

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: BLU

Model No.: STUDIO X12

Report Number: 201224006RFC-2

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: YHLBLUX12

Test Result: PASS

Date of Issue: February 2, 2021

Prepared for:

BLU Products, Inc. 10814 NW 33rd St # 100 Doral, FL 33172 ,USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

Henry Lu
Team Leader

Billy Li Technical Director Reviewed by:

Kevin Liang Assistant Manager

Approved by:

Date

February 2, 2021

Version

Version No.	Date	Description
V1.0	February 2, 2021	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
	1.4	OTHER INFORMATION	5
	1.5	DESCRIPTION OF SUPPORT UNITS	5
	1.6	TEST LOCATION	6
	1.7	TEST FACILITY	6
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	6
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
	1.11	MEASUREMENT UNCERTAINTY	7
2.	TEST	SUMMARY	0
2. 3.		PMENT LIST	
3. 4.		CONFIGURATION	
4.	ILSI		
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	10
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	10
	4.4	PRE-SCAN	
		4.4.1 WORST-CASE DATA PACKETS	11
		4.4.2 TESTED CHANNEL DETAIL	11
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	15
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	16
	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	_
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	DWELL TIME	
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSIONS	
		BAND EDGE MEASUREMENTS (RADIATED)	
	5.11	CONDUCTED EMISSION	45
		X 1 PHOTOS OF TEST SETUP	
AP	PENDI	X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	48

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant: BLU Products, Inc.	
Address of Applicant: 10814 NW 33rd St # 100 Doral, FL 33172 ,USA	
Manufacturer:	BLU Products, Inc.
Address of Manufacturer:	10814 NW 33rd St # 100 Doral, FL 33172 ,USA

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 General Description of Lot			
Mobile Phone			
STUDIO X12			
BLU			
Production Unit	Production Unit		
GSM Bands:	GSM850/1900		
UTRA Bands:	Band II/ Band V		
2.4 GHz ISM Band:	IEEE 802.11b/g/n		
	Bluetooth V4.2		
Radiation: 863408026763558, 863408026764556			
Conducted: 863408026763236 863408026764234			
December 24, 2020			
December 24, 2020 to January 30, 2021			
	Mobile Phone STUDIO X12 BLU Production Unit GSM Bands: UTRA Bands: 2.4 GHz ISM Band: Radiation: 863408026 Conducted: 86340802 December 24, 2020		

1.2.2 Description of Accessories

Adapter				
Model No.:	US-BM-1005			
Input:	100-240 V~50/60 Hz			
Output:	5.0 V == 1.0 A			
Manufacturer:	SHENZHEN BMT ELECTRONICS CO.,LTD.			

Battery				
Model No.:	C876537290L			
Battery Type:	Lithium-ion Rechargeable Battery			
Rated Voltage:	3.8 Vdc			
Limited Charge Voltage:	4.25 Vdc			
Rated Capacity:	2900 mAh			
Manufacturer:	Shenzhen Utility Power Source Co., Itd.			

Cable			
Description: USB Micro-B Plug Cable			
Cable Type: Unshielded without ferrite			
Length:	1.0 Meter		

Page 5 of 48 Report No.: 201224006RFC-2

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Bluetooth Version:	Bluetooth BR + EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK		
Number of Channels:	79		
Channel Separation:	1 MHz		
Hopping Channel Type:	ppping Channel Type: Adaptive Frequency Hopping Systems		
Antenna Type:	PIFA Antenna		
Antenna Gain:	2.32 dBi		
Maximum Peak Power:	7.285 dBm		
Normal Test Voltage:	3.8 Vdc		

1.4 OTHER INFORMATION

Operation	Frequency	Each of	Channel
-----------	-----------	---------	---------

f = 2402 + k MHz, k = 0,...,78

Note:

is the operating frequency (MHz);

is the operating channel. k

Modulation Configure					
Modulation	Packet	Packet Type	Packet Size		
	1-DH1	4	27		
GFSK	1-DH3	11	183		
	1-DH5	15	339		
	2-DH1	20	54		
π/4 DQPSK	2-DH3	26	367		
	2-DH5	30	679		
	3-DH1	24	83		
8DPSK	3-DH3	27	552		
	3-DH5	31	1021		

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
-	-	-	-	-

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

Page 6 of 48 Report No.: 201224006RFC-2

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district,

Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

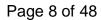
1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER


