

4.8 Band Edge

4.8.1 Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407
Test Method:	ANSI C63.10 2013
Limit:	In the 5.925-7.125 GHz band, client devices, except fixed client devices, must operate under the control of a standard power access point, indoor access point or subordinate devices; Subordinate devices must operate under the control of an indoor access point.
Test Setup:	Ant. feed point and feed point tom Take Ground Plane Receiver Amp.
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result:	reported in a data sheet. PASS
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8.2 Test Instruments

Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025				
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025				
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025				
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025				
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026				
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026				
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026				
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A				
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	N/A	N/A				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

•

Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026			
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 19, 2025	Feb. 18, 2026			
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 19, 2025	Feb. 18, 2026			
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 19, 2025	Feb. 18, 2026			
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 19, 2025	Feb. 18, 2026			
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 19, 2025	Feb. 18, 2026			
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 19, 2025	Feb. 18, 2026			
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026			
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026			
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026			
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A			
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	N/A	N/A			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8.3 Test Data

All modes of operation were investigated and the worst-case emissions of ANT.2 are reported.

802.11a Mode with NII-Band 5 LOW

 orizo		
 ()[]/(ากเลเ	
	Jintai	

11011201110	AL.	All Days and Days	Allen VV	/CCm.		All the second s
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5825	53.12	-2.06	51.06	68.2	-17.14	peak
5850	87.33	-1.96	85.37	105.2	-19.83	peak
5900	84.56	-2.87	81.69	110.8	-29.11	peak
5925	109.71	-2.14	107.57	122.2	-14.63	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = _evel-Limit.

Vertical:	HUAKTEST	HUAKTEST	HUAKTEST		HUAKTEST	HUAKTEST
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turce
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5825	58.92	-2.06	56.86	68.2	-11.34	peak
5850	87.85	-1.96	85.89	105.2	-19.31	peak
5900	94.24	-2.87	91.37	110.8	-19.43	peak
5925	110.09	-2.14	107.95	122.2	-14.25	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

802.11a Mode w	ith NII-Band 5 HIGH
----------------	---------------------

Horizontal: Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6425	109.71	-1.97	107.74	122.2	-14.46	peak
6475	94.89	-2.13	92.76	110.8	-18.04	peak
6525	86.46	-2.65	83.81	105.2	-21.39	peak
6550	51.51	-2.28	49.23	68.2	-18.97	peak

Vertica	ŀ
vortiou	••

Frequency	Meter Reading	Factor	Emission Level	🧭 Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6425	103.32	-1.97	101.35	122.2	-20.85	peak
6475	93.44	-2.13	91.31	110.8	-19.49	peak
6525	87.06	-2.65	84.41	105.2	-20.79	peak
6550	54.21	-2.28	51.93	68.2	-16.27	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11a Mode with NII-Band 6 LOW

Uarizont	~!.
Horizont	Ы.
1101120110	~

Frequency	Meter Reading	Factor	Emission Level	Se Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
6325	56.91	-2.06	54.85	68.2	-13.35	peak
6350	89.84	-1.96	87.88	105.2	-17.32	peak
6400	95.55	-2.87	92.68	110.8	-18.12	peak
6425	113.73	-2.14	111.59	122.2	-10.61	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	🔊 Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6325	56.51	-2.06	54.45	68.2	-13.75	peak
6350	96.32	-1.96	94.36	105.2	-10.84	peak
6400	95.69	-2.87	92.82	110.8	-17.98	peak
6425	111.82	-2.14	109.68	122.2	-12.52	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

e F

802.11a Mode with NII-Band 6 HIGH

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turk
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6525	109.11	-1.97	107.14	122.2	-15.06	peak
6575	93.24	-2.13	91.11	110.8	-19.69	peak
6625	97.59	-2.65	94.94	105.2	-10.26	peak
6650	53.78	-2.28	51.5	68.2	-16.7	peak

Frequency	Meter Reading	Factor	Emission Level	👐 Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6525	107.52	-1.97	105.55	122.2	-16.65	peak
6575	94.96	-2.13	92.83	110.8	-17.97	peak
6625	88.73	-2.65	86.08	105.2	-19.12	peak
6650	56.24	-2.28	53.96	68.2	-14.24	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11a Mode with NII-Band 7 LOW

