

Bell Labs

Global Product Compliance Laboratory 600-700 Mountain Avenue Room 5B-108 Murray Hill, New Jersey 07974-0636 USA

NVLAP LAB CODE: 100275-0

FCC Certification Part 30 Test Report

Product Evaluated AEWB AirScale MAA 8T8R 512AE 39 GHz AEWB, FCC ID: 2AD8UAEWB01

Customer Nokia Solutions and Networks US LLC

6000 Connection Drive Irving, Texas 75039 USA

<u>Test Laboratory</u> Nokia Bell Labs Nokia, Global Product Compliance Laboratory 600-700 Mountain Avenue, Rm 5B-108 Murray Hill, New Jersey 07974-0636 USA

Date: August 1, 2019

This report shall not be reproduced, in whole or in part without the approval of Nokia Global Product Compliance Laboratory. This report must not be used by the recipient to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Revisions

Date	Revisio	Section	Change
	n		
8/1/2019	0		Initial Release

Nokia Global Product Compliance Laboratory represents to the client that testing was done in accordance with standard procedures as applicable, and that reported test results are accurate within generally accepted commercial ranges of accuracy in accordance with the scope of our NVLAP Accreditation. Nokia Global Product Compliance reports only apply to the specific samples tested. This report is the property of the client. This report shall not be reproduced except in full without the written approval of the Nokia Global Product Compliance Laboratory.

Nokia Global Product Compliance Laboratory is accredited with the US Department of Commerce National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with criteria established in Title 15, Part 7 Code of Federal Regulations for offering test services for selected test methods in Electromagnetic Compatibility; Voluntary Control Council for Interference (VCCI), Japan; Australian Communications and Media Authority (ACMA). The laboratory is ISO 9001:2008 Certified.

Nokia Global Product Compliance Laboratory represents to the client that the laboratory's accreditation or any of its calibration or test reports in no way constitutes or implies product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Prepared By: W. Steve Majkowski NCE

Walter & May han

8/1/2019

Product Certification Filing Lead Nokia Bell Labs Nokia, Global Product Compliance Laboratory Approved By: Ray Johnson

8/1/2019

Technical Manager Nokia Bell Labs Nokia, Global Product Compliance Laboratory

Table of Contents

1.	ATTESTATION OF TEST RESULTS	5
2.	SUMMARY OF THE TEST RESULTS	7
2.1	Measurement Uncertainty	7
3.	GENERAL INFORMATION	8
3.1	Product Descriptions	8
3	2.1.1 NR-ARFCN Calculation	8
3	2.1.2 Tested Frequencies	
3.2	EIRP/ PSD COMPLIANCE AND ANTENNA INFORMATION.	. 10
3.3	ANTENNA FAR FIELD DETERMINATION DISTANCE	. 10
4.	REQUIRED MEASUREMENTS AND RESULTS	. 11
4.1	SECTION 2.1046 MEASUREMENT REQUIRED: RF POWER OUTPUT	. 12
4	2.1.1 RF Power Output Measurement	. 12
4	1.2 RF Power Output Results	
4	1.3 RF Power Output Data	
	4.1.3.1 RF Power Output Sample Data	
4.2	· · ·	
4	2.2.1 Modulation Characteristics Measurement	
4	2.2.2 Modulation Measurements Results:	. 18
4.3	SECTION 2.1049 MEASUREMENT REQUIRED: OCCUPIED BANDWIDTH AND EDGE	OF
BA	ND EMISSIONS	
4	4.3.1 Results Occupied Bandwidth (Signal Bandwidth)	. 20
	4.3.1.1 Carrier Aggregation	
	4.3.1.2 Results - Occupied Bandwidth Sample Data - 99% Signal Bandwidth	
4	4.3.2 Occupied Bandwidth-Edge of Band Emissions	
4	4.3.3 Requirements 39 GHz Emissions Limits	
4	4.3.4 Measurement Offset and MIMO	
4	2.3.5 Mask Parameters	
4	4.3.6 Measurement Path Correction	. 25
	4.3.6.1 OOBE Sample calculation	. 25
4	4.3.7 Edge of Band Measurements	. 26
	4.3.7.1 Results - Occupied Bandwidth Out Of Band Emissions /-Edge of Block Emission 26	۱S
4.4	SECTION 2.1051 MEASUREMENT REQUIRED: SPURIOUS EMISSIONS AT THE	
AN	ITENNA TERMINALS	
4	4.1 Section 2.1051 Spurious Emissions at Antenna Terminals	. 34
4	4.2 Required Limit	
4	1.4.3 Results	. 34
4.5	SECTION 2.1053 MEASUREMENT REQUIRED: FIELD STRENGTH OF SPURIOUS	
RA	DIATION	
4	2.5.1 Spurious Radiation and Radiated Emissions Requirements Below 40 GHz	
4	4.5.2 Radiated Spurious Emissions Measurements: 40 GHz - 200 GHz:	. 37

4.5.2.1	Bandwidth Limits and Corrections: Radiated Measurements 40 GHz - 200 GHz,	
4.5.2.2	Resolution Bandwidth and # of Points:	38
4.5.2.3	Part 30 Limit:	. 38
4.5.2.4	Emissions Corrections.	38
4.5.3 F	ield Strength of Spurious Radiation Results:	. 40
4.5.4 Th	ransmitter Measurements of Radiated Spurious Emissions 30 MHz – 36 GHz	. 42
4.5.5 M	aximum Radiated Emissions -U Band 40GHz-60GHz - 4m	. 48
4.5.6 M	aximum Radiated Emissions -E Band 60GHz-90GHz - 4.5m	. 49
	aximum Radiated Emissions -F Band 90GHz-140GHz - 3m	
4.5.8 M	aximum Radiated Emissions - G Band 140 - 170GHz - 3m	. 51
4.5.9 M	aximum Radiated Emissions - G Band 170 - 200GHz - 3m	. 52
4.6 Section	ON 2.1055 MEASUREMENT REQUIRED: FREQUENCY STABILITY	53
4.6.1 F	requency Stability Test	. 53
4.6.2 F	requency Stability – Results Summary	. 53
	requency Stability Test Setups	
	Frequency Stability – Data	
	OF TEST EQUIPMENT	
	est Equipment Used For Radiated Emissions and Radio Measurements	
	requency Stability Test Equipment	
	COGRAPHS OF THE TEST SETUPS	
4.8.1 R	adiated Emissions and Radio Measurements Test Photos	. 71
4.9 FACE	LITIES AND ACCREDITATION	. 80
5. APPEN	DIX A - CALIBRATION CERTIFICATES.	82

1. ATTESTATION OF	F TEST RESULTS
-------------------	----------------

Company Name	Nokia Solutions and Networks, OY		
	2000 Lucent Lane		
	Naperville, Illinois 60563		
FCC ID	2AD8UAEWB01		
Product Name	AEWB AirScale MAA 8T8R 512AE 39 GHz		
Model Name	AEWB		
Part No	09140404A.X32		
Serial Number(s)	AC/DC Models:, L1192000602		
Test Standard(s)	 47 CFR FCC Parts 2 and Part 30 KDB 971168 D01 Licensed DTS Guidance v03r01 April 9, 2018 KDB 662911 D01 Multiple Transmitter Output v02r01 Oct 2013 Procedures on TRP Compliance for Out of Band and Spurious Emissions, C63.26 mmWave JTG - Version # 1 July 14th 2018 KDB 842590 D01 Upper Microwave Flexible Use Service v01 April 5, 		
Reference(s)	 2019 ANSI C63.26 (2015) ANSI C63.4 (2014) TR 14-1001, MMW Measurements with Harmonic Mixers (April-4-2014) 		
Frequency Band	(Tx: 37 – 40.0 GHz), NR Band n260		
Technology	5G-New Radio, LTE-TDD: 97M5G7W,		
Test Frequency Range	10MHz – 200GHz		
Operation Mode(s)	2x 54dBm EIRP, 57 dBm EIRP Total. MIMO, 1 to 4 Carriers		
Submission Type	Initial Filing		
FCC Part 15 Subpart B	Compliance with Class B		
Test Date	May 31, through July 30, 2019		
Test LaboratoryNokia Global Product Compliance Laboratory 600-700 Mountain Avenue, Rm 5B-108 Murray Hill, New Jersey 07974-0636 USA NVLAP Lab Code: 100275-0 FCC Registration Number			

This is to certify that the above product has been evaluated and found to be in compliance with the Rules and Regulations set forth in the above standard(s). The data and the descriptions about the test setup, procedures and configuration presented in this report are accurate. The results of testing in this report apply only to the product/system which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Per the requirement of Section 2.911(d) Certification of Technical Test Data, I hereby certify that the technical test data are the results of tests either performed or supervised by me.

W. Steve Majkowski NCE Member of Technical Staff Nokia, Global Product Compliance Laboratory

47 CFR FCC Sections	Description of Tests	Compliance Results
2.1046, 30.202 (a)	RF Power Output	Pass
2.1047,	Modulation Characteristics	Pass
2.1049, 30.203	(a) Occupied Bandwidth(b) Edge-of-Band Emissions	Pass
2.1051, 30.203	Spurious Emissions at Antenna Terminals - Radiated	Pass
2.1053, 30.203	Field Strength of Spurious Radiation	Pass
2.1055,	Measurement of Frequency Stability	Not Required

2. SUMMARY OF THE TEST RESULTS

2.1 Measurement Uncertainty

The results of the calculations to estimate uncertainties for the several test methods and standards are shown in the Tables below. These are the worst-case values.

Standard, Method or Procedure	Condition	Frequency MHz	Expanded Uncertainty (k=2)
a. Classical	Conducted Emissions	0.009 - 30	±3.5 dB
Emissions, (e.g.,		30 MHz – 200MHz H	±5.4 dB
ANSI C63.4, CISPR	Radiated Emissions	30 MHz - 200 MHz V	±5.4 dB
11, 14, 22, <i>etc.</i> , using ESHS 30,	(AR-8 Semi-	200 MHz - 1000 MHz H	±4.7 dB
	Anechoic Chamber)	$200 \ \text{MHz} \ -1000 \ \text{MHz} \ \text{V}$	±4.7 dB
		1 GHz- 18 GHz	±3.3 dB

Worst-Case Estimated Measurement Uncertainties

Antenna Port Test	Signal Bandwidth	Frequency Range	Expanded Uncertainty (k=2), Amplitude
Occupied Bandwidth, Edge of Band,	10 Hz 100 Hz 10 kHz to 1 MHz 1MHz to 100 MHz	9 kHz to 20 MHz 20 MHz to 1 GHz 1 GHz to 10 GHz 10 GHz to 40 GHz:	±2.2 dB
Conducted Spurious Emissions	30 kHz to 100 MHz	10 MHz to 40 GHz:	±2.8 dB
RF Power, Channel Power	10 Hz to 100 MHz	10 MHz to 40 GHz	±1.4 dB

3. GENERAL INFORMATION

3.1 Product Descriptions

The equipment under test (EUT) has the following specifications.

Specification Items	Description	
Product Type	Compact Base Station LTE Module (2Tx, 2Rx), 2x2 MIMO	
Radio Type	Intentional Transceiver	
Power Type	115 VAC	
Modulation	5G New Radio LTE-TDD with QPSK, 16QAM and 64QAM	
Operating Frequency Range	TDD (Tx/Rx: 37.0-40.0 GHz),	
Channel Bandwidth	100 MHz,	
Max Radiated Power 54 dBm EIRP per polarizations; based upon 28 dBm 7		
(EIRP)	output. 57 dBm EIRP Total for the two polarizations.	
Antenna Gain	29 dBi	
Operating Mode	2x2 MIMO (2 duplex Tx/Rx Ports)	
Software Version	FLF17SP	
Hardware Version	474870A.X21	
Antenna(s)	Refer to Section 3.2	

Table 3.1.1	Product S	pecifications
-------------	-----------	---------------

The EUT supports the following carrier configurations:

Table 3.1.2 EUT Supported Configurations
--

Carri	er Ca	arriers			
Bandwi	dth	per	MIMO	Signal	
(MHz	z)	Path	Modes	Туре	Modulation
100		1	2x	LTE-	QPSK, 16QAM & 64QAM
100		1	ΔX	TDD	QI SK, TOQAM & 04QAM

3.1.1 NR-ARFCN Calculation

The computational relationship between the NR-ARFCN and the RF reference frequency (or carrier center frequency) F_{ref} in MHz for the downlink and uplink is defined by the following equation, where the values of F_{offset} and N_{offset} depend on the frequency range as given in the table below and N_{ref} is the NR-ARFCN.

$$F_{ref} = F_{offset} + \Delta F (N_{ref} - N_{offset})$$
(1)

$$N_{ref} = N_{offset} + (F_{ref} - F_{offset}) / \Delta F$$
(2)

So for the Upper Microwave Flexible Use Services (UMFUS) band:

 $F_{ref} = 24250 + 0.06(NRARFCN-2016667)$ MHz

For a NR-ARFCN =2229999 the F_{ref} is:

 $F_{ref} = 37.04992 \text{ GHz} = 24250 + 0.06(2229999-2016667)$

Table 3.1.	I NR-AR	FCN Calculatio	n Parameters f	or UMFUS
Frequency Range	ΔF	F _{offset} [MHz]	Noffset	Range of N _{ref}
24250 – 100000 MHz	0.06 MHz	24250 MHz	2016667	2016667 – 3279167

3.1.2 Tested Frequencies

The as tested operating band consists of the following channels and spectrum:

New Radio - Absolute Radio Frequency Channel Number (NRARFCN)

Table 3.1.3	NRARFCN per 38.101-2,	for n260 with	100 MHz Carriers
-------------	-----------------------	---------------	-------------------------

Channel Location in		TDD Center Reference Frequency	Width of Channel
Band	NR-ARFCN	(MHz)	(MHz)
Left Side	2229999	37050.00	99.96
Left Side	2231665	37150.08	99.96
Left Side	2233331	37250.16	99.96
Left Side	2234997	37350.24	99.96
Middle	2251666	38350.020	99.96
Middle	2253332	38449.980	99.96
Middle	2254998	38549.940	99.96
Middle	2256664	38649.900	99.96
Right Side	2273334	39650.100	99.96
Right Side	2275000	39750.060	99.96
Right Side	2276666	39850.020	99.96
Right Side	2278332	39949.980	99.96

3.2 EIRP/ PSD Compliance and Antenna Information.

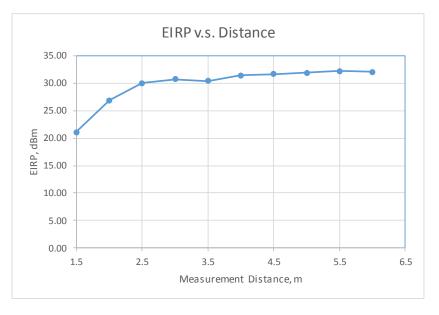
The product incorporates integrated antennas. Externally mounted antennas cannot be attached to the unit or mounted remotely. The units integrated antennas are electronically steerable with a maximum gain of 29 dBi. There are two antenna assemblies inside the product. Each antenna transmit assembly is a 16x16 matrix (256 elements). One assembly is vertically polarized and the second is horizontally polarized. The antennas RF drive level is nominally 26 dBm. The 26 dBm RF power and 29 dBi gain results in a 54 dBm EIRP per assembly. The sum of the two 54 dBm EIRP beams results in a maximum EIRP of 57 dBm. Antenna Gain vs frequency is detailed in Exhibit 6 of the filing package.

3.3 Antenna Far Field Determination Distance

The Moongilan Test (1) was performed to determine the far field boundary location using calculations and low power measurements. For the antenna array we can calculate the Fraunhofer distance from

$$d_{\rm ff} = 2D^2/\lambda$$

where $d_{\rm ff}$ = Far Field distance in meters, D is the maximum size of the radiating array λ = wavelength of the operating signal in meters


The antenna patch are 5 cm x 5 cm and the patches are 10 cm apart .

At 39 GHZ the diagonal 5 cm x 5 cm array dimensions results in a Fraunhofer far field distance $d_{\rm ff}$ of 1.3 meters. The Vertical to Horizontal patches are enclosed by a 15 cm circle which results in a $d_{\rm ff}$ of 5.85 meters

Measurements for the Moongilan Test were performed at low power using a standard gain horn antenna In the horizontal polarization the determined boundary was 4 m.

To eliminate any inconsistancy all Power, OBW and OOBE measurements were made at 4.5 m.

(1) The Moongilan Test is named in honor of the late Dheena Moongilan who discovered it and formulated its use into C63.26.

4. **REQUIRED MEASUREMENTS AND RESULTS**

Per 47CFR FCC Section 2.1033(c)(14), the following certification tests are required by Section 2.1046 through Section 2.1057. These tests are identified in Table 4.0a below.

47 CFR FCC Sections	Description of Tests	Test Required for Class II
2.1046, 30.202 (a)	RF Power Output (a) Power Limits, EIRP, PSD	Yes
2.1047,	Modulation Characteristics	Yes
2.1049, 30.203	(a) Occupied Bandwidth (b) Out-of-Band Emissions	Yes
2.1051, 30.203	Spurious Emissions at Antenna Terminals	Yes
2.1053, 30.203, 30.204, 15.109(a) Class B	Field Strength of Spurious Radiation	Yes
2.1055,	Measurement of Frequency Stability	Yes

Table 4.0a Required Certification Measurements

The measurements were conducted in accordance with the procedures set out in Section 2.1041 and as appropriate per the test Standards listed in Table 4.0b below. The comprehensive list of tests performed included measurements at Left, Center and Right side of the Part 30 Band. These tests are presented to demonstrate compliance with FCC requirements.

The procedures defined in ANSI C63.26-2015 and KDB 971168 D01 were developed for conducted measurements. The mmWave Joint Technical Group with FCC oversight has been working diligently on revisions to add mmWave measurements for Upper Microwave Flexible Use Service (UMFUS). The new KDB, 842590, is closely aligned with those efforts.

All of the measurements performed herein were performed as radiated measurements in semi-anechoic chambers maintained by Nokia Bell Lab's Global Product Compliance Laboratory in Murray Hill, NJ. The 35-41 GHz "radio" measurements were performed in 10m chamber AR-8 while the other radiated emissions and spurious measurements up to 200 GHz were performed in 5m chamber AR-4. In order to perform the spurious measurements, the equipment settings required to enable the FSW internal noise reduction capability were used. This typically required the use of average detector, and multiple sweep averages. The individual test sections identify any changes in measurement process.

Table 4.0	b	Test Standards Used for Radiated Measurements of Radio Performance				
Test	٠	47 CFR FCC Parts 2				
Standard(s)		KDB 971168 D01 Licensed DTS Guidance v03r01 April 9, 2018				
• KDB 662911 D01 Multiple Transmitter Output v02r01 Oct 2013						
	•	Procedures on TRP Compliance for Out of Band and Spurious Emissions,				
		C63.26 mmWave JTG - Version # 1 July 14th 2018				
	•	KDB 842590 D01 Upper Microwave Flexible Use Service v01 April 5, 2019				
Reference(s)	•	47 CFR FCC Part 2 and Part 30				
	•	ANSI C63.26 (2015)				
	•	ANSI C63.4 (2014)				
	•	TR 14-1001, MMW Measurements with Harmonic Mixers (April-4-2014)				

4.1 Section 2.1046 MEASUREMENT REQUIRED: RF POWER OUTPUT

The product incorporates internal antennas that are integrated with the signal source. There is no antenna terminal connection on the product. Therefore, this test as implemented is not a measurement of the total conducted power at the antenna terminal but rather the total radiated power in terms of the maximum EIRP radiated by the product.

The FCC recognized that these products would use integrated antennas and likewise structured the requirements under Part 30. Under Part 30 the average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of +75dBm/100 MHz.

The Nokia AirScale 39 GHz Radio Unit (AEWB), FCC ID: 2AD8UAEWB01, is a 5G-NR LTE TDD radio head configured for one to four carrier operation. It is specified to provide a maximum power output of 54 dBm EIRP/500 W EIRP per transmit polarization for a sum total of 57 dBm EIRP /500W EIRP per unit. The product is designed for the 5G global market including operation per 47 CFR Part 30 rules for operation in the 5G New Radio Band n260 from 37 – 40 GHz.

4.1.1 RF Power Output Measurement

The product was configured for test as shown in Figure 4.1.1 below and allowed to warm up and stabilize per KDB 971168 D01 and ANSI C63.26.

Radiated Power measurements of the 5G New Radio transmit signal were conducted with an FSW Spectrum Analyzer per KDB 971168 D01 and KDB 842590 D01. These measurements were performed in 10m semi-anechoic chamber AR-8 with a 4.5 m measurement distance using a nominal 69.08 dB offset. An additional correction is necessary to ascertain the actual measured EIRP power. The calculation of path loss, cable loss and measurement antenna gain are listed in Table 4.1.1. below. The unit was configured to transmit a single beam at maximum power.

The Channel Power function of the FSW spectrum analyzer was used to measure the maximum average Horizontal and Vertical EIRP at the 4.5m boundary distance. The measurements were performed at the Left, Center and Right side of the 37-40 GHz frequency range for a 100 MHz bandwidth carrier with various 5G-NR modulations. Channel power plots identify the individual carrier power and the total power.

