FCC SAR TEST REPORT Report No.: STS2104156H01 Issued for JACS Solutions, Inc. 809 Pinnacle Drive, Suite R, Linthicum Heights, MD 21090 | Product Name: | TT1001 10.1 inch Tablet | | | | | |----------------|-----------------------------|--|--|--|--| | Brand Name: | N/A | | | | | | Model Name: | TT1001V1 | | | | | | Series Model: | N/A | | | | | | FCC ID: | 2AGCDJACSTT1001V1 | | | | | | | ANSI/IEEE Std. C95.1 | | | | | | Test Standard: | FCC 47 CFR Part 2 (2.1093) | | | | | | | IEEE 1528: 2013 | | | | | | Max. Report | Body: 1.364 W/kg | | | | | | SAR (1g): | | | | | | Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample. ShenZhen STS Test Services Co.,Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub District, Bao an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com **APPROVAL** # **Test Report Certification** Applicant's name JACS Solutions, Inc. Manufacture's Name JACS Solutions, Inc. **Product description** Product name.....: TT1001 10.1 inch Tablet Brand name: N/A Model name: TT1001V1 Series Model: N/A ANSI/IEEE Std. C95.1-1992 **Standards** FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013 The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. ### **Date of Test** Date of Issue 18 May 2021 Test Result.....: **Testing Engineer** (Luffy He) Technical Manager Authorized Signatory: (Sean she) (Vita Li) # **Table of Contents** | 1. General Information | 5 | | | |---|----|--|--| | 1.1 EUT Description | 5 | | | | 1.2 Test Environment | 6 | | | | 1.3 Test Factory | 6 | | | | 2. Test Standards and Limits | 7 | | | | 3. SAR Measurement System | 8 | | | | 3.1 Definition of Specific Absorption Rate (SAR) | 8 | | | | 3.2 SAR System | 8 | | | | 4. Tissue Simulating Liquids | 11 | | | | 4.1 Simulating Liquids Parameter Check | 11 | | | | 5. SAR System Validation | 13 | | | | 5.1 Validation System | 13 | | | | 5.2 Validation Result | 13 | | | | 6. SAR Evaluation Procedures | 14 | | | | 7. EUT Antenna Location Sketch | 15 | | | | 7.1 SAR test exclusion consider table | 16 | | | | 8. EUT Test Position | 20 | | | | 8.1 Body-worn Position Conditions | 20 | | | | 8.2 Hotspot mode exposure position condition | 20 | | | | 9. Uncertainty | 21 | | | | 9.1 Measurement Uncertainty | 21 | | | | 9.2 System validation Uncertainty | 22 | | | | 10. Conducted Power Measurement | 23 | | | | 10.1 Test Result | 23 | | | | 11. EUT And Test Setup Photo | 25 | | | | 11.1 EUT Photo | 25 | | | | 11.2 Setup Photo | 28 | | | | 12. SAR Result Summary | 31 | | | | 12.1 Body-worn SAR | 31 | | | | 12.2 repeated SAR measurement | 33 | | | | 13. Equipment List | 34 | | | | Appendix A. System Validation Plots | 35 | | | | Appendix B. SAR Test Plots | 41 | | | | Appendix B. SAR Test Plots Appendix C. Probe Calibration And Dipole Calibration Report | | | | Page 4 of 53 Report No.: STS2104156H01 # **Revision History** | Rev. | Issue Date | Report No. | Effect Page | Contents | |------|-------------|---------------|-------------|---------------| | 00 | 18 May 2021 | STS2104156H01 | ALL | Initial Issue | | | | | | | # 1. General Information Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). 1.1 EUT Description | Droduct Name | TT1001 10 1 | inch Tablet | | | | | | | | |--------------------------------|-----------------------------|--|------------------------------|--|--|--|--|--|--| | Product Name Brand Name | TT1001 10.1 inch Tablet N/A | | | | | | | | | | Model Name | TT1001V1 | | | | | | | | | | Series Model | N/A | | | | | | | | | | Model Difference | N/A | N/A | | | | | | | | | Device Category | Portable | | | | | | | | | | Product stage | Production un | nit | | | | | | | | | RF Exposure
Environment | • | ulation / Uncontrolled | | | | | | | | | Hardware Version | N/A | | | | | | | | | | Software Version | N/A | | | | | | | | | | Frequency Range | 5.2G WLAN
5.8G WLAN | 2.4G WLAN 802.11b/g/n20/n40: 2412 to 2462 MHz
5.2G WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5150 to 5250 MHz
5.8G WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5725 to 5875 MHz
Bluetooth: 2402 to 2480 MHz | | | | | | | | | | Band | Mode | Body worn and hotspot (W/kg) | | | | | | | | | DTS | 2.4GHz WLAN ANT 1 | 0.693 | | | | | | | | | DTS | 2.4GHz WLAN ANT 2 | 0.521 | | | | | | | | | DTS | 2.4GHz WLAN ANT 1+2 | 0.596 | | | | | | | | Max. Reported | NII | 5.2GHz WLAN ANT 1 | 0.645 | | | | | | | | SAR(1g): | NII | 5.2GHz WLAN ANT 2 | 0.986 | | | | | | | | (Limit:1.6W/kg) | NII | 5.2GHz WLAN ANT 1+2 | 1.364 | | | | | | | | | NII | 5.8GHz WLAN ANT 1 | 0.395 | | | | | | | | | NII | 5.8GHz WLAN ANT 2 | 0.529 | | | | | | | | | NII | 5.8GHz WLAN ANT 1+2 | 0.801 | | | | | | | | | DSS | Bluetooth Note | 0.186 | | | | | | | | FCC Equipment Class | Unlicensed No Digital Trans | ad Spectrum Transmitter (DSS)
National Information Infrastructur
mission System (DTS) | e TX (NII) | | | | | | | | Battery | Charge Limit | Rated Voltage:3.8V
Charge Limit Voltage:4.35V
Capacity: 6500mAh | | | | | | | | | Operating Mode | | 11 a/b/g/n20/n40/ac20/ac40/ac80
