

Shenzhen Toby Technology Co., Ltd.

Report No.: TTBR-C-202405-0316-8 Page: 1 of 38

FCC Part 15B Test Report FCC ID:2APRB-X30

Report No.	ż	TBR-C-202405-0316-8
Applicant	0.	Guangdong Juan Intelligent Technology Joint Stock Co., Ltd.
Equipment Under T	Test	(EUT)
EUT Name	:	4G CAMERA
Model No.	:	X30
Series Model No.	:	Q203A-G, BP-HSD2241-A-4G-EU-Tuya, BP-HSD2241-A-4G-EN-Tuya, BP-HSD2241-A-4G-US-Tuya
Brand Name	3	JUANCLOUD
Sample ID		HC-C-202405-0316-03-01#
Receipt Date	-	2024-06-13
Test Date		2024-06-13 to 2024-06-27
Issue Date	÷	2024-09-09
Standards		FCC 47 CFR Part 15 Subpart B
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above

Test By

Reviewed By

Approved By

: Morvin : Canadle 4 : WAN SU : WAN SU

The EUT technically complies with the FCC requirements.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONT	TENTS	2
REVI	SION HISTORY	
1.	GENERAL INFORMATION	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing The Configuration of System Tested	
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	
	1.6 Test standards	
	1.7 Test Facility	7
	1.8 Measurement Uncertainty	
2.	TEST SOFTWARE	
3.	TEST SUMMARY	8
4.	TEST EQUIPMENT USED AND TEST SITE	8
5.	LABEL REQUIREMENTS & STATEMENT REQUIREMENTS	10
6.	CONDUCTED EMISSION TEST	11
	6.1 Test Standard and Limit	11
	6.2 Test Setup	11
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	12
	6.5 EUT Operating Mode	
	6.6 Test Data	12
7.	RADIATED EMISSION TEST	13
	7.1 Test Standard and Limit	13
	7.2 Test Setup	14
	7.3 Test Procedure	14
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
9.	PHOTOGRAPHS - TEST SETUP	29
ATTA	CHMENT A CONDUCTED EMISSION DATA (AC MAINS)	31
ATTA	CHMENT ARADIATED EMISSION TEST DATA	33

Report No.: TBR-C-202405-0316-8 Page: 3 of 38

Revision History

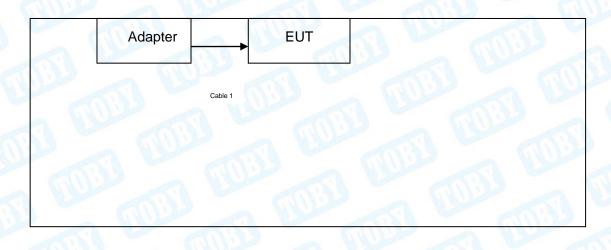
Report No.	Version	Description	Issued Date
TBR-C-202405-0316-8	Rev.01	Initial issue of report	2024-09-09
RUDD I	(and)	and and a	The
No Contraction		TID TUDE	A U
and the second	10.61		and a
B COD			
TOP TO	0.20		TUDY
	2 6	mobil mobil	
TOP OF TO	T	ROBU	COLO IN
		TUBY TOPY	A CUL
Upper the	MBI	TOB!	
	5	BJ FUEL	

1. General Information

1.1 Client Information

Applicant	N.	Guangdong Juan Intelligent Technology Joint Stock Co., Ltd.		
Address	 THE FIRST AND SECOND FLOORS OF BUILDING 2 (PLANT NO.2), WEST SIDE OF SHANXI VILLAGE, DASHI STREET, PANYU DISTRICT, GUANGZHOU, China 			
Manufacturer		Guangdong Juan Intelligent Technology Joint Stock Co., Ltd.		
Address THE FIRST AND SECOND FLOORS OF BUILDING 2 (PLANT NO.2), WEST SIDE OF SHANXI VILLAGE, DASHI STREET, PANYU DISTRICT, GUANGZHOU, China				