Freq. GHz	Free Space Path Loss, PL dB	Measurement Antenna Gain, G1 dBi	Measurement Cable Loss, L1 dB	Total Offset Required PL -G1 + L1 dB	FSW Measure ment Offset dB	Required Final Correction dB
35.0	76.39	23.25	15.11	68.25	69.08	-0.83
35.5	76.51	23.25	15.11	68.37	69.08	-0.71
36.0	76.63	23.25	15.11	68.49	69.08	-0.59
36.5	76.75	23.25	15.11	68.61	69.08	-0.47
37.0	76.87	23.25	15.11	68.73	69.08	-0.35
37.5	76.99	23.40	15.24	68.83	69.08	-0.25
38.0	77.10	23.45	15.37	69.02	69.08	-0.06
38.5	77.22	23.60	15.49	69.11	69.08	0.03
39.0	77.33	23.60	15.67	69.40	69.08	0.32
39.5	77.44	23.60	15.81	69.65	69.08	0.57
40.0	77.55	23.70	15.85	69.70	69.08	0.62
40.5	77.66	23.70	15.85	69.81	69.08	0.73
41.0	77.76	23.70	15.85	69.91	69.08	0.83

 Table 4.1.1
 Corrections For Transmitter Power Measurements

4.1.2 **RF Power Output Results**

The Power output measurement results verified the expected performance of 54 dBm EIRP per polarization which is 57 dBm total. The maximum measured level was **57.73** dBm. This level is well within the maximum Part 30.202a limit of 75 dBm EIRP. Measurements were performed for each modulation.

The measured performance was in full compliance with the Rules of the Commission. Sample data plots are detailed below.

4.1.3 **RF Power Output Data**

Table 4.1.3 below summarizes the Total Measured EIRP for the different configurations and modulations for 1 carrier, 2 carrier, 3 carrier and 4 carrier configurations. Sample data plots follow.

Location	Frequency	# of		Horizontal Polarization Total Channel Power, EIRP	Vertical Polarization Total Channel Power, EIRP	Sum Total Channel Power EIRP
in Band	, GHz	carriers	Modulation	dBm	dBm	dBm
Left	37.05000	1	64QAM	53.81	53.77	56.80
Center	38.49996	1	64QAM	54.08	53.93	57.02
Right	39.94998	1	64QAM	54.44	54.00	57.24
Left	37.05000, 37.14996,	2	16QAM	54.18	54.03	57.12
Right	39.75006, 39.85002, 39.94998,	3	64QAM	54.00	54.06	57.04
Left	37.05000, 37.14996, 37.24992, 37.34988,	4	64QAM	54.01	53.95	56.99
Center	38.35002, 38.44998, 38.54994, 38.64990,	4	16QAM	53.98	53.59	56.80
Right	39.65010 39.75006, 37.85002, 39.94998,	4	QPSK	54.79	54.64	57.73

 Table 4.1.3 - Summary of Channel Power Measurements

The measured performance was in full compliance with the Rules of the Commission. The data plots are detailed below.

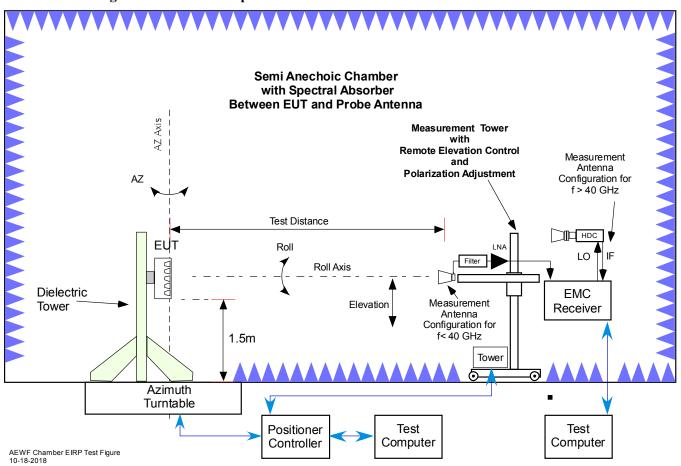
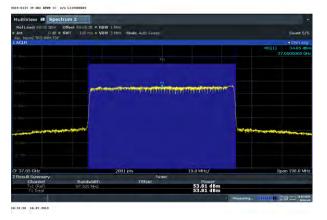
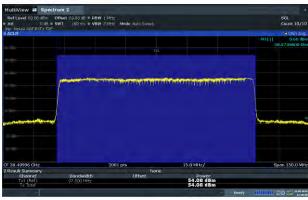
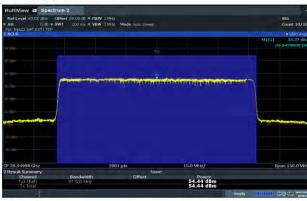



Figure 4.1.1 Test Set-Up for Measurement of Radio Transmitter Performance


4.1.3.1 **RF Power Output Sample Data**

Channel Power Measurements, 4.5m, 1 Carrier Left Side of Band – 37050.00 MHz Horizontal –

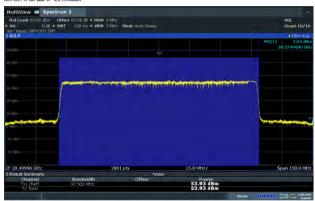
Center of Band - 38499.96 MHz Horizontal


2019-0115 09 GM2 ADWB NC 5/n L119000

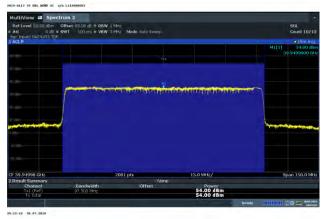
12:10:31 31.07.2019

9-0115 39 GH: AEVD &C 8/8 L1

Right Side of Band - 39949.98 MHz Horizontal


0:00.12 30.07.2019

Vertical


x7 (•)

Vertical


12:07:00 31.07.2019

Vertical

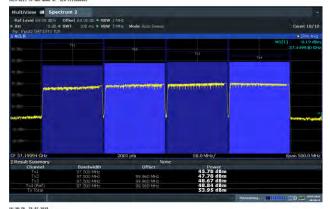


NOKIA – Public

Channel Power Measurements, 4.5m, 2 Carriers Left Side of Band. - 37050.00 + 37149.96 MHz Horizontal -19-0115 19 GHz ADVE 4C #/# L11

Channel Power Measurements, 4.5m,

3 Carriers on Right Side of Band - 39750.06 + 39850.02 + 39949.98 MHz Horizontal Vertical

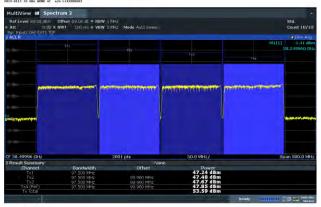

2019-0115	39	GHz	ALMB	1C	s/n	1.119000602	

19-0115 19 GH: ANNE 10	s/n 1.119000602			
dultiView 🖬 Sp	ectrum 2			
Ref Level 69.09 d6m Att 00 d8 np: brput2 GATIEXT1 T ACLR	SWF 200 ms . VBW 31	He He - Mode Auto Sweep		SGL Count 10/10
	Ťú.			M3[1] 29.74 dBn
				39,949980 GH: M1[1] 28,55 dBn
				39.850020 GH
	Contraction of the Articles	April promo portional another	annon annananna maraina	MEN .
39.85002 GHz		2001 pts	50.0 MHz/	Span 500.0 MHz
Result Summary		None		
Channel	Bandwidth	Offset	Power 50.90 dBm	
TxL (Ref) Tx2	97.500 MHz 97.500 MHz	99.960 MHz	48.15 dBm	
Tx3	97.500 MHz	99.960 MHz	47.97 dBm	
			54.00 dBm	
Marker Table				
Type: Ref Tro	X-Value	V-Value	Function	Function Result
	39.85002 GHz	28.55 dBm		
M2 1 M3 1	39.75006 GHz 39.94998 GHz	30.85 dBm 29.74 dBm		
			Him	ay 110000 120 000 000 000 000
				and the state of the state of

MultiView 📰 Spe	ctrum 2				
Ref Level 59.08 dBim Att 0 dB 1 Ing: Input2 GAT:EXT 1 TDI					SGL Count 10/11
ACLR					o 1Rm Avg
				M3[1]	27,82 dB
				MIELI	28.20 dB
					39.850020 G
		Service of the servic	10		
		(Transardining and	antigers antigererett the shift and	man	
		A A			

and the first of the second of	***-**			THE PARTY OF THE P	^ي ەمەرلىرىرىدىرۇ.
יי ניייאי אנערטערערער איז	an a sa an			THE DOT OF BUILDING AND A DOT OF BUILDING AND	
	en and			THE THE PART OF THE DESIGNATION OF	
		2001 pts	50.0 MHz/		pan 500.0 MH
17 39.85002 GHz Result Summary	2	None			
F 39.85002 GHz Result Summary Channel	Bandwidth		Power		
F 39.85002 GHz Result Summary Chunnel Txt (Ref)	2 Bandwidth 97.500 MHz	Offset	Power 51.85 dBm		
F 39,85002 GHz Result Summary Channel Tx1 (Ref) Tx2 Tx3	Bandwidth	None	Power 51.85 dBm 47.75 dBm 46.24 dBm		
F 39.85002 GHz Result Summary Channel Tat (Ref) Tx2 Tx2 Tx Total	2 Bandwidth 97,500 M+t2	None Offset	Power 51.85 dBm 47.75 dBm		
F 39,85002 GHz Result Summary Channel Txt (Ref) Ty2 Ty3 Tx Total Marker Table	2 Bandwidtn 97.500 M-tc 97.500 M-tc 97.500 M-tc 97.500 M-tc	None Offset 99,960 MHz 99,960 MHz	Power 51.85 dBm 47.75 dBm 46.24 dBm 54.06 dBm	s	pan 500.0 MH
F 39,85002 GH2 Result Summary Channel Ts1 (Ref) Ts2 Ts7 total Marker Table Type Ref Trc	2 Bandwidth 97 500 M-b 97 500 M-b 97 500 M-b 97 500 M-b 7 500 M-b	None Offset 99.960 MHz 99.960 MHz V-Value	Power 51.85 dBm 47.75 dBm 46.24 dBm		pan 500.0 MH
F 39,85002 GHz Result Summary Channel Txt (Ref) Ty2 Ty3 Tx Total Marker Table	2 Bandwidtn 97.500 M-tc 97.500 M-tc 97.500 M-tc 97.500 M-tc	None Offset 99,960 MHz 99,960 MHz	Power 51.85 dBm 47.75 dBm 46.24 dBm 54.06 dBm	s	pan 500.0 MH


Channel Power Measurement at 4.5m, - 4 Carriers -Left Side of Band - 37050.00 + 37149.96 + 37249.92 + 37349.88 MHz Horizontal Vertical 2019-0115 35 6000 3 2019-0115 19 60



27142 29.07.201

Center of Band - 38350.02 + 38449.98 + 38549.94 + 38649.90 MHz Horizontal Vertical 19-0115 19 GRI ADVE 4C s/m L1

2019-0115 19 082 ANNE 4C s/n L1

29.07.20

Right Side of Band - 39650.10 + 39750.06 + 39850.02 + 39949.98 MHz Horizontal Vertical

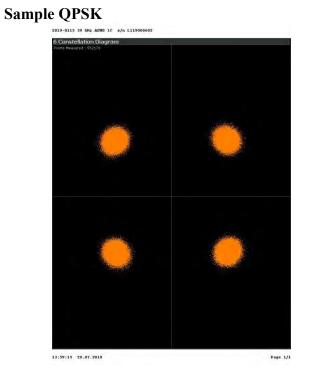
4.2 Section 2.1047 MEASUREMENT REQUIRED: MODULATION CHARACTERISTICS

The **2AD8UAEWB01** supports the 5G New Radio Modulation Format based upon LTE TDD technologies. LTE utilizes Orthogonal Frequency Division Multiplexing (OFDM) which splits the carrier frequency bandwidth into many small subcarriers. Each individual subcarrier can be modulated with QPSK, 16QAM and 64QAM digital modulation formats.

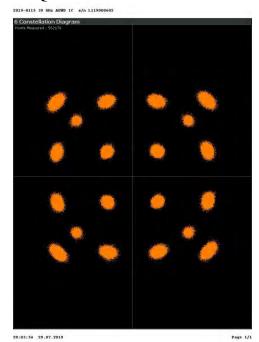
In QPSK, there are 4 possible symbol states and each symbol carries 2 bits of information. In 16QAM, there are 16 possible symbol states and each 16-QAM symbol carries 4 bits of information. In 64QAM, there are 64 possible symbol states and each 64-QAM symbol carries 6 bits of information. The higher-order modulations, those where the constellations are more dense, are more sensitive to poor channel conditions than the lower-order modulation.

The modulation characteristics measurement of LTE carriers measures the difference between the ideal symbols and the measured symbols after the equalization. The 5G-New Radio format is still in revision in 3GPP and Release 16 is expected Q4 of 2018. Typical Constellations of each waveform type were recorded to assess that the subcarrier configurations were achieved.

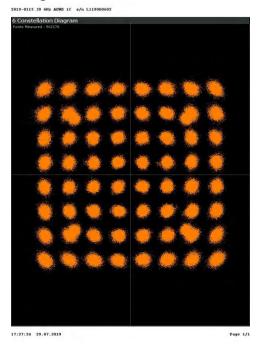
There are no FCC Limits for Modulation and all of the formats above look spectrally the same from a channel edge and regrowth standpoint. It is expected that greater fidelity will be available after test equipment is configurable with the final format of Release 16. Future Class II changes are planned for this unit for additional Multi-carrier operation and Release 16 should be testable at that time.


4.2.1 Modulation Characteristics Measurement

The measurements were performed at a distance of 4 m from the unit utilizing the test configuration in Figure 4.4.1 utilizing a Rohde & Schwarz FSW - 85 with the 3GPP 5G-NR DL Measurement software options. Representative screen plots of the modulation measurement are attached below for all three of the subcarrier configurations and sample polarizations. Data was collected for each of the tested configurations.


4.2.2 Modulation Measurements Results:

The typical measured modulation characteristics of the EUT are shown below:



Sample 16QA64

Sample 64QAM

NOKIA – Public

4.3 Section 2.1049 MEASUREMENT REQUIRED: OCCUPIED BANDWIDTH and EDGE of BAND EMISSIONS

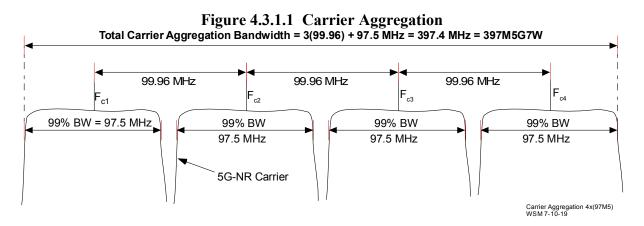
This test measures the Occupied Bandwidth of the transmitting carrier and the Edge of-Block Emissions in the frequency spectrum immediately outside and adjacent to the transmitting carrier(s).

For this test the occupied bandwidth (OBW) is defined as the 99% power OBW or a relative OBW. The 99% OBW is the signal bandwidth such that, below its lower and above its upper frequency limits, the mean power radiated or conducted are each equal to 0.5 percent of the total mean power radiated or conducted by a given emission. The relative -26 dB OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least 26 dB below the transmitter power.

Per KDB 971168 D01 v03r01, the relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The OBW shall be measured per Subclause 5.4.4 of ANSI C63.26-2015 and when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment is operated.

The requirements defined in Subclause 5.4.4 of ANSI C63.26-2015 were developed for conducted measurements. However all of the measurements performed herein were performed as radiated measurements. The use of max hold and a peak detector were not used as the internal OBW functionality was used to make the measurement. All measurements were performed with a 10 sweep average using an RMS detector. The signal bandwidth measurements were performed with resolution bandwidths of 3 & 5 MHz for single carrier and 5 MHz and 10 MHz for multiple carriers.

4.3.1 Results Occupied Bandwidth (Signal Bandwidth)

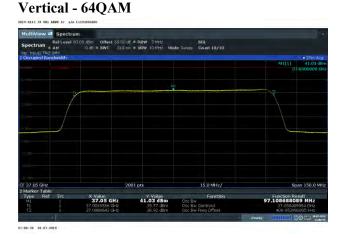

The 99% occupied bandwidth was measured with a Rohde & Schwarz FSW spectrum analyzer using the occupied bandwidth functionality. The results for multiple configurations and modulations are tabulated in Table 4.3.1 below. The maximum measured individual carrier was 97.14 MHz. The measurement of 4 adjacent carriers resulted in a maximum 4 carrier bandwidth of 394.51 MHz. The results document that the measured signals are within the parameters of the 97M5G7W emissions designator. Sample carrier measurements are documented in Figure 4.3.1 below.

	Tx. Carriers	-		Measured w/s	5 MHz RBW	Measured w	/3 MHz RBW
Carrier Location	Center Frequency,	Number of Tx.		Horizontal	Vertical	Horizontal	Vertical
in Band	GHz	Carriers	Modulation	MHz	MHz	MHz	MHz
Left	37.0500	1	64QAM	97.07	97.11	95.36	95.38
Center	38.49996	1	64QAM	97.08	97.14	95.34	95.39
Right	39.94986	1	64QAM	97.01	97.05	95.31	95.34
			[[
Left	37.050, 37.14996	2	16QAM	194.18	194.60		
				Measured w/1			5 MHz RBW
	27.050	1		Horizontal	Vertical	Horizontal	Vertical
Left	37.050, 37.14996, 37.24992, 37.34988	4	64QAM	392.53	392.30	390.63	390.40
Center	38.35002, 38.44998, 38.54994, 38.64990,	4	16QAM	394.26	394.51	391.84	391.98
Right	39.65010 39.75006, 37.85002, 39.94998	4	QPSK	391.87	392.81	390.65	389.57

Table 4.3.1 Occupied Bandwidth - Signal Bandwidth Measurements

4.3.1.1 Carrier Aggregation

The April 12, 2016 TCBC viewgraph package identified that Carrier Aggregation data need be supplied. This requirement is not yet formalized in a KDB for LTE, 5G-NR or UMFUS. The 4 carrier bandwidth of the AEWB is defined as follows. The individual carriers, 97.5 MHz maximum, are spaced 99.96 MHz apart and do not overlap. The overall signal bandwidth for 4 adjacent carriers is depicted in Figure 4.3.1.1. The calculated assessment that the 4 carrier aggregated bandwidth is 397.5 MHz. The measured values were 394.51 MHz

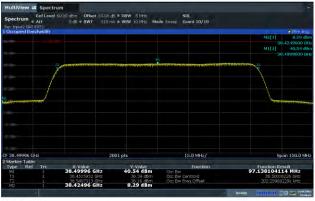

NOKIA – Public

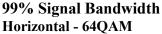
4.3.1.2 Results - Occupied Bandwidth Sample Data - 99% Signal Bandwidth

5MHz RBW 37.050 GHz

Single Carrier 99% Signal Bandwidth Horizontal - 64QAM

<text>

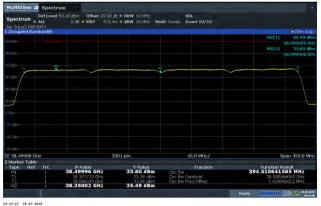

20:58:51 10.07.2019


99% Signal Bandwidth Horizontal - 64QAM

5MHz RBW 38.49996 GHz Vertical - 64O

Spectrum		0.00 dBm Offset 0.dE = SWT		BRBW SMHz VBW 10 MHz Mo		sGL Journt 10/10			
Occupied Ban									IBm Ave
								M2[1]	6,25 dt
									4249600 G 41.01 di 4999600 G
				н					1999000 0
	1							No.	
	~							hora	
38,49996 GH	Iz		200	1 pts		15.0 MHz/		Spar	n 150.0 M
Marker Table									
Type Ref Mi T1 T2	Trc	X-Value 38.49996 G 38.4516709 (38.5487382 (3-62	V-Value 41.01 dBm 36.63 dBm 36.65 dBm	Cot Bw Dot Bw C	Function Centroid Trea Offset	93	Function Res 7.067218820 38.500204 244.5502130	6 MHz 155 GHz
M2	i	38.42496 G	Hz	6.25 dBm	OUC DW P	red consec	_		

Four Carrier 99% Signal Bandwidth - 10 MHz RBW - 4 Carrier - Left Side of Band Horizontal - 64QAM Vertical - 640AM 019-0115 39 GH: ANNE 10 s/m Lil!


