

FCC Radio Test Report FCC ID: 2BH7FC530WS

Report No. : BTL-FCCP-5-2407G080B

: Outdoor Pan/Tilt Security Wi-Fi Camera Equipment

Model Name : Tapo C530WS

Brand Name : tp-link

Applicant : TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Manufacturer : TP-Link Systems Inc.

: 10 Mauchly, Irvine, CA 92618 Address

Radio Function : WLAN 2.4 GHz

: FCC CFR Title 47, Part 15, Subpart C (15.247) FCC Rule Part(s) : ANSI C63.10-2013

Measurement

Procedure(s)

: 2024/9/23

Date of Receipt Date of Test : 2024/10/01 ~ 2024/10/24

Issued Date : 2024/12/10

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Poken Huang, Engineer

Poken Gluon

Approved by

Peter Chen, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2407G080B Page 2 of 86 Report Version: R0

CONTENTS 1 SUMMARY OF TEST RESULTS 6 7 1.1 **TEST FACILITY** MEASUREMENT UNCERTAINTY 7 1.2 1.3 TEST ENVIRONMENT CONDITIONS 7 1.4 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 2.1 **DESCRIPTION OF EUT** 9 **TEST MODES** 2.2 11 2.3 PARAMETERS OF TEST SOFTWARE 11 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 12 2.5 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 3.1 LIMIT 13 **TEST PROCEDURE** 13 3.2 3.3 **DEVIATION FROM TEST STANDARD** 13 **TEST SETUP** 14 3.4 3.5 **TEST RESULT** 14 RADIATED EMISSIONS TEST 15 4 4.1 LIMIT 15 4.2 **TEST PROCEDURE** 16 4.3 **DEVIATION FROM TEST STANDARD** 16 **TEST SETUP** 4.4 16 4.5 **EUT OPERATING CONDITIONS** 17 TEST RESULT - 9KHZ TO 30 MHZ 4.6 18 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.8 TEST RESULT - ABOVE 1 GHZ 18 **BANDWIDTH TEST** 5 19 5.1 LIMIT 19 **TEST PROCEDURE** 5.2 19 5.3 **DEVIATION FROM TEST STANDARD** 19 5.4 **TEST SETUP** 19 5.5 **EUT OPERATING CONDITIONS** 19 5.6 **TEST RESULT** 19 **OUTPUT POWER TEST** 20 6 6.1 LIMIT 20 6.2 **TEST PROCEDURE** 20 6.3 **DEVIATION FROM TEST STANDARD** 20 **TEST SETUP** 6.4 20 **EUT OPERATING CONDITIONS** 6.5 20 6.6 **TEST RESULT** 20 7 POWER SPECTRAL DENSITY 21 7.1 LIMIT 21 7.2 **TEST PROCEDURE** 21 7.3 **DEVIATION FROM TEST STANDARD** 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATING CONDITIONS** 21 7.6 **TEST RESULT** 21

8	ANTENN	IA CONDUCTED SPURIOUS EMISSIONS TEST	22
8.1	LIMIT		22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	ATION FROM TEST STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT (OPERATING CONDITIONS	22
8.6	TEST	RESULT	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PHO	OTOS	25
ADDENID	157. 4	AO DOMED LINE CONDUCTED EMISSIONS	00
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	31
APPEND	IX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPEND	IX D	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPEND	IX E	BANDWIDTH	72
APPEND	IX F	OUTPUT POWER	77
APPEND	IX G	POWER SPECTRAL DENSITY	79
APPEND	IX H	ANTENNA CONDUCTED SPURIOUS EMISSIONS	82

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-5-2407G080B	R00	Original Report.	2024/12/2	Invalid
BTL-FCCP-5-2407G080B	R01	Modified the comments of ACB.	2024/12/10	Valid

Project No.: 2407G080B Page 5 of 86 Report Version: R0

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247(a)	Bandwidth	APPENDIX E	Pass	
15.247(b)	Output Power	APPENDIX F	Pass	
15.247(e)	Power Spectral Density	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2407G080B Page 6 of 86 Report Version: R0

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

(FCC DN: TW0659)

No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

□ CB20 □ TR01 □ C01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C01	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB20	1 GHz ~ 6 GHz	5.21
СВ20	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U
Occupied Bandwidth	86 %
Output power	0.8412 dB
Power Spectral Density	0.8602 dB
Conducted Spurious emissions	1.8304 dB
Conducted Band edges	1.8338 dB