2EDR (GFSK +π/4DQPSK+8DP | | | | | | | | | Antenna Specification | PIFA Antenn | a | | | | | | | | | Hotspot Mode | Support | | | | | | | | | | DTM Mode | Not Support | | | | | | | | | | Note: 1. Bluetooth SAR was est | timated | - | | | | | | | | ### 1.2 Test Environment Ambient conditions in the SAR laboratory: | Items | Required | |------------------|----------| | Temperature (°C) | 18-25 | | Humidity (%RH) | 30-70 | # 1.3 Test Factory ShenZhen STS Test Services Co.,Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration No.: 625569 IC Registration No.: 12108A A2LA Certificate No.: 4338.01 # 2. Test Standards and Limits | No. | Identity | Document Title | |-----|--|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations | | 2 | ANSI/IEEE Std. C95.1-1992 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | 3 | IEEE Std. 1528-2013 | Recommended Practice for Determining the Peak
Spatial-Average Specific Absorption Rate (SAR) in the
Human Head from Wireless Communications Devices:
Measurement Techniques | | 4 | FCC KDB 447498 D01 v06 | Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies | | 5 | FCC KDB 865664 D01 v01r04 | SAR Measurement 100 MHz to 6 GHz | | 6 | FCC KDB 865664 D02 v01r02 | RF Exposure Reporting | | 7 | FCC KDB 941225 D01 v03r01 | SAR Measurement Procedures for 3G Devices | | 8 | FCC KDB 941225 D06 v02r01 | Hotspot Mode SAR | | 9 | FCC KDB 648474 D04 v01r03 | SAR Evaluation Considerations for Wireless Handsets | | 10 | FCC KDB 248227 D01 Wi-Fi
SAR v02r02 | SAR Considerations for 802.11 Devices | (A). Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | (B). Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ### Population/Uncontrolled Environments: Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. ### Occupational/Controlled Environments: Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). # NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg # 3. SAR Measurement System # 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time
derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 3.2 SAR System MVG SAR System Diagram: COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass. ### 3.2.1 Probe For the measurements the Specific Dosimetric E-Field Probe SN 07/21 EPGO352 with following specifications is used - Probe Length: 330 mm - Length of Individual Dipoles: 2 mm - Maximum external diameter: 8 mm - Probe Tip External Diameter: 2.5 mm - Distance between dipole/probe extremity: 1 mm - Dynamic range: 0.01-100 W/kg - Probe linearity: 3% - Axial Isotropy: < 0.10 dB - Spherical Isotropy: < 0.10 dB - Calibration range: 450 MHz to 6 GHz for head & body simulating liquid. - Angle between probe axis (evaluation axis) and surface normal line: less than 30° Figure 1-MVG COMOSAR Dosimetric E field Dipole ### 3.2.2 Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. r, which prevents the evaporation of the liquid. Figure-SN 32/14 SAM116 ### 3.2.3 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. # 4. Tissue Simulating Liquids ### 4.1 Simulating Liquids Parameter Check The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. ### **Head Tissue** | Frequency | cellulose | DGBE | HEC | NaCl | Preventol | Sugar | X100 | Water | Conductivity | Permittivity | |-----------|-----------|------|-----|------|-----------|-------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | 0.2 | / | / | 1.4 | 0.2 | 57.0 | / | 41.1 | 0.89 | 41.9 | | 835 | 0.2 | / | / | 1.4 | 0.2 | 57.9 | / | 40.3 | 0.90 | 41.5 | | 900 | 0.2 | / | / | 1.4 | 0.2 | 57.9 | / | 40.3 | 0.97 | 41.5 | | 1800 | / | 44.5 | / | 0.3 | / | / | 30.45 | 55.2 | 1.4 | 40.0 | | 1900 | / | 44.5 | / | 0.3 | 1 | 1 | 30.45 | 55.2 | 1.4 | 40.0 | | 2000 | / | 44.5 | / | 0.3 | 1 | 1 | / | 55.2 | 1.4 | 40.0 | | 2450 | / | 44.9 | 1/ | 0.1 | / | 1 | / | 55.0 | 1.80 | 39.2 | | 2600 | / | 45.0 | 1 | 0.1 | 1 | / | / | 54.9 | 1.96 | 39.0 | ### **Body Tissue** | Frequency | cellulose | DGBE | HEC | NaCl | Preventol | Sugar | X100 | Water | Conductivity | Permittivity | |-----------|-----------|------|-----|------|-----------|-------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | 0.2 | 1 | / | 0.9 | 0.1 | 47.2 | / | 51.7 | 0.96 | 55.5 | | 835 | 0.2 | 1 | / | 0.9 | 0.1 | 48.2 | 1 | 50.8 | 0.97 | 55.2 | | 900 | 0.2 | 1 | 1 | 0.9 | 0.1 | 48.2 | 1 | 50.8 | 1.05 | 55.0 | | 1800 | / | 29.4 | 1 | 0.4 | 1 | 1 | 30.45 | 70.2 | 1.52 | 53.3 | | 1900 | / | 29.4 | 1 | 0.4 | 1 | 1 | 30.45 | 70.2 | 1.52 | 53.3 | | 2000 | / | 29.4 | 1 | 0.4 | 1 | | / | 70.2 | 1.52 | 53.3 | | 2450 | / | 31.3 | / | 0.1 | 1 | / | / | 68.6 | 1.95 | 52.7 | | 2600 | / | 31.7 | / | 0.1 | / | / | / | 68.2 | 2.16 | 52.3 | | Tissue dielectric parameters for head and body phantoms | | | | | | | | | |---|------|------|----------|------|--|--|--|--| | Frequency | 3 | r | σ
S/m | | | | | | | | Head | Body | Head | Body | | | | | | 300 | 45.3 | 58.2 | 0.87 | 0.92 | | | | | | 450 | 43.5 | 56.7 | 0.87 | 0.94 | | | | | | 900 | 41.5 | 55.0 | 0.97 | 1.05 | | | | | | 1450 | 40.5 | 54.0 | 1.20 | 1.30 | | | | | | 1800 | 40.0 | 53.3 | 1.40 | 1.52 | | | | | | 2450 | 39.2 | 52.7 | 1.80 | 1.95 | | | | | | 3000 | 38.5 | 52.0 | 2.40 | 2.73 | | | | | | 5800 | 35.3 | 48.2 | 5.27 | 6.00 | | | | | ### **LIQUID MEASUREMENT RESULTS** | Date | Ambient condition | | Simulating Liquid | | Parameters | Target | Measure | Deviation | Limited | | | |------------|-------------------|-----------------|-------------------|---------------|--------------|--------|--------------|-----------|---------|------|-----| | Date | Temp.
[°C] | Humidity
[%] | Frequency | Temp.
