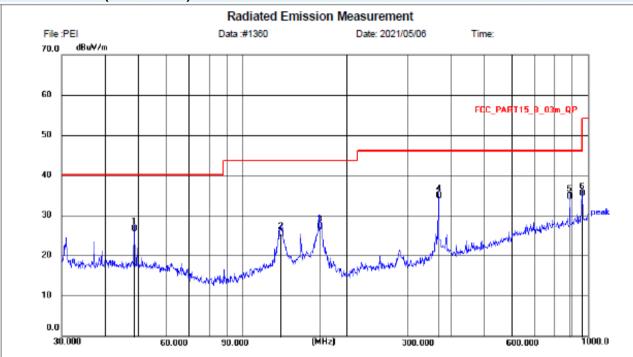
M/N: Vaxis Atom 600 KV TX

Mode: TX 5180MHz

Note: GM 802.11a

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	167.8242	2.10	15.24	17.34	43.50	26.16	QP	250	65	Р	
2	247.6818	5.15	13.48	18.63	46.00	27.37	QP	225	175	Р	
3	287.9904	4.34	14.49	18.83	46.00	27.17	QP	185	324	Р	
4	368.1116	16.47	16.19	32.66	46.00	13.34	QP	175	255	Р	
5	884.5029	8.88	23.86	32.74	46.00	13.26	QP	150	58	Р	
6 *	958.7943	9.04	24.63	33.67	46.00	12.33	QP	185	247	Р	

Power:


Distance: 3m

Polarization: Horizontal

DC 16.8V

Vertical: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

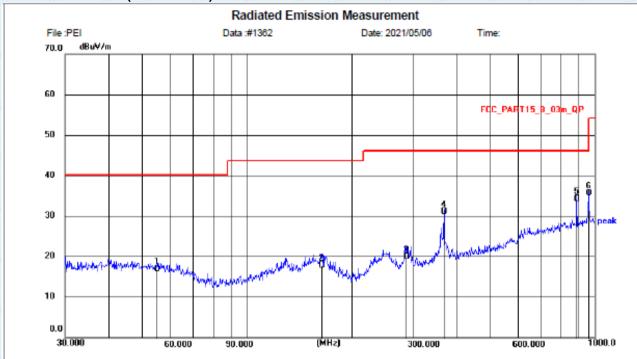
EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX

Mode: TX 5180MHz

Note: GM 802.11a Polarization: Vertical Power: DC 16.8V

Distance: 3m


Temperature: 26(C)

Humidity: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	48.6719	11.77	14.91	26.68	40.00	13.32	QP	100	256	Р	
2	129.0144	10.93	14.56	25.49	43.50	18.01	QP	100	262	Р	
3	167.2366	11.89	15.30	27.19	43.50	16.31	QP	100	25	Р	
4 *	369.4045	18.66	16.22	34.88	46.00	11.12	QP	100	358	Р	
5	884.5027	10.86	23.86	34.72	46.00	11.28	QP	105	250	Р	
6	962.1621	10.80	24.63	35.43	54.00	18.57	QP	110	265	Р	

Horizontal: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX

Mode: TX 5240MHz

Note: GM 802.11a Polarization: Horizontal

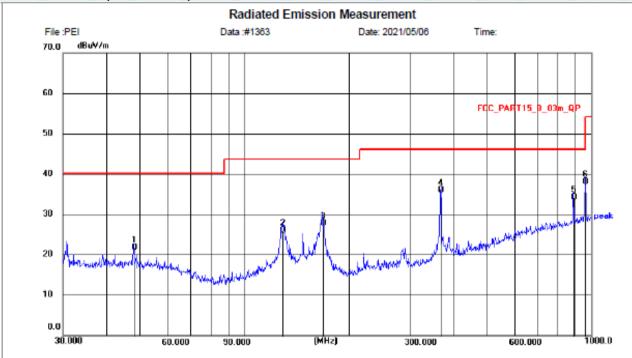
Power: DC 16.8V

Distance: 3m

Temperature: 26(C)

Humidity: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	55.2207	2.33	14.53	16.86	40.00	23.14	QP	200	335	Р	
2	163.7548	2.09	15.63	17.72	43.50	25.78	QP	175	48	Р	
3	286.9823	5.40	14.47	19.87	46.00	26.13	QP	203	57	Р	
4	368.1116	14.92	16.19	31.11	46.00	14.89	QP	200	257	Р	
5	884.5028	10.39	23.86	34.25	46.00	11.75	QP	187	354	Р	
6 *	958.7943	10.94	24.63	35.57	46.00	10.43	QP	175	286	Р	


26(C)

54 %

Temperature:

Humidity:

Vertical: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

Made: TV FOADMILE

962.1621

13.46

24.63

38.09

Mode: TX 5240MHz

Note: GM 802.11a

6

	802.11a										
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	47.9939	6.86	14.92	21.78	40.00	18.22	QP	100	283	Р	
2	129.4677	11.46	14.58	26.04	43.50	17.46	QP	105	295	Р	
3	167.8241	12.45	15.24	27.69	43.50	15.81	QP	100	37	Р	
4 *	368.1116	19.74	16.19	35.93	46.00	10.07	QP	105	226	Р	
5	887.6097	10.36	23.90	34.26	46.00	11.74	QP	100	54	Р	
3 4 *	167.8241 368.1116	12.45 19.74	15.24 16.19	27.69 35.93	43.50 46.00	15.81 10.07	QP QP	100 105	37 226	P P	

