

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15 SUBPART E 15.407

FCC ID.....: : 2BLDP-CL401

Compiled by

(position+printed name+signature)...: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)... Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address......Fuhai Street, Bao' an District, Shenzhen, China

Applicant's name.......ShenZhen DZinno Technology Co. ,Ltd.

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

Address Gangtou Community, Bantian Street, Longgang District, Shenzhen,

China

Test specification:

Standard FCC Part 15 Subpart E 15.407

TRF Originator......Shenzhen Global Test Service Co.,Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart Camera

Trade Mark: N/A

Manufacturer ShenZhen DZinno Technology Co. ,Ltd.

Model/Type reference......CL401

Modulation: OFDM

Frequency...... From 5745MHz-5825MHz

Ratings AC 100-240V 50/60Hz

Result......PASS

Page 2 of 33 Report No.: CTA24091401003

TEST REPORT

Equipment under Test **Smart Camera**

Model /Type CL401

Listed Models CL402, CL403, CL404, CL405, CL406, CL407, CL408, CL409

ShenZhen DZinno Technology Co. ,Ltd. Applicant

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park, Address

CTA TESTING Gangtou Community, Bantian Street, Longgang District, Shenzhen,

China

Manufacturer ShenZhenDZinno Technology Co.Ltd.

Address		lding 4, Phase 2, Tian'an Yungu Industrial Park, r, Bantian Street, Longgang District, Shenzhen,
Test R	esult:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 33 Report No.: CTA24091401003

Contents

		Conter	nts	
		TEST STANDARDS	3	4
	SAN C	TEOT STANDARDS		 7
	2	SUMMARY	TING	5
	_	G	TES	
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under Tes	t (FUT)	5
	2.5	EUT operation mode	(201)	5
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
CIL	2.8	Modifications		6
· /	2.0	Modifications		J
		CTA		
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
			TAIL	
	3.1	Address of the test laboratory	U.,	7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Test Description	CTATES CTATES	8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		9
	3.0	Equipments osed during the rest		3
		ESTIN		
	<u>4</u>	TEST CONDITIONS AND RESULTS		<u>. 11</u>
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emissions		14
	4.3	Maximum Conducted Average Output Power		20
	4.4	Power Spectral Density	CTA	22
	4.5	Minimum Emission Bandwidth (6dB Bandwidt	h)	<u> 27</u>
	4.6	Frequency Stability	h) CTATESTING	30
	-	· (· · · · · · · · · · · · · · · · · ·		115
	G		_	A STATE
	<u>5</u>	TEST SETUP PHOTOS OF THE EU	<u>T</u>	. 32
CIP.	6	PHOTOS OF THE EUT		. 33
CTATE	_	462		
		Control of the contro	STILL	
		CTATES!	CTATESTING	
			CTATES	

Page 4 of 33 Report No.: CTA24091401003

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15 Subpart E—Unlicensed National Information Infrastructure Devices ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices
KDB789033 D02: General UNII Test Procedures New Rules v01r02

Page 5 of 33 Report No.: CTA24091401003

SUMMARY

2.1 General Remarks

2.1 General Remarks		CTATESTING
Date of receipt of test sample		Sep. 14, 2024
Testing commenced on	:	Sep. 14, 2024
Testing concluded on	:	Sep. 21, 2024

Product Description:	Smart Camera			
Model:	CL401	-18	JG	
Power supply:	AC 100-240V 50/60Hz	TEST		
testing sample ID:	CTA240914010-1# (Eng CTA240914010-2# (Noi			4F.S
Hardware version:	D054AP_MB_VB	100 to 10		CIA
Software version:	6.0.24.10		Continue	G -
WIFI				
. (20MHz system	40MHz system	80MHz system	160MHz s
Supported type:	802.11a 802.11n	802.11n	N/A	N/A
Operation frequency:	5745MHz-5825MHz	5755MHz-5795MHz	N/A	N/A
Modulation:	OFDM	OFDM	N/A	N/A
Channel number:	9	4	N/A	N/A
Channel separation:	20MHz	40MHz	N/A	N/A
Antenna type:	PIFA antenna	To use military		
Antenna gain:	1.35 dBi			

2.3 Equipment Under Test

Power supply system utilised

Power supply system uti	IIsea				
Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank be	low	7E5
			<u></u>		CTA .
2.4 Short description o	f the Ed	ļui	pment under Test (EU	T)	

Short description of the Equipment under Test (EUT)

This is a Smart Camera.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. All test performed at the low, middle and high of operational frequency range of each mode.