99% Signal Bandwidth - 10 MHz RBW - 4 Carrier - Center Side of Band Horizontal - 16QAM

2019-0115 09 GM: ADWB 10 s/n L11920 w i s dSm Offset 69.03.d5 € R5W 10.11Hz SGL D.d5 € SWT 319.ms € VBW 10.11Hz Mode Sweep Count.10/10 50.0 MHz/ Function X-Value 37.19994 GHz V-Value 36.46 dBm Function Result 392.303006097 MH BW Dentroid BW Freq Offset 37.05 GHz 35.95 dBm

Vertical - 16OAM

99% Signal Bandwidth - 10 MHz RBW - 4 Carrier - Right Side of Band **Horizontal - QPSK**

Vertical - QPSK

4.3.2 Occupied Bandwidth-Edge of Band Emissions

Classical Occupied Bandwidth – Edge of Block Emissions is an evaluation of the transmit carrier compliance with edge of band requirements and characterizes Out-Of-Band Emissions (OOBE). This measurement documents the product's ability to maintain compliance with FCC Parts 2 and Part 30.203 limitations on emissions outside the band of operation. There are no internal blocks divisions for this band.

The **2AD8UAEWB01** 39 GHz Radio Unit supports from one to four 5G-New Radio LTE TDD carriers. This evaluation addresses 2x2 MIMO operation with up to 4 carriers which are nominally 100 MHz each and are placed anywhere within the active 800 MHz operational bandwidth. In each test configuration the carriers were configured at the left, middle or right side of the Part 30 band as appropriate. All power measurements were performed prior to other measurements. Power was set to the total per polarization maximum of 54 dBm. The measurements are described below.

The occupied bandwidth of each of the signals identified in Table 4.3.6.1 was measured using a Rohde & Schwarz FSW Spectrum analyzer, a remote PC based instrumentation controller and the same calibrated RF attenuation path used for channel power. The measurement process meets the requirements of ANSI C63.26, KDB 842590 and ISO17025. The test setup was as shown in Figure 4.1.1. Measurements were performed at 4.5m for both vertical and horizontal polarizations.

Plots are provided using the triggered functionality of the test analyzer and demonstrate compliance with edge of band limits. Data is supplied for one, two, three and four carrier configurations for the Left, Center and Right side of the 39 GHz band in the Part 30 Upper Microwave Flexible Use Service spectrum.

4.3.3 Requirements 39 GHz Emissions Limits

The Limit in 47 CFR 30.203 for Emissions Limits is as follows:

(a) The conductive power or the total radiated power of any emission outside a licensee's frequency block shall be -13 dBm/MHz or lower. However, in the bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be -5 dBm/MHz or lower.

(b)(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater.

(2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges as the design permits.

(3) The measurements of emission power can be expressed in peak or average values.

In order to address the limit as imposed for the requirement in 47CFR 30.203 we evaluated emissions per the requirements in ANSI C63.26 and per KDB 842590 Upper Microwave Flexible Use Service v01. The average detector function was used with multiple sweep averaging for all measurements.

4.3.4 Measurement Offset and MIMO

As this was a radiated EIRP measurement no MIMO adjustment was used.

4.3.5 Mask Parameters

The mask parameters are in units as stated in Part 30 and are listed in Table 4.3.5. Mask parameters are as stated in Table 4.3.5. Mask Edge Offsets = $\frac{1}{2}$ the measurement Resolution Bandwidth were not used.

Frequency	Part 30 Limit		
GHz	dBm		
35.00	-13		
36.00	-13		
36.99	-13		
36.99	-5		
37.00	-5		
37.00	57		
40.00	57		
40.00	-5		
40.01	-5		
40.01	-13		
41.00	-13		
42.00	-13		

Table 4.3.5 - Mask Parameters Out Of Band / Edge of Band Emissions

4.3.6 Measurement Path Correction

The measured power at the spectrum analyzer input was adjusted for calculated free space loss, cable loss, measurement antenna gain and the product antenna gain over its applicable frequency range as documented in Exhibit 6 of the filing and Table 4.3.6 below. This is appropriate for Out Of Band Emissions / Edge of Band emissions only for the frequency range that the transmit antenna has documentable and consistent gain. Since different products have different gain responses vs frequency, the products documentable antenna gain only applies for the operational frequency range for which the product is designed.

This adjustment was only used for the OOBE/EoB frequency range. Table 4.3.6 below lists the offset correction factors used for the measurement distance of 4.5m including the AEWB product gain. The measurements were made using a flat offset of 40 dB with a transducer correction identified below.

4.3.6.1 OOBE Sample calculation

Sample calculation: The sample calculation below is the formula and the correction for 39 GHz;

OOBE Correction Factor = Free Space Path Loss – Measurement Antenna Gain + Cable Loss – Product Gain.

The following sample calculation is the correction for 39 GHz;

Sample calculation at 39 GHz: Correction = 77.33 dB -23.6 dBi + 15.67dB - 29.60 dBi = 39.797 dB

= Offset Value (40.0 dB) + Transducer Factor (-0.203 dB)

All measurements were made using a flat offset of 40 dB and the transducer factor from the Table 4.3.6.

Freq.	Free Space Path Loss, PL	Measurement Antenna Gain, G1	Measurement Cable Loss, L1	Offset for Channel Power PL-G1+L1	AEWB Antenna Gain	Total	Offset for OOBE	OOBE Tranducer Factor
GHz	dB	dBi	dB	dB	dBi- IEEE	dB	dB	dB
35.0	76.39	23.25	15.11	68.25	26.50	41.747	40	1.747
35.5	76.51	23.25	15.11	68.37	27.20	41.171	40	1.171
36.0	76.63	23.25	15.11	68.49	27.80	40.692	40	0.692
36.5	76.75	23.25	15.11	68.61	28.20	40.412	40	0.412
37.0	76.87	23.25	15.11	68.73	28.70	40.030	40	0.030
37.5	76.99	23.40	15.24	68.83	29.00	39.827	40	-0.173
38.0	77.10	23.45	15.37	69.02	29.30	39.722	40	-0.278
38.5	77.22	23.60	15.49	69.11	29.50	39.605	40	-0.395
39.0	77.33	23.60	15.67	69.40	29.60	39.797	40	-0.203
39.5	77.44	23.60	15.81	69.65	29.40	40.248	40	0.248
40.0	77.55	23.70	15.85	69.70	29.30	40.397	40	0.397
40.5	77.66	23.70	15.85	69.81	29.20	40.605	40	0.605
41.0	77.76	23.70	15.85	69.91	29.00	40.912	40	0.912

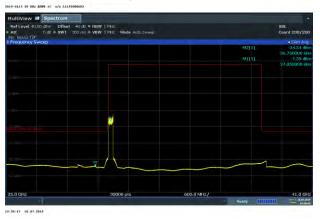
 Table 4.3.6
 Measurement Correction for Edge of Band / Out of Band Emissions

4.3.7 Edge of Band Measurements

The Occupied Bandwidth and Edge-of-Band emissions measurements were made as a radiated measurement at a distance of 4.5m. The measurements were performed with an FSW spectrum analyzer in compliance with the procedure and requirements of ANSI C63.26. The test set-up diagram in Figure 4.1.1 was used. Testing was performed for the nominal 100 MHz carrier configurations at the left side, center and right side of the Part 30 Band. All of the Edge of Band measurements were performed at the specified 1 MHz resolution bandwidths. Adjustment factors were as described in Section 4.3.6 above.

4.3.7.1 Results - Occupied Bandwidth Out Of Band Emissions /-Edge of Block Emissions

The Occupied Bandwidth and Edge-of-Band plots for operation at the left side, center and the right side of the band for the various multicarrier configurations are below. These include one, two, three and four carrier operation. The mask accurately depicts the limits for the Part 30 NAR Band to determine compliance with FCC requirements. From the out-of-band emissions plots attached below, it can be seen that all of the emissions are within the required emission mask and are compliant.


The results of the Occupied Bandwidth/ Edge-of-Band measurements document that the Out-Of-Band Emissions from 35 GHz to 42 GHz are compliant. The Plots and Table 4.3.7.1 demonstrate the full compliance with the Rules of the Commission for the UMFUS 39 GHz operating band.

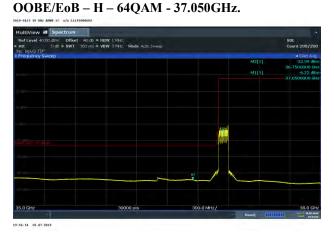
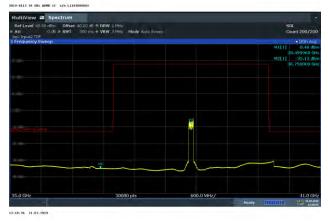
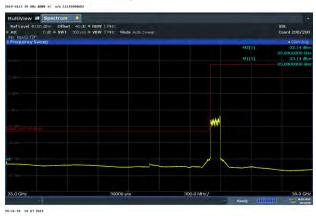

Carrier	Transmit Carriers Center	Number of		Occupied Bandwidth Ed of Block / OOBE Compliance	
Location in Band	Frequency, GHz			Horizontal	Vertical
Left	37.0500	1	64QAM	Compliant	Compliant
Center	38.49996	1	64QAM	Compliant	Compliant
Right	39.94986	1	64QAM	Compliant	Compliant
Left	37.050, 37.14996	2	16QAM	Compliant	Compliant
		1		r	
Right	39.75006, 39.85002, 39.94998,	3	64QAM	Compliant	Compliant
Left	37.050, 37.14996, 37.24992, 37.34988	4	64QAM	Compliant	Compliant
Center	38.35002, 38.44998, 38.54994, 38.64990,	4	16QAM	Compliant	Compliant
Right	39.65010 39.75006, 37.85002, 39.94998	4	QPSK	Compliant	Compliant

Table 4.3.7.1 Results - Occupied Bandwidth-Edge of Block Emissions/ OOBE

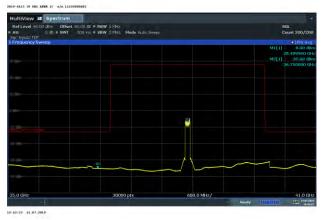

Figure 4.3.5 - Occupied Bandwidth - OOBE/EoB Band Charts E

Left Side of Band 64QAM OOBE/EoB – H – 64QAM - 37.050GHz.

Middle of Band 64 QAM OOBE/EoB – H - 64QAM – 38.49996 GHz.

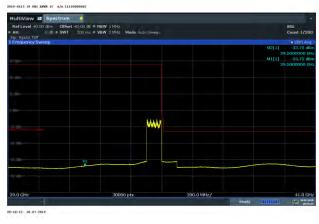


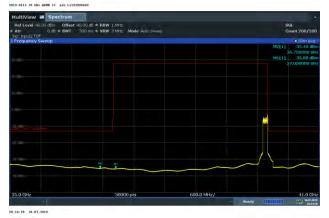
OOBE/EoB - V - 64QAM - 37.050GHz

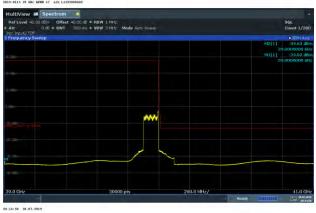


20:33:47 18.07.2019

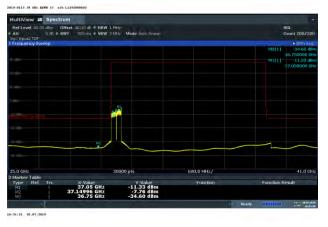
OOBE/EoB - V - 64QAM - 37.050GHz


OOBE/E0B – V - 64QAM - 38.49996 GHz


Right Side of Band QPSK OOBE/EoB – H - QPSK – 39.94986 GHZ.



OOBE/E0B - V - QPSK - 39.94986 GHZ



The Occupied Bandwidth and Edge-of-Band emissions measurements were made as a radiated measurement at a distance of 4.5 m

Figure 4.3.7.1 - Occupied Bandwidth - OOBE/EoB Band - Dual carrier

Left Side of Band - 64QAM - 37.050 GHz + 37.14996 GHz. OOBE/EoB – Horizontal Polarization Vertical P



OOBE/EoB – Horizontal Polarization

16/25:03 30.07.2019

Vertical Polarization

7:10:27 30.07.201

Vertical Polarization

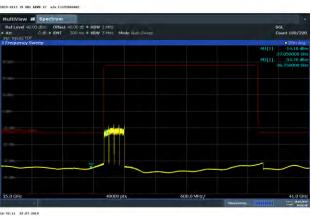
17:10:44 30.07.2019

Figure 4.3.7.1 - Occupied Bandwidth - OOBE/EoB Band - Three carrier

Right Side of Band QPSK - 39.75006 GHz + 39.85002 GHz + 39.94998 GHzOBE/EoB – Horizontal PolarizationVertical Polarization

OOBE/EoB – Horizontal Polarization

7:02:22 31.07.7019


Vertical Polarization

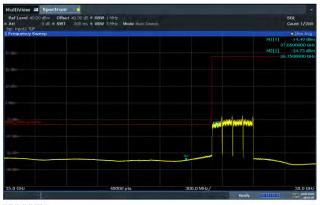
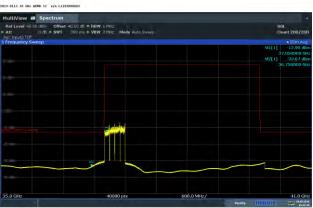
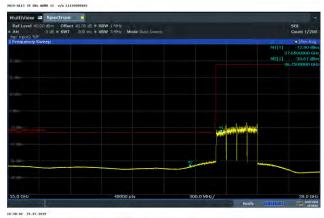

15:32:49 35.07.2019

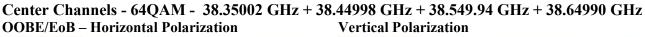
Figure 4.3.7.1 -**Occupied Bandwidth - OOBE/EoB Band - Four carrier**

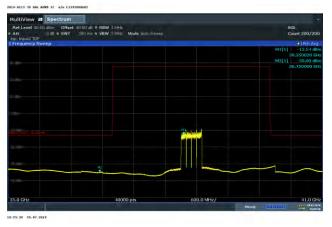

Left Side of Band - 64QAM - 37.050 GHz + 37.14996 GHz. + 37.24992 GHz + 37.34988 GHz **Vertical Polarization OOBE/EoB – Horizontal Polarization**

OOBE/EoB – Horizontal Polarization 19-0115 19 GHz AEVE 10 s/m 1119

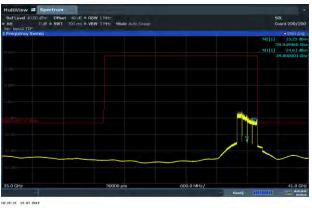


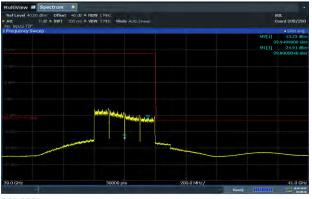
52146 29.07.201


16:47:10 29.07.201



OOBE/EoB – Horizontal Polarization Vertical Polarization




Occupied Bandwidth - OOBE/EoB Band - Four carrier Figure 4.3.7.1 -

Right Side of Band QPSK - 39.65010 GHz + 39.75006 GHz + 39.85002 GHz + 39.94998 GHz **OOBE/EoB – Horizontal Polarization Vertical Polarization** 019-0115 39 GMz ADWB 10 s/n L1



OOBE/EoB – Horizontal Polarization -0115 35 GHz AINE 10 4/n 111920004

18-46-16 19-07-2019

10-42-47 19-07-2019

Vertical Polarization

4.4 Section 2.1051 MEASUREMENT REQUIRED: SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS

This test measures the emissions of spurious signals which may come from harmonic, parasitic, intermodulation and frequency conversion products and are outside the necessary bandwidth but excludes Edge-of-Band emissions.

4.4.1 Section 2.1051 Spurious Emissions at Antenna Terminals

Spurious Emissions were investigated per 47CFR Section 2.1057(a)(1) over the frequency range of 30 MHz to 200 GHz as specified in 2.1057(a)(3).

2.1057(a)(3) If the equipment operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower.

4.4.2 Required Limit

The required emission limitation specified in **47CFR 30.203 (a)** was applied to these tests. Based upon the criterion given in Section 30 of the Code and as developed in 4.3.3, the required emission limit for emissions outside a licensee's frequency block is:

47CFR 30.203 (a) (a) The conductive power or the total radiated power of any emission outside a licensee's frequency block shall be -13 dBm/MHz or lower. However, in the bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be -5 dBm/MHz or lower.

4.4.3 Results

Since there is no antenna terminal, all measurements were performed as radiated measurements and standard radiated emissions. The Edge of Band emissions, presented in Section 4.3.7.1, document the 35 - 37 GHz and 40 - 42 GHz OOBE ranges. Those measurements are appropriate as the products antenna gain is documented over the same ranges. There were no emissions detected in these ranges.

The standard radiated emissions are documented in Section 4.5 "Section 2.1053 Measurement Required: Field Strength of Spurious Radiation". The test configuration is shown in Figure 4.4.1 documents the test set up used for the measurements.

The measurements were performed in compliance with ANSI C63.26, C63.26 mmWave JTG, KDB 842590 and our ISO17025 process. The measurement meets the ANSI C63.26 requirements in paragraphs 5.2.4.4.1 and 5.7 which requires that the number of points in the sweep be $> 2 \times$ Span/RBW. The ESU-40 spectrum analyzer measurements examine the 30 MHz to 40 GHz range. The FSW based mmWave transmitter test system overlaps the transmit band for 37-40 GHz and extends the frequency range to examine the 40 GHz to 200 GHz range.

4.5 Section 2.1053 MEASUREMENT REQUIRED: FIELD STRENGTH OF SPURIOUS RADIATION

The field strength measurements of radiated spurious emissions were made in a FCC registered five meter semi-anechoic chamber AR-4, (FCC Registration Number: 395774) **NVLAP** Lab Code: 100275-0 and IC (Filing Number: 6933F-4) which is maintained by Nokia Bell Labs in Murray Hill, New Jersey. The **2AD8UAEWB01** (EUT) was configured in semi-anechoic chamber AR-8 in a manner simulating a normal field installation. The product's field installation hardware was used to mount the product to a wooden pole with the bottom of the product 1.5m above the turntable ground plane. The recommendations of ANSI C63.4–2014, C63.26-2015, KDB 842590 D01 and C63.26 mmWave JTG were followed for EUT testing setup and cabling. The EUT was configured to operate in a 5G-NR test model per the constraints identified in section 4.2. A photograph of this setup is in Exhibit 12 of the filing package.

The base station was configured into the full power forward beam transmit configuration to transmit two 54 dBm EIRP 100 MHz bandwidth 5G-NR carriers, one Vertical and one Horizontal polarization, with the total transmit power of 57 dBm EIRP. This configuration provides the highest power spectral density transmit signal for the product. The product utilizing the configurations below was evaluated over the 30 MHz to 200 GHz frequency range as required.

Test Configuration	AEWB Tx Reference Frequencies	Transmit Active	Nominal Signal Bandwidth,		Total Power, dBm	Radiated Emissions
NRARFCN	MHz	Polarization	MHz	Modulation	EIRP	Pass / Fail
2229999	37.05000		97.5 MHz	QPSK,		
То	То	H & V	& 397.5	16QAM &	57	Pass
2278332	39.94998		MHz	64QAM		

Table 4.5.1 EUT Configurations

4.5.1 Spurious Radiation and Radiated Emissions Requirements Below 40 GHz.

This product meets Part 15B, and Part 30.203 requirements. FCC Part 15 Class B require emissions to be below 54.5 dBuV/m at 3m. Part 30.203 requires emissions to be below the value generated by a conducted emission of -13 dBm. This is a standard value for wireless products typically defined as

-43+10LogP=-13 dBm.

The emissions at the Edge of Band were adjusted by the 29 dBi gain of the transmit antenna as the product is designed to operate globally over the 37 to 40 GHz frequency band. Emissions removed from the transmit band were evaluated identically to other wireless products.

Measurements were performed in compliance with Section 2.1053, FCC publication 442401, the requirements detailed above and clause 5.5 of ANSI C63.26. For this case the evaluation of acceptable radiated field strength is as follows.

The calculated emission levels were found by:

$$Pmeas (dBm) + Cable Loss(dB) + Antenna Factor(dB) + 107 (dB\mu V/dBm) - Amplifier Gain (dB) = Field Strength (dB\mu V/m)$$

Title 47CFR section 30.203 and 2.1053 contains the requirements for the levels of spurious radiation as a function of the EIRP of the modulated carrier with 100 MHz of bandwidth. The reference level for the modulated carrier is calculated as the field produced by an isotropic radiator excited by the transmitter output power according to the following relation taken from Reference Data for Radio Engineers, page 27-7, 6th edition, IT&T Corp.

$E = (120\pi P)^{\frac{1}{2}} = [(30*P)^{\frac{1}{2}}] / R$ 20 log (E*10⁶) - (43 + 10 log P) = 82.23 dB μ V/meter

Where:

E = Field Intensity in Volts/ meter R = Distance in meters = 3 mP = Transmitted Power, Watts = 53300 W

The field strength of radiated spurious emissions measured was determined by

 $E (dB\mu V/m) = V_{meas} (dB\mu V) + Cable Loss (dB) + Antenna Factor (dBi/m).$

Field strength measurements of radiated spurious emissions were made in the 5m semi-anechoic chamber, AR-4 as detailed above. The recommendations of ANSI C63.4 and ANSI C63.26 were followed for EUT testing setup, cabling, and measurement approach and procedures. All the measurement equipment used, including antennas, was calibrated in accordance with ISO 9001 process. The EUT setup diagram is given in the Figure 4.5. The minimum margins to the Part 30.203 limit is as measured in accordance with 2.1053. The test data follows.