54.00

15.91

QP

100

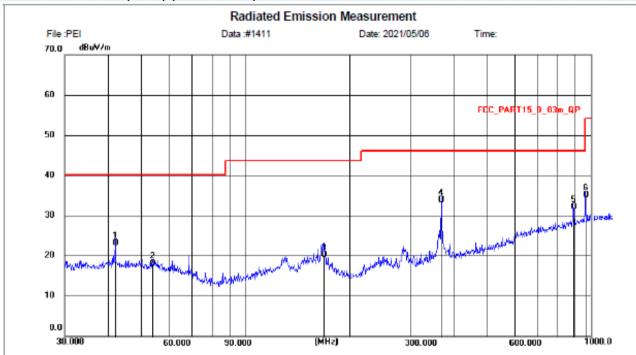
274

Power:

Distance: 3m

Polarization: Vertical

DC 16.8V


Temperature:

Humidity:

26(C)

54 %

Horizontal: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

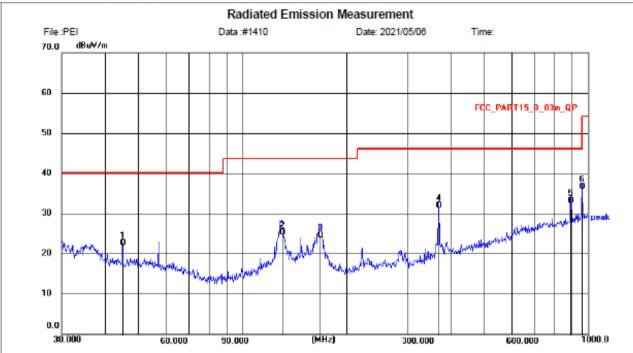
Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

Mode: TX 5180MHz

Note: GM 802.11n Polarization: Horizontal

Power: DC 16.8V


CI. 22 11121

Distance: 3m

Frequency Reading Factor Level Limit Margin Height Azimuth P/F Detector No. Remark (deg.) (dB/m) (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (cm) 1 42.0066 7.98 15.18 23.16 40.00 16.84 QP 180 255 Ρ 2 53.8817 3.50 14.62 18.12 40.00 21.88 QP 180 27 Р 3 169.0053 5.09 15.13 20.22 43.50 23.28 QP 195 220 Р 4 * 368.1116 17.74 16.19 33.93 46.00 12.07 QP 200 273 Ρ 5 887.6098 8.27 23.90 32.17 46.00 13.83 QP 200 254 Ρ Р 6 962.1622 10.49 24.63 35.12 54.00 18.88 QP 200 74

Vertical: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX

Mode: TX 5180MHz

Note: GM 802.11n

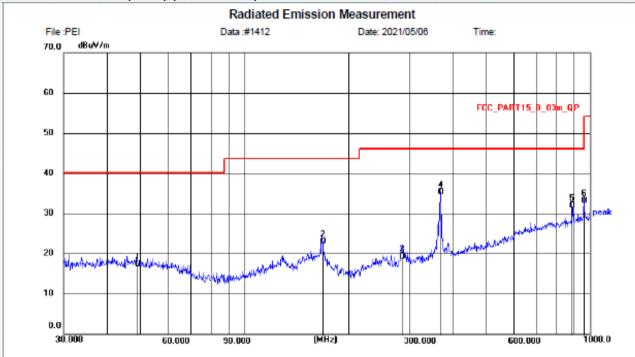
Polarizati	on:	Vertical
Power:	DC	16.8V

Distance: 3m

Temperature: 26(C)

BV Humidity: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	44.9006	7.64	14.97	22.61	40.00	17.39	QP	100	258	Р	
2	129.9226	10.74	14.61	25.35	43.50	18.15	QP	105	245	Р	
3	167.2368	9.31	15.30	24.61	43.50	18.89	QP	100	49	Р	
4	369.4047	15.73	16.22	31.95	46.00	14.05	QP	100	257	Р	
5	887.6099	9.27	23.90	33.17	46.00	12.83	QP	115	233	Р	
6 *	958.7943	12.09	24.63	36.72	46.00	9.28	QP	105	37	Р	



26(C)

Temperature:

Humidity:

Horizontal: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

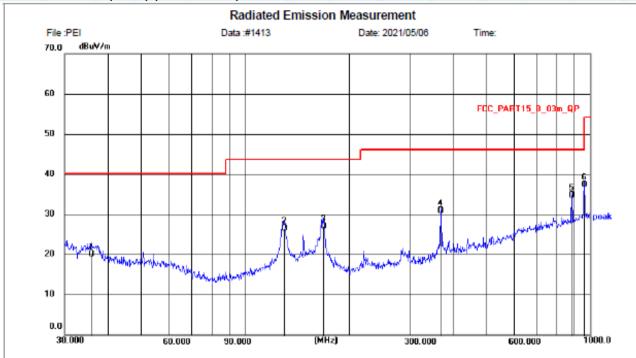
M/N: Vaxis Atom 600 KV TX

Mode: TX 5240MHz

Note: GM 802.11n

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	48.8428	2.52	14.92	17.44	40.00	22.56	QP	205	95	Р	
2	167.8242	7.86	15.24	23.10	43.50	20.40	QP	210	257	Р	
3	285.9777	4.82	14.44	19.26	46.00	26.74	QP	175	333	Р	
4 *	369.4047	19.07	16.22	35.29	46.00	10.71	QP	150	256	Р	
5	884.5028	8.08	23.86	31.94	46.00	14.06	QP	200	174	Р	
6	958.7943	8.56	24.63	33.19	46.00	12.81	QP	255	258	Р	

Power:


Distance: 3m

Polarization: Horizontal

DC 16.8V

Vertical: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

Mode: TX 5240MHz

Note: GM 802.11n

Polarizat	ion: Vertical	Temperature:	26(C)
Power:	DC 16.8V	Humidity:	54 %

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	35.8746	5.26	14.74	20.00	40.00	20.00	QP	100	45	Р	
2	129.9225	11.87	14.61	26.48	43.50	17.02	QP	100	275	Р	
3	169.0053	11.93	15.13	27.06	43.50	16.44	QP	105	264	Р	
4	368.1116	14.69	16.19	30.88	46.00	15.12	QP	110	211	Р	
5	881.4067	10.88	23.83	34.71	46.00	11.29	QP	110	47	Р	
6 *	958.7943	12.73	24.63	37.36	46.00	8.64	QP	100	350	Р	

Temperature:

Humidity:

26(C)

54 %

1GHz~ 18GHz

Horizontal: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

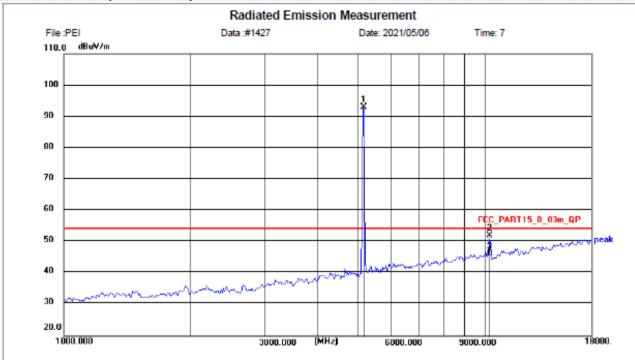
N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	*	5180.000	95.97	-3.89	92.08	1	1	peak			1	
- 2	2	10360.269	40.84	10.34	51.18	74.00	22.82	peak			Р	
	3	10360.269	36.58	10.34	46.92	54.00	7.08	AVG			Р	

Power:

Distance: 3m

Polarization: Horizontal

DC 16.8V


26(C)

54 %

Temperature:

Humidity:

Vertical: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

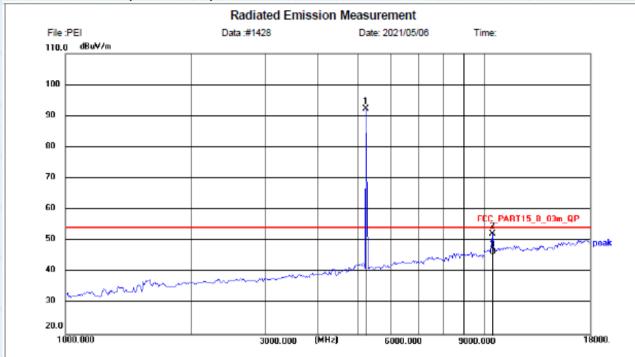
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5180.000	96.99	-3.89	93.10	1	1	peak			1	
2	10360.310	41.76	10.34	52.10	74.00	21.90	peak			Р	
3	10360.310	35.85	10.34	46.19	54.00	7.81	AVG			Р	

Power:

Distance: 3m

Polarization: Vertical

DC 16.8V


Temperature:

Humidity:

26(C)

54 %

Horizontal: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

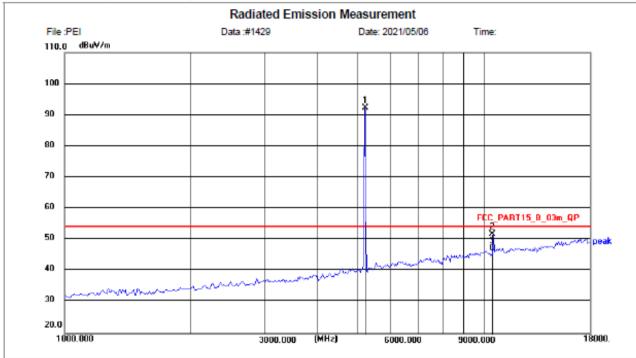
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5240.000	96.06	-3.68	92.38	/	1	peak			1	
2	10480.328	41.68	10.69	52.37	74.00	21.63	peak			Р	
3	10480.328	35.84	10.69	46.53	54.00	7.47	AVG			Р	