Horizont	al:	Ý				
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6425	58.62	-2.06	56.56	68.2	-11.64	peak
6450	91.19	-1.96	89.23	105.2	-15.97	peak
6500	93.25	-2.87	90.38	110.8	-20.42	peak
6525	110.07	-2.14	107.93	122.2	-14.27	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:					Y	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6425	58.45	-2.06	56.39	68.2	-11.81	peak
6450	91.78	-1.96	89.82	105.2	-15.38	peak
6500	98.21	-2.87	95.34	110.8	-15.46	peak
6525	111.65	-2.14	109.51	122.2	-12.69	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

NG IK PR

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11a Mode with NII-Band 7 HIGH

Horizontal:		~			~	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6875	106.36	-1.97	104.39	122.2	-17.81	peak
6925	92.84	-2.13	90.71	110.8	-20.09	peak
6975	88.97	-2.65	86.32	105.2	-18.88	peak
7000	53.19	-2.28	50.91	68.2	-17.29	peak

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6875	106.08	-1.97	104.11	122.2	-18.09	peak
6925	92.35	-2.13	90.22	110.8	-20.58	peak
6975	87.71	-2.65	85.06	105.2	-20.14	peak
7000	53.84	-2.28	51.56	68.2	-16.64	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11a Mode with NII-Band 8 LOW

Horizont	al:					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6775	56.88	-2.06	54.82	68.2	-13.38	🔍 peak
6800	87.82	-1.96	85.86	105.2	-19.34	peak
6850	95.76	-2.87	92.89	110.8	-17.91	peak
6875	108.11	-2.14	105.97	122.2	-16.23	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical		-			~	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
6775	59.99	-2.06	57.93	68.2	-10.27	peak
6800	90.25	-1.96	88.29	105.2	-16.91	peak
6850	94.68	-2.87	91.81	110.8	-18.99	peak
6875	106.71	-2.14	104.57	122.2	-17.63	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

802.11a Mode with NII-Band 8 HIGH

Horizontal:						•
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
7125	110.24	-1.97	108.27	122.2	-13.93	peak
7175	93.65	-2.13	91.52	110.8	-19.28	peak
7225	87.76	-2.65	85.11	105.2	-20.09	peak
7250	53.83	-2.28	51.55	68.2	-16.65	peak

Vertical:						
Frequency	Meter Reading	Factor	Emission Level	🧬 Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
· [©] 7125	109.14	-1.97	107.17	122.2	-15.03	peak
7175	93.36	-2.13	91.23	110.8	-19.57	peak
7225	87.98	-2.65	85.33	105.2	-19.87	peak
7250	55.14	-2.28	52.86	68.2	-15.34	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

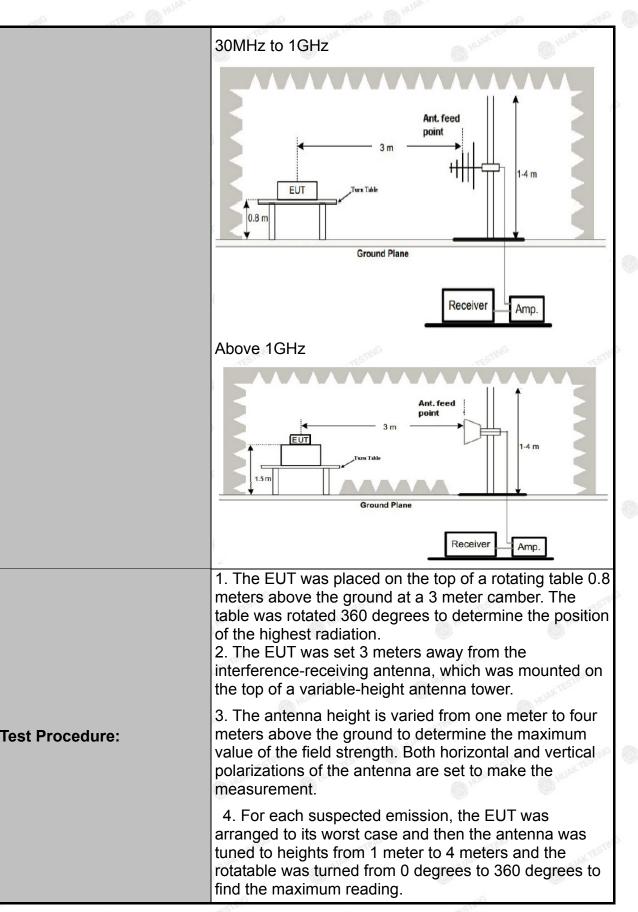
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.9 Spurious Emission