[°C] | raiameteis | raiget | d | [%] | [%] | | | | 2021-05-06 | 22.5 | 53 | 2437MHz | 22.2 | Permittivity | 39.2 | 40.21 | 2.57 | ± 5 | | | | 2021-05-00 | 22.5 | 55 | 2437101112 | 22.2 | Conductivity | 1.79 | 1.79 | 0.06 | ± 5 | | | | 2021-05-06 | 22.5 | 53 | 2450MHz | 22.2 | Permittivity | 39.2 | 39.66 | 1.17 | ± 5 | | | | 2021-03-00 | 22.5 | 33 | 2430101112 | 22.2 | Conductivity | 1.8 | 1.82 | 1.23 | ± 5 | | | | 2021-05-13 | 22.8 | 50 | 5180MHz | 22.5 | Permittivity | 36.02 | 37.24 | 3.39 | ± 5 | | | | 2021-05-13 | 22.0 | 50 | STOUIVITZ | 22.5 | Conductivity | 4.64 | 4.68 | 0.88 | ± 5 | | | | 2021-05-13 | 22.8 | 50 | 5240MHz | 240MHz 22.5 | Permittivity | 35.94 | 34.39 | -4.32 | ± 5 | | | | 2021-05-13 | 22.0 | 50 | JZ4UIVII IZ | JZ-TOIVII IZ | OZTOWN IZ | 22.0 | Conductivity | 4.70 | 4.72 | 0.33 | ± 5 | | 2021-05-13 | 22.8 | 50 | 5200MHz | 22.5 | Permittivity | 36 | 35.70 | -0.84 | ± 5 | | | | 2021-03-13 | 22.0 | 30 | 3200IVII 12 | 22.5 | Conductivity | 4.66 | 4.64 | -0.34 | ± 5 | | | | 2021-05-14 | 22.3 | 49 | 5745MHz | 22.0 | Permittivity | 35.4 | 33.63 | -4.99 | ± 5 | | | | 2021-05-14 | 22.3 | 49 | 3743IVITZ | 22.0 | Conductivity | 5.21 | 5.24 | 0.52 | ± 5 | | | | 2021-05-14 | 22.3 | 49 | 5785MHz | 22.0 | Permittivity | 35.3 | 36.18 | 2.50 | ± 5 | | | | 2021-05-14 | 22.3 | 49 | 37 63IVIMZ | 22.0 | Conductivity | 5.25 | 5.28 | 0.50 | ± 5 | | | | 2021-05-14 | 22.3 | 49 | 5800MHz | NI - 00 0 | Permittivity | 35.3 | 35.13 | -0.48 | ± 5 | | | | 2021-00-14 | 22.3 | 49 | JOUUIVIEIZ | 22.0 | Conductivity | 5.27 | 5.25 | -0.45 | ± 5 | | | # 5. SAR System Validation ### 5.1 Validation System Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below. ### 5.2 Validation Result Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %. | Date | Freq. | Power | Tested
Value | Normalized
SAR | Target
SAR | Tolerance | Limit | |------------|-------|-------|-----------------|-------------------|---------------|-----------|-------| | | (MHz) | (mW) | (W/Kg) | (W/kg) | (W/kg) | (%) | (%) | | 2021-05-06 | 2450 | 100 | 5.215 | 52.15 | 52.40 | -0.48 | 10 | | 2021-05-13 | 5200 | 100 | 15.813 | 158.13 | 159.00 | -0.55 | 10 | | 2021-05-14 | 5800 | 100 | 18.223 | 182.23 | 181.20 | 0.57 | 10 | ### Note: - 1. The tolerance limit of System validation ±10%. - 2. The dipole input power (forward power) was 100 mW. - 3. The results are normalized to 1 W input power. ### 6. SAR Evaluation Procedures The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values
the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. ### Area Scan& Zoom Scan: First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. ### 7. EUT Antenna Location Sketch It is a Ruby 10, support BT/WLAN mode. Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. ### 7.1 SAR test exclusion consider table The WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance. | THE WLAIN | The WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance. | | | | | | |-------------------|--|---------|---------|---------|-----------|-----------| | | | | 2.4G | 2.4G | 2.4G | 2.4G | | | Wireless Interface | ВТ | WLAN | WLAN | WLAN | WLAN | | | Wileless illeriace | ы | 802.11b | 802.11b | 802.11n20 | 802.11n20 | | | | | ANT 1 | ANT 2 | ANT 1 | ANT 2 | | Exposure Position | Calculated
Frequency(MHz) | 2440 | 2437 | 2437 | 2437 | 2437 | | | Maximum power (dBm) | 6.5 | 21.5 | 21.5 | 23 | 23 | | | Maximum rated power(mW) | 4.47 | 141.25 | 141.25 | 199.53 | 199.53 | | Back | Separation distance (mm) | 5 | 5 | 5 | 5 | 5 | | Side | exclusion threshold(mW) | 9.60 | 9.61 | 9.61 | 9.61 | 9.61 | | | Testing required? | NO | YES | YES | YES | YES | | | Separation distance (mm) | 84 | 84 | 228 | 84 | 228 | | Left Edge | exclusion threshold(mW) | 436.03 | 436.09 | 1876.09 | 436.09 | 1876.09 | | | Testing required? | NO | NO | NO | NO | NO | | Right | Separation distance (mm) | 143 | 143 | 9 | 143 | 9 | | Edge | exclusion threshold(mW) | 1026.03 | 1026.09 | 17.30 | 1026.09 | 17.30 | | | Testing required? | NO | NO | YES | NO | YES | | | Separation distance (mm) | 5 | 5 | 5 | 5 | 5 | | Top Edge | exclusion threshold(mW) | 9.60 | 9.61 | 9.61 | 9.61 | 9.61 | | | Testing required? | NO | YES | YES | YES | YES | | Bottom | Separation distance (mm) | 149 | 149 | 153 | 149 | 153 | | Edge | exclusion threshold(mW) | 1086.03 | 1086.09 | 1126.09 | 1086.09 | 1126.09 | | | Testing required? | NO | NO | NO | NO | NO | Page 17 of 53 Report No.: STS2104156H01 | | | 5.2G | 5.2G | 5.2G | 5.2G | |-------------------|------------------------------|---------|---------|-----------|------------| | | Wireless Interface | WLAN | WLAN | WLAN | WLAN | | | Wileless Interface | 802.11a | 802.11a | 802.11n20 | 802.11 n20 | | | | ANT 1 | ANT 2 | ANT 1 | ANT 2 | | Exposure Position | Calculated
Frequency(MHz) | 5240 | 5240 | 5200 | 5200 | | | Maximum power (dBm) | 14.5 | 15.5 | 14.5 | 15.5 | | | Maximum rated power(mW) | 28.18 | 35.48 | 28.18 | 35.48 | | Back | Separation distance (mm) | 5 | 5 | 5 | 5 | | Side | exclusion threshold(mW) | 6.55 | 6.55 | 6.58 | 6.58 | | | Testing required? | YES | YES | YES | YES | | | Separation distance (mm) | 84 | 228 | 84 | 228 | | Left Edge | exclusion threshold(mW) | 405.53 | 1845.53 | 405.78 | 1845.78 | | | Testing required? | NO | NO | NO | NO | | Right | Separation distance (mm) | 143 | 9 | 143 | 9 | | Edge | exclusion threshold(mW) | 995.53 | 11.80 | 995.78 | 11.84 | | | Testing required? | NO | YES | NO | YES | | | Separation distance (mm) | 5 | 5 | 5 | 5 | | Top Edge | exclusion threshold(mW) | 6.55 | 6.55 | 6.58 | 6.58 | | | Testing required? | YES | YES | YES | YES | | Bottom | Separation distance (mm) | 149 | 153 | 149 | 153 | | Edge | exclusion threshold(mW) | 1055.53 | 1095.53 | 1055.78 | 1095.78 | | | Testing required? | NO | NO | NO | NO | Page 18 of 53 Report No.: STS2104156H01 | | | 5.8G | 5.8G | 5.8G | 5.8G | |-----------|--------------------------|---------|---------|-----------|------------| | | Maria a la tanta a | WLAN | WLAN | WLAN | WLAN | | | Wireless Interface | 802.11a | 802.11a | 802.11n20 | 802.11 n20 | | | | ANT 1 | ANT 2 | ANT 1 | ANT 2 | | Exposure | Calculated | 5785 | 5785 | 5745 | 5745 | | Position | Frequency(MHz) | 0100 | 3763 | 3743 | 3743 | | | Maximum power (dBm) | 12.5 | 15 | 15 | 14 | | | Maximum rated | 17.78 | 31.62 | 31.62 | 25.12 | | | power(mW) | | | | | | Back | Separation distance (mm) | 5 | 5 | 5 | 5 | | Side | exclusion threshold(mW) | 6.24 | 6.24 | 6.26 | 6.26 | | | Testing required? | YES | YES | YES | YES | | | Separation distance (mm) | 84 | 228 | 84 | 228 | | Left Edge | exclusion threshold(mW) | 402.36 | 1842.36 | 402.58 | 1842.58 | | | Testing required? | NO | NO | NO | NO | | Right | Separation distance (mm) | 143 | 9 | 143 | 9 | | Edge | exclusion threshold(mW) | 992.36 | 11.23 | 992.58 | 11.26 | | | Testing required? | NO | YES | NO | YES | | | Separation distance (mm) | 5 | 5 | 5 | 5 | | Top Edge | exclusion threshold(mW) | 6.24 | 6.24 | 6.26 | 6.26 | | | Testing required? | YES | YES | YES | YES | | Bottom | Separation distance (mm) | 149 | 153 | 149 | 153 | | Edge | exclusion threshold(mW) | 1052.36 | 1092.36 | 1052.58 | 1092.58 | | Ü | Testing required? | NO | NO | NO | NO | ### Note: - 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units. - 2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 3. per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <25mm,25mm is user to determine SAR exclusion threshold - 4. per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distance ≤50mm are determined by: - [(max.power of channel, including tune-up tolerance, Mw)/(min. test separation distance, mm)]*[$\sqrt{f(GHZ)}$) \leq 3.0 for 1-g SAR and \leq 7.5 for10-g extremity SAR ,f(GHz) is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation. The result is rounded to one decimal place for comparison - For <50mm distance, we just calculate mW of the exclusion threshold value(3.0)to do compare - 5. per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances >50mm, the SAR test exclusion threshold is determined according to the following - a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]Mw, at 100 MHz to 1500 MHz - b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at>1500MHz and≤ 6GHz - 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded. - 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary. ### 8. EUT Test Position This EUT was tested in Front Face and Rear Face. ### **8.1 Body-worn Position Conditions** Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset. ### 8.2 Hotspot mode exposure position condition For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface). # 9. Uncertainty ### 9.1 Measurement Uncertainty The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | Uncertainty Component | Tol
(+- %) | Prob.
Dist.
| Div. | Ci (1g) | Ci
(10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | vi | |---|---------------|----------------|------------|---------|-------------|----------------|-----------------|-----| | Measurement System | | | • | | | | ' ' | • | | Probe calibration | 5.831 | N | 1 | 1 | 1 | 5.83 | 5.83 | ∞ | | Axial Isotropy | 0.695 | R | $\sqrt{3}$ | √0.5 | √0.5 | 0.28 | 0.28 | 8 | | Hemispherical Isotropy | 1.045 | R | $\sqrt{3}$ | √0.5 | √0.5 | 0.43 | 0.43 | ∞ | | Boundary effect | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 0.685 | R | $\sqrt{3}$ | 1 | 1 | 0.40 | 0.40 | ∞ | | System detection limits | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Readout Electronics | 0.021 | N | 1 | 1 | 1 | 0.021 | 0.021 | ∞ | | Response Time | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | Integration Time | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | ∞ | | RF ambient | | | | | | | | | | conditions-Noise | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | RF ambient | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | conditions-reflections | 3.0 | - '\ | γ3 | / · / / | | 1.75 | 1.75 | | | Probe positioner | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | ∞ | | mechanical tolerance Probe positioning with | | | | | | | | | | respect to phantom shell | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | ∞ | | Post-processing | 2.3 | R | √3 | 1 | 1/ | 1.33 | 1.33 | ∞ | | Test sample Related | 2.0 | | 1 42 | | | 1.00 | 1.00 | | | Test sample positioning | 2.6 | N | 1 | 1 | 1 | 2.6 | 2.6 | ∞ | | Device holder uncertainty | 3 | N | 1 | 1 | 1 | 3 | 3 | ∞ | | SAR drift measurement | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ∞ | | SAR scaling | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ∞ | | Phantom and tissue param | eters | | V | | 1 | 1 | | 1 | | Phantom uncertainty(shape | 4 | R | 5 | 1 | 1 | 2.31 | 2.31 | ∞ | | and thickness uncertainty) | 4 | K | √3 | ı | 1 | 2.31 | 2.31 | | | Uncertainty in SAR | | | | | | | | | | correction for deviations in | 1.9 | N | 1 | 1 | 0.84 | 1.90 | 1.60 | ∞ | | permittivity and conductivity Liquid | | | | | | | | | | conductivity(temperature | 2.5 | R | √3 | 0.78 | 0.71 | 1.13 | 1.02 | ∞ | | uncertainty) | 2.0 | | γ5 | 0.70 | 0.71 | 1.10 | 1.02 | | | Liquid | 4 | NI | 1 | 0.70 | 0.71 | 2.42 | 2.04 | М | | conductivity(measured) | 4 | N | 1 | 0.78 | 0.71 | 3.12 | 2.84 | IVI | | Liquid | | | | | | | | | | permittivity(temperature | 2.5 | R | $\sqrt{3}$ | 0.23 | 0.26 | 0.33 | 0.38 | ∞ | | uncertainty) | | | | | | | | - | | Liquid permittivity(measured) | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | M | | Combined Standard | | | | | | | | | | Uncertainty | | RSS | | | | 9.79 | 9.59 | | | Expanded Uncertainty | | 1/ 0 | | | | 40.50 | 40.40 | | | (95% Confidence interval) | | K=2 | | | | 19.58 | 19.18 | | # 9.2 System validation Uncertainty | Uncertainty Component | Tol
(+- %) | Prob.