Power:

Distance: 3m

Polarization: Horizontal

DC 16.8V



Temperature:

Humidity:

26(C)

Vertical: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

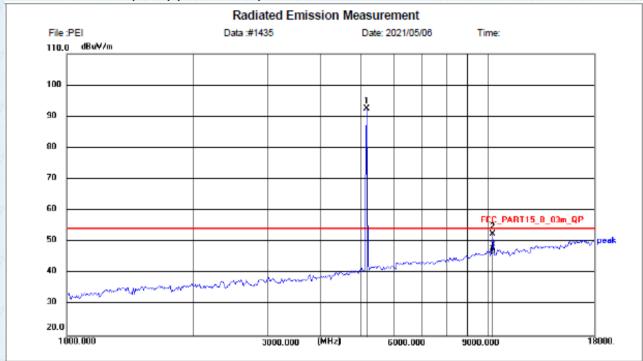
M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

Ė	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	5240.000	95.93	-3.68	92.25	/	/	peak			1	
	2	10480.285	41.04	10.69	51.73	74.00	22.27	peak			Р	
Г	3	10480.285	36.57	10.69	47.26	54.00	6.74	AVG			Р	

Power:

Distance: 3m


Polarization: Vertical

DC 16.8V

26(C)

Horizontal: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

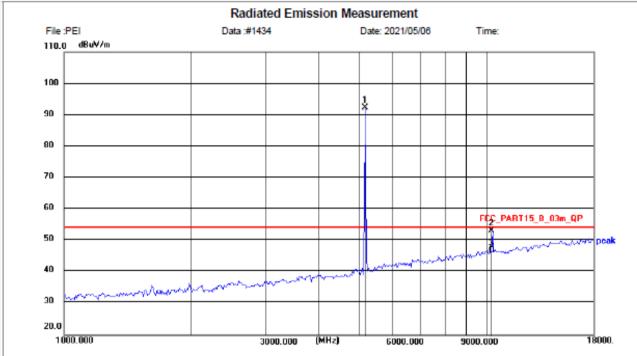
M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

Polarization:	Horizontal	Temperature:
---------------	------------	--------------

Power: DC 16.8V Humidity: 54 %

Distance: 3m


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5180.000	96.44	-3.89	92.55	1	/	peak			1	
2	10360.286	42.28	10.34	52.62	74.00	21.38	peak			Р	
3	10360.286	36.63	10.34	46.97	54.00	7.03	AVG			Р	

26(C)

Humidity:

Vertical: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

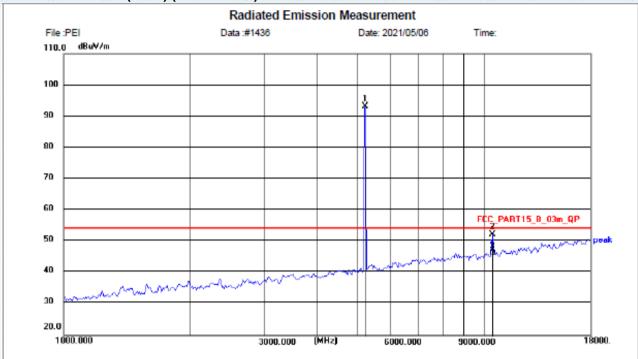
EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

	No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	5180.000	96.19	-3.89	92.30	1	1	peak			1	
3	2	10360.310	42.78	10.34	53.12	74.00	20.88	peak			Р	
	3	10360.310	36.51	10.34	46.85	54.00	7.15	AVG			Р	

Power:


Distance: 3m

Polarization: Vertical

DC 16.8V

Horizontal: 802.11n (HT20) (TX 5240MHz)

Power:

74.00

54.00

Distance: 3m

Polarization: Horizontal

DC 16.8V

peak

peak

AVG

21.68

7.77

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

Reading

(dBuV)

96.88

41.63

35.54

Factor

(dB/m)

-3.68

10.69

10.69

Level

(dBuV/m)

93.20

52.32

46.23

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5240MHz)

Frequency

(MHz)

5240.000

10480.274

10480.274

Note: GM

No.

1 *

2

3

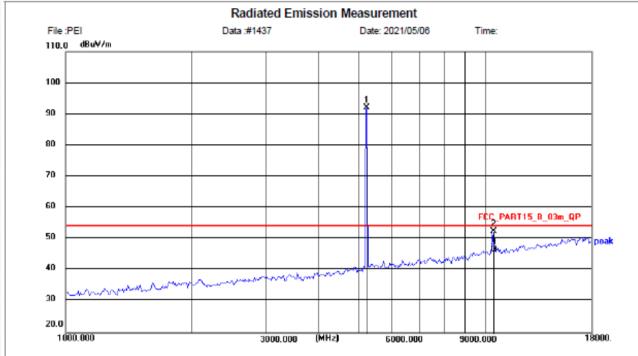
Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark

Temperature:

Р

Р

Humidity:


26(C)

54 %

26(C)

Vertical: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5240MHz)