1.2 General Description of EUT (Equipment Under Test)


:	X30, Q203A-G, BP-HSD2241-A-4G-EU-Tuya, BP-HSD2241-A-4G-EN-Tuya, BP-HSD2241-A-4G-US-Tuya All these models are identical in the same PCB layout and electrical circuit, the only difference is that appearance. ≥108MHz	
•	electrical circuit, the only difference is that appearance.	
1		
-	USB Input: DC 5V1A or DC 3.7V 18000mAh by rechargeable Li-ion battery	
Software Version : V4.1.11.0		
1	V313P	
20	🗌 Class A 🛛 Class B	
	_	

Class A Equipment: the Equipment is not intended primarily for use in a residential environment.

Class B Equipment: the Equipment is intended primarily for use in a residential environment. **Fx:** Highest frequency generated or used in the device or on which the device operates or tunes (MHz).

1.3 Block Diagram Showing The Configuration of System Tested

1.4 Description of Support Units

Equipment Information					
Name	Model	S/N	Manufacturer	Used " √ "	
Adapter	CS-1201000			\checkmark	
Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note	
BD				····· (1)	
emark. The adapter is provided by the Applicant					

Remark: The adapter is provided by the Applicant.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Pretest Mode	Description
Mode 1	Working Mode

For C	Conducted Test			
Final Test ModeDescriptionMode 1Working Mode				
Final Test Mode Description				
Mode 1	Working Mode			
For Radiate	ed Test(Above 1GHz)			
Mode 1	Working Mode			
Note:X30 and Q203A-G are identic circuit, the only difference is that a Test(Below 1GHz)	cal in the same PCB layout and electrical ppearance, did a difference test For Radiated			

1.6 Test standards

The objective is to determine compliance with FCC Part 15, Subpart B, and section 15.107, 15.109 rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.7 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

1.8 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	\pm 3.50 dB \pm 3.10 dB	\pm 4.0 dB \pm 3.6 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.50 dB	N/A
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB	\pm 5.2 dB

2. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+

3. Test Summary

Test Requirement	Test Method	Result
FCC 47 CFR Part 15 Section 15.107	ANSI C63.4-2014	Pass
FCC 47 CFR Part 15 Section 15.109	ANSI C63.4-2014	Pass
	FCC 47 CFR Part 15 Section 15.107	FCC 47 CFR Part 15 Section 15.107 ANSI C63.4-2014 FCC 47 CFR Part 15 Section 15.107 ANSI

4. Test Equipment Used and Test Site

Test Site						
No.	Test Site	Manufacturer	Specification	Used		
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	\checkmark		
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	X		
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X		
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	\checkmark		

Conducted Emis	sion Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024	
RF Switching Unit	Compliance Direction Systems Inc			Jun. 20, 2023	Jun. 19, 2024	
AMN	SCHWARZBECK	CHWARZBECK NNBL 8226-2		Jun. 20, 2023	Jun. 19, 2024	
LISN Rohde & Schwa		ENV216 101131		Jun. 20, 2023	Jun. 19, 2024	
Radiation Emiss	ion Test (B Site)	·				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024	
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024	

UR120					
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025	
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025	
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025	
Radiation Emiss						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025	
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2024	Feb.22, 2025	
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025	
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026	
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb.26, 2026	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026	
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024	
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024	
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024	

Report No.: TBR-C-202405-0316-8 Page: 10 of 38

5. Label Requirements & Statement Requirements

Class B

Label Requirements

Class B digital device subject to certification by the FCC shall carry a warning label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Class A

Statement Requirements

The operator's manual for a Class A digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates, uses, and can radiate radio frequency energy and, if not installed and uses in accordance with the instruction manual, may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