4.5.2 Radiated Spurious Emissions Measurements: 40 GHz - 200 GHz:

The radiated spurious emissions spectrum was investigated per 47CFR Section 2.1057(a)(1) for spurious emissions over the frequency range of 40 GHz to 200 GHz. The procedure and methodology followed the recommendations of ANSI C63.4–2014, C63.26-2015 and C63.26 mmWave JTG.

A Rohde & Schwarz FSW 67 was employed with external three port Harmonic Down Converters (HDC). The waveguide RF input converters provided coverage for 40-60 GHz (U), 60-90 GHz (E), 90-140 GHz (F) and 140-220 GHz (G) bands. The HDC's were paired with 25 dB Standard Gain Horns. A 40 GHz waveguide high pass filter was utilized to limit the transmit carrier emissions from overloading the 40-60 GHz HDC.

Operation of the harmonic down converters utilizes a swept LO with a fixed IF frequency of 1.325 GHz. The IF cable loss for the 4.5m of cable was 1.03 dB and was corrected internally to the FSW along with the Conversion loss for the harmonic down converters. Additional external shielding of the HDC's was necessary to limit carrier energy from creating immunity issues with the measurements.

Cable loss compensation for the LO cable loss was necessary to enable scan heights from 1-3 meters. The experience of this test indicated that a 3m maximum test height with this product is adequate (0.5 m above the top of product). This allowed for a reduction of the test cables length and reduce IF images which occurred at multiples of the 1.325 GHz IF frequency. Measurements were performed at the following distances:

mmWave Band	Frequency Range, GHz	Measurement distance, meters
U	40-60	4
Е	60-90	4
F	90-140	3
G	140-220	3

Operation was verified prior to testing by bore-sighting a mmWave signal generator or mmWave source module with an antenna identical to the measurement antenna at the test distance. The location of the maximum beams had previously been ascertained for both vertical and horizontal polarizations. The beam is extremely narrow and radiated power is down 19 dB at just \pm 7 degrees off center. All of the emissions and harmonics were found to be centered on the beam as well.

Based upon previous experience a continuous max hold (average detector) sweep of the product in elevation and azimuth was employed for full coverage scanning of the product. For these measurements, in the 5m AR-4 Chamber, for each band the scan was started at the beam peak location of 20 degrees azimuth, and nominal elevations 186 cm for Vertical and 189 cm for Horizontal. The peak was first located for the most prominent emissions in the span. The elevation was then swept down to 1m and back up back to 3m and returned to the beam peak. The product was then rotated continuously to 360 degrees back to 0 degrees and back to 20 degrees. This method locates any emission and provides the maximum emissions but required operation without the analyzer internal noise reduction function. Peaks were noted using the marker function which were later formally measured with the required 1 MHz resolution bandwidth. Measurements for all four bands were performed this way.

4.5.2.1 Bandwidth Limits and Corrections: Radiated Measurements 40 GHz - 200 GHz,

All corrections were made to the signal level as detailed below.

4.5.2.2 Resolution Bandwidth and # of Points:

For measurements above 40 GHz we performed final measurement scans with the required 1 MHz resolution bandwidth and preliminary scans with either a 10 MHz or 3 MHz resolution bandwidth.

Final measurements were performed so that the resolution bandwidth and span limitations of ANSI C63.26 were followed so that the number of measurement points > 2(Span/RBW). Our FSW was upgraded from the original filing and now processes 100,000 data points across the screen which allows for 50 GHz spans with a 1 MHz RBW. Multiple spans were therefore used when necessary to evaluate the peak spurious emissions detected.

4.5.2.3 Part 30 Limit:

The -13 dBm emissions limit was not adjusted in any way.

4.5.2.4 Emissions Corrections.

The measured signal was corrected by the FSW for the harmonic downconverter (HDC) conversion loss. Additionally, a correction consisting of the free space radiated Path Loss, and the measurement antenna gain was applied as a fixed offset + a transducer factor. There was no adjustment applied for the product antenna gain as these measurements are outside the transmit frequency range.

Emissions Correction = Path Loss - Antenna Gain

Where Free Space Path Loss = $((4\pi d)/\lambda)^2$

Table 4.5.2.4 details the corrections for the three bands.

Frequency	λ	Measurement Distance, d	Path Loss	Rx Antenna Gain	Total	Offset	Transducer Factor
GHz	m	m	dB	dB	dB	dB	dB
40.0	0.007500	4	76.52	21.80	54.72	55.54	-0.82
42.5	0.007059	4	77.05	22.20	54.85	55.54	-0.69
45.0	0.006667	4	77.55	22.50	55.05	55.54	-0.49
47.5	0.006316	4	78.02	22.70	55.32	55.54	-0.22
50.0	0.006000	4	78.46	23.00	55.46	55.54	-0.08
52.5	0.005714	4	78.89	23.30	55.59	55.54	0.05
55.0	0.005455	4	79.29	23.40	55.89	55.54	0.35
57.5	0.005217	4	79.68	23.60	56.08	55.54	0.54
60.0	0.005000	4	80.05	23.70	56.35	55.54	0.81

Frequency	λ	Measurement Distance, d	Path Loss	Rx Antenna Gain	Total	Offset	Transducer Factor
GHz	m	m	dB	dB	dB	dB	dB
60.0	0.005000	4	80.05	21.80	58.25	59.01	-0.76
65.0	0.004615	4	80.74	22.30	58.44	59.01	-0.57
70.0	0.004286	4	81.38	22.70	58.68	59.01	-0.33
75.0	0.004000	4	81.98	23.00	58.98	59.01	-0.03
80.0	0.003750	4	82.54	23.40	59.14	59.01	0.13
85.0	0.003529	4	83.07	23.60	59.47	59.01	0.46
90.0	0.003333	4	83.57	23.80	59.77	59.01	0.76

Table 4.5.2.4bRadiated Emissions Corrections for 60-90 GHz at 4m.

Table 4.5.2.4c

Radiated Emissions Corrections for 90-140GHz at 3m.

Frequency	λ	Measurement Distance, d	Path Loss	Rx Antenna Gain Total		Offset	Transducer Factor
GHz	m	m	m dB d		dB	dB	dB
90.0	0.003333	3	81.07	21.90	59.17	59.79	-0.62
95.0	0.003158	3	81.54	22.20	59.34	59.79	-0.45
100.0	0.003000	3	81.98	22.60	59.38	59.79	-0.41
105.0	0.002857	3	82.41	23.00	59.41	59.79	-0.38
110.0	0.002727	3	82.81	23.30	59.51	59.79	-0.28
115.0	0.002609	3	83.20	23.63	59.57	59.79	-0.22
120.0	0.002500	3	83.57	23.83	59.74	59.79	-0.05
125.0	0.002400	3	83.92	24.00	59.92	59.79	0.13
130.0	0.002308	3	84.26	24.20	60.06	59.79	0.27
135.0	0.002222	3	84.59	24.40	60.19	59.79	0.40
140.0	0.002143	3	84.91	24.50	60.41	59.79	0.62

Table 4.5.2.4d

Radiated Emissions Corrections for 140-200GHz at 3m.

Frequency	λ	Measurement Distance, d	Path Loss	Rx AntennaGainTotal		Offset	Tranducer Factor
GHz	m	m	dB	dB	dB	dB	dB
140.0	0.002143	3	84.91	23.40	61.51	62.07	-0.56
145.0	0.002069	3	85.21	23.65	61.56	62.07	-0.51
150.0	0.002000	3	85.51	23.90	61.61	62.07	-0.46
155.0	0.001935	3	85.79	24.15	61.64	62.07	-0.43
160.0	0.001875	3	86.07	24.30	61.77	62.07	-0.30
165.0	0.001818	3	86.33	24.55	61.78	62.07	-0.29
170.0	0.001765	3	86.59	24.70	61.89	62.07	-0.18
175.0	0.001714	3	86.84	24.95	61.89	62.07	-0.18
180.0	0.001667	3	87.09	25.10	61.99	62.07	-0.08
185.0	0.001622	3	87.33	25.25	62.08	62.07	0.01
190.0	0.001579	3	87.56	25.40	62.16	62.07	0.09
195.0	0.001538	3	87.78	25.55	62.23	62.07	0.16
200.0	0.001500	3	88.00	25.70	62.30	62.07	0.23

4.5.3 Field Strength of Spurious Radiation Results:

This product meets Part 15B limits below 1 GHz and Part 30 Requirements. For the Title 47CFR section 30.203 and 2.1053 test, the field strength of any spurious radiation, measured at 3m, is required to be less than 82.23 dB μ V/meter. Emissions equal to or less than 62.23 dB μ V/meter are not reportable.

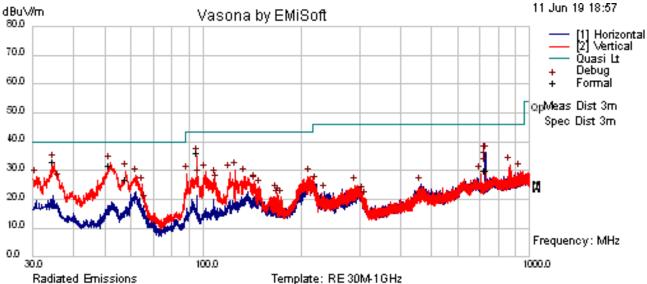
There were reportable emissions below 37 GHz. The minimum margin was 3.37 dB between the noise floor and the 82.23 dB μ V/meter limit at 35913.6 MHz.

All other emissions below 26.5 GHz were below the Part 30 Non Report limit of 62.23 dBµV/meter.

Presented results include the standard measurements from 30 MHz to 40 GHz followed by the four mmWave bands. The worst case emissions are presented. The scans are performed with the required 1 MHz resolution bandwidth and sufficient number of points per ANSI C63.26 with markers at the frequencies of interest. The limit in the measurement is the conducted -13 dBm limit as specified in Part 30.203. Corrections to the emissions levels consisted of only the HDC conversion loss, the Free Space Path Loss and the gain of the measurement antenna as detailed in Table 4.5.2.4.

Over the out of band spectrum investigated from 40 GHz to 200 GHz, reportable spurious emissions were detected and determined to be compliant with the Part 30 limit. The minimum margin, measured in the vertical polarization to the noise floor was a margin of 3.13 dB at 128.56386 GHz. Additionally, from 30 MHz to 1 GHz all non-transmitter emissions were a minimum of 9.51 dB below the Part 15 Class B limit of 54.5 dB μ V/m.

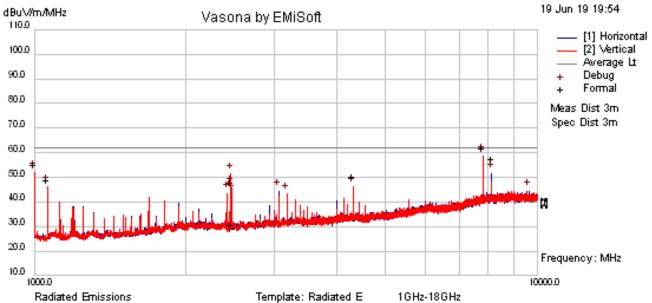
This demonstrates that the AirScale 39 GHz Radio Unit (AEWB) Band 30, FCC ID: 2AD8UAEWB01, the subject of this application, complies with FCC Part 15 Class B, and FCC Sections 2.1053, 30.203 and 2.1057 of the Rules.


Figure 4.5 Radiated Emissions Product Setup

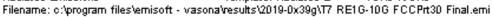
Airscale 39 GHz Radio Unit AEWB RE Setup W.S. Majkowski 07-01-2019

4.5.4 Transmitter Measurements of Radiated Spurious Emissions 30 MHz - 36 GHz

T1a FCC Class B AC Powered **Radiated Emissions** 30M-1GHz



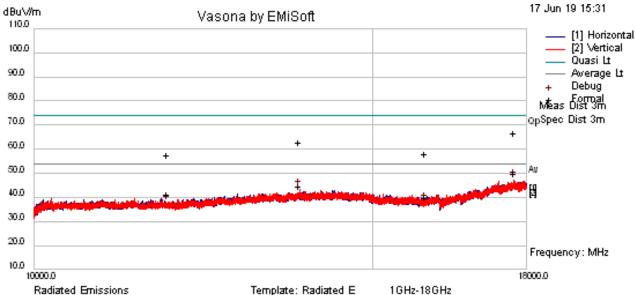
Radiated Emissions Template: RE 30M-1GHz Filename: o:\program files\emisoft - vasona\vesults\2019-0x39g\T1RE30M-1G FCCB 1C 64QAM Final.emi


Results Title:	Radiated Emissions 30MHz-1GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0x39g\T1RE30M-1G FCCB 1C 64QAM Final.emi
Test Laboratory:	AR4-MH, 24C, 44% 977mB
Test Engineer:	MJS
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia Wireless
EUT Details:	AEWB AC 39G Radio Unit, Modulation 64QAM, 100MHz BW, 54dBm/polarity, 1C transmitting @ 37.40034GHz. SN091404A.X32, L119200602. Disconnected LMI support test aid board.
Configuration:	Powered by 120VAC / 60Hz, Tested to FCC Part 15b, RE 30M-1GHz, @ 3-Meter, ESU IH69, Pre-Amp E813, Ant E766, LPF-E980. Internal attenuation 10dB, FCC Pt15 Class B. Preview BW (default); Formal BW (default)
Date:	2019-06-11 18:57:55

FORMAL DATA

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
34.732	41.68	0.67	-11.9	30.49	Quasi Max	V	99	144	40	-9.51	Pass	
95.222	47.64	1.06	-15.2	33.54	Quasi Max	V	105	132	43.5	-9.96	Pass	
51.663	47.18	0.77	-18.9	29.05	Quasi Max	V	101	309	40	-10.95	Pass	
57.599	43.21	0.82	-20	24.06	Quasi Max	V	98	305	40	-15.94	Pass	
730.744	29.02	2.62	-4.54	27.11	Quasi Max	Н	324	220	46	-18.89	Pass	
733.596	28.89	2.64	-4.46	27.07	Quasi Max	Н	264	339	46	-18.93	Pass	

T7 Radiated Emissions



Results Title:	Radiated E 1GHz-18GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0x39g\T7 RE1G-10G FCCPrt30 Final.emi
Test Laboratory:	AR4-MH, 24C, 52% 977mB
Test Engineer:	MJS
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia Wireless
EUT Details:	AEWB AC 39G Radio Unit, Modulation 64QAM, 100MHz BW, 54dBm/polarity, 1C transmitting @ 37.40034GHz. SN091404A.X32, L119200602. Connected LMI board, Tx back on.
Configuration:	Powered by 120VAC / 60Hz, Tested to FCC Part 30, RE 1GHz - 10GHz, @ 3-Meter, ESU IH69, Ant E057 LPF-E1361. Internal attenuation 0dB, FCC Pt30. Preview BW (100 kHz RBW/ 3000 KHz VBW); Formal BW (1MHz RBW).
Date:	2019-06-19 19:54:57

FORMAL DATA

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7806.73	48.53	9.15	-0.03	57.65	AvgMax	V	108	347	62.23	-4.58	Pass	
8135.67	44.07	9.51	-0.12	53.46	AvgMax	Н	209	75	62.23	-8.77	Pass	
1000.01	63.53	2.16	-14.4	51.3	AvgMax	V	144	184	62.23	-10.93	Pass	
4312.48	46.16	5.05	-4.75	46.46	AvgMax	V	104	279	62.23	-15.77	Pass	
1062.5	56.73	2.28	-14.1	44.87	AvgMax	V	195	229	62.23	-17.36	Pass	
2469.99	32.07	3.84	-9.04	26.88	AvgMax	V	326	24	62.23	-35.35	Pass	

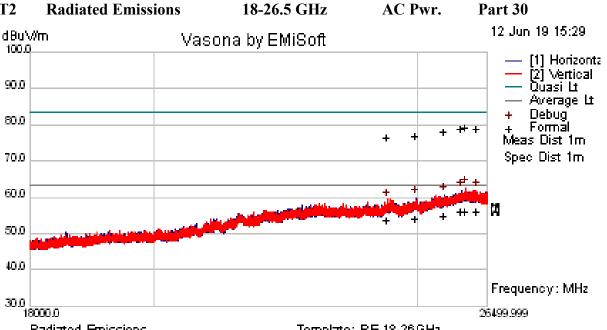
1 GHz - 10 GHz TX Part 30B

T6a Radiated Emissions

10GHz - 18GHz

DC Pwr TX ON - Part 15B

Filename: c:\program files\emisoft - vasona\results\2019-0x39g\T6 RE10g-18G ACP FCCB 1c 64q.emi

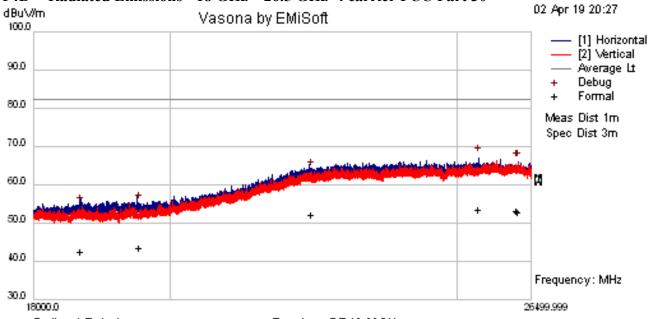

Results Title:	Radiated Emissions 10GHz-18GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0x39g\T6 RE10g-18G dcP FCCB 1c 64q.emi
Test Laboratory:	AR4-MH, 24C, 31% 977mB
Test Engineer:	JY / MJS
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia Wireless
EUT Details:	AEWB AC 39G Radio Unit, Modulation 64QAM, 100MHz BW, 54dBm/polarity, 1C transmitting @ 37.40034GHz. SN091404A.X32, L119200602. Disconnected LMI support board.
Configuration:	Powered by 120VAC / 60Hz, Tested to FCC Part 15b, RE 10GHz - 18GHz, @ 3-Meter, ESU IH69, Ant E057 LPF-E1361. Internal attenuation 10dB, FCC Pt15 Class B. Preview BW (30 kHz RBW/ 3000 KHz VBW); Formal BW (1MHz RBW).
Date:	2019-06-17 15:29:50

FORMAL DATA

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17751.7	26.7	10.54	8.57	45.81	Average	V	260	83	54	-8.19	Pass	
17751.7	43.35	10.54	8.57	62.46	Peak	V	260	83	74	-11.54	Pass	
13734.6	25.27	9.34	6.06	40.67	Average	V	277	220	54	-13.33	Pass	
13734.6	43.29	9.34	6.06	58.69	Peak	V	277	220	74	-15.31	Pass	
11733.7	26.43	8.42	2.22	37.06	Average	V	361	59	54	-16.94	Pass	
15961.3	23.67	9.95	2.03	35.66	Average	Н	352	52	54	-18.34	Pass	
15961.3	42.18	9.95	2.03	54.16	Peak	Н	352	52	74	-19.84	Pass	
11733.7	43.12	8.42	2.22	53.75	Peak	V	361	59	74	-20.25	Pass	

Note: Preview data was measured using a peak detector to identify frequencies of interest for formal measurement. Formal data consist of all frequencies in the preview list within 6 dB of specification limit or the top six frequencies. Failure in preview data does not necessarily constitute failure in formal data.