Dist. | Div. | Ci (1g) | Ci (10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | vi | |---|---------------|----------------|------------|---------|----------|----------------|-----------------|----| | Measurement System | | | | | | | | | | Probe calibration | 5.831 | N | 1 | 1 | 1 | 5.83 | 5.83 | ∞ | | Axial Isotropy | 0.695 | R | $\sqrt{3}$ | 1 | 1 | 0.40 | 0.40 | ∞ | | Hemispherical Isotropy | 1.045 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ∞ | | Boundary effect | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | 8 | | Linearity | 0.685 | R | $\sqrt{3}$ | 1 | 1 | 0.40 | 0.40 | 8 | | System detection limits | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | 8 | | Modulation response | 3.0 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | 8 | | Readout Electronics | 0.021 | N | 1 | 1 | 1 | 0.021 | 0.021 | ∞ | | Response Time | 0.0 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | 8 | | Integration Time | 1.4 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | 8 | | RF ambient conditions-Noise | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | RF ambient conditions-reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | 8 | | Probe positioner mechanical tolerance | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | Probe positioning with respect to phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Post-Processing | 2.3 | R | $\sqrt{3}$ | 1 | 1 | 1.33 | 1.33 | 8 | | System validation source | | | | | | • | • | | | Deviation of experimental dipole from numerical dipole | 5.0 | N | 1 | 1 | 1 | 5.00 | 5.00 | 8 | | Input power and SAR drift measurement | 5.0 | R | √3 | 1 | 1 | 2.89 | 2.89 | 8 | | Other source contribution Uncertainty | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | 8 | | Phantom and set-up | | | | / / | 1 | | | | | Phantom uncertainty(shape and thickness uncertainty) | 4.0 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | Uncertainty in SAR correction for deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.90 | 1.60 | 8 | | Liquid conductivity(temperature uncertainty) | 2.5 | R | √3 | 0.78 | 0.71 | 1.13 | 1.02 | 8 | | Liquid conductivity(measured) | 4 | N | 1 | 0.78 | 0.71 | 3.12 | 2.84 | М | | Liquid permittivity(temperature uncertainty) | 2.5 | R | √3 | 0.23 | 0.26 | 0.33 | 0.38 | 8 | | Liquid permittivity(measured) | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | М | | Combined Standard
Uncertainty | | RSS | | | | 9.718 | 9.517 | | | Expanded Uncertainty (95% Confidence interval) | | K=2 | | | | 19.44 | 19.04 | | # 10. Conducted Power Measurement ### 10.1 Test Result ### **2.4G WLAN** | Test Mode | Frequency | Тх Туре | Measured Average C | | | Verdict | | |---------------|-----------|---------|--------------------|-------|-------|---------|--| | | (MHz) | | Ant 1 | Ant 2 | Total | | | | | 2412 | SISO | 20.25 | 19.88 | / | PASS | | | 802.11b | 2437 | SISO | 21.31 | 21.05 | / | PASS | | | | 2462 | SISO | 21.07 | 19.26 | / | PASS | | | | 2412 | SISO | 22.43 | 22.21 | / | PASS | | | 802.11g | 2437 | SISO | 23.50 | 23.18 | / | PASS | | | | 2462 | SISO | 23.09 | 22.24 | / | PASS | | | | 2412 | MIMO | 21.40 | 22.35 | 24.91 | PASS | | | 802.11n(HT20) | 2437 | MIMO | 22.81 | 22.21 | 25.53 | PASS | | | | 2462 | MIMO | 22.03 | 22.15 | 25.10 | PASS | | ### BT | Test Mode | Frequency
(MHz) | Тх Туре | Measured Average Output Power (dBm) Ant 1 | Verdict | |-----------|--------------------|---------|---|---------| | | 2402 | SISO | 2.15 | PASS | | GFSK | 2441 | SISO | 3.09 | PASS | | | 2480 | SISO | 2.42 | PASS | | | 2402 | SISO | 0.03 | PASS | | Pi/4DQPSK | 2441 | SISO | 1.03 | PASS | | | 2480 | SISO | 0.24 | PASS | | | 2402 | SISO | 0.09 | PASS | | 8DPSK | 2441 | SISO | 1.12 | PASS | | | 2480 | SISO | -0.11 | PASS | ### BLE | Test Mode | Frequency
(MHz) | Тх Туре | Measured Average Output Power (dBm) Ant 1 | Verdict | |-----------|--------------------|---------|---|---------| | | 2402 | SISO | 5.25 | PASS | | 1M | 2440 | SISO | 6.33 | PASS | | | 2480 | SISO | 6.23 | PASS | ### **5G WLAN** | T | Frequency | . | Measured | Output Pov | ver (dBm) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | |---|-----------|----------|----------|------------|-----------|---------------------------------------|--| | Test Mode | (MHz) | Тх Туре | Ant 1 | Ant 2 | Total | Verdict | | | | 5180 | SISO | 13.28 | 14.44 | / | PASS | | | | 5200 | SISO | 13.82 | 14.62 | / | PASS | | | 000.44 | 5240 | SISO | 14.14 | 15.24 | / | PASS | | | 802.11a | 5745 | SISO | 12.07 | 13.42 | / | PASS | | | | 5785 | SISO | 12.32 | 14.62 | / | PASS | | | | 5825 | SISO | 11.43 | 13.42 | / | PASS | | | | 5180 | MIMO | 13.74 | 15.24 | 17.56 | PASS | | | | 5200 | MIMO | 13.65 | 15.26 | 17.54 | PASS | | | 000 44 = (LIT00) | 5240 | MIMO | 14.07 | 14.47 | 17.28 | PASS | | | 802.11n(HT20) | 5745 | MIMO | 14.62 | 13.68 | 17.19 | PASS | | | | 5785 | MIMO | 14.26 | 13.49 | 16.90 | PASS | | | | 5825 | MIMO | 14.80 | 13.18 | 17.08 | PASS | | | | 5190 | MIMO | 14.06 | 13.12 | 16.63 | PASS | | | 000 44 = (LIT40) | 5230 | MIMO | 14.34 | 13.02 | 16.74 | PASS | | | 802.11n(HT40) | 5755 | MIMO | 14.11 | 13.12 | 16.65 | PASS | | | | 5795 | MIMO | 14.29 | 12.82 | 16.63 | PASS | | | | 5180 | MIMO | 14.05 | 14.62 | 17.35 | PASS | | | | 5200 | MIMO | 14.83 | 14.77 | 17.81 | PASS | | | 000 44 00// (1700) | 5240 | MIMO | 14.12 | 13.39 | 16.78 | PASS | | | 802.11ac(VHT20) | 5745 | MIMO | 14.03 | 14.25 | 