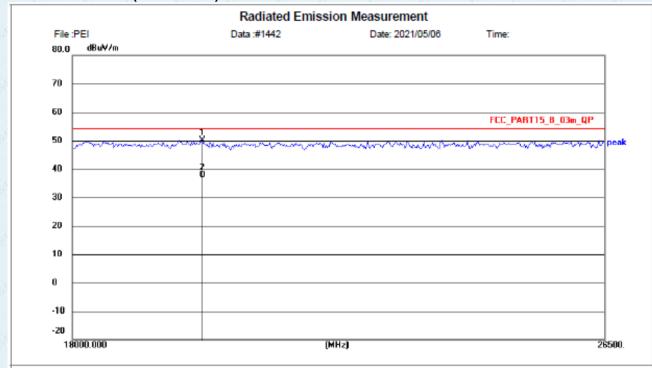
Note: GM

Polariza	tion: Vertical	Temperature:
Power	DC 16.8V	Humidity: 54

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5240.000	95.72	-3.68	92.04	1	1	peak			1	
2	10480.268	41.72	10.69	52.41	74.00	21.59	peak			Р	
3	10480.268	35.95	10.69	46.64	54.00	7.36	AVG			Р	

Temperature:


Humidity:

26(C)

54 %

18GHz~ 26.5GHz

Horizontal: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

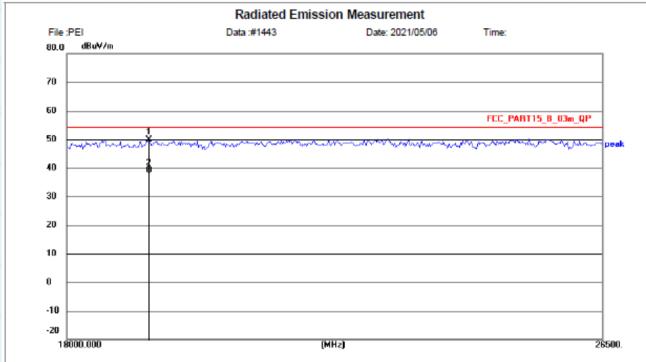
Mode: 802.11a (TX 5180MHz)

Note: GM

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	19788.577	37.57	12.68	50.25	74.00	23.75	peak			Р	
Г	2	19788.577	25.25	12.68	37.93	54.00	16.07	AVG			Р	

Power:

Distance: 3m


Polarization: Horizontal

DC 16.8V

26(C)

Vertical: 802.11a (TX 5180MHz)

Site 966 Chamber Polarization: Vertical Temperature:

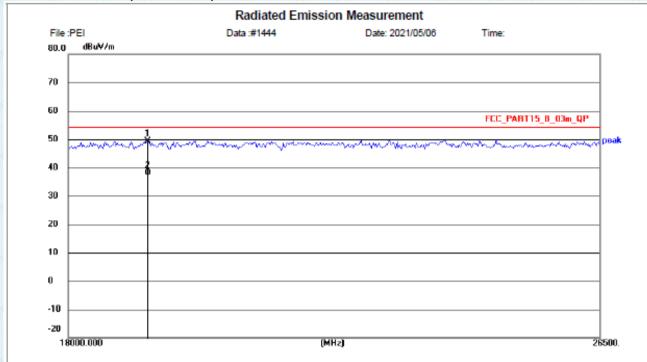
Eimit: FCC_PART15_B_03m_QP Power: DC 16.8V Humidity: 54 %
EUT: Vaxis wireless video system Distance: 3m

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

ı,												
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	19107.214	39.21	10.70	49.91	74.00	24.09	peak			Р	
	2	19107.214	28.36	10.70	39.06	54.00	14.94	AVG			Р	

26(C)


54 %

Temperature:

P

Humidity:

Horizontal: 802.11a (TX 5240MHz)

Power:

54.00

Distance: 3m

Polarization: Horizontal

DC 16.8V

AVG

15.97

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Frequency

(MHz)

19090.180

19090.180

Reading

(dBuV)

38.74

27.38

Factor

(dB/m)

10.65

10.65

38.03

Note: GM

No.

1 *

2

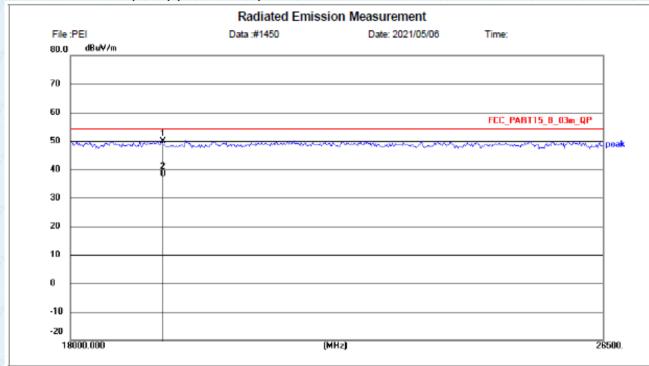
Level (dBuV/m)	Limit (dBuV/m)		Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
49.39	74.00	24.61	peak			Р	

26(C)

Vertical: 802.11a (TX 5240MHz)