NOKIA – **Public**


T2 Radiated Emissions 18-26.5 GHz

Radiated Emissions Template: RE 18-26GHz Filename: c:\program files\emisoft - vasona\results\2019-0x39g\t2 re18g-26.5g foob 1c 64qam.e

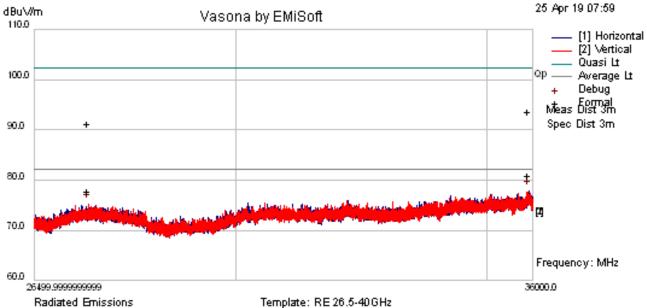
Results Title:	Radiated Emissions 18-26GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0115g\t2 re18g-26.5g fccb 1c 64qam.emi
Test Laboratory:	AR4-MH, 24C, 31% 977mB
Test Engineer:	MJS / JY
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia Wireless
EUT Details:	AEWB AC 39G Radio Unit, Modulation 64QAM, 100MHz BW, 54dBm/polarity, 1C transmitting @ 37.40034GHz. SN091404A.X32, L119200602. Disconnecting the LMI board.
Configuration:	Powered by 120VAC / 60Hz, Tested to FCC Part 15b, RE 18G-26.5GHz, @ 1-Meter, ESU IH69, Pre- Amp E1356, Ant E520, LPF-E1361. Internal attenuation 10dB, FCC Pt15 Class B. Preview BW (30 kHz RBW/ 3000 KHz VBW); Formal BW (1MHz RBW)
Date:	2019-06-12 15:29:50

FORMAL DATA

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
26020.7	21.38	18.64	13.94	53.95	AvgMax	V	177	251	62.23	-8.28	Pass	
25935.9	21.16	18.71	13.79	53.66	AvgMax	Н	179	77	62.23	-8.57	Pass	Compliant
26262.4	21.36	17.77	14.46	53.6	AvgMax	V	120	157	62.23	-8.63	Pass	to Non
25561.3	20.77	18.67	13.2	52.65	AvgMax	Н	136	347	62.23	-9.58	Pass	Report
24953.8	20.95	18.65	12.27	51.88	AvgMax	Н	184	351	62.23	-10.35	Pass	Limit
24365.7	20.43	19	11.89	51.32	AvgMax	V	195	99	62.23	-10.91	Pass	
26020.7	44.29	18.64	13.94	76.86	Peak	V	177	251	82.23	-5.37	Pass	
26262.4	44.44	17.77	14.46	76.67	Peak	V	120	157	82.23	-5.56	Pass	
25935.9	44.06	18.71	13.79	76.56	Peak	Н	179	77	82.23	-5.67	Pass	Evaluation
25561.3	44	18.67	13.2	75.88	Peak	Н	136	347	82.23	-6.35	Pass	Data
24953.8	43.68	18.65	12.27	74.61	Peak	Н	184	351	82.23	-7.62	Pass	
24365.7	43.15	19	11.89	74.03	Peak	V	195	99	82.23	-8.2	Pass	

T4B Radiated Emissions 18 GHz – 26.5 GHz 4 carrier FCC Part 30

Radiated Emissions Template: RE 18-26GHz Filename: c:\program files\emisoft - vasona\results\2019-0068 aewf 39ghz\T4 RE18G-26.5G FCC B Final 1M.emi


Results Title:	Radiated Emissions 18-26.5 GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0068 AEWB 39ghz\T4 RE18G-26.5G FCC B Final 1M.emi
Test Laboratory:	AR4-MH, 29C, 38% 991mB
Test Engineer:	JY / MJS
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia
EUT Details:	AEWB, 39GHz. PN:474870A.X21, SN: L1183608589, 4C, Modulation 16QAM, 51dBm/polarity, transmitting @39.65G, 39.75G, 39.85G, 39.95GHz.
Configuration:	Powered by -48VDC, Tested to FCC Class B, RE 18G-26.5GHz, @ 1-Meter, Double Ridge E520, Preamp- E1356, ESU-EIH69, PCS-Notch Filter E1361. Internal attenuation 0dB, Preview RBW 100k; Formal RBW 1M.
Date:	2019-04-02 20:27:47

Formal Data

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
25432	28.84	18.66	3.46	50.95	Average	Н	201	337	82.23	-31.28	Pass	
26216.3	27.7	17.94	4.82	50.45	Average	Н	202	139	82.23	-31.78	Pass	
26237.4	27.53	17.86	4.86	50.26	Average	Н	109	117	82.23	-31.97	Pass	
22335.8	28.26	18.12	3.13	49.51	Average	Н	106	290	82.23	-32.72	Pass	
19534.3	25.65	13.98	1.32	40.95	Average	Н	101	54	82.23	-41.28	Pass	
18673.7	25.27	13.33	1.15	39.75	Average	Н	201	360	82.23	-42.48	Pass	

FCC Part 30.

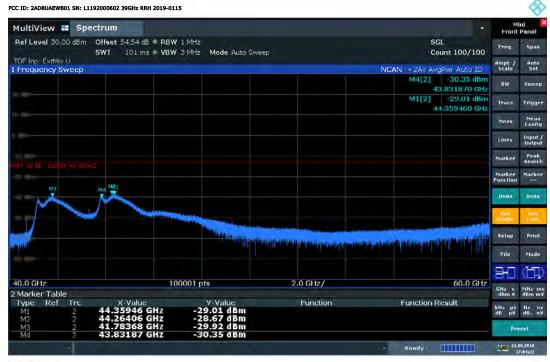
T7 Radiated Emissions 26.5 GHz - 36 GHz


Filename: c:/program files/emisoft - vasona/results/2019-0068 39g-aewf -48vdc/t7_re26.5g_36g_fcc30_formal.emi

Results Title:	RE 26.5-36GHz
File Name:	c:\program files\emisoft - vasona\results\2019-0068 39g-AEWB -48vdc\t7_re26.5g_36g_fcc30_formal.emi
Test Laboratory:	AR8 MH 25C, 11% RH 1016mB
Test Engineer:	MJS / WSM / NPA
Test Software:	Vasona by EMISoft, version 2.161
Equipment:	Nokia Wireless
EUT Details:	AEWB, 39GHz. PN:474870A.X21, SN: L1183608589, Transmitting @38.5002G, 38.6004G, 38.7006G, 38.8008GHz Powered by -48Vdc 8A,
Configuration:	Radiated Emissions 26.5GHz - 36GHz FCC Part 30 Average / Peak Limit. Measurement 3M Distance at 3- Meters, Antenna E1328, ESU-1G E954, and 39 G-Notch Filters E1361. Internal attenuation 0dB, Preview RBW 30 kHz Formal RBW 1MHz.
Date:	2019-04-25 07:59:19

FORMAL DATA

Freq. MHz	Raw dBuV	Cable dB	Factor dB	Level dBuV/m	Emission Type	Pol H/V	Ht. cm	Az. Deg.	Limit dBuV/m	Margin dB	Pass /Fail	Comments
35913.6	24.59	17.25	37.02	78.86	Average	Н	158	242	82.23	-3.37	Pass	
27396.7	25.08	14.84	35.77	75.7	Average	V	228	70	82.23	-6.53	Pass	
35913.6	37.45	17.25	37.02	91.71	Peak	Н	158	242	102.23	-10.52	Pass	
27396.7	38.57	14.84	35.77	89.19	Peak	V	228	70	102.23	-13.04	Pass	


4.5.5 Maximum Radiated Emissions -U Band 40GHz-60GHz - 4m

Vertical Polarization - 1 MHz RBW - 20 degree Azimuth; 1.86m Elevation

15:59:10 21.06.2019

Horizontal Polarization - 1 MHz RBW - 20 degree Azimuth; 1.89m Elevation

17:04:23 21.06.2019

4.5.6 Maximum Radiated Emissions -E Band 60GHz-90GHz - 4.5m

MultiView	Spe	ectrum						ini 🚦
Ref Level 3	-	Offset 59.01 dB = RBW	1.504		50		Front	Panel
Reflevers	94,42 0DIN	SWT 101 ms = VBW				L unt 100/100	Freq.	Span
TDE Inp: Ext			within the strong			une 1007 100	Ampt. /	Auto
1 Frequency	y Sweep				NCAN = 2AV AVC		Scale	Set
						29.47 dBm 0.441750 GHz	BW	Sweep
					M1[2]	-29.29 dBm	Trace	Trigger
					60	0.501440 GHz		
							Meas	Meas Config
							Lines	Input / Output
4. den							Marker	Peak Search
							Marker Function	Marker
20 dBr							ilnda	Redo
Latin House			the design of the second second		- Albert Market Street Street	A ALARMAN A BANK	Run Single	Run Lant
ad de la r	" Manadalan	neproprio (1914) en a contra constata e		A BALLANS BALLANS	d apparent where the	dimit 1	Setup	Print
				COLOR AND AND A			File	Mode
							30	(HT))
60.0 GHz		10	0001 pts	3.0 GHz/		90.0 GHz	-	
2 Marker Ta	able						GHz s dBm V	MHz mi dBm mi
Type Re		X-Value	Y-Value	Function	Function R	esult	kHz µs	He ns
M1 M2	22	60.50144 GHz 60.08535 GHz	-29.29 dBm -29.33 dBm				dB µV	dB nV
M3	2	60.39165 GHz	-29.46 dBm				Pri	eset.
M4	2	60.44175 GHz	-29.47 dBm				111 2L	
					Ready			

Vertical Polarization - 1 MHz RBW - 20 degree Azimuth; 1.86m Elevation

19:41:25 21.06.2019

Horizontal Polarization -1 MHz RBW - 20 degree Azimuth; 1.89m Elevation

FCC ID. ZADBUALW	BUI SN: LI	1192000602 39GHz RRH 2019-01	15					~~~
MultiView	Sp	ectrum	Carlo Carlo				Front	
Ref Level 34	.42 dBm	Offset 59.01 dB * RBW SWT 101 ms * VBW			sg	L unt 100/100	Freq.	Span
TDF Inp: ExtMr 1 Frequency S			o hine mode succession		NCAN = 2AV AVG		Ampt. /	Auto Set
						-29.39 dBm		
90 080m						.377850 GHz	BW	Sweep
					M1[2]	-28.90 dBm	Personal and	
all (8887)					60	.428250 GHz	Trace	Trigger
a dan							Meas	Meas Config
a dilm-							Lines	Input / Output
-tiir dan-							Marker	Peak Search
PART 30 RE 1008							Marker Function	Marker
- 11 - 18m							Undo	Redo
and the second second	last on bottom	and the second	Martin Contractor & Contractor			and the state of the second	Run Single	Bun Frint
-mi anti-	hypetit	Designed and the state of the second	MARCE PLANTING CONTRACT	in A wards attentions and this idea to be some of the little	in the second second	deal learning	Setup	Print
30 dam				- 11 10 10 10 10 11 1			File	Mode
-iii dim-							H	
60.0 GHz		10	00001 pts	3.0 GHz/		90.0 GHz	GHZ S	MHz ms
2 Marker Tab							-dBm V	dum mv
Type Ref	Tre	X-Value	Y-Value -28.90 dBm	Function	Function R	esult	kHz µs	Hz ns
M1 M2	22	60.42825 GHz 60.67934 GHz	-29.15 dBm				dB µ∀	dB., nY
M3 M4	2	60.31485 GHz 60.37785 GHz	-29.38 dBm -29.39 dBm				Pre	set:
	1				Ready		LO 21.0	06.2019 0:24:24

20:24:25 21.06.2019

4.5.7 Maximum Radiated Emissions -F Band 90GHz-140GHz - 3m

CC ID: 2AD8UAEWB01 S	5N: L1192000602 39GHz RRH 20	019-0115						- 📀
MultiView 📑	Spectrum					*		ini Panel
Ref Level 35.07			de Auto Sweep		SC Co	iL unt 200/200	Freq.	Span
TDF Inp: ExtMix F I Frequency Swe	ep				NCAN = 2AV AV	Pwr Auto ID	Ampt. / Scale	Auto Set
Sti dBen					M4[2]	-18.50 dBm	8W	Sweep
					9 M1[2]	-16.13 dBm		
						3.563860 GHz	Trace	Trigger
							Meas	Meas Config
û dim							Lines	Input / Output
							Morker	Peak Search
ARTNO RE 1005M 90					Atkey		Marker Function	Marker
Corpolition Charles				- Invited I	a million		Undo	Redo
-an-dame bill	I the second property of the second	Stilling to see a start	Samouth Banks of the	MALE AND		and the party of	Run Single	Run Erint
			1 11				setup	Print
							File	Mode
							H	(11)
90.0 GHz		100001 pts	5	.0 GHz/		140.0 GHz		1
2 Marker Table							GHz s -dBm V	MHZ ms dBm mV
Type Ref T M1	rc X-Value 128.56386 GI		alue 3 dBm	Function	Function R	esult	kHz us	Hz ns
	128.97836 G	Hz -16.44	4 dBm				dB μ¥	dB., nY
	91.71065 G	Hz -18.5	0 dBm				Pro	eset
					Ready		100 240	a. 1010

Vertical Polarization 1 MHz RBW - 20 degree Azimuth; 1.86m Elevation

21:39:29 24.06.2019

Horizontal Polarization - 1 MHz RBW- 20 degree Azimuth; 1.89m Elevation

18:34:31 24.06.2019

4.5.8 Maximum Radiated Emissions - G Band 140 - 170GHz - 3m

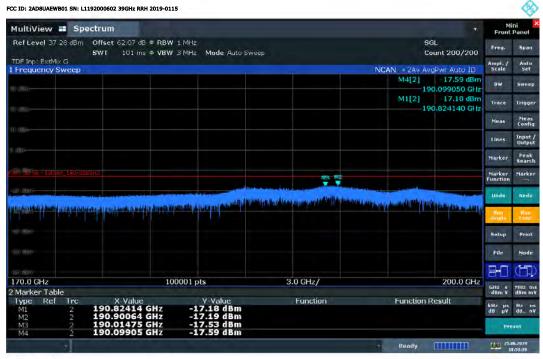
MultiView	Sp	ectrum						ini Panel
Ref Level 37.	28 dBm	Offset 62.07 dB • RBV SWT 101 ms • VBV		iweep		SGL Count 200/200	Freq.	Span
TDF Inp: ExtMo		and the second second			NCAN = 2AV A	Welling Auto ID	Ampt. /	Auto
rrequency a	weep				M4[2]	-19.57 dBm	and the second	
						.56.008890 GHz	BW	Sweep
					M1[2]	-19.45 dBm 57.405380 GHz	Trace	Trigge
							Meas	Meas Config
							Lines	Input / Output
							Marker	Peak Search
9-1 dan 12-1 2020	M_140-0					_	Marker	Marker
			and a start of the start of the	M4 M3M1M2			-	
None and and the local	-	and the basis of the basis of the second states in the second states ini	store a statist it shot the	and of all shall be used if the second states of the	the providence of the second second		Unde	Redo
Protest and Provent	a hann	and the state of state of the	and to find this is a second second		Line plotter than a bit parameter		Lindo Run Single	Redo Bun Font
		and the second second second	an ann a shut dhidh ann an ann an ann an ann ann ann ann a		a present of the first statement of the acceleration	weiter pla und Arbeiter	Bun	Run
	n Autopy	and the new prover project				atomore and a rest of dataset a lar	Run Single	Run Fant
	n. kutoj ji	and Market and Barrey of a gard	and a list of the second s			weed from the full	Pun Single Setup File	Rum Fonf Print Mode
-11 (50) -51 (50) -11 (50) -140.0 GHz	n. kuloji	and Mander House have	00001 pts			170.0 GHz	Rus Single Setup File	Print Print Mode
SR (En)	n duan	and Mander House have		3.0 GHz/		170.0 GHz	Pun Single Setup File	Rum Fonf Print Mode
140.0 GHz Marker Tabl Type Ref M1	Trc 2	1 X-Value 157.40538 GHz	00001 pts Y-Value - 19.45 dBm		Function	170.0 GHz	Paus Single Setup File	Print Print Mode
51 ISO 140.0 GHz Marker Tabl Type Ref	Trc	1 X-Value	00001 pts Y-Value	3.0 GHz/		170.0 GHz	Paus Single Setup File GHz « -dBm V kHz ps dB pV	Runt Ennt Print Node Mittz m dBm m Hz ns

Vertical Polarization - 1 MHz RBW - 20 degree Azimuth; 1.86m Elevation 3m

Horizontal Polarization - 1 MHz RBW- 20 degree Azimuth; 1.89m Elevation 3m

FCC ID: 2AD	BUAEWB01	SN: L1	192000602 39GHz RRH 2019-011	5						- 99
MultiV	iew 💼	Sp	ectrum					*	M	ini 👌 Panel
RefLev	rel 37.28	dBm	Offset 62.07 dB • RBW SWT 101 ms • VBW		ep.		SC	iL unt 200/200	Freq.	Span
TDF Inp: 1 Freque	ExtMix G					NC	AN = 2AV AV	Pwr Auto ID	Ampt. / Scale	Auto Set
							M4[2]	-19.47 dBm	BW	Sweep
34 550							M1[2]	-19.14 dBm 7.713470 GHz	Trace	Trigger
									Meas	Meas Config
an allam									Lines	Input / Output
a dillo									Marker	Peak Search
cile dill m	-1408M_1				M2N231-1				Marker Function	Marker
-10 dim-				and the second s			the second second second second	and the second second second	Undo	Redo
Description	Aug the last	MA	We during a being a being at		provide the second second	-	and the property	in the hard of the second	Run Single	Run Frint
-(III dane-									Setup	Print
-50 (80)-									File	Mode
-80 (187)-									3-0	
140.0 G			10	0001 pts	3.0 GHz/			170.0 GHz	GHz s	MHz ms
2 Marke Type		Fre	X-Value	Y-Value	Function		Function R	aguit	-dBm V	dBm m¥
M1 M2	RGI	2	157.71347 GHz 157.40778 GHz	-19.14 dBm -19.40 dBm	Function		FUNCTION	esuit	kHz μs dB μV	Hz ns dB., nV
M3 M4		2 2	157.87757 GHz 158.21567 GHz	-19.47 dBm -19.47 dBm					Pro	eset
	2	1				2	Ready		100 250	95.2019 9:46:44

19:46:44 25.06.2019


4.5.9 Maximum Radiated Emissions - G Band 170 - 200GHz - 3m

FCC ID: ZA	DOUACWBUI	SN: LII	92000602 39GHz RRH 2019	-0115						~
MultiV	iew 💼	Spe	ctrum						Mi Front	ini 🎦 Panel
RefLe	vel 37.28	dBm	Offset 62.07 dB = R SWT 101 ms = V		iweep			GL ount 200/200	Ereq.	Span
	ExtMix G					NC	AN = 2AV AN	gPwr Auto ID	Ampt. / Scale	Auto Set
SU dEn-							M4[2]	-17.58 dBm	BW	Sweep
Su dan							M1[2]	-17,47 dBm	Trace	Trigger
st dum									Meas	Meas Config
									Lines	Input / Output
() tilles									Marker	Peak Search
nder därvin	E-13 AM_1		H.Y			N439R2			Marker Function	Marker
-du dem-					Human and Anal maximum Mill	The state of the second	and a state of selection of the	the second s	Undo	Redo
AN PARTY	And the state of the	the particular	ayan borr itratula sub analah	An and a state of the state of	of the states	1 al activitation	and a series	Web States of the second	Run Single	Bur Cont
-IB IBR-									setup	Print
-36 (86-									File	Mode
-rif) (Etc-									3-0	
170.0 0				100001 pts	3.0 GHz/			200.0 GHz	GHz s	MHZ ms
2 Marke Type		Trc	X-Value	Y-Value	Function		Function	Pesult	-dBm V	dUm m¥
M1	RGI	2	190.49295 GHz	-17.47 dBm	Tuncto	<i>i</i> -	Turicuorri	NGSUIL	kHz pş dB pV	Hz ns dB., nY
M2 M3 M4		222	191.10044 GHz 190.64864 GHz 190.83644 GHz	-17.51 dBm					Pre	set
1414	+	Î		27100 (1011)		-	Ready	INCOMP.	UN 25.	06.2019 6:23:13

Vertical Polarization - 1 MHz RBW - 20 degree Azimuth; 1.86m Elevation

16:23:13 25.06.2019

Horizontal Polarization - 1 MHz RBW- 20 degree Azimuth; 1.89m Elevation - at 3m

18:53:31 25.06.2019

4.6 Section 2.1055 MEASUREMENT REQUIRED: FREQUENCY STABILITY

This measurement evaluates the frequency difference between the actual transmit carrier frequency and the specified transmit frequency assignment. Only the portion of the transmitter system containing the frequency determining and stabilizing circuitry need be put in an environmental chamber and subjected to the temperature variation test per FCC Section 2.1055 and RSS-133. The unit which provides baseband signals, such as BBU (baseband unit), can be located outside the chamber if it is a separated unit.

4.6.1 Frequency Stability Test

Frequency Stability testing was completed on AEWB 39GHz Radio. The assigned frequency was 38.49996 GHz, which is in the middle. DC Powered testing of the product was performed from 07/24/2019 through 07/25/2019 of the band. AC Powered testing of the product was performed from 07/25/2019 through 07/26/2019. Both tests were performed in the T-14 Thermal chamber of the Global Product Compliance Laboratory (GPCL) test facility located in Building 4, Room 4-278, Murray Hill, NJ, and witnessed by Joe Bordonaro from GPCL.

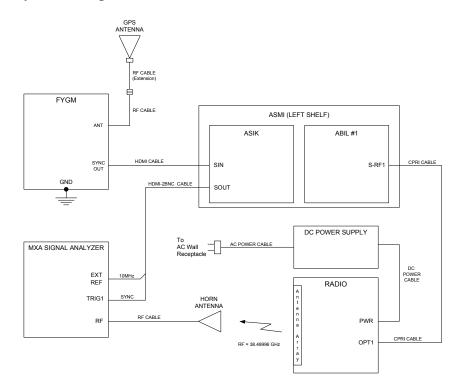
Table 1:	Unit Under Test	

Series	Vendor	Serial Number	Model #
AEWB	Nokia	L1192000602	09140404A.X32

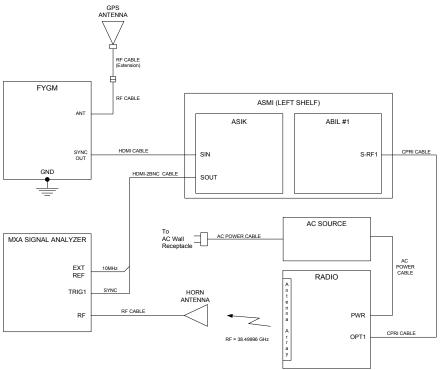
Note: A fan was not installed on the radio during testing.