None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty	
1	Conducted emission 9KHz-150KHz	±3.2 dB	
2	Conducted emission 150KHz-30MHz	±2.7 dB	
3	Radiated emission 9KHz-30MHz	± 4.7 dB	
4	Radiated emission 30MHz-1GHz	± 4.9 dB	
5	Radiated emission 1GHz-18GHz	± 4.8 dB	
6	Radiated emission 18GHz-26GHz	± 5.1 dB	
7	Radiated emission 26GHz-40GHz	± 5.1 dB	
8	Conducted spurious emissions	± 2.7 dB	
9	RF Power, Conducted	± 0.9 dB	
10	Occupied Bandwidth	± 1.86 %	
11	Radio Frequency	2.4 GHz: ± 6.5 x 10-8	
12	Transmission Time	± 0.19 %	

2. TEST SUMMARY

	FCC 47 CFR Part 15 Subpart C Test Cases					
Test Item	Test Requirement	Test Method	Result			
Antenna Requirement	na Requirement FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)		PASS			
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS			
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS			
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 6.9.2	PASS			
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS			
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS			
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS			
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS			
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS			
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.10.5	PASS			

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 18, 2020	Nov. 18, 2021
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 14, 2020	Nov. 13, 2021
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 14, 2020	Nov. 13, 2021
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Nov. 14, 2020	Nov.13, 2021
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 10, 2020	Nov. 9, 2021
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	May. 30, 2020	May. 29, 2021
	6dB Attenuator	Talent	RA6A5-N- 18	18103002	Nov. 18, 2020	Nov. 17, 2021
	Horn Antenna	ETS-LINDGREN	3117	00164202	Nov. 14, 2020	Nov. 13, 2021
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May. 30, 2020	May. 29, 2021
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jun.19, 2020	Jun. 18, 2021
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Nov. 17, 2020	Nov. 16, 2021
\boxtimes	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
\boxtimes	Test Software	Audix	e3	Software Version: 9.160323		0323

	Conducted Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 18, 2020	Nov.18, 2021
	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 18, 2020	Nov.18, 2021
	LISN	R&S	ESH2-Z5	860014/024	Nov. 18, 2020	Nov.18, 2021
	LISN	ETS-Lindgren	3816/2SH	00201088	Nov. 18, 2020	Nov.23, 2021
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted RF test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 10, 2020	Nov. 10, 2021
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 10, 2020	Nov. 10, 2021
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 10, 2020	Nov. 9, 2021

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Test Condition	Ambient					
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
NT/NV	+15 to +35 3.8 20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature						

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
AC Power Line Conducted Emission	24.9	36	99.87	Tripp Jiang
Conducted Peak Output Power	24.5	52	99.80	Leo Li
20 dB Bandwidth	24.5	52	99.80	Leo Li
Carrier Frequencies Separation	24.5	52	99.80	Leo Li
Number of Hopping Channel	24.5	52	99.80	Leo Li
Dwell Time	24.5	52	99.80	Leo Li
Conducted Out of Band Emission	24.5	52	99.80	Leo Li
Radiated Emissions	25.2	56	100.02	Andy Lin
Band Edge Measurement	25.2	56	100.02	Andy Lin

4.2 TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists			
Wiode	1 X/KX Frequency	Lowest(L)	Middle(M)	Highest(H)	
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78	
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz	
π/4DQPSK	0400 MIL (* 0400 MIL	Channel 0	Channel 39	Channel 78	
(DH1, DH3, DH5)	2402 MHz to 2480 MHz	2402 MHz	2441 MHz	2480 MHz	
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78	
(DH1, DH3, DH5)	2402 MINZ 10 2460 MINZ	2402 MHz	2441 MHz	2480 MHz	

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

	Power Setting	
Power Setting: 4		

Test Software
Test software name: Engineering mode *#*#74655577#*#*;