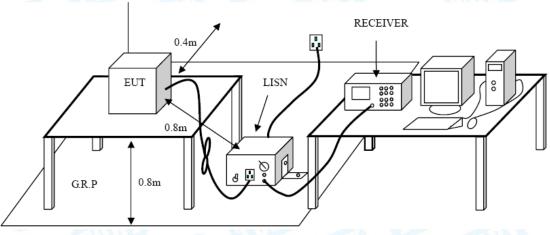
If the EUT was tested with special shielded cables the operator's manual for such product shall also contain the following statements or their equivalent:

* * * *

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

6. Conducted Emission Test

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.107
 - 6.1.2 Test Limit


Conducted Emission Test Limit (Class A)					
Frequency	Maximum RF Line Voltage (dBμV)				
(MHz)	Quasi-peak Level	Average Level			
0.15~0.50	79	66			
0.50~30	73	60			

Conducted Emission Test Limit (Class B)

Frequency	Maximum RF Line Voltage (dBμV)			
(MHz)	Quasi-peak Level	Average Level		
0.15~0.5	66 ~ 56 *	56 ~ 46 *		
0.50~5	56	46		
5~30	60	50		

*decreasing linearly with logarithm of the frequency

6.2 Test Setup

Report No.: TBR-C-202405-0316-8 Page: 12 of 38

6.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

- ●LISN at least 80 cm from nearest part of EUT chassis.
- •The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Not Applicable

6.6 Test Data

Please refer to the Attachment A.

7. Radiated Emission Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.109
 - 7.1.2 Test Limit

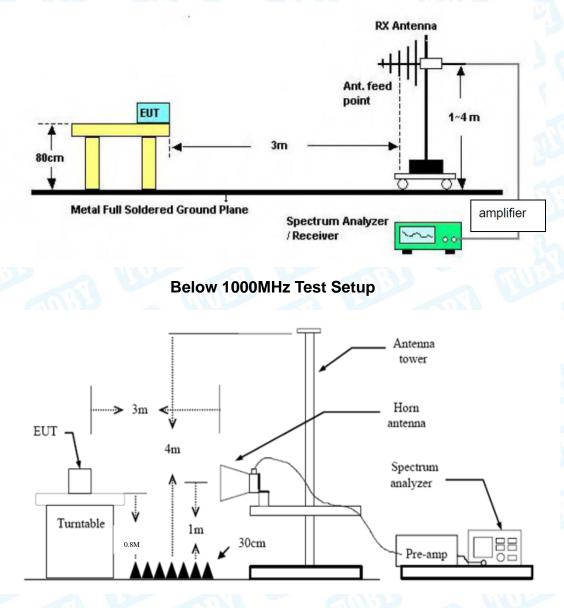
Radiated Emission Test Limit (Class A)					
Frequency MHz	Field Strengths Limits dB(µV/m)				
30 ~ 88	49.0				
88~216	53.5				
216 ~ 960	56.4				
Above 960	59.5				

Radiated Emission Test Limit (Class B)

Field Strengths Limits dB(μV/m)		
40.0		
43.5		
46.0		
54.0		

* The lower limit shall apply at the transition frequency.

* The test distance is 3m.


	Class A Radiated Limit (dBµV/m)- Distance of 3 metres			
Frequency (MHz)	Linear Average Detector	Peak Detector		
>1000	59.5	79.5		
	Class B Radiated Limit (dBµV/m)-Distance of 3 metres			
Frequency (MHz)	Linear Average Detector	Peak Detector		
>1000	54	74		

Note:

Highest Frequency Generated	Upper Frequency of
or Used in Device	Radiated Measurement
Below 1.705 MHz	No radiated testing required
1.705 MHz – 108 MHz	1 GHz
108 MHz – 500 MHz	2 GHz
500 MHz – 1 GHz	5 GHz
Above 1 GHz	5 th harmonic of the highest frequency or 40 GHz, whichever is
	lower.