The temperatures to which the UUT were subjected ranged from a high temperature of +50°C system ambient to a low temperature of -30°C system ambient with measurements recorded at 10C increments.

Transmit frequency error measures the deviation between the actual transmit frequency and the assigned frequency. The transmit frequency error in this case was measured by capturing the transmitted signal using a receiving antenna and then cabling it to an MXA signal analyzer. The system level frequency stability testing resulted in compliance with established design criteria.


4.6.2 Frequency Stability – Results Summary

The worst case results of the Frequency Stability over temperature and voltage for the Product with DC Power was -343.65.3 Hz which is -0.008 ppm.


The worst case results of the the Frequency Stability over temperature and voltage for the Product with AC Power was **412.42 Hz** which is **-0.011 ppm**

This performance is within the +/- 0.05ppm desired performance required for LTE operation.

4.6.3 Frequency Stability Test Setups Frequency Stability Test Setup For DC Power

Frequency Stability Test Setup For AC Power

4.6.3.1 Frequency Stability – Data

DC Powered Frequency Test: <u>AEWB 39GHz RADIO (CF = 38,499.96MHz)</u>

(a)Set the power supply to nominal Voltage. (b) Record the frequency at ~25°C. (c)Raise EUT operating temperature to 50°C. (d)Record the frequency difference. (e) Repeat step (d) at each 10°C step down to -30°C. Result will be 10 readings and take temperature readings to establish thermal stability at each point.

Baseline Measurement at +25°C

Transmit Frequency Deviation at +25°C at 100% of Nominal Voltage, -48VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-145.26
0.5	+142.77
1.0	-144.95
1.5	-100.62
2.0	-260.74
2.5	+137.53
3.0	-61.423
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +50°C at 100% of Nominal Voltage, -48VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	+63.245
0.5	-125.59
1.0	-114.68
1.5	+66.153
2.0	-308.86
2.5	-65.388
3.0	-41.508
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +40°C at 100% of Nominal Voltage, -48VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-167.61
0.5	-256.55
1.0	-167.20
1.5	-5.2828
2.0	-343.65
2.5	-58.734
3.0	-39.096
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +30°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-267.27
0.5	-103.62
1.0	-207.03
1.5	-277.69
2.0	-184.36
2.5	-279.74
3.0	-237.79
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +20°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-124.63
0.5	-260.04
1.0	-47.407
1.5	-110.32
2.0	-178.64
2.5	-259.29
3.0	-3.7019
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +10°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-71.223
0.5	+34.602
1.0	-149.44
1.5	-158.94
2.0	-228.66
2.5	-215.56
3.0	-102.20
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at 0°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-68.035
0.5	-41.277
1.0	-254.80
1.5	+140.30
2.0	-202.70
2.5	-78.274
3.0	-128.45
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at -10°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-33.482
0.5	-110.80
1.0	-37.299
1.5	+32.838
2.0	-33.196
2.5	-59.045
3.0	-148.14
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at -20°C at 100% of Nominal Voltage, -48VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+135.94
0.5	-170.87
1.0	+10.851
1.5	-154.52
2.0	-19.010
2.5	+56.758
3.0	+6.1688
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at -30°C at 100% of Nominal Voltage, -48VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	+154.20
0.5	-91.349
1.0	-86.869
1.5	-214.39
2.0	+72.538
2.5	-125.47
3.0	+8.8633
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Upon return to +25°C.

2. At ambient, vary voltage to +15% and -15% of nominal VAC and record frequency difference. Result will be 12 readings for each voltage (nominal, ~+ 3%, ~+6%, ~+%9, ~+12%, +15%, and nominal, ~- 3%, ~-6%, ~-%9, ~-12%, -15%).

Transmit Frequency Deviation at +25°C at 100% of Nominal Voltage, -48VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	+48.263
0.5	-69.037
1.0	-135.86
1.5	+58.984
2.0	+24.090
2.5	+37.969
3.0	-198.45
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 103% of Nominal Voltage, -49.44VDC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-226.93
0.5	-65.652
1.0	-190.89
1.5	-210.35
2.0	+37.719
2.5	-82.803
3.0	+104.79
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 106% of Nominal Voltage, -50.88VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-295.10
0.5	-101.26
1.0	+178.84
1.5	-191.80
2.0	-60.827
2.5	+38.921
3.0	+47.994
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 109% of Nominal Voltage, -52.32VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+188.30
0.5	-75.829
1.0	-17.944
1.5	-234.71
2.0	-203.63
2.5	-31.374
3.0	+84.985
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 112% of Nominal Voltage, -53.76VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-45.703
0.5	-8.3047
1.0	-136.11
1.5	+55.618
2.0	-52.156
2.5	-140.41
3.0	-236.18
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 115% of Nominal Voltage, -55.20VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+53.557
0.5	+120.12
1.0	-197.00
1.5	-83.898
2.0	+2.1752
2.5	-26.716
3.0	-179.15
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at 100% of Nominal Voltage, -48.0VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-210.90
0.5	-190.25
1.0	-186.55
1.5	-73.710
2.0	+71.402
2.5	-260.13
3.0	-146.59
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at -3% of Nominal Voltage, -46.56VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-283.37
0.5	-288.60
1.0	-125.12
1.5	+5.6217
2.0	-66.735
2.5	-79.467
3.0	-84.477
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at -6% of Nominal Voltage, -45.12VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+35.312
0.5	-171.08
1.0	-41.615
1.5	+6.3391
2.0	-151.08
2.5	-209.37
3.0	+29.235
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at -9% of Nominal Voltage, -43.68VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-221.79
0.5	-161.02
1.0	-177.83
1.5	-74.688
2.0	+130.03
2.5	-74.759
3.0	-392.76
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

Transmit Frequency Deviation at +25°C at -12% of Nominal Voltage, -42.24VDC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+25.058
0.5	-260.82
1.0	-30.287
1.5	-148.34
2.0	-177.90
2.5	-199.15
3.0	-77.929
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	PASS

AC Powered Frequency Test: <u>*AEWB 39GHz Radio (CF = 38,49996MHz)</u>*</u>

(a)Set the power supply to nominal Voltage. (b) Record the frequency at ~25°C. (c)Raise EUT operating temperature to 50°C. (d)Record the frequency difference. (e) Repeat step (d) at each 10°C step down to -30°C. Result will be 10 readings and take temperature readings to establish thermal stability at each point.

Baseline Measurement at +25°C

Transmit Frequency Deviation at +25°C at 100% of Nominal Voltage, 120VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-111.62
0.5	-147.88
1.0	-115.22
1.5	+228.61
2.0	-166.39
2.5	+131.23
3.0	-160.15
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +50°C at 100% of Nominal Voltage, 120VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-56.746
0.5	-87.363
1.0	+15.247
1.5	-187.62
2.0	-162.31
2.5	-247.65
3.0	+10.862
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +40°C at 100% of Nominal Voltage, 120VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-122.44
0.5	-53.190
1.0	-5.6472
1.5	-78.839
2.0	-69.976
2.5	-243.51
3.0	-262.19
FCC SPECIFICATION	38,499.96MHz (±0.05ppm), ±0.05ppm = ±1925Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +30°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-160.15
0.5	+56.393
1.0	-166.58
1.5	-238.44
2.0	-187.28
2.5	-127.60
3.0	-84.771
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +20°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-149.91
0.5	-131.65
1.0	-281.56
1.5	-369.86
2.0	-225.35
2.5	-379.98
3.0	-193.87
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +10°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-169.65
0.5	-232.70
1.0	-130.19
1.5	-112.62
2.0	-95.916
2.5	-325.17
3.0	-412.42
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at 0°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-102.57
0.5	-175.41
1.0	-123.72
1.5	-316.86
2.0	+16.178
2.5	-263.63
3.0	-175.07
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at -10°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-45.012
0.5	-74.064
1.0	-261.14
1.5	-72.777
2.0	-14.327
2.5	-53.107
3.0	-61.487
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation	Transmit Frequency Deviation at -20°C at 100% of Nominal Voltage, 120VAC	
Time	Transmit Carrier Deviation	
(minutes)	(Hz)	
0	-104.98	
0.5	-5.1229	
1.0	+111.91	
1.5	-44.670	
2.0	-25.779	
2.5	-28.818	
3.0	15.713	
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)	
	± 0.05 ppm = ± 1925 Hz	
FCC RESULT	Pass	

Transmit Frequency Deviation at -30°C at 100% of Nominal Voltage, 120VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-192.86
0.5	-3.0886
1.0	-58.519
1.5	+47.180
2.0	-38.681
2.5	-72.186
3.0	-51.702
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Upon return to +25°C.

2. At ambient, vary voltage to +15% and -15% of nominal VAC and record frequency difference. Result will be 12 readings for each voltage (nominal, ~+ 3%, ~+6%, ~+%9, ~+12%, +15%, and nominal, ~- 3%, ~-6%, ~-%9, ~-12%, -15%).

Transmit Frequency Deviation at +25°C at 100% of Nominal Voltage, 120VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-178.25
0.5	-94.870
1.0	-166.37
1.5	-41.634
2.0	-115.54
2.5	+52.396
3.0	+13.706
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +25°C at +15% of Nominal Voltage, 138.0VAC	
Time, (minutes)	Transmit Carrier Deviation, (Hz)
0	-107.81
0.5	256.80
1.0	+41.563
1.5	-170.47-
2.0	-80.770
2.5	+146.16
3.0	-24.199
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +25°C at +12% of Nominal Voltage, 134.40VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-82.397
0.5	-67.253
1.0	-105.94
1.5	-5.3233
2.0	-18.925
2.5	-128.81
3.0	-243.03
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +25°C at +9% of Nominal Voltage, 130.80VAC	
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	-105.69
0.5	-146.55
1.0	-41.888
1.5	-234.73
2.0	+77.245
2.5	-124.90
3.0	+18.187
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +25°C at +6% of Nominal Voltage, 127.20VAC						
Time	Transmit Carrier Deviation					
(minutes)	(Hz)					
0	-174.40					
0.5	+56.249					
1.0	+50.509					
1.5	-73.460					
2.0	-169.96					
2.5	+7.7155					
3.0	-232.25					
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)					
	± 0.05 ppm = ± 1925 Hz					
FCC RESULT	Pass					

Transmit Frequency Deviation at +25°C at +3% of Nominal Voltage, 123.60VAC						
Time	Transmit Carrier Deviation					
(minutes)	(Hz)					
0	+5.4422					
0.5	-174.78					
1.0	-165.18					
1.5	-177.66					
2.0	-24.790					
2.5	-79.721					
3.0	-57.992					
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)					
	± 0.05 ppm = ± 1925 Hz					
FCC RESULT	Pass					

Transmit Frequency Deviation	at +25°C at -3% of Nominal Voltage, 116.40VAC
Time	Transmit Carrier Deviation
(minutes)	(Hz)
0	+21.360
0.5	-74.478
1.0	-152.91
1.5	+3.2373
2.0	-65.386
2.5	-161.61
3.0	-212.64
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)
	± 0.05 ppm = ± 1925 Hz
FCC RESULT	Pass

Transmit Frequency Deviation at +25°C at -6% of Nominal Voltage, 112.80VAC						
Time	Transmit Carrier Deviation					
(minutes)	(Hz)					
0	-110.54					
0.5	+76.037					
1.0	-88.315 -178.33					
1.5						
2.0	-27.710					
2.5	-133.14					
3.0	+72.487					
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)					
	± 0.05 ppm = ± 1925 Hz					
FCC RESULT	Pass					

Transmit Frequency Deviation at +25°C at -9% of Nominal Voltage, 109.20VAC						
Time	Transmit Carrier Deviation					
(minutes)	(Hz)					
0	-42.761					
0.5	-116.12					
1.0	-114.69					
1.5	-47.860					
2.0	-230.76					
2.5	-87.237					
3.0	-125.510					
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)					
	± 0.05 ppm = ± 1925 Hz					
FCC RESULT	Pass					

Transmit Frequency Deviation at +25°C at -12% of Nominal Voltage, 105.60VAC						
Time	Transmit Carrier Deviation					
(minutes)	(Hz)					
0	-144.04					
0.5	-19.818					
1.0	+35.632					
1.5	-196.14					
2.0	-153.03					
2.5	-225.51					
3.0	-115.03					
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)					
	± 0.05 ppm = ± 1925 Hz					
FCC RESULT	Pass					

Transmit Frequency Deviation	Transmit Frequency Deviation at +25°C at -15% of Nominal Voltage, 102.0VAC						
Time	Transmit Carrier Deviation						
(minutes)	(Hz)						
0	+38.124						
0.5	-11.80						
1.0	-8.4301						
1.5	-113.29						
2.0	-116.37						
2.5	-194.13						
3.0	103.56						
FCC SPECIFICATION	38,499.96MHz (±0.05ppm)						
	± 0.05 ppm = ± 1925 Hz						
FCC RESULT	Pass						

4.7 LIST OF TEST EQUIPMENT

4.7.1 Test Equipment Used For Radiated Emissions and Radio Measurements

The following equipment was used for the measurement of Radiated Emissions.

Accet	Table 4.7.1a Kadiated Emissions and Kadio Measurements							
Asset ID	Manufacturer	Туре	Description	Model	Serial	Cal Date	Cal Due	Cal Type
<u>E1328</u>	A-Info	Horn Antenna	26.5-40GHz WR28 dB	LB-28-25-C2- KF	J202023250	2018-10-16	2021-10-16	Requires Calibration
<u>E1363</u>	A-Info	Horn Antenna	26.5-40GHz WR28 dB	LB-28-25-C2- KF	J202062675	2018-10-16	2021-10-16	Requires Calibration
<u>E1373</u>	A-Info	Horn Antenna	26.5-40GHz WR28 dB	LB-28-25-C2- KF	J202062735	2018-12-05	2021-12-05	Requires Calibration
<u>E1338r</u>	KeySight Technologies	MXA Signal Analyzer	10 Hz-44 GHz	N9020B	MY57431033	2018-08-2	2018-08-22	Requires Calibration
<u>E1264</u>	KeySight Technologies	PSG Signal Generator	Analog Sig Gen 100kHz-67 GHz	E8257D	MY53402943	2017-08-28	2019-08-28	Requires Calibration
<u>E1308</u>	Rohde & Schwarz	Harmonic Mixer	Down Converter 90-140GHz	FS-Z140	101008	2017-04-06, Put in service 2018-07-01		Factory
<u>E1311</u>	Rohde & Schwarz	Harmonic Mixer	Down Converter 40-60GHz	FS-Z60	100977	2017-12-21, Put in service 2018-07-01		Factory
<u>E1312</u>	Rohde & Schwarz	Harmonic Mixer	Down Converter 60-90GHz	FS-Z90	101719	2017-08-09, in Put in service 2018-07-01		Factory
E1313	Rohde & Schwarz	Harmonic Mixer	Down Converter 140-220GHz	FS-Z220	100960	2017-08-09 in Put in service 2018-07-01		Factory
<u>E1315</u>	RS Microwave Company, Inc.	Microwave Filter		P/N 60733A	007	2018-01-17, Put in service 2018-07-01		Verification
<u>EIH69</u>	Rohde & Schwarz	Test Receiver	20 Hz-40 GHz	ESU40	100247	2018-05-22	2020-05-22	Requires Calibration
<u>E1260</u>	Rohde & Schwarz	Spectrum Analyzer	2 Hz - 67 GHz	FSW67	104007	2018-02-12	2020-02-12	Requires Calibration
<u>E1384</u>	Rohde & Schwarz	Spectrum Analyzer	2 Hz - 85 GHz	FSW85	101537	2018-12-17	2020-12-17	Requires Calibration
E1323	Mi-Wave Millmeter Wave Products, Inc.	Horn Antenna	G-band pyramidal horn antenna 25dB 140 - 220 GHz	261G-25/387		Put in service 2018-07-01		Factory
<u>E1330</u>	Sage Millimeter, Inc.	Horn Antenna	U-band pyramidal horn antenna - 40 to 60 GHz	SAR-2309-19- S2	14853-01	Put in service 2018-07-01		Factory
<u>E1331</u>	Sage Millimeter, Inc.	Horn Antenna	U-band pyramidal horn antenna - 40 to 60 GHz	SAR-2309- 19VF-R2	14853-01	Put in service 2018-07-01		Factory
<u>E1332</u>	Sage Millimeter, Inc.	Horn Antenna	E-band pyramidal horn antenna - 60 to 90 GHz.	SAR-2309-12- S2	14853-01	Put in service 2018-07-01		Factory
<u>E1335</u>	Sage Millimeter, Inc.	Horn Antenna	F-band pyramidal horn antenna - 90 to 140 GHz	SAR-2309-08- S2	14853-02	Put in service 2018-07-01		Factory
<u>E1340</u>	Sage Millimeter, Inc.	Horn Antenna	Ka band pyramidal horn antenna - 26.5 to 40 GHz, 25 dB gain	SAR-2507-28- S2	15309-01	Put in service 2018-07-01		Factory

Table 4.7.1a Radiated Emissions and Radio Measurements

Asset ID	Manufacturer	Туре	Description	Model	Serial	Cal Date	Cal Due	Cal Type
<u>E812</u>	Sonoma Instrument Co.	Amplifier	9kHz-1GHz Vasona File TRANS 261	310N	186744	2018-09-14	2020-09-14	Requires Calibration
<u>E980</u>	Trilithic	Low Pass Filter	PCS 0.01-2 GHz	10LC1790- 3-AA	PCS-LPF-12			Verification
<u>E889</u>	Weinschel	Attenuator	6 dB DC-18GHz 5 Watt	2-6	BX3438	5/23/18	5/23/20	
<u>E766</u>	A.H. Systems Inc.	Bilogical Antenna	25 - 2000 MHz	SAS-521-2	457	2019-02-13	2021-02-13	Requires Calibration
<u>E526</u>	A.H. Systems Inc.	Horn Antenna	Ridged Horn 26.5 GHz - 40 GHz	SAS- 200/573	137	2017-10-04	2019-10-04	Requires Calibration
<u>E057</u>	ЕМСО	Horn Antenna	Double Ridged Horn 1- 18 GHz	3115	9006-3460	2017-05-24	2019-06-24	Requires Calibration
<u>E520</u>	EMC Test Systems	Horn Antenna	Double Ridged Horn 18- 40 GHz	3116	2537	2018-08-09	2020-08-09	Requires Calibration
<u>E520</u>	EMC Test Systems	Horn Antenna	Double Ridged Horn 18- 40 GHz	3116	2537	2018-08-09	2020-08-09	Requires Calibration
<u>E1321</u>	Extech	Data Logger	Barometric Pressure /Humidity /Temperature	SD700	A075782	2018-11-07	2020-11-07	Requires Calibration
<u>E1356</u>	Hewlett Packard	Pre-Amplifier	Pre-Amplifier 1- 26.5GHz	8449B	3008A01353	2018-09-10	2020-09-10	Requires Calibration
<u>E1361</u>	Marki Microwave	Low Pass Filter	D/C 1645	FLP-3660	N/A			Verification
<u>EIH69</u>	Rohde & Schwarz	Test Receiver	EMI 20Hz - 40GHz	ESU40	100247	2018-05-22	2020-05-22	Requires Calibration
<u>E813</u>	Sonoma Instrument Co.	Amplifier	9kHz-1GHz	310N	186750	2018-09-14	2020-09-14	Requires Calibration
<u>E588</u>	Sunol Sciences Corp	System Controller		SC99V	32802-1			Calibration Not Required
<u>E1255</u>	ETS Lindgren	Multi-Device Controller	Tower/Turntable Controller	2090	00078509			Calibration Not Required
<u>E485</u>	Kikusui	Power Supply	DC 55 Volts 120 Amps	PAD 55- 120L	DL000416			Calibration Not Required

Table 4.7.1b Radiated Emissions and Radio Measurements

4.7.2 Frequency Stability Test Equipment

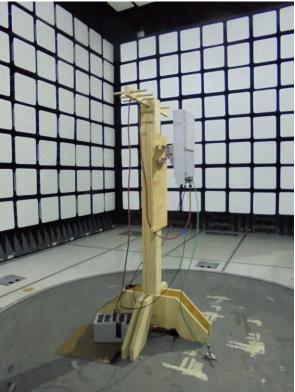

Table 4.7.2 - Instruments Used for Frequency Stability Measurement Calibration Calibration

Table 4.7.2 - Instruments Osed for Frequency Stability Measurement								
Asset ID	Manufacturer	Туре	Description	Model	Serial	Calibration Date	Calibration Due	
TH536- T14	Envirotronics	Controller		SPPCM	SP001513	2019-03-14	2021-03-14	
TH069	Extech	Data Logger	Barometric Pressure /Humidity /Temperature	SD700	Q690305	2019-06-20	2021-06-20	
TH073	Fluke	Multimeter	Digital Multimeter	87V	25910080	2018-02-12	2020-02-12	
E1338	KeySight Technologies	MXA Signal Analyzer		N9020B	MY57430927	2018-09-13	2019-06-13	
TH-T14	Thermotron	Thermal Chamber		N/A	28431	2017-09-27	2019-09-27	
TH090	Yokogawa	Data Logger	10 Channel Paperless Recorder	GP10	S5V108472	2019-05-20	2021-05-20	
	TDK-Lambda	DC Source	Variable Voltage DC Supply	GEN60-85	13N111I	N/A		

4.8 PHOTOGRAPHS OF THE TEST SETUPS

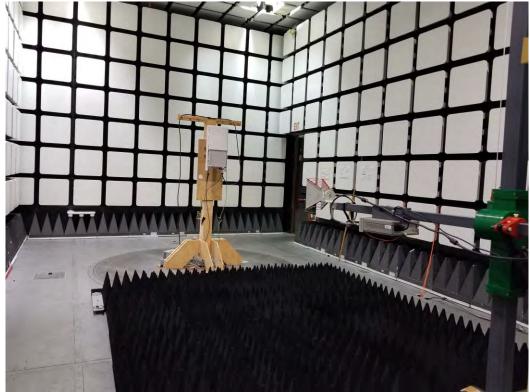
Response: The photographs of the test setups for the **AirScale 39 GHz Radio Unit (AEWB) Band 30, FCC ID: 2AD8UAEWB01** are below.