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4.4 PRE-SCAN

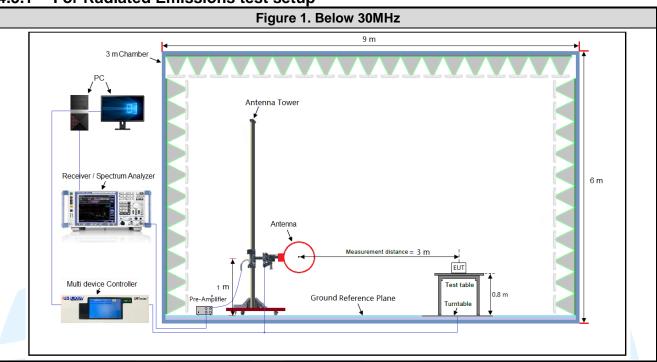
4.4.1 Worst-case data packets

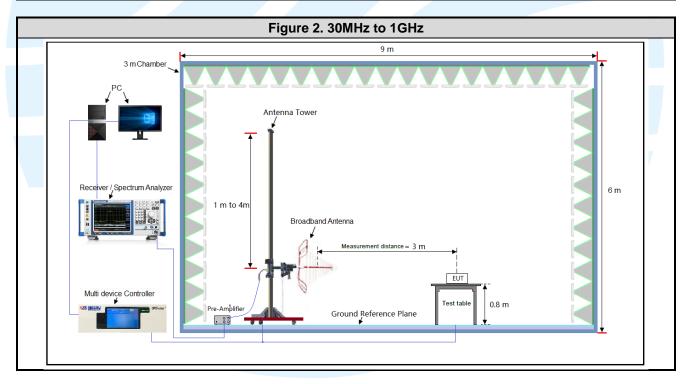
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

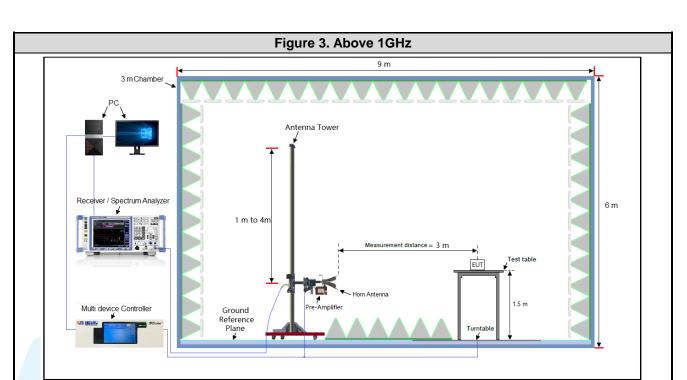
Report No.: 201224006RFC-2

4.4.2 Tested channel detail

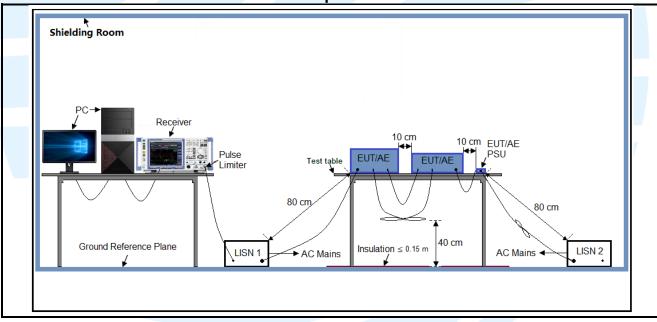
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