7.2 Test Setup

Above 1GHz Test Setup

7.3 Test Procedure

The EUT was placed on the top of a rotating table which is 0.8 meters above the ground. EUT is set 3.0 meters away from the receiving antenna that mounted on a antenna tower. The table was rotated 360 degrees to determine the position of the highest radiation, the antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30MHz to 1000MHz. If the Peak Mode measured value compliance with and lower than quasi-peak mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. Measurements shall be made with a Peak and AVG measuring receiver in the frequency range Above 1000MHz.

7.4 Deviation From Test Standard No deviation

- 7.5 EUT Operating Mode Please refer to the description of test mode.
- 7.6 Test Data

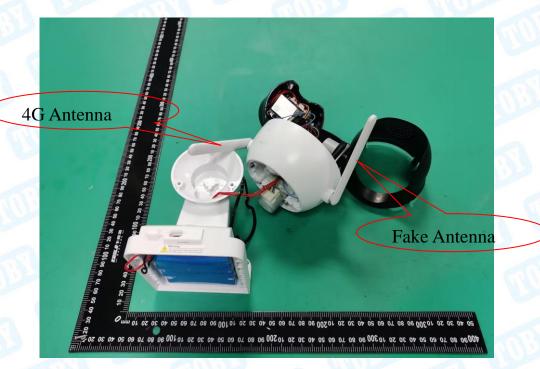
Please refer to the Attachment B.