4.9.1.1 Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.205						
Test Method:	KDB 789033	D02 v02r0)1 (HUAN	O HUAN		
Frequency Range:	9kHz to 40G	Hz		STING			
Measurement Distance:	3 m	" TESTING	(A) HU	pk fr	W TESTING		
Antenna Polarization:	Horizontal &	Horizontal & Vertical					
Operation Mode:	Transmitting	mode with	modulat	ion			
Receiver Setup:	Frequency 9kHz-150kHz 150kHz- 30MHz	Detector Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value		
Receiver Oetup.	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value		
Limit:	For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz. The limit of frequency below 1GHz and which fall in rest						
Test Setup:	For radiated emissions below 30MHz						


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 169 of 184

Report No.: HK2412177766-6E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

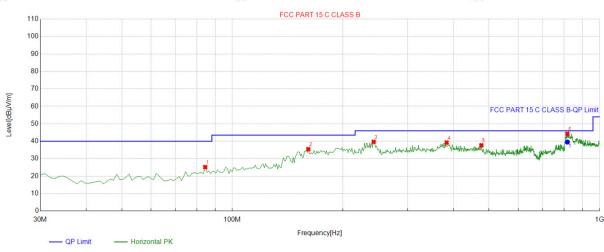
NG

¦К

	 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Results:	PASS
	17,00

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.9.2 Test Data

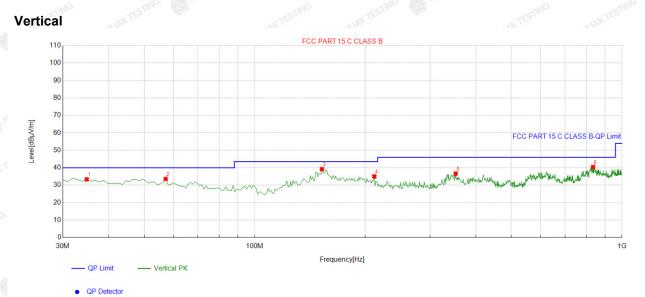
All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Below 1GHz

QP Detector

Suspe	cted List								
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	84.374374	-17.88	43.05	25.17	40.00	14.83	100	19	Horizontal
2	161.08108	-17.67	53.12	35.45	43.50	8.05	100	128	Horizontal
3	242.64264	-13.42	53.04	39.62	46.00	6.38	100	106	Horizontal
4	383.43343	-9.11	48.35	39.24	46.00	6.76	100	255	Horizontal
5	476.64664	-8.23	45.90	37.67	46.00	8.33	100	329	Horizontal
6	817.45745	-2.94	47.23	44.29	46.00	1.71	100	292	Horizontal
Final I	Final Data List								
NO.	Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margir	h Height	Angle	Polarity

NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	817.4574	-2.94	42.50	39.56	46.00	6.44	100	292	Horizontal
29	· · · · · · · · · · · · · · · · · · ·	100		-51	1800		2.GV		1500


Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 172 of 184

Report No.: HK2412177766-6E

Suspected List

- Cu	Spe									
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	0.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
< 1	1	34.854855	-14.84	48.19	33.35	40.00	6.65	100	139	Vertical
2	2	57.187187	-13.76	47.32	33.56	40.00	6.44	100	212	Vertical
3	3	152.34234	-17.95	57.16	39.21	43.50	4.29	100	16	Vertical
4	1	211.57157	-14.85	49.87	35.02	43.50	8.48	100	116	Vertical
5	5	352.36236	-10.13	46.73	36.60	46.00	9.40	100	150	Vertical
6	6	833.96396	-2.60	43.02	40.42	46.00	5.58	100	321	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

5	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	and and a second second	Makit restring	HUAN I
	HUAK	the state of the s	
			LANCTES

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

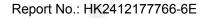
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

evel-Limit.