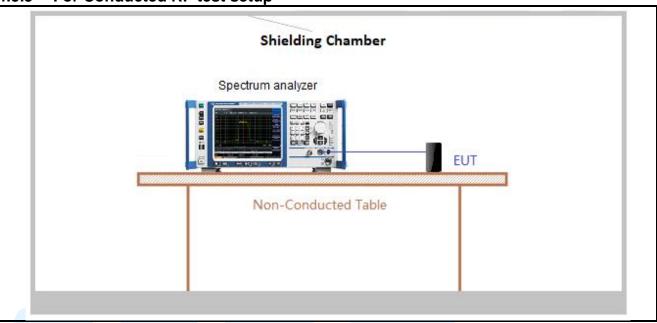

channel(s) was (were) selected for the final test as listed below.									
Type of Modulation		GFSK			/4DQPS	K		8DPSK	
Data Packets	1-DH 1	1-DH 3	1-DH 5	2-DH 1	2-DH 3	2-DH 5	3-DH 1	3-DH 3	3-DH 5
Available Channel	0 to 78								
Test Item	Test channel and choose of data packets								
AC Power Line Conducted			Freq	uency Ho	pping Ch	nannel 0	to 78		
Emission					Link				
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power			\boxtimes						\boxtimes
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78			
20 db Baridwidtii			\boxtimes			\boxtimes			\boxtimes
Carrier Frequencies			Freq	uency Ho	pping Ch	nannel 0	to 78		
Separation			\boxtimes			\boxtimes			\boxtimes
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Charmer			\boxtimes			\boxtimes			\boxtimes
Dwell Time	Channel 39								
Bwell Tillie							\boxtimes		
Conducted Out of Band				Chanr	nel 0 & 39	9 & 78			
Emission									\boxtimes
Radiated Emissions	Channel 0 & 39 & 78								
. tad.atsa Efficients			\boxtimes						
Band Edge Measurements				Cha	annel 0 &	. 78			
(Radiated)									
Remark: 1. The mark "⊠" means is chosen for testing;									


- The mark "⊠" means is chosen for testing:
- 2. The mark "□" means is not chosen for testing.


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup





4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

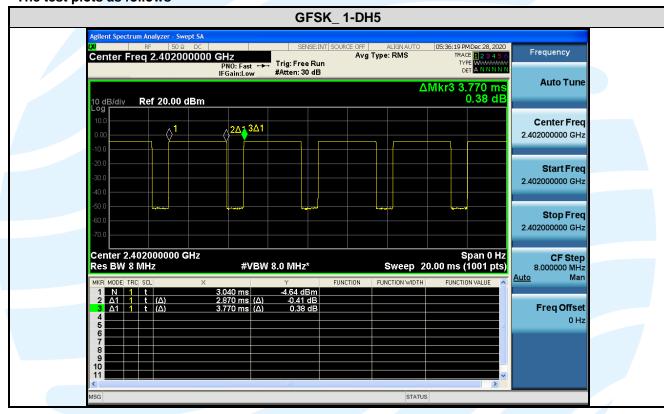
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results


Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	2.8700	3.7700	0.76	76.13	1.18	0.35	-2.37

Report No.: 201224006RFC-2

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Page 16 of 48 Report No.: 201224006RFC-2

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title				
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations				
2	FCC 47 CFR Part 15	Radio Frequency Devices				
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices				
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules				

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 2.32

Page 17 of 48 Report No.: 201224006RFC-2

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.5

Limit: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at

least 75 non-overlapping hopping channels, and all frequency hopping systems in the

5725-5850 MHz band: 1 watt.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

a) Use the following spectrum analyzer settings:

1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of	Peak	Output Power (dBm)	Peak Output Power (mW)		
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	7.212	6.878	6.252	5.26	4.87	4.22
π/4 DQPSK	7.052	6.867	6.365	5.07	4.86	4.33
8DPSK	7.285	7.147	6.652	5.35	5.18	4.63

Note: The antenna gain of 2.32 dBi less than 6dBi maximum permission antenna gain value based on 125 mW peak output power limit.

The test plots as follows: **GFSK** π/4 DQPSK **Lowest Channel** Trig: Free Run #Atten; 20 dB Ref Offset 11.2 dB Ref 20.00 dBm Marker Delt #VBW 3.0 MHz **Middle Channel** Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run Ref Offset 11.2 dB Ref 20.00 dBm Ref Offset 11.2 dB Ref 20.00 dBm Marker Delt More 1 of 2 More 1 of 2 Center 2.441000 GHz Center 2.441000 GHz #Res BW 3.0 MHz **Highest Channel** arker 1 2.479805000000 GHz RF | 50 Q DC | larker 1 2.479770000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold>100/100 Ref Offset 11.2 dB Ref 20.00 dBm Ref Offset 11.2 dB Ref 20.00 dBm Next Pk Righ Next Pk Righ Mkr⊸RefLv

Page 20 of 48 Report No.: 201224006RFC-2

5.420 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 6.9.2 **Limit:** None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.

b) RBW = 1% to 5% of the OBW.