Report No.: TBR-C-202405-0316-8 Page: 16 of 38

8. Photographs - Constructional Details

Model:X30 Photo 1 Appearance of EUT

Photo 2 Appearance of EUT



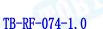

Report No.: TBR-C-202405-0316-8 Page: 17 of 38

Photo 3 Appearance of EUT

Photo 4 Internal of EUT

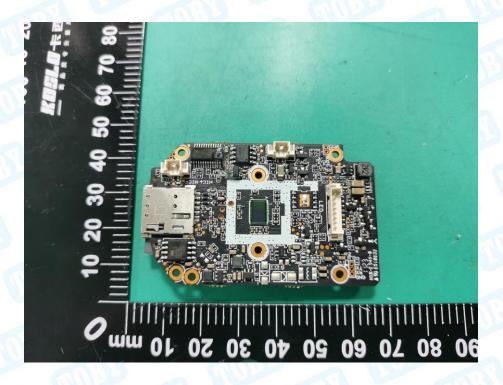
Photo 6 Internal of EUT

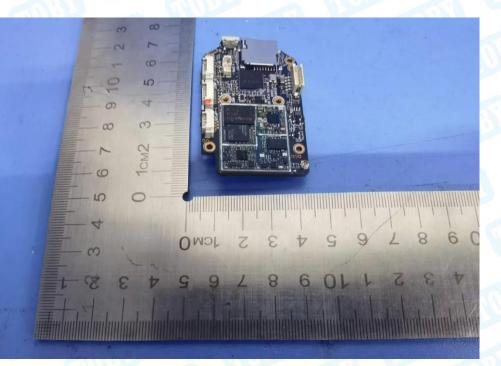
Photo 5 Internal of EUT

Report No.: TBR-C-202405-0316-8 Page: 18 of 38

Report No.: TBR-C-202405-0316-8 Page: 19 of 38

Photo 7 Internal of EUT

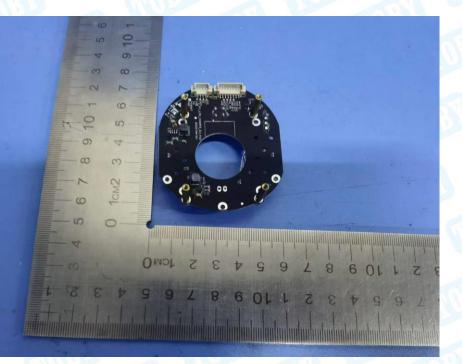

Photo 8 Appearance of PCB



Report No.: TBR-C-202405-0316-8 Page: 20 of 38

Photo 9 Appearance of PCB

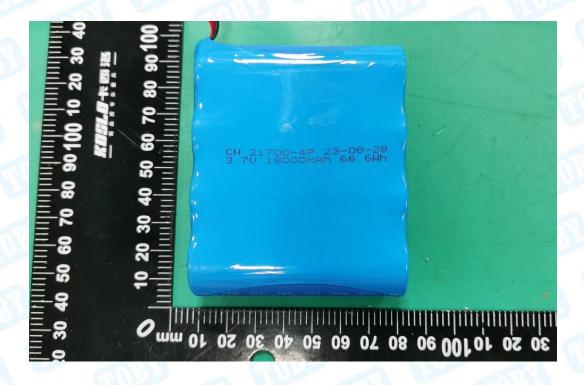
Photo 10 Appearance of PCB



Report No.: TBR-C-202405-0316-8 Page: 21 of 38

Photo 11 Appearance of PCB

Photo 12 Appearance of PCB



Report No.: TBR-C-202405-0316-8 Page: 22 of 38

Photo 13 Appearance of battery

Report No.: TBR-C-202405-0316-8 Page: 23 of 38

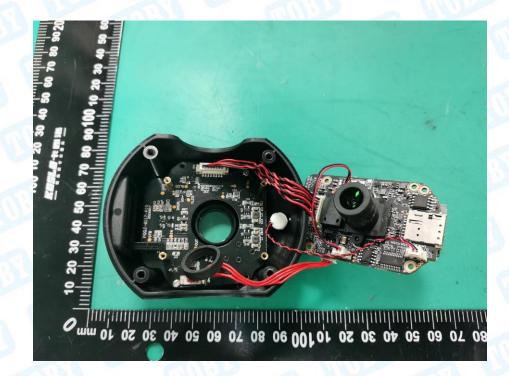
Model: Q203A-G Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Report No.: TBR-C-202405-0316-8 Page: 24 of 38