Operation Frequency List WIFI on 5G Band:

Page 6 of 33 Report No.: CTA24091401003

	201	ИНz	40MHz	
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	149	5745	151 5755	
LLNILO	153	5765	151	5755
U-NII 3 (5725MHz-5850MHz)	157	5785	150	F70F\G
	161	5805	159	5795
	165	5825		TES

Note: The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. ...eri

Report No.: CTA24091401003 Page 7 of 33

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTATESTING

Radiated Emission:

tadiated Efficient.	~~\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

onducted teeting.		-
Temperature:	25 ° C	
	70	
Humidity:	44 %	
ATA		.NG
Atmospheric pressure:	950-1050mbar	STIN
	_ 4	TATES
C Power Conducted Emission	C	11
Temperature:	24 ° C	

Temperature:	24 ° C
	Water Control of the
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTING	·
	TESTIN

Report No.: CTA24091401003 Page 8 of 33

3.4 Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	PASS _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS
FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A Note 3
FCC Part 15.203/15.247(b)	Antenna Requirement	PASS

Note 1: Apply to U-NII 1 band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Conducted Output Power Power Spectral Density	11a/OFDM	6 Mbps
Emission Bandwidth(26dBm Bandwidth) Minimum Emission Bandwidth(6dBm Bandwidth)	11n(20MHz), /OFDM	7.2 Mbps
Undesirable emission Frequency Stability	11n(40MHz) /OFDM	15.0Mbps

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)

Page 9 of 33 Report No.: CTA24091401003

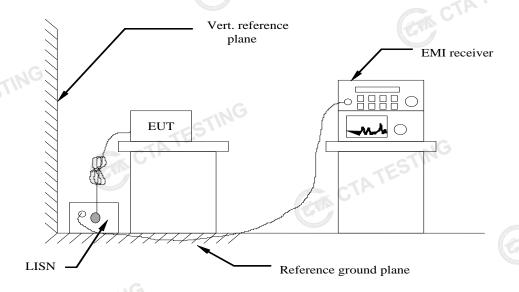
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

CTATE	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
(G	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
TE	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
CTATE	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Ì	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
G	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Page 10 of 33 Report No.: CTA24091401003


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	ETING					EIA.
CTATE	STING	CTATESTING				
7		CTATES.				

Page 11 of 33 Report No.: CTA24091401003

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

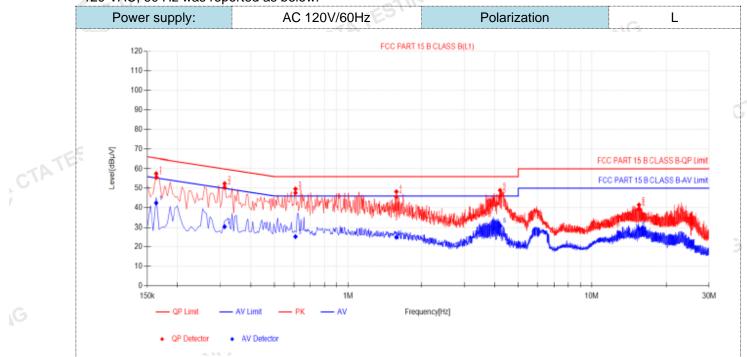
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load: the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

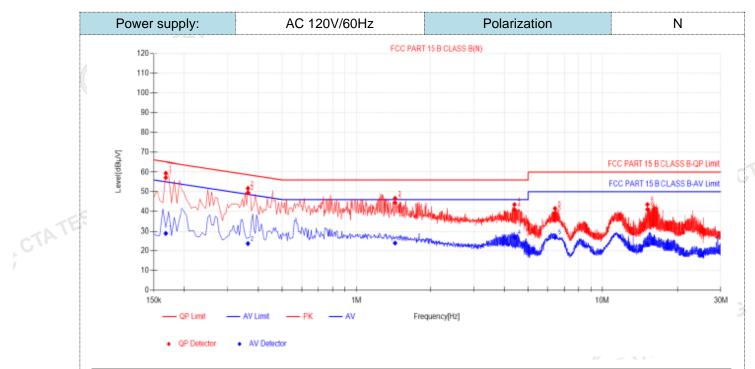

Fragueney ren	ac (MILIT)	Lim	it (dBuV)
Frequency ran	ge (IVITZ)	Quasi-peak	Average
0.15-0.	5	66 to 56*	56 to 46*
0.5-5	,	56	46
5-30		60	50
* Decreases with the log	arithm of the frequency	1. STING	
TEST RESULTS			
Remark:			CTATESTING

TEST RESULTS

Page 12 of 33 Report No.: CTA24091401003

1.All modes of 802.11a/n were tested at Low, Middle, and High channel; only the worst result of 802.11a was reported as below:

2.Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Fina	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1635	9.93	45.61	55.54	65.28	9.74	32.52	42.45	55.28	12.83	PASS
2	0.312	9.93	40.47	50.40	59.92	9.52	20.49	30.42	49.92	19.50	PASS
3	0.609	10.03	37.59	47.62	56.00	8.38	15.29	25.32	46.00	20.68	PASS
4	1.5765	9.90	35.70	45.60	56.00	10.40	15.09	24.99	46.00	21.01	PASS
5	4.209	9.93	36.06	45.99	56.00	10.01	20.92	30.85	46.00	15.15	PASS
6	15.6165	10.32	29.10	39.42	60.00	20.58	18.98	29.30	50.00	20.70	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTATESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Page 13 of 33 Report No.: CTA24091401003

	st										
Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
0.168	10.08	47.14	57.22	65.06	7.84	18.88	28.96	55.06	26.10	PASS	
0.3615	9.88	39.63	49.51	58.69	9.18	13.91	23.79	48.69	24.90	PASS	
1.437	10.14	34.30	44.44	56.00	11.56	13.90	24.04	46.00	21.96	PASS	
4.389	10.10	30.82	40.92	56.00	15.08	16.78	26.88	46.00	19.12	PASS	
6.423	10.33	28.69	39.02	60.00	20.98	16.56	26.89	50.00	23.11	PASS	
15.252	10.43	30.52	40.95	60.00	19.05	12.97	23.40	50.00	26.60	PASS	
tor (dB)=in	sertion l	loss of LIS	SN (dB)	+ Cable	loss (dB)						
to	0.188 0.3615 1.437 4.389 6.423 15.252 .QP Value or (dB)=in Margin(dB)	0.168 10.08 0.3615 9.88 1.437 10.14 4.389 10.10 6.423 10.33 15.252 10.43 OP Value (dBµV)= or (dB)=insertion leading and the series of the ser	Freq. [MHz] Factor [dB] Reading[dB μV] 0.168 10.08 47.14 0.3615 9.88 39.63 1.437 10.14 34.30 4.389 10.10 30.82 6.423 10.33 28.69 15.252 10.43 30.52 CQP Value (dBμV)= QP Reading[dB μV] Or (dB)=insertion loss of LISMargin(dB) = QP Limit (dBμ	Freq. [MHz] Factor [dB] Reading[dB μV] 0.168 10.08 47.14 57.22 0.3615 9.88 39.63 49.51 1.437 10.14 34.30 44.44 4.389 10.10 30.82 40.92 6.423 10.33 28.69 39.02 15.252 10.43 30.52 40.95 CQP Value (dBμV)= QP Reading (dB or (dB)=insertion loss of LISN (dB) Margin(dB) = QP Limit (dBμV) - QP	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq. [MHz] Reading[dB μV] [dB μV] 0.108 10.08 47.14 57.22 65.06 7.84 0.3615 9.88 39.63 49.51 58.69 9.18 1.437 10.14 34.30 44.44 56.00 11.56 4.389 10.10 30.82 40.92 56.00 15.08 6.423 10.33 28.89 39.02 60.00 20.98 15.252 10.43 30.52 40.95 60.00 19.05 0.00 19.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING

Report No.: CTA24091401003 Page 14 of 33

4.2 Radiated Emissions

Limit

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

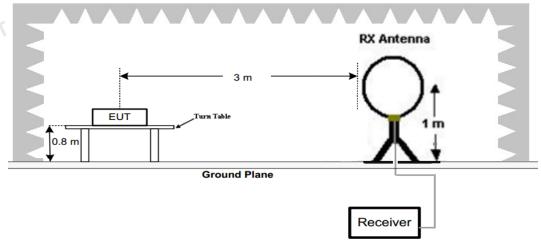
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1		
15.407(b)(1)		Carlo U.		
15.407(b)(2)	PK:-27(dBm/MHz)	PK:68.2(dBµV/m)		
15.407(b)(3)	PK27 (UBITI/IVITZ)	FK:00.2(αΒμν/III)		
15.407(b)(4)				

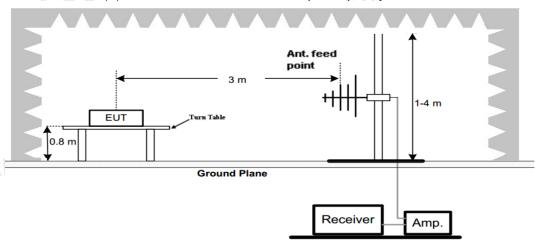
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m}, \text{ where P is the eirp (Watts)}$$