c) VBW \geq 3 x RBW

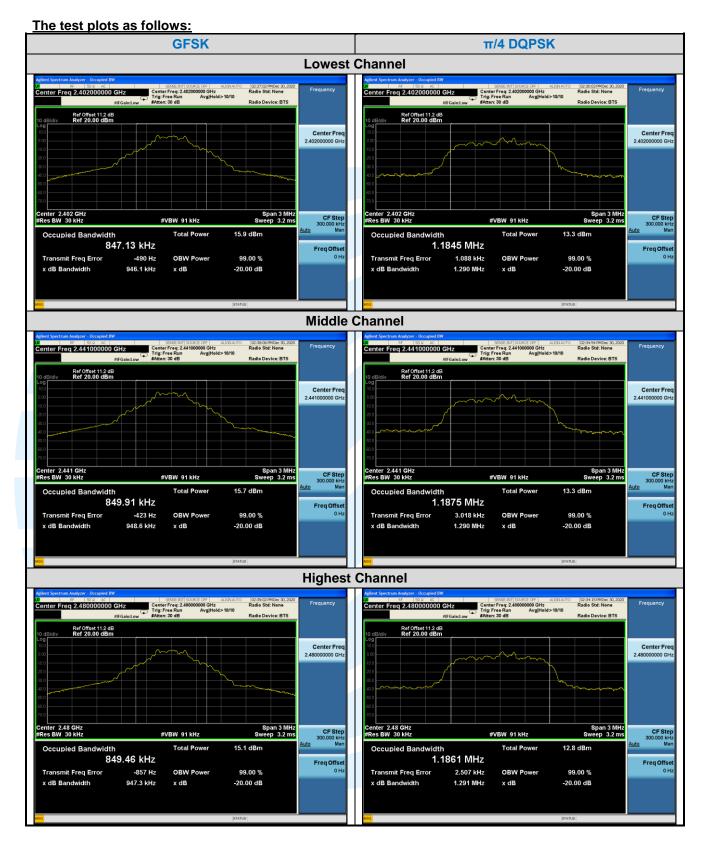
d) Sweep = auto;

e) Detector function = peak

f) Trace = max hold

g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an


amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of	Type of 20 dB Bandwidth (MHz)			99% Bandwidth (MHz)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.9461	0.9486	0.9473	0.84713	0.84991	0.84946	
π/4 DQPSK	1.290	1.290	1.291	1.1845	1.1875	1.1861	
8DPSK	1.302	1.302	1.300	1.1829	1.1821	1.1823	

Page 23 of 48 Report No.: 201224006RFC-2

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 7.8.2

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have

hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the

20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.
- h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

1 doc							
Type of Madulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)					
Type of Modulation	Channel 39	Channel 39					
GFSK	1.000	0.632					
π/4 DQPSK	1.000	0.860					
8DPSK	1.000	0.868					
Note: The minimum limit is two-t	Note: The minimum limit is two-third 20 dB bandwidth.						

CFSK

With formal modes levels as follows:

CFSK

With formal modes levels leve

Page 25 of 48 Report No.: 201224006RFC-2

5.6 NUMBER OF HOPPING CHANNEL

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.3

Limit: Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15

non-overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

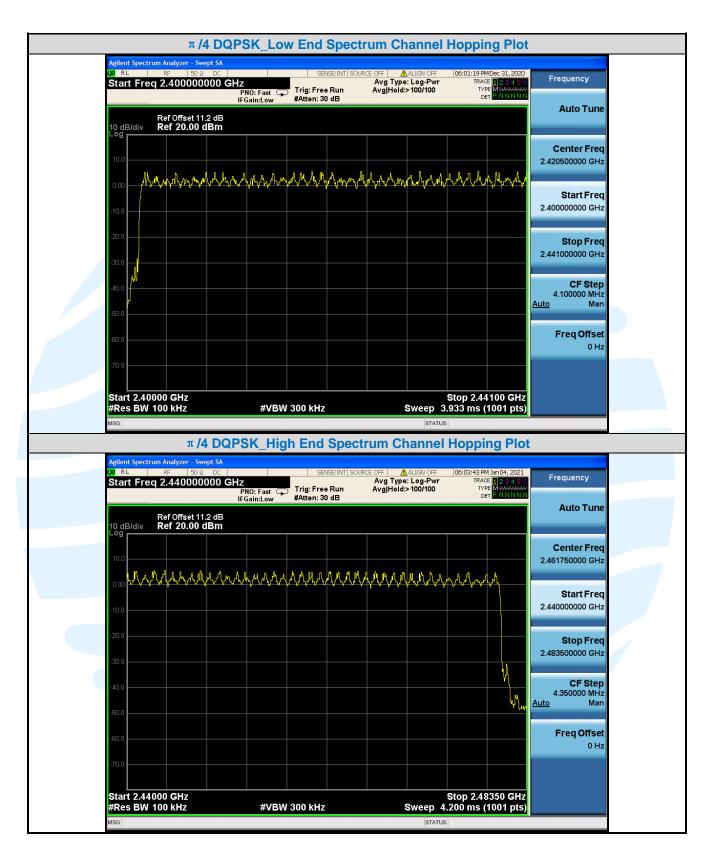
f) Trace: Max hold.

g) Allow the trace to stabilize.