Photo 3 Appearance of EUT

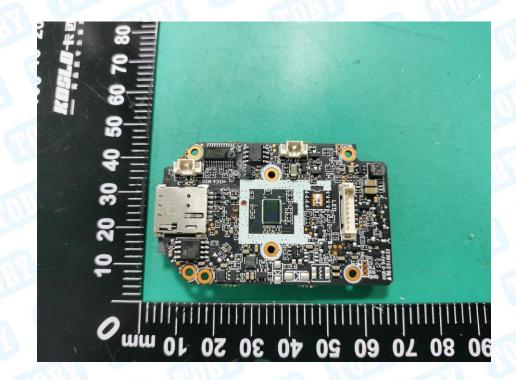
Photo 4 Internal of EUT



Report No.: TBR-C-202405-0316-8 Page: 25 of 38

Photo 5 Internal of EUT

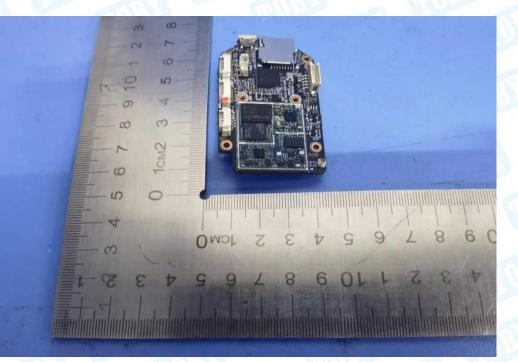
Photo 6 Internal of EUT



Report No.: TBR-C-202405-0316-8 Page: 26 of 38

Photo 7 Appearance of PCB

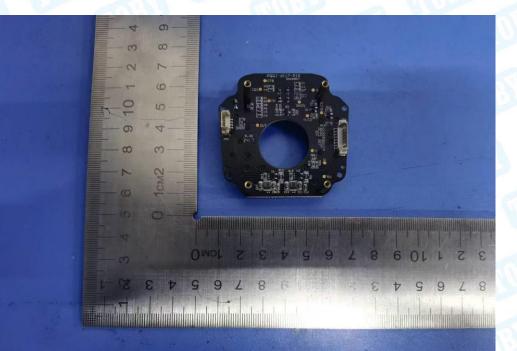
Photo 8 Appearance of PCB



Report No.: TBR-C-202405-0316-8 Page: 27 of 38

Photo 9 Appearance of PCB

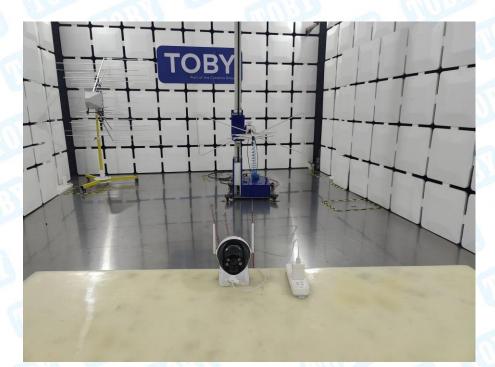
Photo 10 Appearance of PCB



Report No.: TBR-C-202405-0316-8 Page: 28 of 38

Photo 11 Appearance of PCB

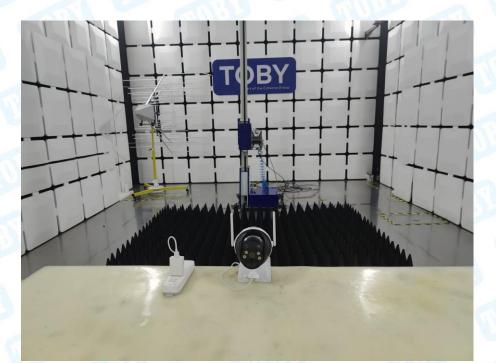
Photo 12 Appearance of PCB


Report No.: TBR-C-202405-0316-8 Page: 29 of 38

9. Photographs - Test Setup

Conducted Emission Test Setup

Radiated Emission Test Setup-Below 1G-X30

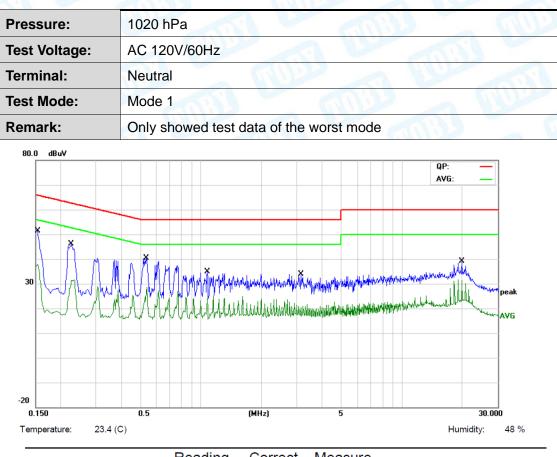


Radiated Emission Test Setup-Below 1G-Q203A-G

Radiated Emission Test Setup-Above 1G

Attachment A-- Conducted Emission Data (AC Mains)

Pressure:	1020 hPa
Fest Voltage:	AC 120V/60Hz
Ferminal:	Line
Fest Mode:	Mode 1
Remark:	Only showed test data of the worst mode
	QP: AVG:
-20 0.150	0.5 (MHz) 5 30.000
	4 (C) Humidity: 48 % Reading Correct Measure-


No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBu∨	dBuV	dB	Detector
1	0.1508	37.56	10.46	48.02	65.95	-17.93	QP
2	0.1508	24.11	10.46	34.57	55.95	-21.38	AVG
3	0.2260	33.74	10.25	43.99	62.59	-18.60	QP
4	0.2260	20.73	10.25	30.98	52.59	-21.61	AVG
5 *	0.5340	27.59	10.58	38.17	56.00	-17.83	QP
6	0.5340	16.77	10.58	27.35	46.00	-18.65	AVG
7	0.7660	23.39	10.27	33.66	56.00	-22.34	QP
8	0.7660	10.55	10.27	20.82	46.00	-25.18	AVG
9	3.1460	26.18	10.59	36.77	56.00	-19.23	QP
10	3.1460	17.07	10.59	27.66	46.00	-18.34	AVG
11	19.8860	19.61	11.14	30.75	60.00	-29.25	QP
12	19.8860	12.59	11.14	23.73	50.00	-26.27	AVG