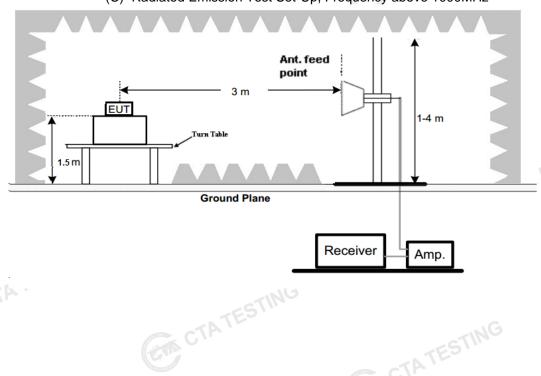
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

_					
ſ	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
ſ	1.705-30	3	20log(30)+ 40log(30/3)	30	
Ī	30-88	3	40.0	100	
Ī	88-216	3	43.5	150	
Ī	216-960	3	46.0	200	
ſ	Above 960	3	54.0	500	


Page 15 of 33 Report No.: CTA24091401003

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Report No.: CTA24091401003 Page 16 of 33

Test Procedure

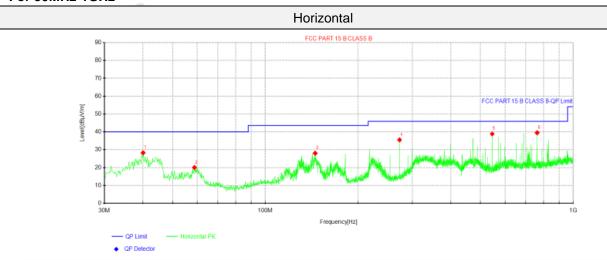
- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn 2. table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both 3. CTATE horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 40GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Bilog Antenna	3	
1GHz-18GHz	Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak
ESULTS	CTATESTING CTATES	TING

TEST RESULTS

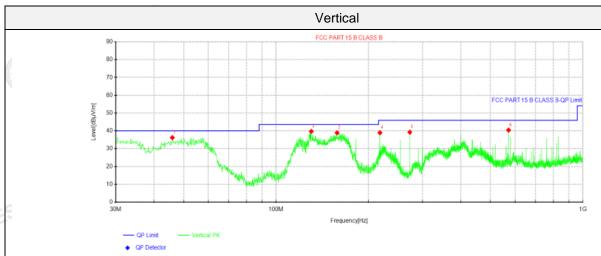

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- All 802.11a / 802.11n (HT20) / 802.11n (HT40) modes have been tested for below 1GHz test, only the worst case 802.11a low channel of U-NII 1 band was recorded.
- 2. All 802.11a / 802.11n (HT20) / 802.11n (HT40) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. EM CTATESTING

Page 17 of 33 Report No.: CTA24091401003

For 30MHz-1GHz

CTATE


CTATE

Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	40.0638	40.26	28.31	-11.95	40.00	11.69	100	283	Horizontal	
2	58.8575	32.52	20.04	-12.48	40.00	19.96	100	119	Horizontal	
3	145.308	43.65	28.10	-15.55	43.50	15.40	100	226	Horizontal	
4	272.742	47.19	35.62	-11.57	46.00	10.38	100	271	Horizontal	
5	545.433	47.74	38.88	-8.86	46.00	7.12	100	98	Horizontal	
6	763.683	44.30	39.53	-4.77	46.00	6.47	100	98	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB) CTATESTING
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 18 of 33 Report No.: CTA24091401003

Susp	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delesiba	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	45.8838	47.67	36.28	-11.39	40.00	3.72	100	241	Vertical	
2	130.273	56.15	39.71	-16.44	43.50	3.79	100	11	Vertical	
3	157.918	54.60	38.90	-15.70	43.50	4.60	100	229	Vertical	
4	218.18	51.49	38.96	-12.53	46.00	7.04	100	241	Vertical	
5	272.742	50.83	39.26	-11.57	46.00	6.74	100	183	Vertical	
6	572.715	47.93	40.42	-7.51	46.00	5.58	100	360	Vertical	

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24091401003 Page 19 of 33

For 1GHz to 40GHz

Note: All 802.11a / 802.11n (HT20) /802.11n (HT40) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

U-NII 3 & 802.11a Mode (above 1GHz)