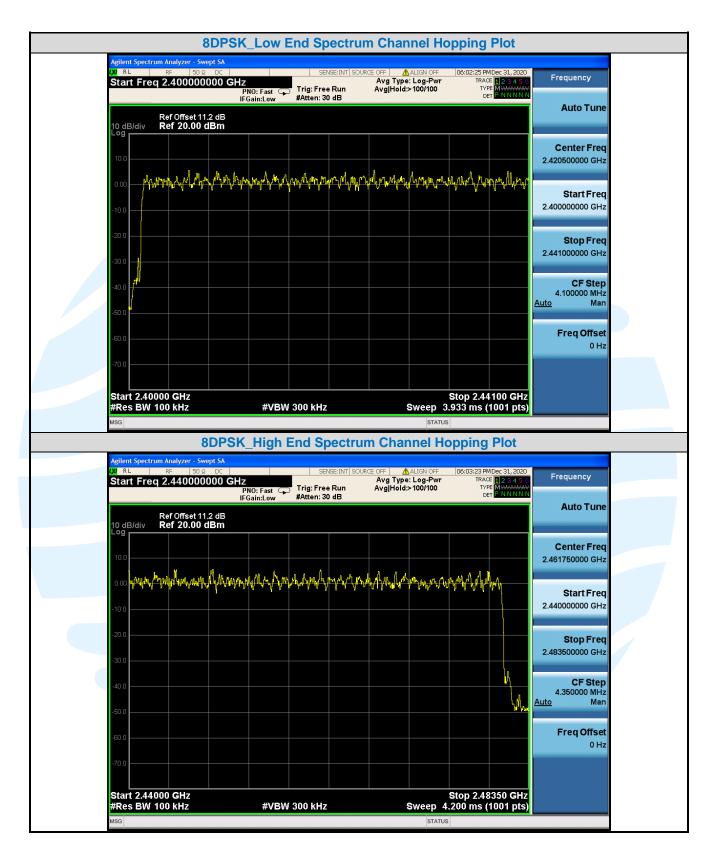
Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Type of Modulation	Number of Hopping Channel
GFSK	79
π/4 DQPSK	79
8DPSK	79



The test plots as follows: **GFSK_Low End Spectrum Channel Hopping Plot** Frequency Avg Type: Log-Pwr Avg|Hold:>100/100 Start Freq 2.400000000 GHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB **Auto Tune** Ref Offset 11.2 dB Ref 20.00 dBm 10 dB/div Center Freq 2.420500000 GHz Start Freq 2.400000000 GHz Stop Freq 2.441000000 GHz **CF Step** 4.100000 MHz Man Freq Offset 0 Hz Start 2.40000 GHz #Res BW 100 kHz Stop 2.44100 GHz Sweep 3.933 ms (1001 pts) **#VBW** 300 kHz **GFSK_High End Spectrum Channel Hopping Plot** E OFF ALIGN OFF
Avg Type: Log-Pwr
Avg|Hold:>100/100 Frequency PNO: Fast Trig: Free Run #Atten: 30 dB Start Freq 2.440000000 GHz **Auto Tune** Ref Offset 11.2 dB Ref 20.00 dBm 10 dB/div _og ___ 2.461750000 GHz Start Fred 2.440000000 GHz Stop Freq 2.483500000 GHz CF Step 4.350000 MHz Man Auto Freq Offset Start 2.44000 GHz #Res BW 100 kHz Stop 2.48350 GHz Sweep 4.200 ms (1001 pts) **#VBW** 300 kHz

Page 29 of 48 Report No.: 201224006RFC-2

5.7 DWELL TIME

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)