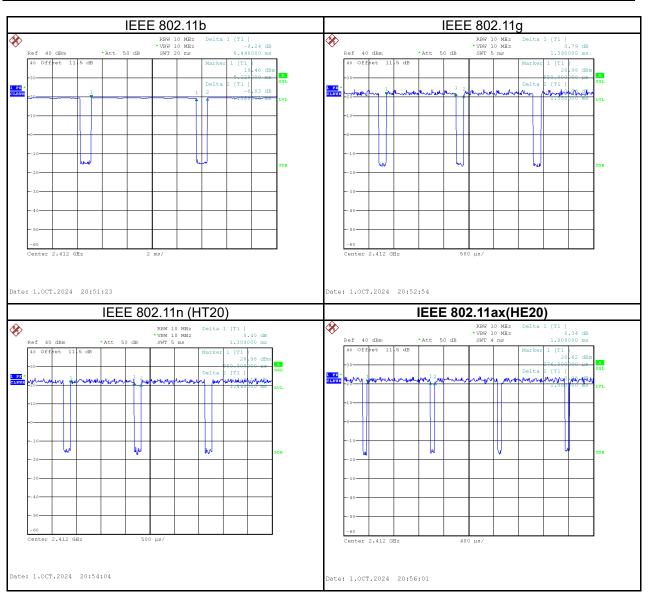
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Barry Tsui
Radiated emissions below 1 GHz	25°C, 65%	AC 120V	Barry Tsui
Radiated emissions above 1 GHz	25°C, 65%	AC 120V	Barry Tsui
Bandwidth	25°C, 88%	AC 120V	Cheng Tsai
Output Power	25°C, 88%	AC 120V	Cheng Tsai
Power Spectral Density	25°C, 88%	AC 120V	Cheng Tsai
Antenna conducted Spurious Emission	25°C, 88%	AC 120V	Cheng Tsai

Project No.: 2407G080B Page 7 of 86 Report Version: R0



1.4 DUTY CYCLE

If duty cycle is ≥ 98 %, duty factor is not required.

If duty cycle is < 98 %, duty factor shall be considered.

if daty cycle is \$ 50 %, daty factor shall be considered.							
Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)	1/On Time (B)
Mode	ON (ms)	Numbers (ON)	On Time (B) (ms)	Period (ON+OFF) (ms)	Duty Cycle (%)	Duty Factor (dB)	1/B Minimum VBW (kHz)
IEEE 802.11b	8.440	1	8.440	9.320	90.56%	0.43	0.118
IEEE 802.11g	1.390	1	1.390	1.550	89.68%	0.47	0.719
IEEE 802.11n (HT20)	1.300	1	1.300	1.440	90.28%	0.44	0.769
IEEE 802.11ax (HEW20)	1.008	1	1.008	1.080	93.33%	0.30	0.992

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment		
Brand Name tp-link	Equipment	Outdoor Pan/Tilt Security Wi-Fi Camera
Model Difference N/A Power Source DC voltage from AC adapter. Model: T090085-2B1 Power Rating I/P: 100-240V∼ 50/60Hz 0.3A O/P: 9V = 0.85A HW Version 2.0 SW Version 2.0 Operation Band 2400 MHz ~ 2483.5 MHz Operation Frequency 2412 MHz ~ 2462 MHz IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11p: 19.76 dBm (0.0946 W) IEEE 802.11p: 19.86 dBm (0.0946 W) IEEE 802.11p: 19.75 dBm(0.0944 W) IEEE 802.11ax: (HE20): 19.65 dBm(0.0923 W) IEEE 802.11ax: (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	Model Name	Tapo C530WS
DC voltage from AC adapter.	Brand Name	tp-link
Power Source	Model Difference	N/A
Model: 1090085-2B1	Dower Source	DC voltage from AC adapter.
HW Version 2.0	Power Source	Model: T090085-2B1
SW Version 2.0	Power Rating	I/P: 100-240V~ 50/60Hz 0.3A O/P: 9V===0.85A
Operation Band 2400 MHz ~ 2483.5 MHz Operation Frequency 2412 MHz ~ 2462 MHz IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	HW Version	2.0
Operation Frequency 2412 MHz ~ 2462 MHz	SW Version	2.0
IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA	Operation Band	2400 MHz ~ 2483.5 MHz
IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA	Operation Frequency	2412 MHz ~ 2462 MHz
IEEE 802.11n: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA		IEEE 802.11b: DSSS
Transfer Rate IEEE 802.11ax: OFDM	Modulation Toobhology	IEEE 802.11g: OFDM
Transfer Rate IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version	Iniodulation rechilology	
Transfer Rate IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample		IEEE 802.11ax: OFDMA
IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) IEEE S02.11ax (HE20): 19.65 dBm(0.0923 W) IEEE Model Tapo C530WS Sample Status Engineering Sample		
IEEE 802.11n: up to 72.2 Mbps IEEE 802.11ax: up to 143.4 Mbps IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	Transfer Rate	
Maximum Output Power IEEE 802.11b: 19.76 dBm (0.0946 W) IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	Transier rate	· · · · · · · · · · · · · · · · · · ·
Maximum Output Power IEEE 802.11g: 19.86 dBm (0.0968 W) IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W) Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample		
IEEE 802.11n (HT20): 19.75 dBm(0.0944 W) IEEE 802.11ax (HE20): 19.65 dBm(0.0923 W)		
Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	Maximum Output Power	
Test Software Version AltobeamWLANFacility_V1.0.19 Test Model Tapo C530WS Sample Status Engineering Sample	Maximum Catput Fower	
Test Model Tapo C530WS Sample Status Engineering Sample		
Sample Status Engineering Sample		
IEUT Modification(s) IN/A		
	EUT Modification(s)	IN/A