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

_	Nia	N 41.	F	Reading	Correct	Measure-	Limit	Over	
_	NO.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
-	1	*	0.1539	38.42	10.44	48.86	65.78	-16.92	QP
_	2		0.1539	24.78	10.44	35.22	55.78	-20.56	AVG
-	3		0.2260	33.15	10.25	43.40	62.59	-19.19	QP
_	4		0.2260	20.83	10.25	31.08	52.59	-21.51	AVG
-	5		0.5340	26.08	10.58	36.66	56.00	-19.34	QP
-	6		0.5340	16.78	10.58	27.36	46.00	-18.64	AVG
_	7		1.0740	20.55	10.48	31.03	56.00	-24.97	QP
_	8		1.0740	11.21	10.48	21.69	46.00	-24.31	AVG
_	9		3.1460	18.98	10.59	29.57	56.00	-26.43	QP
-	10		3.1460	9.91	10.59	20.50	46.00	-25.50	AVG
-	11		19.8859	17.87	11.14	29.01	60.00	-30.99	QP
_	12		19.8859	11.51	11.14	22.65	50.00	-27.35	AVG
Rem	ark:								

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment A--Radiated Emission Test Data

----Below 1G

est Voltage:	AC 120V/60Hz		COBL	
nt. Pol.	Horizontal	aue	2 4	5
est Mode:	Mode 1 (X30)	COD:		
emark:	Only showed test da	ata of the worst mod	le.	~
80.0 dBuV/m				
70		2 2 X	FCC 15B 3M Radiation Margin -6 dB	"w ^{imi} pea
0 -10 -20				
30.000	60.00	(MHz) 300	.00 1	000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	105.2718	53.90	-25.92	27.98	43.50	-15.52	peak
2	184.4898	60.70	-24.37	36.33	43.50	-7.17	peak
3 *	199.9856	64.10	-24.67	39.43	43.50	-4.07	peak
4	327.8873	<u>59.08</u>	-20.70	38.38	46.00	-7.62	peak
5	383.9318	50.64	-19.48	31.16	46.00	-14.84	peak
6	651.9417	45.44	-14.51	30.93	46.00	-15.07	peak

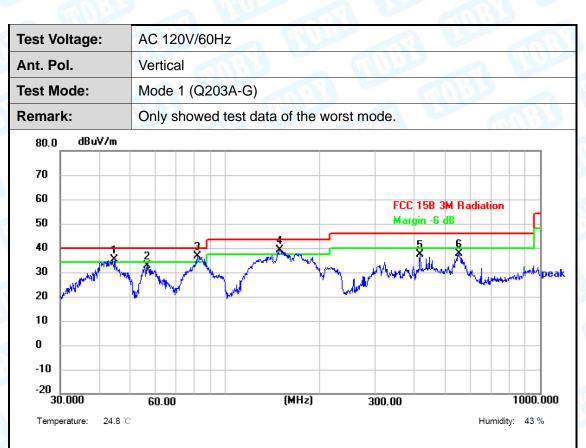
Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 !	82.6482	62.23	-27.51	34.72	40.00	-5.28	peak
2	103.8055	60.71	-25.67	35. <mark>0</mark> 4	43.50	-8.46	peak
3	148.9625	56.86	-20.91	35.95	43.50	-7.55	peak
4 *	169.5990	61.91	-22.21	39.70	43.50	-3.80	peak
5	199.9856	61.98	-24.67	37.31	43.50	-6.19	peak
6	550.9480	48.58	-14.54	34.04	46.00	-11.96	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)