	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
`			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
		5720.00	54.27	PK	Н	68.20	13.93	57.05	33.42	6.04	42.24	-2.78
	149.00	5720.00	46.63	AV	Н	54.00	7.37	49.41	33.42	6.04	42.24	-2.78
	(5745MHz)	11490.00	49.52	PK	Н	68.20	18.68	45.04	39.02	10.91	45.45	4.48
								CAL				
	157.00	11570.00	50.08	PK	Н	68.20	18.12	45.63	38.93	10.95	45.43	4.45
	(5785MHz)										(1.5)	
	48.00	5855.00	50.73	PK	Н	68.20	17.47	52.92	33.91	6.17	42.27	-2.19
-59	(5825MHz)	11650.00	50.42	PK	Н	68.20	17.78	45.84	38.83	11.16	45.41	4.58
CTATE					G							
CV				-671	No							
7	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
r	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5720.00	54.15	PK	V	68.20	14.05	56.93	33.42	6.04	42.24	-2.78
149.00	5720.00	46.67	AV	V	54.00	7.33	49.45	33.42	6.04	42.24	-2.78
(5745MHz)	11490.00	48.73	PK	V	68.20	19.47	44.25	39.02	10.91	45.45	4.48
					No many					-	
157.00	11570.00	50.84	PK	V	68.20	17.36	46.39	38.93	10.95	45.43	4.45
(5785MHz)									Vermont of the		
48.00	5855.00	51.45	PK	V	68.20	16.75	53.64	33.91	6.17	42.27	-2.19
(5825MHz)	11650.00	52.27	PK	V	68.20	15.93	47.69	38.83	11.16	45.41	4.58
	61										

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40,

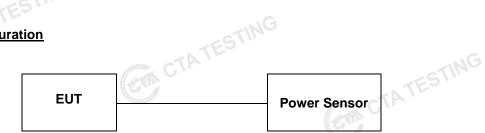
Page 20 of 33 Report No.: CTA24091401003

Maximum Conducted Average Output Power

Limit

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.


For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

TATES !! Page 21 of 33 Report No.: CTA24091401003

Test Results

U-NII 3

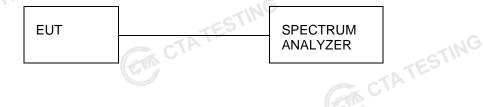
	Туре	Channel	Output power	Limit (dBm)	Result	
	туре	Oname	(dBm)	Littile (dDitt)	rcoult	
		149	12.40	ING		
	802.11a	157	12.49	30.00	Pass	
		165	12.09	TA.		
		149	11.45			TATE
	802.11n(HT20)	157	11.58	30.00	Pass	
TE	STING	165	11.03		TO WHAT THE	
CTATE	802.11n(HT40)	151	12.00	30.00	Pass	
*	002.1111(11140)	159	159 11.79		F 033	
			CTATESTIN		ATESTING	>
					> '	