NOTE

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

(Z) Onamici List.					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Project No.: 2407G080B Page 9 of 86 Report Version: R0

(3) Table for Filed Antenna:

Antenna	Manufacture	Model Name	Type	Connector	Gain (dBi)
1	TP-Link Systems Inc.	Tapo C520WS	dipole	N/A	0.5
2	TP-Link Systems Inc.	Tapo C520WS	dipole	N/A	0.5

Note: Smart antenna system with two transmit/receive chains, but operating in a mode where only one transmit/receive chain is used.

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Project No.: 2407G080B Page 10 of 86 Report Version: R0

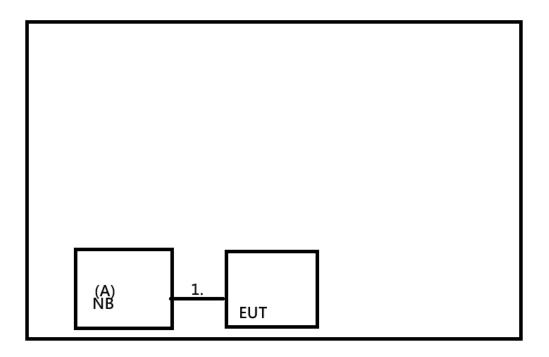
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	IEEE 802.11g	11	-
	IEEE 802.11b		
Transmitter Radiated Emissions	IEEE 802.11g	01/11	Pandadaa
(above 1GHz)	IEEE 802.11n (HT20)	01/11	Bandedge
	IEEE 802.11ax (HE20)		
	IEEE 802.11b		
Transmitter Radiated Emissions	IEEE 802.11g	04/06/44	Harmania
(above 1GHz)	IEEE 802.11n (HT20)	01/06/11	Harmonic
	IEEE 802.11ax (HE20)		
Transmitter Radiated Emissions (above 18GHz)	IEEE 802.11g	11	-
Bandwidth &	IEEE 802.11b		
Output Power &	IEEE 802.11g	01/06/11	
Power Spectral Density &	IEEE 802.11n (HT20)	01/06/11	-
Antenna conducted Spurious Emission	IEEE 802.11ax (HE20)		

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (3) For radiated emission below 1 GHz and above 18GHz test, the IEEE 802.11g Mode Channel 11 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE


Test Software Version	AltobeamWLANFacility_V1.0.19				
Frequency (MHz)	2412	2437	2462		
IEEE 802.11b	19	19	19		
IEEE 802.11g	20	19	19		
IEEE 802.11n(HT20)	20	19	19		
IEEE 802.11ax(HE20)	20	18.5	18		

Project No.: 2407G080B Page 11 of 86 Report Version: R0

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	Lenovo	ThinkBook 14 G4 IAP	MP28KHAH	Furnished by test lab

Ite	em	Shielded	Ferrite Core	Length	Cable Type	Remarks
	1	YES	NO	0.3m	USB Cable	Supplied by test requester

Project No.: 2407G080B Page 12 of 86 Report Version: R0

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBuV)		Correct Factor (dB)		Measurement Value (dBuV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBuV)		(dBuV)		(dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