est Voltage:	AC 120V/60Hz	
nt. Pol.	Horizontal	NUL-
est Mode:	Mode 1 (Q203A-G)	
emark:	Only showed test data of the worst mode.	
80.0 dBuV/m	1	
70 60 50 40 30 20 10 -10 -20		In F
30.000	60.00 (MHz) 300.00	1000.000
Temperature: 24.8 °C	E Hum	iidity: 43 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	84.9993	63.45	-27.10	36.35	40.00	-3.65	peak
2	122.4040	59.45	-23.34	36.11	43.50	-7.39	peak
3!	148.4410	60.35	-21.07	39.28	43.50	-4.22	peak
4 !	170.7926	61.64	-22.40	39.24	43.50	-4.26	peak
5 !	235.8163	64.67	-24.05	40.62	46.00	-5.38	peak
6	550.9480	49.98	-14.54	35.44	46.00	-10.56	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 !	44.7433	58.89	-23.77	35.12	40.00	-4.88	peak
2	56.7917	56.79	-24.28	32.51	40.00	-7.49	peak
3 *	81.7832	63.79	-27.28	36.51	40.00	-3.49	peak
4 !	149.4857	60.17	-21.05	39.12	43.50	-4.38	peak
5	416.1791	55.79	-18.40	37.39	46.00	-8.61	peak
6	554.8254	52.05	-14.29	37.76	46.00	-8.24	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

TOBY Part of the Cotecna Group

---- Above 1G

Test Vo	oltage:	AC 1	20V/6	60Hz		The second	3	6	100			3		
Ant. Po	ol.	Horiz	zontal			22	-	RY		5	5	32		
Test M	ode:	Mod	e 1											
Remar	Remark: Only showed the worst test data.													
90.0	dBuV/m													
80 -						FCC PAI	RT 15B 3	M Radiation ((PEAK)		_			
70														
60						FCC PA	RT 158 3	M Radiation (/	AVG1		_			
50			1.0.1		And the second		. ala Maria	Washing and the spinking		1 A A A A A A A A A A A A A A A A A A A	www.p			
40	. marging	yound	and the second	AND A DAY	2	And the second second	and when the second sec	en mon	A STATE OF A	Name	~~~A	VG		
30	my monuned	hanne												
20	·													
10														
0														
-10	0.000	6100.00	<u></u>		200.000(MI	1_)	10			20	500.0			
100		6100.00	00		200.000(Mr	12)	10	850.000			54 %	00		
Temper	ature: 26 °C								Hum	hidity:		00		
Temper			Pag	ding	Factor			Limit		nidity:	54 %	00		
Temper NO.	Frequer (MHz			ding uV)	Factor (dB/m)		evel uV/m)	Limit (dBuV/m	Marg	gin	Dete			
	Frequer)	(dB	U) (dB			Marg	gin 3)		ctor		

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4.The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highe st fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 6GHz -26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

Test V	oltage:	AC	120V/6	0Hz						
Ant. P	ol.	Ver	tical	1		13.00	-	21		
est M	lode:	Мо	de 1	105	53	~	CIT.			6.50
lemar	′k:	On	y show	ed the	worst te	st data.		5	NOD	
90.0	dBuV/n	n								
80 70						FCC PAF	T 15B 3	M Radiation	(PEAK)	
60						FCC PAF	T 15B 3N	Radiation		white yopeak
50 40 30	al der marter where a	property of service	Allemont aller and	all for the second	ware weeks	Constanting of the second	and the second second		Matheway and a start	AVG
30 20							-			
10 0										
							100	F0 000		
-10 1(000.000	6100.	000	112	200.000(MI	lzj	188	50.000		26500.000
10	000.000 erature: 26		000	112	:UU. UUU (MI	lzj	188	50.000	Humidi	26500.000 ty: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	13495.000	38.00	12.18	50.18	74.00	-23.82	peak
2 *	13571.500	27.77	12.25	40.02	54.00	-13.98	AVG

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4.The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the high est fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 6G Hz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

----END OF THE REPORT-----