Report No.: CTA24091401003 Page 22 of 33

4.4 Power Spectral Density

<u>Limit</u>

- (1) For the band 5.15 5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2

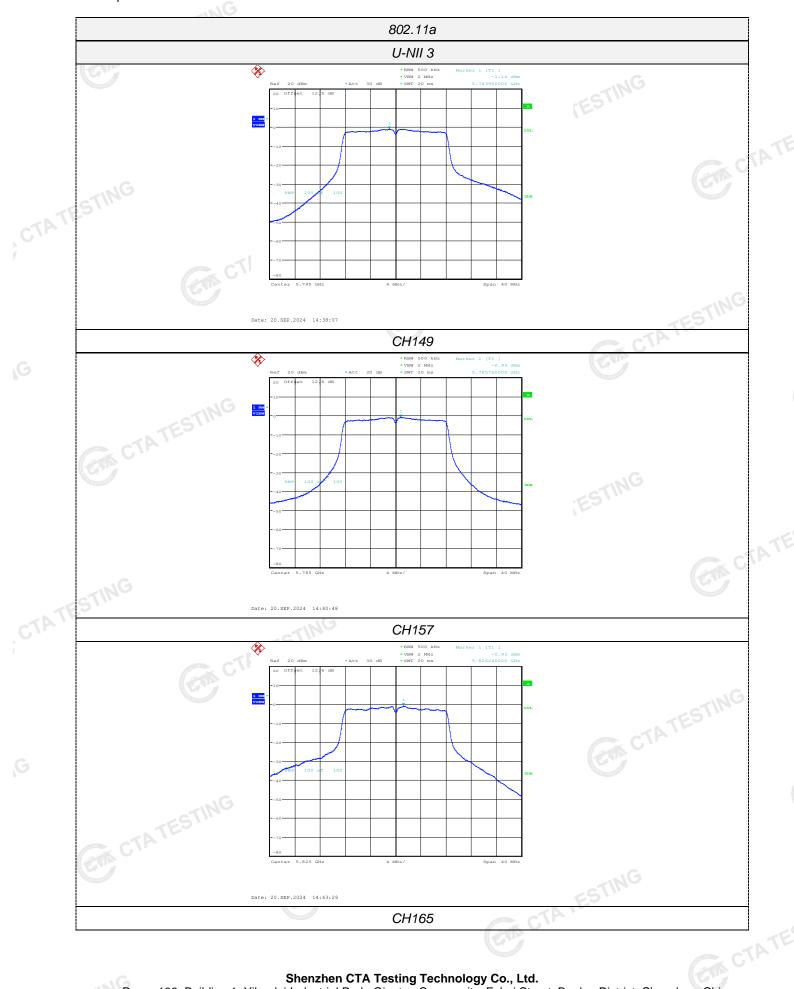

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

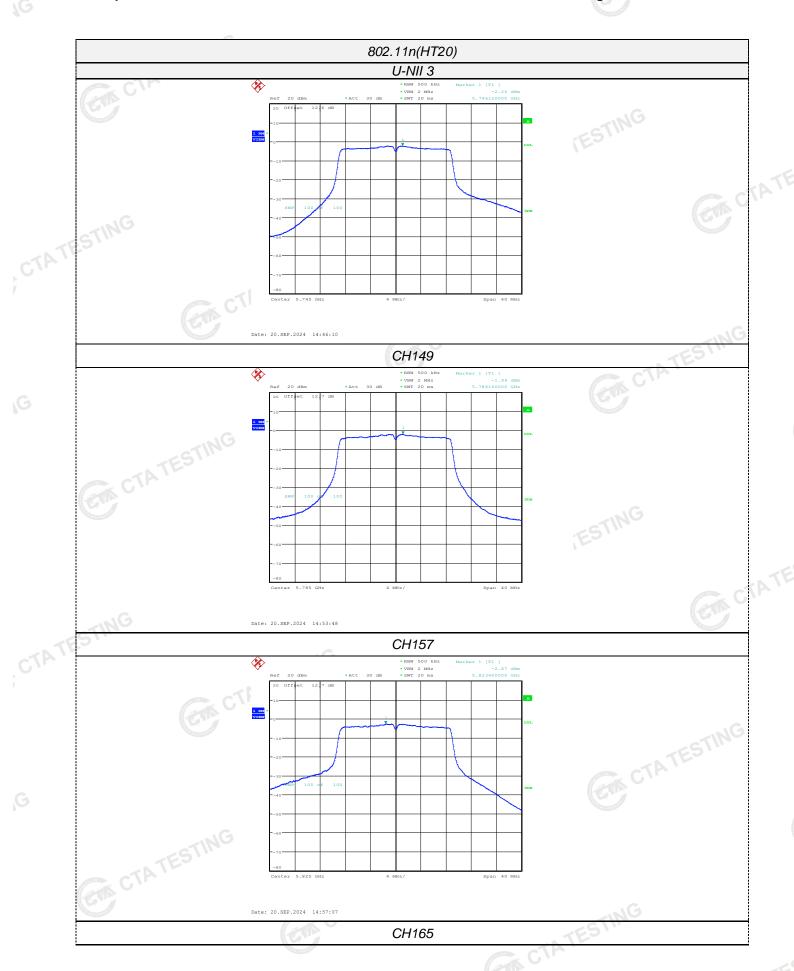
Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

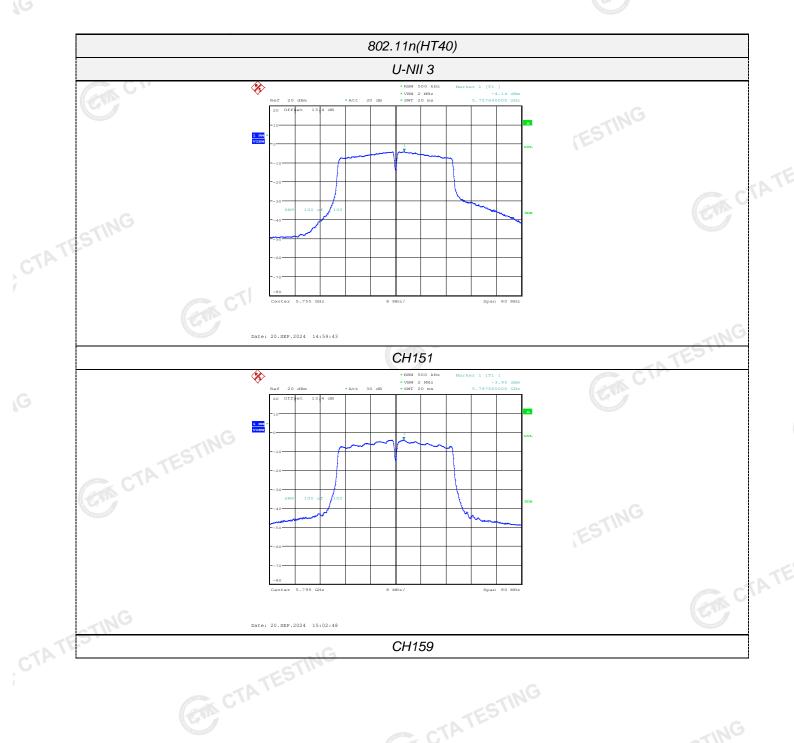
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to encompass the entire EBW.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