FICATION

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH01 (802.11 ax Mode with NII-Band 5)/5955


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.96	-4.59	49.37	68.2	-18.83	peak
11910	49.15	4.21	53.36	68.2	-14.84	peak

Vertical: Frequency Meter Reading Factor **Emission Level** Limits Margin **Detector Type** (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) (MHz) 3368 58.22 -4.59 53.63 68.2 -14.57 peak 11910 54.37 4.21 58.58 68.2 -9.62 peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

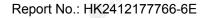
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH45 (802.11 ax Mode with NII-Band 5)/6175

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.08	-4.59	53.49	68.2	-14.71	peak
51.41	4.21	55.62	68.2	-12.58	peak
	(dBµV) 58.08	(dBµV) (dB) 58.08 -4.59	(dBµV) (dB) (dBµV/m) 58.08 -4.59 53.49	(dBµV) (dB) (dBµV/m) (dBµV/m) 58.08 -4.59 53.49 68.2	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 58.08 -4.59 53.49 68.2 -14.71

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.


Vertical:

vertical.	in the	in the		- 6		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type
3172	57.32	-4.59	52.73	68.2	-15.47	peak
12350	52.96	4.21	57.17	68.2	-11.03	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH93 (802.11 ax Mode with NII-Band 5)/6415

Horizonta	al:		Ŵ			W
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
2705	57.07	-4.59	52.48	74	-21.52	peak
2705	49.18	-4.59	44.59	54	-9.41	AVG
12830	54.42	4.84	59.26	74	-14.74	peak
12830	36.79	4.84	41.63	54	-12.37	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:					۲	-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turce
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.81	-4.59	55.22	74	-18.78	peak
2705	44.63	-4.59	40.04	54	-13.96	AVG
12830	50.57	4.84	55.41	74	-18.59	peak
12830	38.11	4.84	42.95	54	-11.05	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 40 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

K

4.10 Frequency Stability Measurement

4.10.1 Test Specification

HUAK TESTING

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 177 of 184

Test Result as follows:

Mode	Voltage (V)	FHL (5925MHz)	Deviation (KHz)	FHH (6425MHz)	Deviation (KHz)
	16.15V	5925.988	-12	6425.003	3
U-NII 5 band	19.0V	5925.014	14	6425.025	25
O HOM	21.85V	5925.007	7	6424.989	-11

Mode	Temperature (℃)	FHL (5925MHz)	Deviation (KHz)	FHH (6425MHz)	Deviation (KHz)
) 	-30	5924.982	-18	6424.986	-14
	-20	5924.988	-12	6424.998	-2
	-10	5925.004	4	6425.012	12
	0	5924.993	-7	6425.003	3
U-NII-5 band	10	5924.984	-16	6424.995	-5
	20	5925.021	21	6424.988	-12
	30	5925.012	12	6424.991	-9
	40	5925.007	7	6425.002	2
	50	5924.998	-2	6425.011	11
	6	6	6		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 178 of 184

Voltage (V)	FHL (6425MHz)	Deviation (KHz)	FHH (6525MHz)	Deviation (KHz)
🤲 16.15V	6425.002	2	6525.011	11
19.0V 🌒	6424.993	-7	6524.998	-2
21.85V	6424.986	-14	6525.014	14
	(V) 16.15V 19.0V	(V) (6425MHz) 16.15V 6425.002 19.0V 6424.993	(V) (6425MHz) (KHz) 16.15V 6425.002 2 19.0V 6424.993 -7	(V) (6425MHz) (KHz) (6525MHz) 16.15V 6425.002 2 6525.011 19.0V 6424.993 -7 6524.998

Mode	Temperature (℃)	FHL (6425MHz)	Deviation (KHz)	FHH (6525MHz)	Deviation (KHz)
O HO.	-30	6425.012	12	6525.007	7
	-20	6424.998	-2	6524.991	-9
	· ⁶⁰ -10	6424.983	-17	6524.979	-21
	0	6425.013	13	6525.005	5 ^{mul}
U-NII-6 band	10	6425.007	7	6525.018	18
	20	6424.985	-15	6524.982	-18
	30	6424.989	-11	6524.986	-14
	40	6425.003	3	6525.009	9
	50	6425.016	16	6524.994	-6
607.0787		600,000	•	and the second sec	683239

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

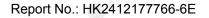
Mode	Voltage (V)	FHL (6525MHz)	Deviation (KHz)	FHH (6875MHz)	Deviation (KHz)
à TES	🤲 16.15V	6525.007	TEST 7	6875.006	3
U-NII 7 band	19.0V	6524.998	-2	6874.992	25
	21.85V	6524.987	-13	6874.989	-11