4.8.1 Radiated Emissions and Radio Measurements Test Photos

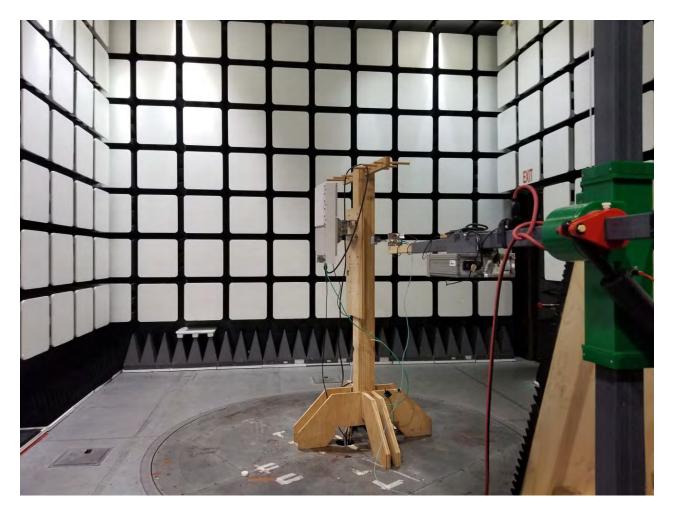
Product Set up AR-8

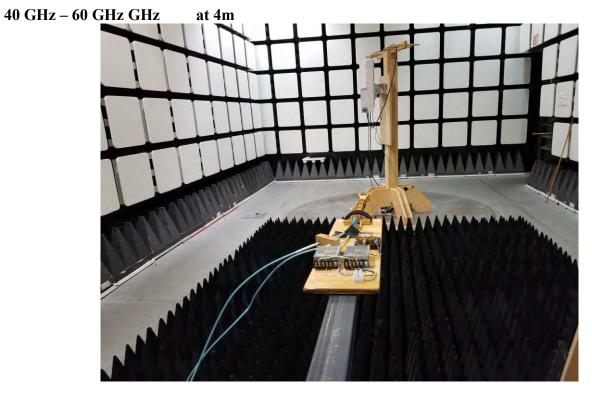
Product Set up AR-4

FCC Certification Test Report FCC ID: 2AD8UAEWB01

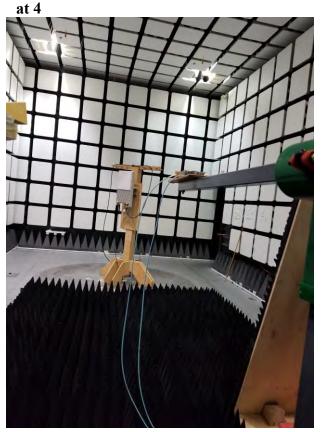

Base of Unit

30 MHz-1 GHz at 3m


1 GHz – 18 GHz at 3m



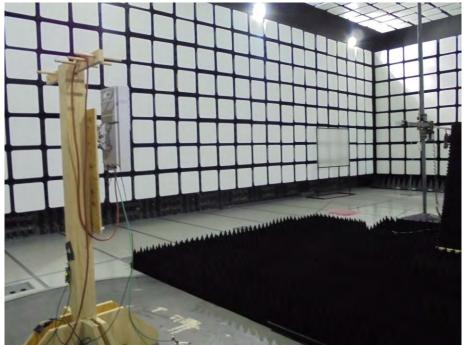
18 GHz – 26.5 GHz at 1m



26.5 GHz – 36 GHz GHz at 1m


60 GHz – 90 GHz GHz

90 GHz – 140 GHz GHz



90 GHz – 140 GHz GHz

NOKIA – **Public**

Radio Measurements 35-41 GHz at 4.5m

Frequency Stability Set Up Photos Unit Under Test

Unit Under Test in Chamber

Horn Antenna (inside of thermal chamber)

Test Setup

4.9 FACILITIES AND ACCREDITATION

Measurement facilities at Nokia, Global Product Compliance Laboratory (GPCL) a member of the Nokia family of companies, was used to collect the measurement data in the test report. The laboratory, which is part of Nokia Bell Labs, is located at 600-700 Mountain Avenue, Murray Hill, New Jersey 07974-0636 USA.

The field strength measurements of radiated spurious emissions were made in a FCC registered three meter semi-anechoic chamber AR-8, (FCC Registration Number: 395774) **NVLAP** Lab Code: 100275-0 and IC (Filing Number: 6933F-8) which is maintained by Nokia Bell Labs in Murray Hill, New Jersey. The sites were constructed and are continuously in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

Nokia Global Product Compliance Laboratory FCC OET Accredited Test Firm Scope List is accessible at:

https://apps.fcc.gov/oetcf/eas/reports/ViewTestFirmAccredScopes.cfm?calledFromFrame=N&RequestT imeout=500®num_specified=N&test_firm_id=7007

and is as listed in the Table below.

Scope	FCC Rule Parts	Maximum Assessed Frequency, MHz	Status	Expiration Date	Recognition Date
Unintentional Radiators	FCC Part15, Subpart B	40000	Approved	9/30/2018	7/6/2017
Intentional Radiators	FCC Part 15 Subpart C	40000	Approved	9/30/2018	6/5/2018
U-NII without DFS Intentional Radiators	FCC Part 15, Subpart E	40000	Approved	9/30/2018	6/5/2018
U-NII with DFS Intentional Radiators	FCC Part 15, Subpart E	40000	Approved	9/30/2018	6/5/2018
Commercial Mobile Services	Part 22 (cellular), Part 24, Part 25 (below 3 GHz), Part 27	40000	Approved	9/30/2018	6/5/2018
General Mobile Radio Services	Part 22 (non-cellular), Part 90 (below 3 GHz), Part 95 (below 3 GHz), Part 97 (below 3 GHz), Part 101 (below 3 GHz)	40000	Approved	9/30/2018	6/5/2018
Citizens Broadband Radio Services	Part 96	40000	Approved	9/30/2018	7/6/2017
Microwave and Millimeter Bands Radio Services	Part 25, Part30, Part 74, Part 90 (90M DSRC, Y, Z), Part 95 (M & L), Part 101	200000	Approved	9/30/2018	7/6/2017

OET Accredited Test Firm Scope List Test Firm: Nokia, Global Product Compliance Lab Nokia Global Product Compliance Laboratory is accredited with the US Department of Commerce National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with criteria established in Title 15, Part 7 Code of Federal Regulations for offering test services for selected test methods in Electromagnetic Compatibility; Voluntary Control Council for Interference (VCCI), Japan; Australian Communications and Media Authority (ACMA). The laboratory is ISO 9001:2008 Certified.

5. APPENDIX A - CALIBRATION CERTIFICATES.

The attached Calibration certificates represent the Harmonic Downconverters used in this testing.

Calibration Certificate

Kalibrierschein

Unit Data

ltem Gegenstand

Manufacturer Hersteller

RPG FS-Z60

RPG

Туре Тур

1048.0171.02 Material Number

100977 Serial Number Seriennummer

Harmonic Mixer, 40 GHz to 60 GHz

Asset Number Inventarnummer

Materialnummer

Order Data

Customer Auftraggeber

Order Number Bestellnummer

Date of Receipt Eingangsdatum

Performance

Place and Date of Calibration Ort und Datum der Kalibrierung

Scope of Calibration Umfang der Kalibrierung

Statement of Compliance (Incoming) Konformitätsaussage (Anlieferung)

Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Documents Umfang des Kalibrierdokuments

Meckenheim, 2017-12

Standard Calibration

New device

All measured values a specifications.

2 pages Calibration Co 5 pages Outgoing Res

Certificate Number 24-0060-100977-01

Zertifikatsnummer

	This calibration certificate documents, that
	the named item is tested and measured
	against defined specifications. Measurement
	results are located usually in the
	corresponding interval with a probability of
	approx. 95% (coverage factor k = 2).
	Calibration is performed with test equipment
	and standards directly or indirectly traceable
	by means of approved calibration techniques
	to the PTB/DKD or other
	national/international standards, which
	realize the physical units of measurement
	according to the International System of
	Units (SI). In all cases where no standards are
	available, measurements are referenced to
	standards of the R&S laboratories. Principles
	and methods of calibration correspond with
	EN ISO/IEC 17025. This calibration certificate may not be reproduced other than in full.
	Calibration certificates without signatures are
	not valid. The user is obliged to have the
	object recalibrated at appropriate intervals.
	Dieser Kalibriarschain dokumantiart, dass der
	Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten
	Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die
	genannte Gegenstand nach festgelegten
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer
1	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf
within the data short	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien.
within the data sheet	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung
within the data sheet	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser
within the data sheet	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden.
within the data sheet ficate s	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Kalibrierscheine ohne Unterschriften sind
ficate	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden.

Radiometer Physics GmbH; Meckenheim

Date of Issue Ausstellungsdatum

2017-12-21

Head of Laboratory Laborleitung

Schulze

Person Responsible Bearbeiter

Wildfang

Page (Seite) 1/2 Vers2010-05-05/ RPG2014-02-28

Radiometer Physics GmbH • Werner-von-Siemens-Str. 4 • 53340 Meckenheim • Telephone national: 02225/99981-0 international: 0049 2225-99981-0 Fax: 02225/99981-99 • Managing Director: Achim Walber, Dr. Thomas Rose • Company's Place of Business: Meckenheim Commercial Register No.: Bonn, HRB 10291 • VAT Identification No.: DE 123 377 395

Calibration Method Kalibrieranweisung

Ambient Temperature Umgebungstemperatur

RPG-PAQA-TN-2014-002

(23 ⁺⁷₋₃) °C

Relative Humidity 20 % - 80 % Relative Luftfeuchte

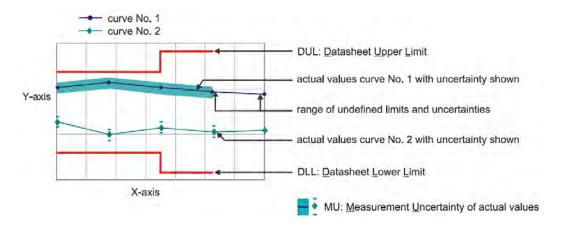
Item Gegenstand	Туре Тур	Serial Number Seriennummer	Calibration Certificate Number Kalibrierscheinnummer	Cal. Due Kalibr. bis
Vector Network Analyzer	R&S® ZVA67	101097	20-300432406	2020-07-21
Powersensor	R&S® NRP-Z55	140093	20-300426315	2018-05-17
Powersensor	R&S® NRP-Z57	101423	20-541799	2019-04-27

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Nicht-Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

Ref.: ILAC-G8:03/2009 'Guidelines on the Reporting of Compliance with Specification'.

Notes Anmerkungen

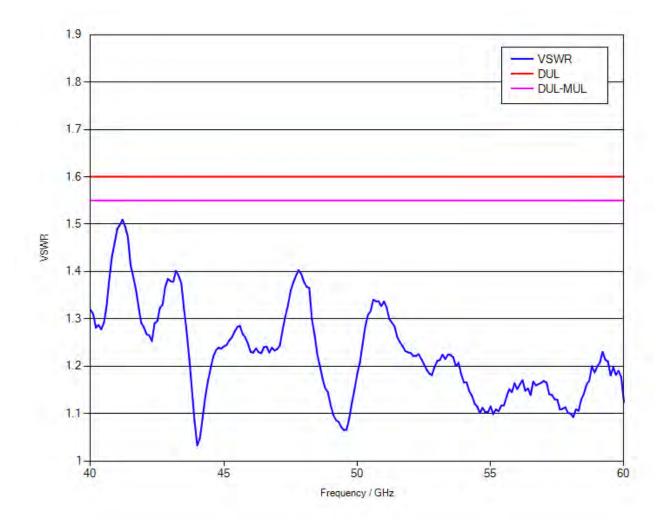

If the new product is stored under the climate conditions as specified in the data sheet upon delivery, the product's accuracy is not significantly affected within 12 month after its calibration in our factory. In this case, the recommended calibration interval starts on the date when the product is actually put into operation.

Outgoing Results

The following abbreviations may be used in this document

 So it is sure that a measurement result evaluated as "PASS" is pass. The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valified for the close area around the specification. Measurement results outside the close area have a higher 	lid
measurement uncertainty but are within the specification.	
{c} Functional test, therefore no measurement uncertainty is stated.	
{d} Typical value, refer to performance test.	
{e} The measurement uncertainty is taken into account when setting the measuring system.	
DL or DT Data Limit for symmetrical tolerance limits	
DLL Datasheet Lower Limit	
DUL Datasheet Upper Limit	
MU Measurement Uncertainty	
MLL or MLV Measurement Uncertainty Lower Value	
MUL or MUV Measurement Uncertainty Upper Value	
Nom. Nominal Value	
Dev. Deviation	
MErr. Measurement Error	
Act. Actual Value	
UGB Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.	
UGB1 Measurement results marked as UGB1 show conformity with a probability of >50 % and <95 %.	
UGB2 Measurement results marked as UGB2 show non-conformity with a probability of >50 % and <95 %.	
DU Datasheet Uncertainty	

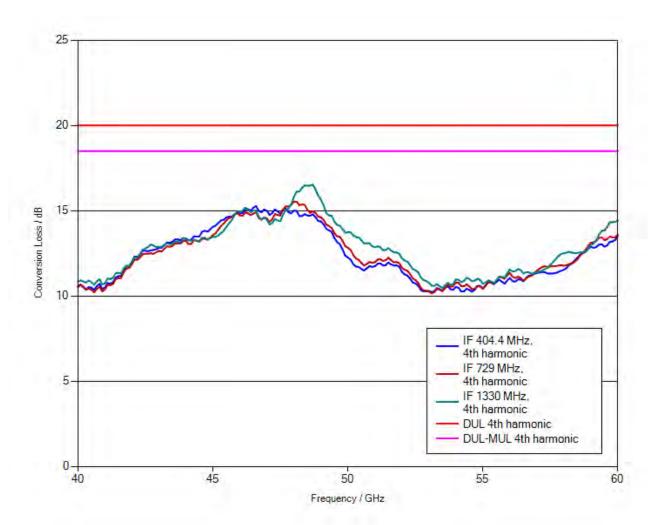
Explanation of charts



Software used for measurement Item Type Measurement Studio Professional Edition MixerCertification

Version 2013 7_07 Remark

1.1 RF Input – VSWR


Measurement uncertainty: 0.05 (VSWR)

1.2 Conversion loss

LO level +13 dBm nominal Bias 0 A

Measurement uncertainty: 1.5 dB

Note: Numeric calibration data can be found attached to the PDF file of the calibration certificate. Click the "paper clip" symbol to display the file.

The file has been renamed for safety reasons. When downloading the file onto your PC, please delete the ".file" extension and unzip the data.

1.3 Frequency response within 1 GHz

	DUL	Actual (worst case)	Evaluation
IF = 404.4 MHz, 4th harmonic	4 dB	2.02 dB	PASS
IF = 729 MHz, 4th harmonic	4 dB	1.78 dB	PASS
IF = 1330 MHz, 4th harmonic	4 dB	2.35 dB	PASS

Calibration Certificate

Kalibrierschein

Unit Data

Item Gegenstand

Manufacturer ROHDE & SCHWARZ

1048.0371.02

Harmonic Mixer, 60 GHz to 90 GHz

Serial Number

Seriennummer

Hersteller Type

Тур

R&S[®] FS-Z90

Material Number Materialnummer

Asset Number Inventarnummer

Order Data

Customer Auftraggeber

Order Number Bestellnummer

Date of Receipt Eingangsdatum

Performance

Place and Date of Calibration Ort und Datum der Kalibrierung

Scope of Calibration Umfang der Kalibrierung

Statement of Compliance (Incoming) Konformitätsaussage (Anlieferung)

Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Documents Umfang des Kalibrierdokuments Meckenheim, 2017-08-09

101719

Standard Calibration

New device

All measured values are within the data sheet specifications.

2 pages Calibration Certificate 5 pages Outgoing Results

Certificate Number 24-0090-101719-01

This calibration certificate documents, that

....

the named item is tested and measured

Zertifikatsnummer

	against defined specifications. Measurement results are located usually in the corresponding interval with a probability of approx. 95% (coverage factor k = 2). Calibration is performed with test equipment and standards directly or indirectly traceable by means of approved calibration techniques to the PTB/DKD or other national/international standards, which realize the physical units of measurement according to the International System of Units (SI). In all cases where no standards are available, measurements are referenced to standards of the R&S laboratories. Principles and methods of calibration correspond with EN ISO/IEC 17025. This calibration certificate may not be reproduced other than in full. Calibration certificates without signatures are not valid. The user is obliged to have the object recalibrated at appropriate intervals.
n the data sheet	Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Kalibrierscheine ohne Unterschriften sind ungültig. Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kalibrierung ist der Benutzer verantwortlich.

Radiometer Physics GmbH; Meckenheim

Date of Issue Ausstellungsdatum

2017-08-11

Laborleitung (0

Head of Laboratory

Ceru

Person Responsible Bearbeiter

Q. Hink

Heinze

Page (Seite) 1/2 Vers2010-05-05/ RPG2014-02-28

Radiometer Physics GmbH • Werner-von-Siemens-Str. 4 • 53340 Meckenheim • Telephone national: 02225/99981-0 international: 0049 2225-99981-0 Fax: 02225/99981-99 • Managing Director: Achim Walber, Dr. Thomas Rose • Company's Place of Business: Meckenheim Commercial Register No.: Bonn, HRB 10291 • VAT Identification No.: DE 123 377 395 **Calibration Method** Kalibrieranweisung

Ambient Temperature Umgebungstemperatur

RPG-PAQA-TN-2014-002

(23 ⁺⁷₋₃) °C

Relative Humidity 20 % - 80 % Relative Luftfeuchte

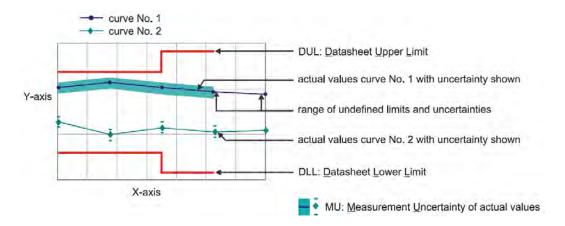
Item Gegenstand	Туре Тур	Serial Number Seriennummer	Calibration Certificate Number Kalibrierscheinnummer	Cal. Due Kalibr. bis
Vector Network Analyzer	R&S® ZVA67	101097	20-300432406	2020-07-21
Powersensor	R&S® NRP-Z55	140093	20-300426315	2018-05-17
Powersensor	R&S® NRP-Z58	101063	20-611482	2018-07-21
Calibration kit	WR12	E10001	RPG-PAQA-TN-2014-005	2019-02-01

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Nicht-Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

Ref.: ILAC-G8:03/2009 'Guidelines on the Reporting of Compliance with Specification'.

Notes Anmerkungen

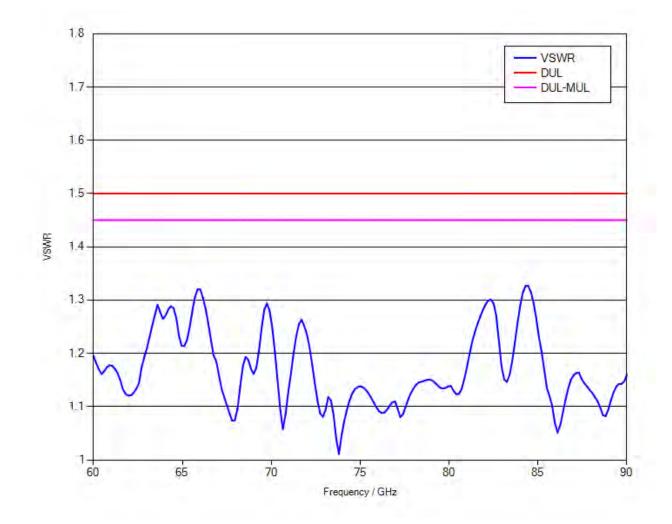

If the new product is stored under the climate conditions as specified in the data sheet upon delivery, the product's accuracy is not significantly affected within 12 month after its calibration in our factory. In this case, the recommended calibration interval starts on the date when the product is actually put into operation.