Site 966 Chamber Polarization: Vertical Temperature: 2
Limit: FCC_PART15_B_03m_QP Power: DC 16.8V Humidity: 54 %

EUT: Vaxis wireless video system Distance: 3m


M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
Г	1 *	19107.214	39.45	10.70	50.15	74.00	23.85	peak			Р	
Г	2	19107.214	28.24	10.70	38.94	54.00	15.06	AVG			Р	

Horizontal: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

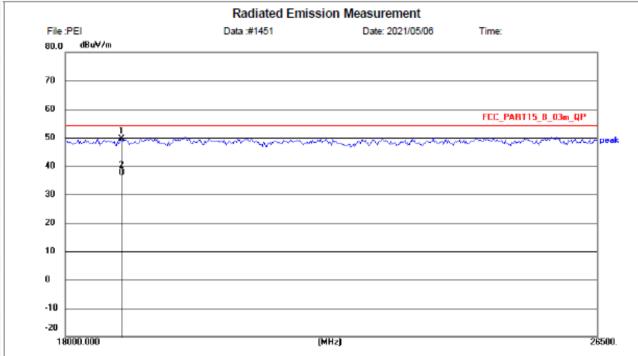
EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

Polarizati	on: <i>Hori</i>	zontal	Temperature:	26(C)
Power:	DC 16.8V		Humidity:	54 %

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	19243.487	38.83	11.11	49.94	74.00	24.06	peak			Р	
2	19243.487	27.35	11.11	38.46	54.00	15.54	AVG			Р	


26(C)

54 %

Temperature:

Humidity:

Vertical: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

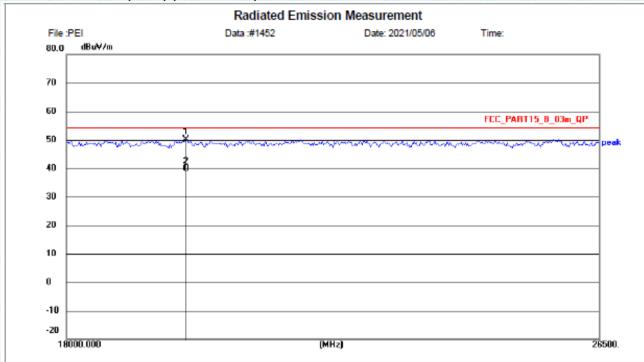
Note: GM

No	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	* 18749.499	40.19	9.50	49.69	74.00	24.31	peak			Р	
2	18749.499	28.13	9.50	37.63	54.00	16.37	AVG			Р	

Polarization: Vertical

Power: DC 16.8V

Distance: 3m


Temperature:

Humidity:

26(C)

54 %

Horizontal: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC_PART15_B_03m_QP

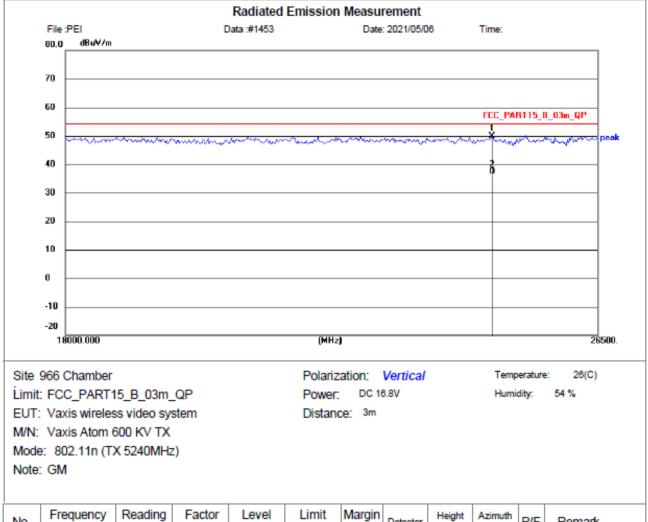
EUT: Vaxis wireless video system M/N: Vaxis Atom 600 KV TX

Mode: 802.11n (TX 5240MHz)

Note: GM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	19635.270	37.91	12.24	50.15	74.00	23.85	peak			Р	
2	19635.270	27.68	12.24	39.92	54.00	14.08	AVG			Р	

Power:


Distance: 3m

Polarization: Horizontal

DC 16.8V

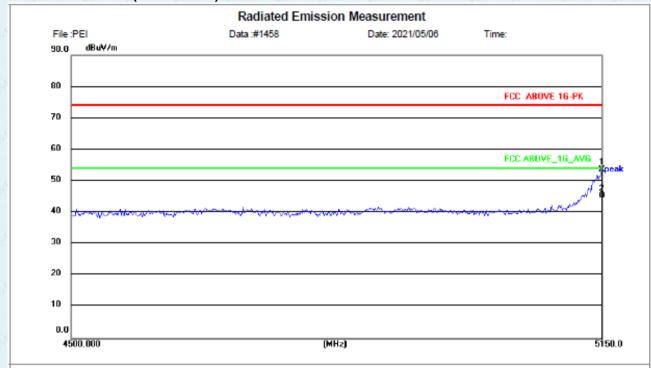
Vertical: 802.11n (HT20) (TX 5240MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 1	24558.116	39.53	10.38	49.91	74.00	24.09	peak			Р	
2	24558.116	26.94	10.38	37.32	54.00	16.68	AVG			Р	

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 26.5GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.
- 4. We tested 802.11a/n mode the all data rate and recorded the worst case data for this channel to be 6Mbps for 802.11a mode and MCS0 for 802.11n mode.