17.15 | PASS | | | | 5785 | MIMO | 14.22 | 13.74 | 17.00 | PASS | | | | 5825 | MIMO | 14.24 | 13.86 | 17.06 | PASS | | | | 5190 | MIMO | 14.22 | 13.66 | 16.96 | PASS | | | 000 4406(\(\text{U}\) T40\(\text{V}\) | 5230 | MIMO | 14.58 | 13.51 | 17.09 | PASS | | | 802.11ac(VHT40) | 5755 | MIMO | 14.09 | 13.59 | 16.86 | PASS | | | | 5795 | MIMO | 14.60 | 13.59 | 17.13 | PASS | | | 000 44ec(\/\ | 5210 | MIMO | 14.33 | 12.50 | 16.52 | PASS | | | 802.11ac(VHT80) | 5775 | MIMO | 14.28 | 13.53 | 16.93 | PASS | | # 11. EUT And Test Setup Photo ### 11.1 EUT Photo Front side Back side Bottom side ### Left side Right side # 11.2 Setup Photo Body Right side(separation distance is 0mm) Body Top side(separation distance is 0mm) Liquid depth (15 cm) # 12. SAR Result Summary # 12.1 Body-worn SAR | Band | Model | Test | Ch. | Result | Power | Max.Turn-up | Meas.Output | Scaled
SAR | Meas. | |---------|-----------|------------|-----|-----------------|-------|-------------|-------------|---------------|-------| | | | Position | | (W/Kg) Drift(%) | | Power(dBm) | Power(dBm) | (W/Kg) | No. | | 2.4GHz | 802.11b | Back Side | 6 | 0.654 | -3.41 | 21.5 | 21.31 | 0.683 | / | | WLAN | ANT 1 | Top side | 6 | 0.663 | 3.55 | 21.5 | 21.31 | 0.693 | 1 | | 0.4011- | 000 445 | Back Side | 6 | 0.348 | -2.07 | 21.5 | 21.05 | 0.386 | / | | 2.4GHz | 802.11b | Top side | 6 | 0.470 | -3.36 | 21.5 | 21.05 | 0.521 | 2 | | WLAN | ANT 2 | Right Edge | 6 | 0.341 | 2.65 | 21.5 | 21.05 | 0.378 | / | | 2.4GHz | 802.11n20 | Back Side | 6 | 0.268 | -0.63 | 23 |
22.81 | 0.280 | / | | WLAN | ANT 1 | Top side | 6 | 0.281 | 2.85 | 23 | 22.81 | 0.294 | 3 | | | | Back Side | 6 | 0.177 | 2.77 | 23 | 22.21 | 0.212 | / | | 2.4GHz | 802.11n20 | Top side | 6 | 0.252 | 0.67 | 23 | 22.21 | 0.302 | 4 | | WLAN | ANT 2 | Right Edge | 6 | 0.183 | -1.00 | 23 | 22.21 | 0.220 | / | | 5.2GHz | 802.11a | Back Side | 48 | 0.594 | 1.71 | 14.5 | 14.14 | 0.645 | 5 | | WLAN | ANT 1 | Top side | 48 | 0.458 | -0.64 | 14.5 | 14.14 | 0.498 | / | | | | Back Side | 48 | 0.322 | 2.18 | 15.5 | 15.24 | 0.342 | / | | | | Top side | 36 | 0.748 | -1.98 | 15.5 | 14.44 | 0.955 | / | | 5.2GHz | 802.11a | Top side | 40 | 0.801 | 0.97 | 15.5 | 14.62 | 0.981 | / | | WLAN | ANT 2 | Top side | 48 | 0.929 | 0.68 | 15.5 | 15.24 | 0.986 | 6 | | | | Right Edge | 48 | 0.471 | -0.90 | 15.5 | 15.24 | 0.500 | / | | 5.2GHz | 802.11n20 | Back Side | 48 | 0.158 | 3.97 | 14.5 | 14.07 | 0.174 | / | | WLAN | ANT 1 | Top side | 48 | 0.374 | -1.45 | 14.5 | 14.07 | 0.413 | 7 | | | | Back Side | 48 | 0.415 | -1.64 | 15.5 | 14.47 | 0.526 | / | | | | Top side | 36 | 0.712 | 0.08 | 15.5 | 15.24 | 0.756 | / | | 5.2GHz | 802.11n20 | Top side | 40 | 0.695 | -0.87 | 15.5 | 15.26 | 0.734 | / | | WLAN | ANT 2 | Top side | 48 | 0.750 | -1.58 | 15.5 | 14.47 | 0.951 | 8 | | | | Right Edge | 48 | 0.317 | 0.91 | 15.5 | 14.47 | 0.402 | / | | 5.8GHz | 802.11a | Back Side | 157 | 0.131 | -3.74 | 12.5 | 12.32 | 0.137 | / | | WLAN | ANT 1 | Top side | 157 | 0.379 | -3.60 | 12.5 | 12.32 | 0.395 | 9 | | | | Back Side | 157 | 0.341 | -3.26 | 15 | 14.62 | 0.372 | / | | 5.8GHz | 802.11a | Top side | 157 | 0.485 | -1.64 | 15 | 14.62 | 0.529 | 10 | | WLAN | ANT 2 | Right Edge | 157 | 0.324 | 0.35 | 15 | 14.62 | 0.354 | / | | 5.8GHz | 802.11n20 | Back Side | 149 | 0.089 | -3.10 | 15 | 14.62 | 0.097 | / | | WLAN | ANT 1 | Top side | 149 | 0.312 | 2.89 | 15 | 14.62 | 0.341 | 11 | | Page 32 of 53 | Report No.: STS2104156H01 | |----------------|---------------------------| | i age of or oo | Troport Hon Olozio- | | 5.8GHz 802.11n20 | Back Side | 149 | 0.277 | -0.97 | 14 | 13.68 | 0.298 | / | | |------------------|-----------|------------|-------|-------|-------|-------|-------|-------|----| | WLAN | | Top side | 149 | 0.427 | -3.82 | 14 | 13.68 | 0.460 | 12 | | VVLAIN | ANI Z | Right Edge | 149 | 0.305 | -2.73 | 14 | 13.68 | 0.328 | / | | | | Scaled SAR | | |-------------|-----------------|------------|---------| | Band | Model | (W/Kg) | ANT 1+2 | | 2.4GHz WLAN | 802.11n20 ANT 1 | 0.294 | 0.596 | | 2.4GHz WLAN | 802.11n20 ANT 2 | 0.302 | 0.596 | | 5.2GHz WLAN | 802.11n20 ANT 1 | 0.413 | 4.264 | | 5.2GHz WLAN | 802.11n20 ANT 2 | 0.951 | 1.364 | | 5.8GHz WLAN | 802.11n20 ANT 1 | 0.341 | 0.801 | | 5.8GHz WLAN | 802.11n20 ANT 2 | 0.460 | 0.601 | ### Note: - 1. The test separation of all above table is 0mm. - 2. The Bluetooth and WLAN can't simultaneous transmission at the same time. - 3. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - 4. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.693 W/kg for Body) - 5. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal. | Estimated SAR | | Maximu | ım Power | Antenna | F (011.) | Stand Alone | |---------------|------|--------|----------|-------------|----------------|-------------------| | | | dBm | mW | to user(mm) | Frequency(GHz) | SAR(1g)
[W/kg] | | ВТ | Body | 6.5 | 4.467 | ≤ 5 | 2.440 | 0.186 | Repeated SAR | Band | Mode | Test Position | Ch. | Result
1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |----------------|--------------------|---------------|-----|------------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | | | Top Edge | 36 | 0.728 | -3.20 | 15.5 | 14.44 | 0.929 | / | | 5.2GHz
WLAN | 802.11a
ANT 2 | Top Edge | 40 | 0.772 | -0.53 | 15.5 | 14.62 | 0.945 | / | | | | Top Edge | 48 | 0.925 | 0.46 | 15.5 | 15.24 | 0.982 | / | | 5.2GHz
WLAN | 802.11n20