. TEX				1500		
Mode	Temperature (℃)	FHL (6525MHz)	Deviation (KHz)	FHH (6875MHz)	Deviation (KHz)	
	-30	6525.005	5	6875.004	4	
	-20	6525.011	11	6874.996	-4	
	-10	6524.987	-13	6874.989	-11	
	0	6524.986	-14	6874.993	-7 HUP	
U-NII-7 band	10	6525.009	9	6875.014	14	
	20	6524.996	-4	6875.025	25	
	30	6524.983	-17	6874.991	9-9	
	40	6525.017	17	6875.021	21	
	50	6525.003	3	6875.005	5	
602.3783	100	6850B3		2014 B. 11	6.07.3278.9	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HUAK



1000	10			100000	1000
Mode	Voltage (V)	FHL (6875MHz)	Deviation (KHz)	FHH (7125MHz)	Deviation (KHz)
3 TES	🤲 16.15V	6875.011	TEST11	7125.009	9
U-NII 8 band	19.0V	6874.993	-7	7124.987	-13
	21.85V	6875.004	4	7124.996	-4
.163	40.		-113		. 11

TE			162			
Mode	Temperature (℃)	FHL (6875MHz)	Deviation (KHz)	FHH (7125MHz)	Deviation (KHz)	
0 "	-30	6875.006	6	7125.009	9	
	-20	6874.993	-7	7125.011	11	
	-10	6874.989	-11	7124.998	-2	
	0	6875.002	2	7124.976	-24	
U-NII-8 band	10	6874.984	-16	7124.985	-15	
	20	6875.021	21	7124.986	-14	
	30	6874.998	-2	7125.014	14	
	40	6875.007	7 10	7125.012	12	
	50	6875.025	25	7125.009	9	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

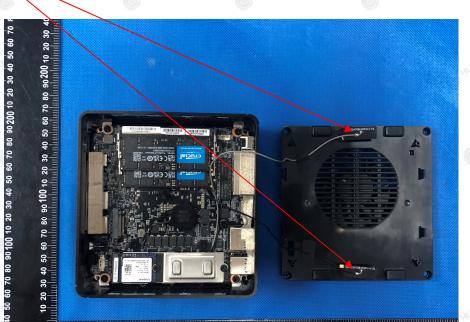
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

H

4.11 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is FPC antenna, need professional installation, not easy to remove. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1: 2.59dBi and Antenna port 2: -0.63dBi.

WIFI ANTENNA

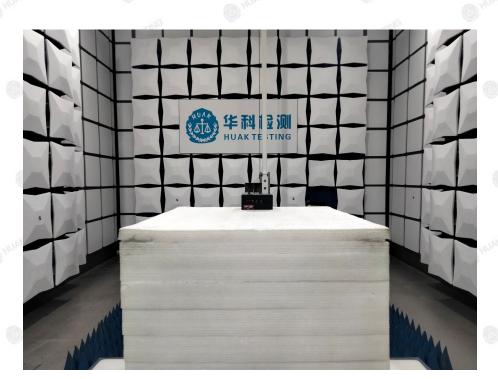
20 10300 ao 80 10 eo 20 10 300 ao 80 10 00 ao 80 10 20 ao 80 10 eo 20 10 30 ao 80 10 eo 20 10 mm 20 10300 ao 80 10 eo 20 10 300 ao 80 10 80 20 eo 20 10 30 ao 80 10 eo 20 10 30 80 10 10 ao 80 10 mm

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 182 of 184


Report No.: HK2412177766-6E

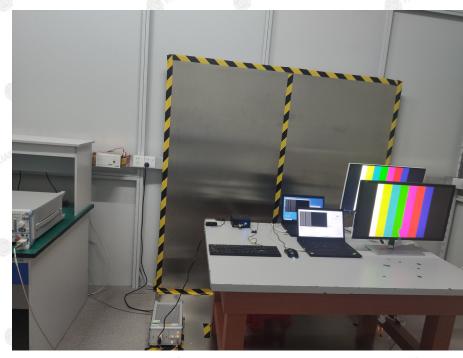

PRO!

*

5. Photographs of Test Setup

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 183 of 184

Report No.: HK2412177766-6E

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 184 of 184

Report No.: HK2412177766-6E

TIFICATION

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

---End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com