26(C)


54 %

Temperature:

Humidity:

Spurious Emission in restricted band:

Horizontal: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

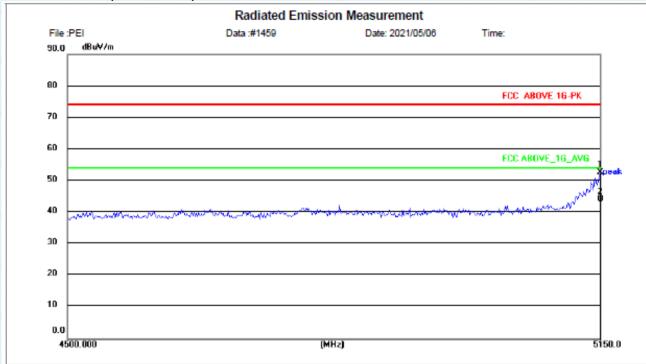
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5150.000	57.66	-3.99	53.67	74.00	20.33	peak			Р	
2 *	5150.000	49.35	-3.99	45.36	54.00	8.64	AVG			Р	

Power:

Distance: 3m

Polarization: Horizontal

DC 16.8V


26(C)

54 %

Temperature:

Humidity:

Vertical: 802.11a (TX 5180MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5180MHz)

Note: GM

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5150.000	56.86	-3.99	52.87	74.00	21.13	peak			Р	
2 *	5150.000	48.12	-3.99	44.13	54.00	9.87	AVG			Р	

Power:

Distance: 3m

Polarization: Vertical

DC 16.8V

Temperature:

Р

Humidity:

26(C)

54 %

Horizontal: 802.11a (TX 5240MHz)

Power:

54.00

20.21

AVG

Distance: 3m

Polarization: Horizontal

DC 16.8V

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

Reading

(dBuV)

45.72

36.85

Factor

(dB/m)

-3.06

-3.06

33.79

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Frequency

(MHz)

5423.407

5423.407

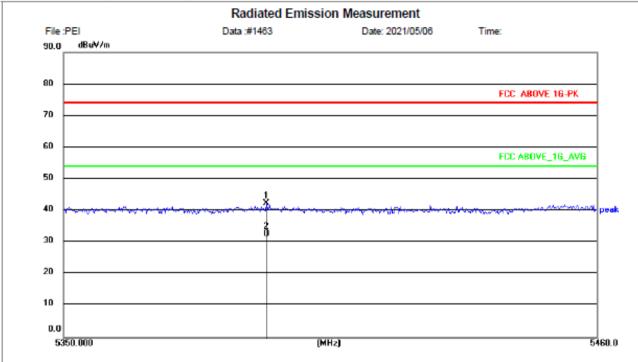
Note: GM

No.

1

2 *

Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
42.66	74.00	31.34	peak			Р	


26(C)

54 %

Temperature:

Humidity:

Vertical: 802.11a (TX 5240MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11a (TX 5240MHz)

Note: GM

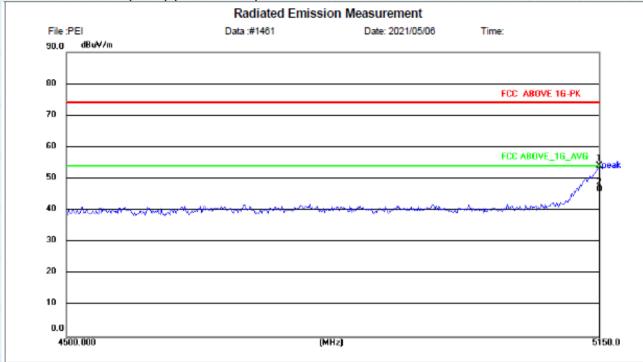
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5391.663	45.68	-3.17	42.51	74.00	31.49	peak			Р	
2 *	5391.663	35.84	-3.17	32.67	54.00	21.33	AVG			Р	

Power:

Distance: 3m

Polarization: Vertical

DC 16.8V


Temperature:

Humidity:

26(C)

54 %

Horizontal: 802.11n (HT20) (TX 5180MHz)

Power:

Distance: 3m

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

No.