ANT 2 | Top side | 48 | 0.737 | -1.58 | 15.5 | 14.47 | 0.934 | / | ### 12.2 repeated SAR measurement | Band | Mode | Test Positior | Ch. | Original
Measured
SAR
1g(mW/g) | 1 st
Repeated
SAR 1g | Ratio | Original
Measured
SAR
1g(mW/g) | 2nd
Repeated
SAR 1g | Ratio | |----------------|--------------------|---------------|-----|---|----------------------------|-------|---|---------------------------|-------| | | | Top Edge | 36 | 0.748 | 0.728 | 1.027 | - | - | - | | 5.2GHz
WLAN | 802.11a
ANT 2 | Top Edge | 40 | 0.801 | 0.772 | 1.038 | - | - | - | | | | Top Edge | 48 | 0.929 | 0.925 | 1.005 | - | - | - | | 5.2GHz
WLAN | 802.11n20
ANT 2 | Top side | 48 | 0.750 | 0.737 | 1.018 | - | - | - | ### Note: - 1. Per KDB 865664 D01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg. - 2. Per KDB 865664 D01,if the ratio of largest to smallest SAR for the original and first repeated measurement is \leq 1.2 and the measured SAR < 1.45W/Kg, only one repeated measurement is required. - 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45W/Kg - 4. The ratio is the difference in percentage between original and repeated measured SAR. # 13. Equipment List | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last Calibration | Calibrated Until | |---------------------------------------|--------------|---------------------|--------------------------|------------------|------------------| | 2450MHzDipole | MVG | SID2450 | SN 30/14
DIP2G450-335 | 2020.07.14 | 2023.07.13 | | Waveguide | SATIMO | SWG5500 | SN 13/14
WGA32 | 2020.07.14 | 2023.07.13 | | E-Field Probe | MVG | SSE2 | SN 07/21
EPGO352 | 2021.03.01 | 2022.02.28 | | Dielectric Probe Kit | MVG | SCLMP | SN 32/14
OCPG67 | 2020.11.24 | 2021.11.23 | | Antenna | MVG | ANTA3 | SN 07/13
ZNTA52 | N/A | N/A | | Phantom1 | MVG | SAM | SN 32/14
SAM115 | N/A | N/A | | Phantom2 | MVG | SAM | SN 32/14
SAM116 | N/A | N/A | | Phone holder | MVG | N/A | SN 32/14
MSH97 | N/A | N/A | | Laptop holder | MVG | N/A | SN 32/14
LSH29 | N/A | N/A | | Attenuator | Agilent | 99899 | DC-18GHz | N/A | N/A | | Directional coupler | Narda | 4226-20 | 3305 | N/A | N/A | | Network Analyzer | Agilent | 8753ES | US38432810 | 2020.10.12 | 2021.10.11 | | Multi Meter | Keithley | Multi Meter
2000 | 4050073 | 2020.10.10 | 2021.10.09 | | Signal Generator | Agilent | N5182A | MY50140530 | 2020.10.10 | 2021.10.09 | | Wireless
Communication Test
Set | Agilent | 8960-E5515C | MY48360751 | 2020.10.10 | 2021.10.09 | | Wireless
Communication Test
Set | R&S | CMW500 | 117239 | 2020.10.10 | 2021.10.09 | | Power Amplifier | DESAY | ZHL-42W | 9638 | 2020.10.12 | 2021.10.11 | | Power Meter | R&S | NRP | 100510 | 2020.10.10 | 2021.10.09 | | Power Meter | Agilent | E4418B | GB43312526 | 2020.10.10 | 2021.10.09 | | Power Sensor | R&S | NRP-Z11 | 101919 | 2020.10.10 | 2021.10.09 | | Power Sensor | Agilent | E9301A | MY41497725 | 2020.10.10 | 2021.10.09 | | Temperature hygrometer | SuWei | SW-108 | N/A | 2020.10.12 | 2021.10.11 | | Thermograph | Elitech | RC-4 | S/N
EF7176501537 | 2020.10.12 | 2021.10.11 | ### Note: Per KDB 865664 D01, Dipole SAR Validation Verification, STS LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria: ^{1.} There is no physical damage on the dipole ^{2.} System validation with specific dipole is within 10% of calibrated value Return-loss in within 20% of calibrated measurement # **Appendix A. System Validation Plots** ### System Performance Check Data (2450MHz) Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2021-05-06 # Experimental conditions. | Device Position | Validation plane | | | | |-----------------------|------------------|--|--|--| | Band | 2450 MHz | | | | | Channels | - | | | | | Signal | CW | | | | | Frequency (MHz) | 2450 | | | | | Relative permittivity | 39.66 | | | | | Conductivity (S/m) | 1.82 | | | | | Probe | SN 07/21 EPGO352 | | | | | ConvF | 1.75 | | | | | Crest factor | 1:1 | | | | ### Maximum location: X=1.00, Y=0.00 | SAR 10g (W/Kg) | 2.387310 | |----------------|----------| | SAR 1g (W/Kg) | 5.215042 | # **Z Axis Scan** #### System Performance Check Data(5200MHz) Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2021-05-13 #### Experimental conditions. | Device Position | Validation plane | |-----------------------|------------------| | Band | 5200 MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 5200 | | Relative permittivity | 35.70 | | Conductivity (S/m) | 4.64 | | Probe | SN 07/21 EPGO352 | | ConvF | 1.47 | | Crest factor: | 1:1 | Maximum location: X=7.00,
Y=2.00 | SAR 10g (W/Kg) | 5.583410 | |----------------|-----------| | SAR 1g (W/Kg) | 15.813075 | ## **Z Axis Scan** #### System Performance Check Data(5800MHz) Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2021-05-14 #### Experimental conditions. | Device Position | Validation plane | |-----------------------|------------------| | Band | 5800 MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 5200 | | Relative permittivity | 35.13 | | Conductivity (S/m) | 5.25 | | Probe | SN 07/21 EPGO352 | | ConvF | 1.64 | | Crest factor: | 1:1 | Maximum location: X=7.00, Y=2.00 | SAR 10g (W/Kg) | 6.174824 | |----------------|-----------| | SAR 1g (W/Kg) | 18.223075 | ## **Z Axis Scan** # **Appendix B. SAR Test Plots** ## Plot 1: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-06 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11b ANT 1 | | Channels | 6 | | Signal | IEEE802.11b (Crest factor: 1.0) | | Frequency (MHz) | 2437 | | Relative permittivity (real part) | 39.96 | | Conductivity (S/m) | 1.84 | Maximum location: X=5.00 Y=-7.00 SAR Peak: 1.21W/kg | or it i balt. 1.2177/kg | | |-------------------------|----------| | SAR 10g (W/Kg) | 0.299890 | | SAR 1g (W/Kg) | 0.662863 | ### Plot 2: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-06 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11b ANT 2 | | Channels | 6 | | Signal | IEEE802.11b (Crest factor: 1.0) | | Frequency (MHz) | 2437 | | Relative permittivity (real part) | 39.23 | | Conductivity (S/m) | 1.79 | Maximum location: X=-8.00 Y=-8.00 SAR Peak: 0.93W/kg | 0.45 40 (14/1/4) | 0.400000 | |------------------|----------| | SAR 10g (W/Kg) | 0.189998 | | SAR 1g (W/Kg) | 0.469967 | ### Plot 3: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-06 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11n20 ANT 1 | | Channels | 6 | | Signal | IEEE802.11n20 (Crest factor: 1.0) | | Frequency (MHz) | 2437 | | Relative permittivity (real part) | 39.23 | | Conductivity (S/m) | 1.79 | Maximum location: X=-6.00 Y=-9.00 SAR Peak: 0.50 W/kg | SAR 10g (W/Kg) | 0.131996 | |----------------|----------| | SAR 1g (W/Kg) | 0.280775 | ### Plot 4: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-06 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11n20 ANT 2 | | Channels | 6 | | Signal | IEEE802.11n20 (Crest factor: 1.0) | | Frequency (MHz) | 2437 | | Relative permittivity (real part) | 39.23 | | Conductivity (S/m) | 1.79 | Maximum location: X=-8.00 Y=-1.00 SAR Peak: 0.48W/kg | SAR 10g (W/Kg) | 0.108927 | |----------------|----------| | SAR 1g (W/Kg) | 0.251868 | ### Plot 5: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-13 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Back Side | | Band | IEEE 802.11a ANT 1 | | Channels | 48 | | Signal | IEEE802.11a (Crest factor: 1.0) | | Frequency (MHz) | 5240 | | Relative permittivity (real part) | 35.36 | | Conductivity (S/m) | 5.22 | Maximum location: X=6.00 Y=-27.00 SAR Peak: 2.11W/kg | SAR 10g (W/Kg) | 0.208962 | |----------------|----------| | SAR 1g (W/Kg) | 0.593636 | ### Plot 6: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-13 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11a ANT 1 | | Channels | 48 | | Signal | IEEE802.11a (Crest factor: 1.0) | | Frequency (MHz) | 5240 | | Relative permittivity (real part) | 35.36 | | Conductivity (S/m) | 5.22 | Maximum location: X=2.00 Y=-16.00 SAR Peak: 3.33W/kg | SAR 10g (W/Kg) | 0.269500 | |----------------|----------| | SAR 1g (W/Kg) | 0.929074 | ### Plot 7: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-13 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11n20 ANT 1 | | Channels | 48 | | Signal | IEEE802.11n20 (Crest factor: 1.0) | | Frequency (MHz) | 5240 | | Relative permittivity (real part) | 35.36 | | Conductivity (S/m) | 5.22 | Maximum location: X=1.00 Y=3.4.00 SAR Peak: 1.17 W/kg | SAR 10g (W/Kg) | 0.136243 | |----------------|----------| | SAR 1g (W/Kg) | 0.373680 | ### Plot 8: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-13 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11n20 ANT 2 | | Channels | 48 | | Signal | IEEE802.11n20 (Crest factor: 1.0) | | Frequency (MHz) | 5240 | | Relative permittivity (real part) | 35.36 | | Conductivity (S/m) | 5.22 | Maximum location: X=0.00 Y=0.00 SAR Peak: 2.73W/kg | SAR 10g (W/Kg) | 0.207255 | |----------------|----------| | SAR 1g (W/Kg) | 0.750145 | ### Plot 9: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | Test Date | 2021-05-14 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Top Side | | Band | IEEE 802.11a ANT 1 | | Channels | 157 | | Signal | IEEE802.11a (Crest factor: 1.0) | | Frequency (MHz) | 5785 | | Relative permittivity (real part) | 35.36 | | Conductivity (S/m) | 5.22 | Maximum location: X=7.00 Y=-9.00 SAR Peak: 1.25 W/kg | SAR 10g (W/Kg) | 0.144242 | |----------------|----------| | SAR 1g (W/Kg) | 0.378810 | ## Plot 10: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | 2021-05-13 | |---| | SN 07/21 EPGO352 | | dx=8mm, dy=8mm, h= 5.00 mm | | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Validation plane | | Top Side | | IEEE 802.11a ANT 1 | | 157 | | IEEE802.11a (Crest factor: 1.0) | | 5785 | | 35.36 | | 5.22 | | | Maximum location: X=0.00 Y=0.00 SAR Peak: 1.80 W/kg | SAR 10g (W/Kg) | 0.146558 | |----------------|----------| | SAR 1g (W/Kg) | 0.484941 | ### Plot 11: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | 2021-05-13 | |---| | SN 07/21 EPGO352 | | dx=8mm, dy=8mm, h= 5.00 mm | | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Validation plane | | Top Side | | IEEE 802.11n20 ANT 1 | | 149 | | IEEE802.11n20 (Crest factor: 1.0) | | 5745 | | 35.36 | | 5.22 | | | Maximum location: X=6.00 Y=-1.00 SAR Peak: 1.00 W/kg | SAR 10g (W/Kg) | 0.126491 | |----------------|----------| | SAR 1g (W/Kg) | 0.311837 | ### Plot 12: DUT: TT1001 10.1 inch Tablet; EUT Model: TT1001V1 | 2021-05-13 | |---| | SN 07/21 EPGO352 | | dx=8mm, dy=8mm, h= 5.00 mm | | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Validation plane | | Top Side | | IEEE 802.11n20 ANT 2 | | 149 | | IEEE802.11n20 (Crest factor: 1.0) | | 5745 | | 35.36 | | 5.22 | | | Maximum location: X=5.00 Y=7.00 SAR Peak: 1.50W/kg | SAR 10g (W/Kg) | 0.132038 | |----------------|----------| | SAR 1g (W/Kg) | 0.426553 | ## Appendix C. Probe Calibration And Dipole Calibration Report Refer the appendix Calibration Report. *****END OF THE REPORT***