Test Configuration


Page 23 of 33 Report No.: CTA24091401003


Test Results

	Туре	Bands	Channel	Power Spectral Density (dBm/300KHz)	Power Spectral Density (dBm/500KHz)	Limit (dBm/500KHz)	Result
			149	-1.14	1.08	ESI	
	802.11a	U-NII 3	157	-0.93	1.29		
CTATE			165	-0.93	1.29		Street C
	ING		149	-2.25	-0.03	20.0	CAN D
CTATE	802.11n (HT20)	U-NII 3	157	-1.99	0.23	30.0	Pass
	(=0)		165	-2.67	-0.45		
1	802.11n	4TMI 6 1	151	-4.14	-1.92		
	(HT40)	U-NII 3	159	-3.95	-1.73		
	Remark: P.S.D	(dBm/500KH	z)= P.S.D(dBm	/300KHz)+10 log (500	kHz/300KHz).		STING
ĮG						CTAT CTAT	


Page 24 of 33 Report No.: CTA24091401003

Test plot as follows

Page 26 of 33 Report No.: CTA24091401003

Page 27 of 33 Report No.: CTA24091401003

Minimum Emission Bandwidth (6dB Bandwidth)

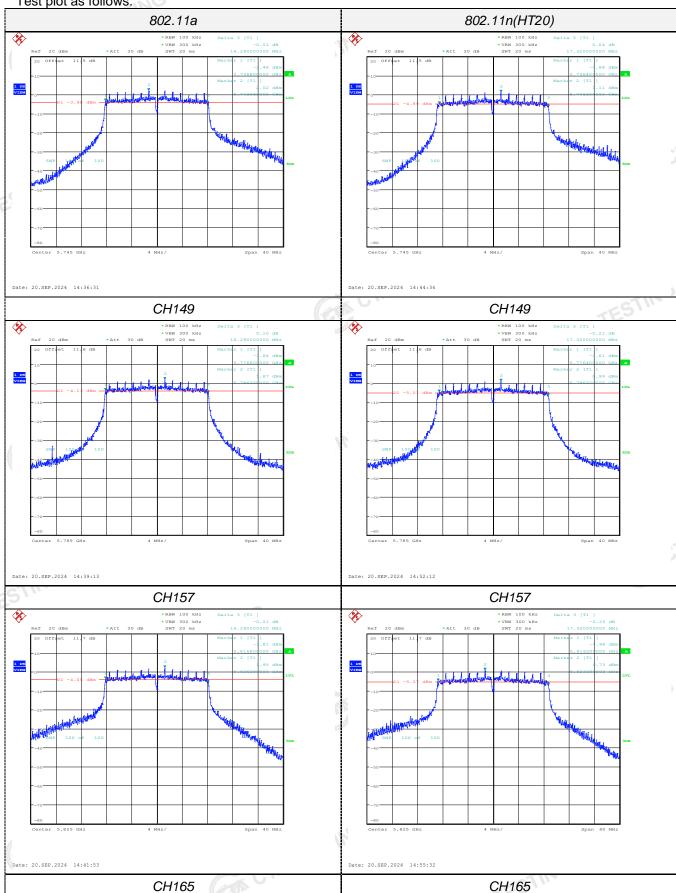
Limit

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

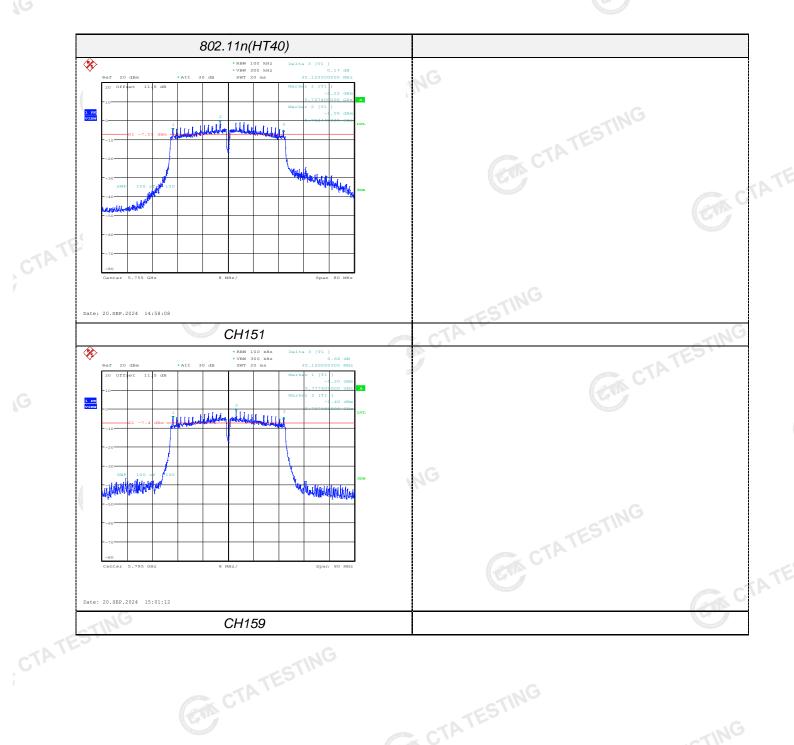
Test Procedure

- Set resolution bandwidth (RBW) = 100 kHz 1.
- Set the video bandwidth 3 x RBW.
- Detector = Peak. 3.
- Trace mode = Max hold.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Configuration



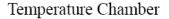
Test Results

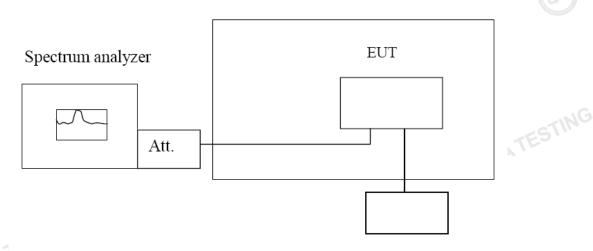

	Туре	Bands	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	CVA		149	16.28		
	802.11a	U-NII 3	157	16.28		
			165	16.28	7.11	
			149	17.32	≥500KHz	Door
	802.11n(HT20)	U-NII 3	157	17.32	2300KHZ	Pass