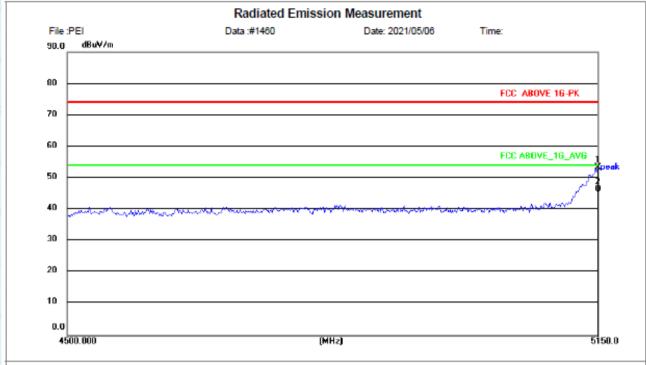
1

2 *

Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
5150.000	58.02	-3.99	54.03	74.00	19.97	peak			Р	
5150.000	50.79	-3.99	46.80	54.00	7.20	AVG			Р	

Polarization: Horizontal

DC 16.8V



Temperature:

Humidity:

26(C)

Vertical: 802.11n (HT20) (TX 5180MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

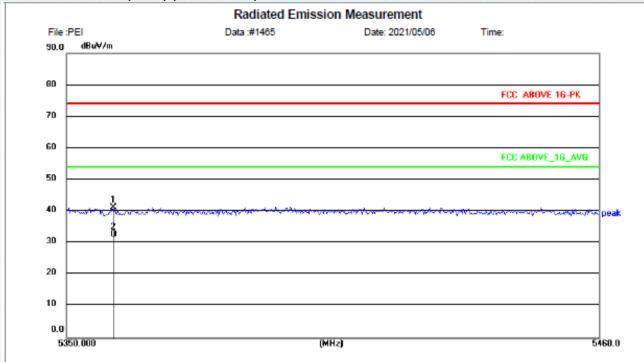
EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5180MHz)

Note: GM

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
	1	5150.000	57.51	-3.99	53.52	74.00	20.48	peak			Р		
8	2 *	5150.000	50.47	-3.99	46.48	54.00	7.52	AVG			Р		

Power:


Distance: 3m

Polarization: Vertical

DC 16.8V

Horizontal: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

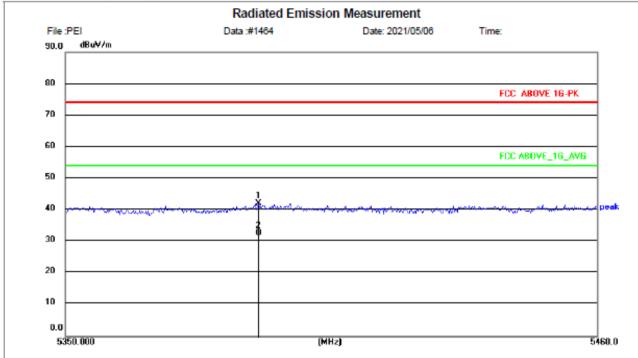
M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5240MHz)

Note: GM

Polarization	on:	Horizontal	Temperature:	26(C)
Dower	DC 1	16.91/	Humidite	E4 %

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5359.479	44.52	-3.28	41.24	74.00	32.76	peak			Р	
2 *	5359.479	36.04	-3.28	32.76	54.00	21.24	AVG			Р	



Temperature:

Humidity:

26(C)

Vertical: 802.11n (HT20) (TX 5240MHz)

Site 966 Chamber

Limit: FCC ABOVE 1G-PK

EUT: Vaxis wireless video system

M/N: Vaxis Atom 600 KV TX Mode: 802.11n (TX 5240MHz)

Note: GM

Ш												
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1	5389.679	45.45	-3.18	42.27	74.00	31.73	peak			Р	
	2 *	5389.679	35.88	-3.18	32.70	54.00	21.30	AVG			Р	

Power:

Distance: 3m

Polarization: Vertical

DC 16.8V

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsibility such that an emission is mainta under all conditions of normal operation	ined within the band of operation				
Test Procedure:	The EUT was setup to ANSI C63.4, 200 to FCC Part 15.407(g) requirements.	3; tested to 2.1055 for compliance				
Test setup:	Spectrum analyzer Att.	Temperature Chamber EUT Variable Power Supply				
	Note: Measurement setup for testing on Anten	na connector				
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Frequencies Stability test result: 5180MHz

Test Conditions	Measured Frequency(MHz) 5180
V nor(V)	5180.0024
V max(V)	5180.0030
V min(V)	5180.0040
Max. Deviation Frequency	0.0040
Max. Frequency Error (ppm)	0.77

Frequency Error vs. Temperature:

Test Conditions (°C)	Measured Frequency(MHz) 5180
D 9 D -5 D 9 D	5180.0016
0 0 0 0 5 0 0	5180.0042
g g 15	5180.0039
25	5180.0040
35	5180.0038
45	5180.0006
50	5180.0047
Max. Deviation Frequency	0.0047
Max. Frequency Error (ppm)	0.91

Frequencies Stability test result: 5240MHz

Test Conditions	Measured Frequency(MHz) 5240
V nor(V)	5240.0024
V max(V)	5240.0043
V min(V)	5240.0024
Max. Deviation Frequency	0.0043
Max. Frequency Error (ppm)	0.82

Frequency Error vs. Temperature:

Test Conditions (°C)	Measured Frequency(MHz) 5240
p p 5 9 9	5240.0038
5	5240.0035
15	5240.0050
25	5240.0052
35	5240.0043
45	5240.0047
50	5240.0050
Max. Deviation Frequency	0.0052
Max. Frequency Error (ppm)	0.99

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---