Test Method: ANSI C63.10-2013 Section 7.8.4

Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15

channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

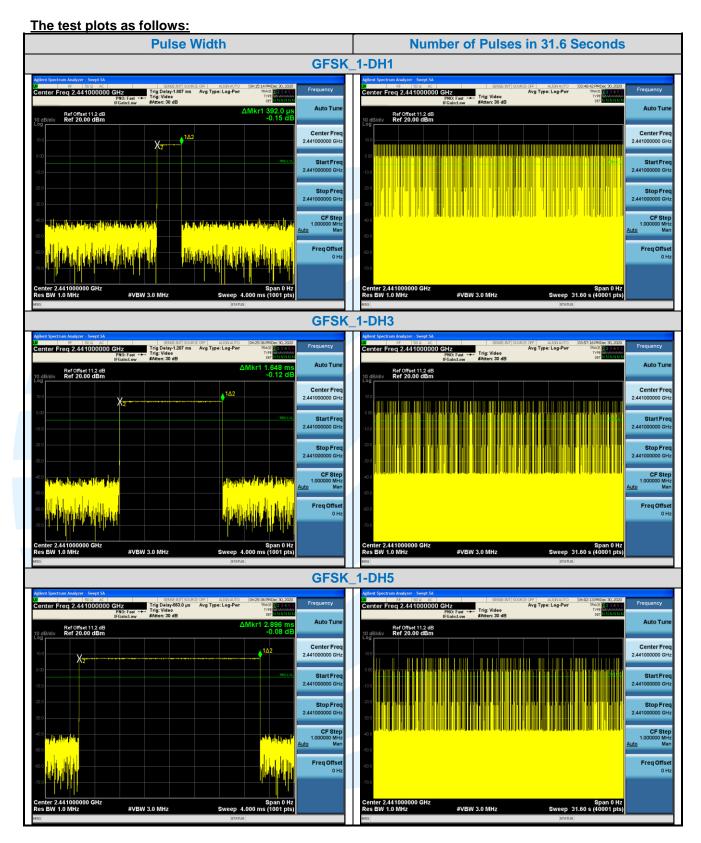
antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

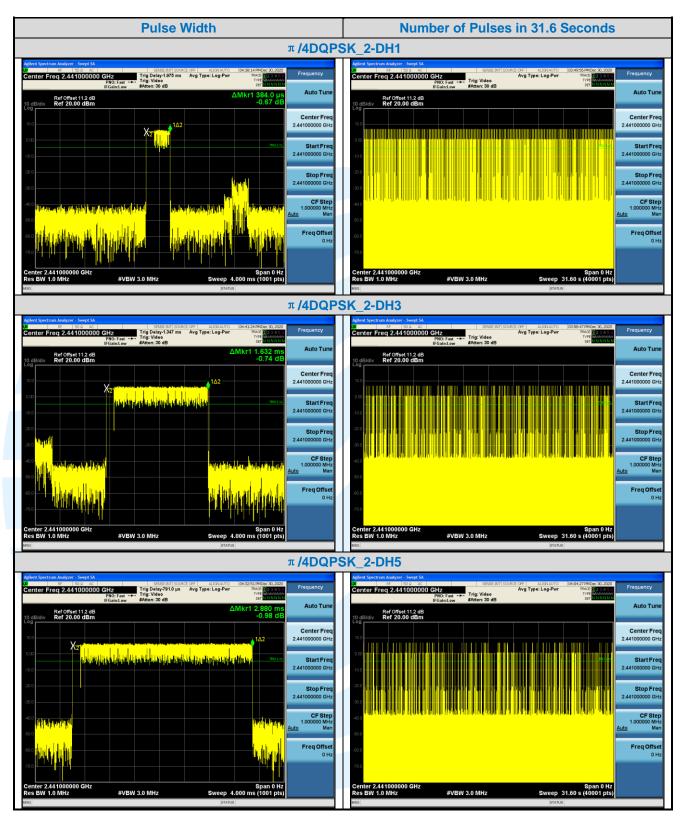
a) Span = zero span, centered on a hopping channel

- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function = peak
- e) Trace = max hold
- f) Use the marker-delta function to determine the dwell time