Outgoing Results

The following abbreviations may be used in this document

{a}	No measurement uncertainty stated because the errors always add together.
	So it is sure that a measurement result evaluated as "PASS" is pass.
{b}	The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valid
	for the close area around the specification. Measurement results outside the close area have a higher
	measurement uncertainty but are within the specification.
{C}	Functional test, therefore no measurement uncertainty is stated.
{d}	Typical value, refer to performance test.
{e}	The measurement uncertainty is taken into account when setting the measuring system.
DL or DT	Data Limit for symmetrical tolerance limits
DLL	Datasheet Lower Limit
DUL	Datasheet Upper Limit
MU	Measurement Uncertainty
MLL or MLV	Measurement Uncertainty Lower Value
MUL or MUV	Measurement Uncertainty Upper Value
Nom.	Nominal Value
Dev.	Deviation
MErr.	Measurement Error
Act.	Actual Value
UGB	Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.
UGB1	Measurement results marked as UGB1 show conformity with a probability of >50 % and <95 %.
UGB2	Measurement results marked as UGB2 show non-conformity with a probability of >50 % and <95 %.
DU	Datasheet Uncertainty

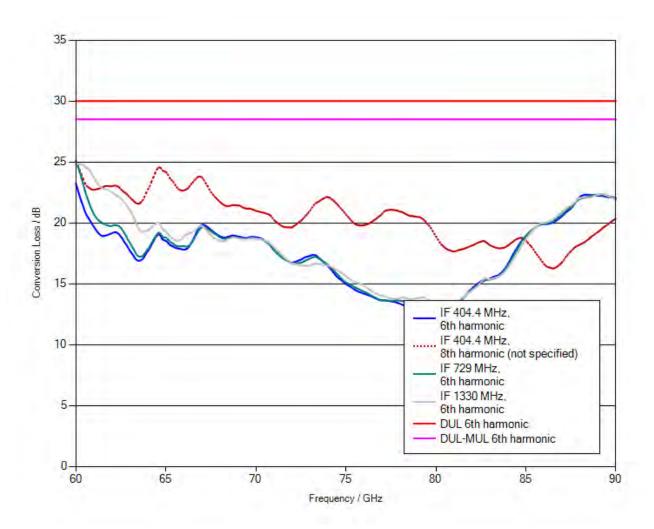
Explanation of charts



Software used for measurement Item Type Measurement Studio Professional Edition MixerCertification

Version 2013 only Remark

1.1 RF Input – VSWR


Measurement uncertainty: 0.05 (VSWR)

1.2 Conversion loss

LO level +14 dBm nominal Bias 0 A

Measurement uncertainty: 1.5 dB

Note: Numeric calibration data can be found attached to the PDF file of the calibration certificate. Click the "paper clip" symbol to display the file.

The file has been renamed for safety reasons. When downloading the file onto your PC, please delete the ".file" extension and unzip the data.

1.3 Frequency response within 1 GHz

	DUL	Actual (worst case)	Evaluation
IF = 404.4 MHz, 6th harmonic	6 dB	3.33 dB	PASS
IF = 404.4 MHz, 8th harmonic	not specified	2.73 dB	not specified
IF = 729 MHz, 6th harmonic	6 dB	4.12 dB	PASS
IF = 1330 MHz, 6th harmonic	6 dB	2.32 dB	PASS

Calibration Certificate

RPG

RPG FS-Z140

3622.0708.02

Harmonic Mixer, 90 GHz to 140

Serial Number

Seriennummer

Kalibrierschein

Unit Data

Item Gegenstand

Туре Тур

Manufacturer Hersteller

Material Number Materialnummer

Asset Number Inventarnummer

Order Data

Customer Auftraggeber

Order Number Bestellnummer

Date of Receipt Eingangsdatum

Performance

Place and Date of Calibration Ort und Datum der Kalibrierung

Scope of Calibration Umfang der Kalibrierung

Statement of Compliance (Incoming) Konformitätsaussage (Anlieferung)

Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Documents Umfang des Kalibrierdokuments

Meckenheim, 20

10[.]

Standard Calibra

New device

All measured va specifications.

2 pages Calibrat 5 pages Outgoin

Certificate Number 24-0140-101008-01

This calibration certificate documents, that

Zertifikatsnummer

	This calibration certificate documents, that
GHz	the named item is tested and measured
5112	against defined specifications. Measurement
	results are located usually in the
	corresponding interval with a probability of
	approx. 95% (coverage factor k = 2).
	Calibration is performed with test equipment
	and standards directly or indirectly traceable
008	by means of approved calibration techniques
000	to the PTB/DKD or other
	national/international standards, which
	realize the physical units of measurement according to the International System of
	Units (SI). In all cases where no standards are
	available, measurements are referenced to
	standards of the R&S laboratories. Principles
	and methods of calibration correspond with
	EN ISO/IEC 17025. This calibration certificate
	may not be reproduced other than in full.
	Calibration certificates without signatures are
	not valid. The user is obliged to have the
	object recalibrated at appropriate intervals.
	Dieser Kalibrierschein dokumentiert, dass der
	genannte Gegenstand nach festgelegten
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer
	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte
17-04-06	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung
17-04-06	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt
17-04-06 ition	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale
tion	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf
tion	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien.
tion	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung
tion ues are <u>within the data sheet</u>	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser
tion ues are <u>within the data sheet</u> on Certificate	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und
tion ues are <u>within the data sheet</u> on Certificate	genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden.
	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Kalibrierscheine ohne Unterschriften sind

Radiometer Physics GmbH; Meckenheim

Date of Issue Ausstellungsdatum Head of Laboratory Laborleitung

2017-04-07

0 Ceru

Person Responsible Bearbeiter

Q. Hink

Heinze

Page (Seite) 1/2 Vers2010-05-05/ RPG2014-02-28

Radiometer Physics GmbH • Werner-von-Siemens-Str. 4 • 53340 Meckenheim • Telephone national: 02225/99981-0 international: 0049 2225-99981-0 Fax: 02225/99981-99 • Managing Director: Achim Walber, Dr. Thomas Rose • Company's Place of Business: Meckenheim Commercial Register No.: Bonn, HRB 10291 • VAT Identification No.: DE 123 377 395

Calibration Method Kalibrieranweisung

Ambient Temperature Umgebungstemperatur

RPG-PAQA-TN-2014-002

(23 ⁺⁷₋₃) °C

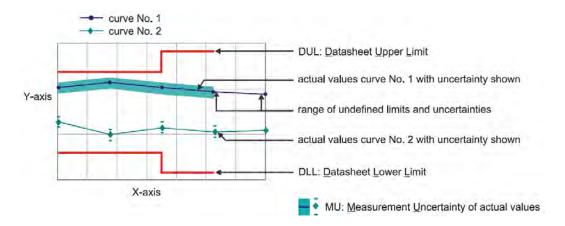
Relative Humidity Relative Luftfeuchte

Item Gegenstand	Туре Тур	Serial Number Seriennummer	Calibration Certificate Number Kalibrierscheinnummer	Cal. Due Kalibr. bis
Vector Network Analyzer	R&S® ZVA67	101097	10-300319061	2017-08-06
Powersensor	R&S® NRP-Z55	140093	20-541556	2017-05-12

A compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist. UGB1

A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Nicht-Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist. UGB2

Ref.: ILAC-G8:03/2009 'Guidelines on the Reporting of Compliance with Specification'.

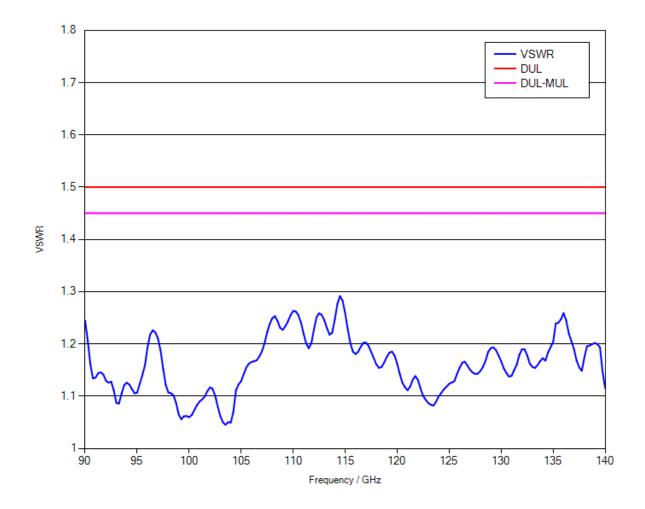

Notes Anmerkungen

Outgoing Results

The following abbreviations may be used in this document

{a}	No measurement uncertainty stated because the errors always add together.
{b}	So it is sure that a measurement result evaluated as "PASS" is pass. The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valid for the close area around the specification. Measurement results outside the close area have a higher measurement uncertainty but are within the specification.
{C}	Functional test, therefore no measurement uncertainty is stated.
{d}	Typical value, refer to performance test.
{e}	The measurement uncertainty is taken into account when setting the measuring system.
DL or DT	Data Limit for symmetrical tolerance limits
DLL	Datasheet Lower Limit
DUL	Datasheet Upper Limit
MU	Measurement Uncertainty
MLL or MLV	Measurement Uncertainty Lower Value
MUL or MUV	Measurement Uncertainty Upper Value
Nom.	Nominal Value
Dev.	Deviation
MErr.	Measurement Error
Act.	Actual Value
UGB	Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.
UGB1	Measurement results marked as UGB1 show conformity with a probability of >50 % and <95 %.
UGB2	Measurement results marked as UGB2 show non-conformity with a probability of >50 % and <95 %.
DU	Datasheet Uncertainty

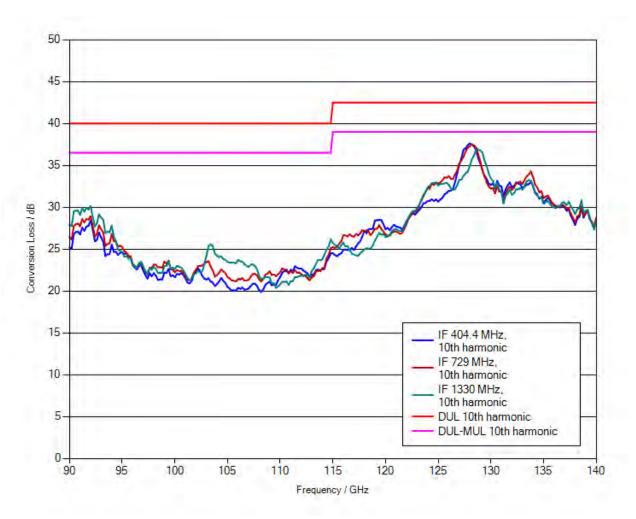
Explanation of charts



Software used for measurement Item Type Measurement Studio Professional Edition MixerCertification

Version 2013 7_04 Remark

1.1 RF Input – VSWR


Measurement uncertainty: 0.05 (VSWR)

1.2 Conversion loss

LO level +14 dBm nominal Bias 0 A

Measurement uncertainty: 3.5 dB

Note: Numeric calibration data can be found attached to the PDF file of the calibration certificate. Click the "paper clip" symbol to display the file.

The file has been renamed for safety reasons. When downloading the file onto your PC, please delete the ".file" extension and unzip the data.

1.3 Frequency response within 1 GHz

	DUL	Actual (worst case)	Evaluation
IF = 404.4 MHz, 10th harmonic	6 dB	3.86 dB	PASS
IF = 729 MHz, 10th harmonic	6 dB	3.48 dB	PASS
IF = 1330 MHz, 10th harmonic	6 dB	3.19 dB	PASS

Calibration Certificate

Kalibrierschein

Unit Data

ltem Gegenstand

Manufacturer Hersteller

Туре Тур

3593.3250.02 Material Number Materialnummer

Asset Number Inventarnummer

Order Data

Customer Auftraggeber

Order Number Bestellnummer

Date of Receipt Eingangsdatum

Performance

Place and Date of Calibration Ort und Datum der Kalibrierung

Scope of Calibration Umfang der Kalibrierung

Statement of Compliance (Incoming) Konformitätsaussage (Anlieferung)

Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Documents Umfang des Kalibrierdokuments

Certificate Number 24-0220-100960-01

This calibration certificate documents, that

Zertifikatsnummer

		the named item is tested and measured
Harmonic Mix	er, 140 GHz to 220 GHz	against defined specifications. Measurement
	,	results are located usually in the
RPG		corresponding interval with a probability of
		approx. 95% (coverage factor k = 2).
RPG FS-Z220		Calibration is performed with test equipment
RFG F3-2220		and standards directly or indirectly traceable
	(by means of approved calibration techniques
3593.3250.02	Serial Number 100960	to the PTB/DKD or other
	Seriennummer	national/international standards, which
		realize the physical units of measurement
		according to the International System of
		Units (SI). In all cases where no standards are
		available, measurements are referenced to
		standards of the R&S laboratories. Principles
		and methods of calibration correspond with EN ISO/IEC 17025. This calibration certificate
		may not be reproduced other than in full. Calibration certificates without signatures are
		not valid. The user is obliged to have the
		object recalibrated at appropriate intervals.
Calibration	Meckenheim, 2018-01-17	Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt
Calibration Calibrierung n	Meckenheim, 2018-01-17 Standard Calibration	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung
alibration alibrierung n ung		 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale
alibration alibrierung n ung	Standard Calibration	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer
Calibration ialibrierung n ung liance	Standard Calibration	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur
Calibration Kalibrierung n rung Jliance	Standard Calibration	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale
Calibration Calibrierung n rung Jiance	Standard Calibration	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf
alibration alibrierung n ung liance	Standard Calibration New device	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien.
Falibration alibrierung n ung liance	Standard Calibration New device All measured values are <u>within the data sheet</u>	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung
alibration alibrierung n ung liance	Standard Calibration New device	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser
alibration alibrierung n ung liance	Standard Calibration New device All measured values are <u>within the data sheet</u>	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und
Calibration ialibrierung n ung liance	Standard Calibration New device All measured values are <u>within the data sheet</u> <u>specifications.</u>	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden.
Calibration (alibrierung) n ung liance e liance	Standard Calibration New device All measured values are <u>within the data sheet</u> <u>specifications.</u> 2 pages Calibration Certificate	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Kalibrierscheine ohne Unterschriften sind
Calibration Calibrierung on rung oliance e oliance e on on on on on on on on on on	Standard Calibration New device All measured values are <u>within the data sheet</u> <u>specifications.</u>	 genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der R&S-Laboratorien. Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden.

Radiometer Physics GmbH; Meckenheim

Date of Issue Ausstellungsdatum

2018-01-19

Laborleitung 0

Ceru

Head of Laboratory

Person Responsible Bearbeiter

C. D.A

Dick

Page (Seite) 1/2 Vers2010-05-05/ RPG2014-02-28

Radiometer Physics GmbH • Werner-von-Siemens-Str. 4 • 53340 Meckenheim • Telephone national: 02225/99981-0 international: 0049 2225-99981-0 Fax: 02225/99981-99 • Managing Director: Achim Walber, Dr. Thomas Rose • Company's Place of Business: Meckenheim Commercial Register No.: Bonn, HRB 10291 • VAT Identification No.: DE 123 377 395

Calibration Method Kalibrieranweisung

Ambient Temperature Umgebungstemperatur

RPG-PAQA-TN-2014-002

(23 ⁺⁷₋₃) °C

Relative Humidity 20 % - 80 % Relative Luftfeuchte

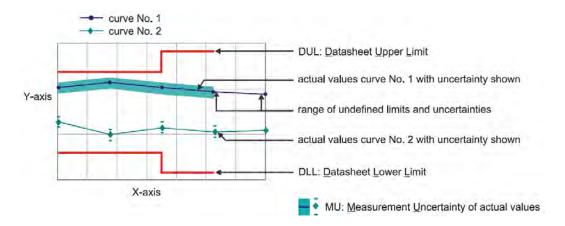
Item Gegenstand	Туре Тур	Serial Number Seriennummer	Calibration Certificate Number Kalibrierscheinnummer	Cal. Due Kalibr. bis
Vector Network Analyzer	R&S® ZVA67	101097	20-300432406	2020-07-21
Powersensor	R&S® NRP-Z55	140093	20-300426315	2018-05-17

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable. Die Bestätigung der Nicht-Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

Ref.: ILAC-G8:03/2009 'Guidelines on the Reporting of Compliance with Specification'.

Notes Anmerkungen

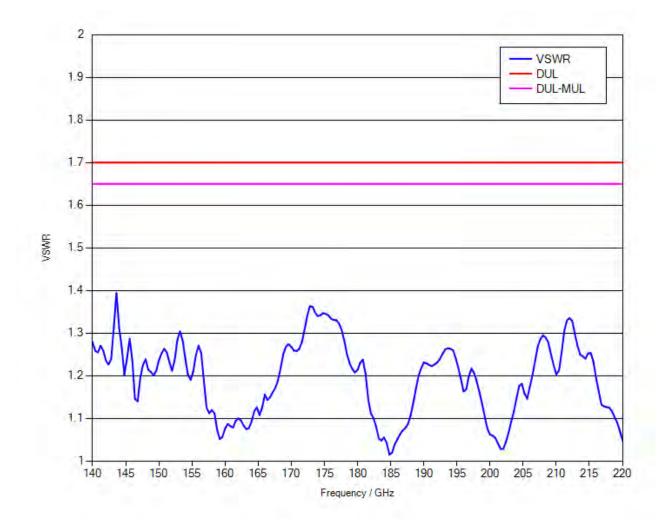

If the new product is stored under the climate conditions as specified in the data sheet upon delivery, the product's accuracy is not significantly affected within 12 month after its calibration in our factory. In this case, the recommended calibration interval starts on the date when the product is actually put into operation.

Outgoing Results

The following abbreviations may be used in this document

{a}	No measurement uncertainty stated because the errors always add together. So it is sure that a measurement result evaluated as "PASS" is pass.
{b}	The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valid for the close area around the specification. Measurement results outside the close area have a higher measurement uncertainty but are within the specification.
{C}	Functional test, therefore no measurement uncertainty is stated.
{d}	Typical value, refer to performance test.
{e}	The measurement uncertainty is taken into account when setting the measuring system.
DL or DT	Data Limit for symmetrical tolerance limits
DLL	Datasheet Lower Limit
DUL	Datasheet Upper Limit
MU	Measurement Uncertainty
MLL or MLV	Measurement Uncertainty Lower Value
MUL or MUV	Measurement Uncertainty Upper Value
Nom.	Nominal Value
Dev.	Deviation
MErr.	Measurement Error
Act.	Actual Value
UGB	Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.
UGB1	Measurement results marked as UGB1 show conformity with a probability of >50 % and <95 %.
UGB2	Measurement results marked as UGB2 show non-conformity with a probability of >50 % and <95 %.
DU	Datasheet Uncertainty

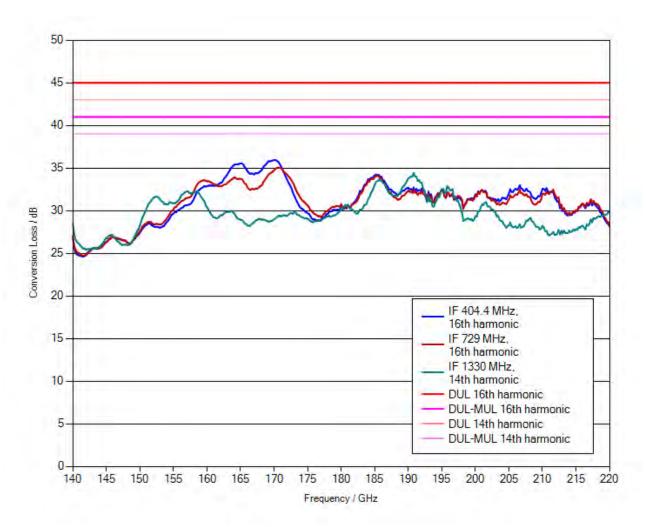
Explanation of charts



Software used for measurement Item Type Measurement Studio Professional Edition MixerCertification

Version 2013 7_08 Remark

1.1 RF Input – VSWR


Measurement uncertainty: 0.05 (VSWR)

1.2 Conversion loss

LO level +13 dBm nominal Bias 0 A

Measurement uncertainty: 4 dB

Note: Numeric calibration data can be found attached to the PDF file of the calibration certificate. Click the "paper clip" symbol to display the file.

The file has been renamed for safety reasons. When downloading the file onto your PC, please delete the ".file" extension and unzip the data.

1.3 Frequency response within 1 GHz

	DUL	Actual (worst case)	Evaluation
IF = 404.4 MHz, 16th harmonic	6 dB	2.1 dB	PASS
IF = 729 MHz, 16th harmonic	6 dB	2.05 dB	PASS
IF = 1330 MHz, 14th harmonic	6 dB	2.48 dB	PASS