	STING		165	17.52		To well tribing
CTATE	902 44p/UT40)	U-NII 3	151	35.12		
	802.11n(HT40)	U-INII 3	159	35.12		
		CIR		CTATESTING	C.TA	TESTING

Page 28 of 33 Report No.: CTA24091401003

Test plot as follows:

Page 29 of 33 Report No.: CTA24091401003


Report No.: CTA24091401003 Page 30 of 33


4.6 Frequency Stability

LIMIT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

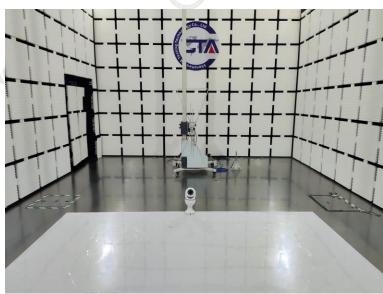
Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Record worst case as below:


Page 31 of 33 Report No.: CTA24091401003

	18	G							
	Reference Frequency: 802.11a channel=149 frequency=5745MHz								
	Voltage (V)	Temperature (°C)	Freque	ncy error	Limit (ppm)	Result			
	voltage (v)	remperature (C)	Hz ppm		Limit (ppm)	Result			
	123 Care 11 11 11 11 11 11 11 11 11 11 11 11 11	-30	135.91	0.023657	TING				
		-20	129.28	0.022503	ATESI				
		-10	167.38	0.029135					
		0	169.73	0.029544					
	AC120V	10	136.74	0.023802	Within the band of operation	Jan.			
	NG	20	144.86	0.025215		Pass			
-5	STING	30	116.36	0.020254		C United			
CTATE		40 G	168.36	0.029305					
		50	160.70	0.027972					
,	AC 132V	25	150.69	0.026230]				
	AC 108V	25	129.65	0.022567					
			GW C	(P.	Car CT	ATESTING			

Page 32 of 33 Report No.: CTA24091401003

Test Setup Photos of the EUT

Page 33 of 33 Report No.: CTA24091401003

Photos of the EUT 6

Reference to the test report No. CTA24091401001. -nd (