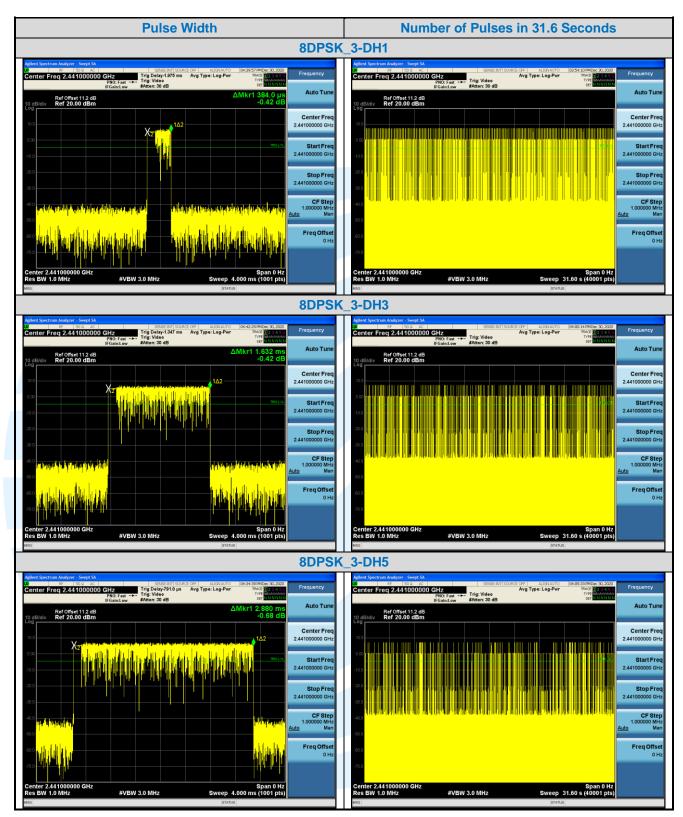
Note: The cable loss and attenuator loss were offset into measure device as an


amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Type of	Test	Pookot	Pulse Width		Dwell Time	Limit
Modulation	Frequency	Packet	ms	Pulses in 31.6 seconds	ms	ms
		1-DH1	0.392	178.000	69.78	< 400
GFSK	GFSK 2441MHz	1-DH3	1.648	118.000	194.46	< 400
		1-DH5	2.896	78.000	225.89	< 400
		2-DH1	0.384	173.000	66.43	< 400
π/4 DQPSK	2441MHz	2-DH3	1.632	121.000	197.47	< 400
		2-DH5	2.880	78.000	224.64	< 400
		3-DH1	0.384	172.000	66.05	< 400
8DPSK	2441MHz	3-DH3	1.632	127.000	207.26	< 400
		3-DH5	2.880	87.000	250.56	< 400



Page 33 of 48 Report No.: 201224006RFC-2

5.8 CONDUCTED OUT OF BAND EMISSION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d) Test Method: ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8

Limit:

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1: Measurement Procedure REF

Set instrument center frequency to 2400 MHz or 2483.5 MHz. a)

- Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.
- Set the RBW = 100 kHz. c)
- Set the VBW \geq 3 x RBW. d)
- e) Detector = peak.
- Sweep time = auto couple. f)
- Sweep points ≥ 2 x Span/RBW g)
- h) Trace mode = max hold.
- i) Allow the trace to stabilize.
- i) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Step 2: Measurement Procedure OOBE

- Set RBW = 100 kHz.
- Set VBW ≥ 300 kHz. b)
- Detector = peak. c)
- Sweep = auto couple. d)
- e) Trace Mode = max hold.
- f) Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. Instruments Used: Refer to section 3 for details

Test Mode: Hopping Frequencies Transmitter mode

Test Results: Pass

The test plots as follows: **GFSK In-Band Reference Level Out of Band Emission Lowest Channel** Avg Type: Log-Pwr Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold>10/10 Trig: Free Run Ref Offset 11.2 dB Ref 20.00 dBm Ref Offset 11.2 dB Ref 20.00 dBm Center Fre Next Pk Righ Mkr→CF Freq Offse Mkr⊸RefLv **Middle Channel** rker 1 20.691426500000 GHz
PNO: Fast C
Attention 30 dB Avg Type: Log-Pw Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold>10/10 Auto Tur Ref Offset 11.2 dB Ref 20.00 dBm Ref Offset 11.2 dB Ref 20.00 dBm Center Fre 2.441000000 GH Marker Delt Center 2.441000 GHz CF Step 1.000000 MH Mkr→CF Freq Offse **Highest Channel** Ref Offset 11.2 dB Ref 20.00 dBm Center Fre 2.483500000 GH Next Pk Rig Start Fre Next Pk Let Stop Fre Marker Delt CF Step 1.000000 M 2.483 50 GHz 2.480 17 GHz -46.277 dBm 6.735 dBm Freq Offse More 1 of 2