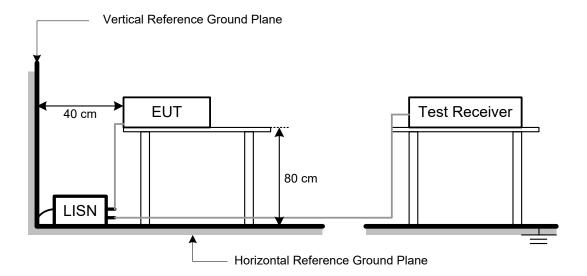
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2407G080B Page 13 of 86 Report Version: R0

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Ziiiii G Gi Tu Bii (128 Zivii GGi Gi 14	ENVITO OF TO ABILITIES ENVIOLENCE MEXICON ENVITOR TO THE TOTAL TOT					
Frequency	Field Strength	Measurement Distance				
(MHz)	(microvolts/meter)	(meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
960~1000	500	3				

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency		Emissions V/m)	Measurement Distance
(MHz)	Peak Average		(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

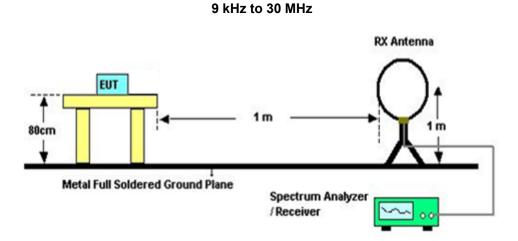
Reading Level		Correct Factor		Measurement Value
(dBuV)		(dB/m)		(dBuV/m)
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
(dBuV/m)		(dBuV/m)		(dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

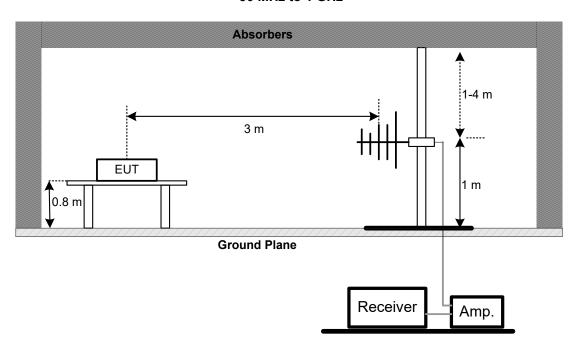
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2407G080B Page 15 of 86 Report Version: R0

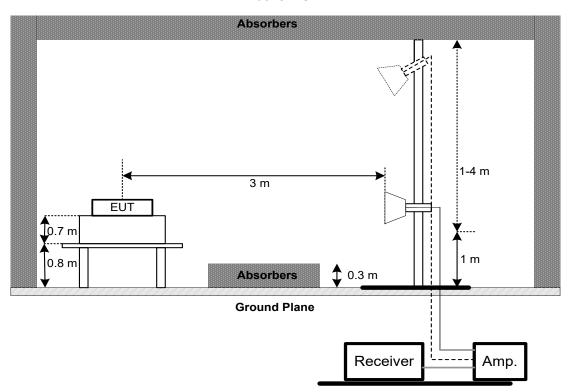

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

NOTE:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: BTL-FCCP-5-2407G080B 4.6 TEST RESULT - 9kHz TO 30 MHz Please refer to the APPENDIX B. 4.7 TEST RESULT - 30 MHZ TO 1 GHZ Please refer to the APPENDIX C. 4.8 TEST RESULT - ABOVE 1 GHZ Please refer to the APPENDIX D. NOTE: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2407G080B Page 18 of 86 Report Version: R0

5 BANDWIDTH TEST

5.1 LIMIT

Section	Test Item	Limit
15.247(a)	6 dB Bandwidth	500 kHz

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

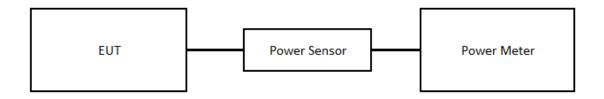
Please refer to the APPENDIX E.

6 OUTPUT POWER TEST

6.1 LIMIT

Section	Test Item	Limit
15.247(b)	Maximum Output Power	1 Watt or 30dBm

6.2 TEST PROCEDURE


- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
 The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and

6.3 DEVIATION FROM TEST STANDARD

shall use a fast-responding diode detector.

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX F.

Project No.: 2407G080B Page 20 of 86 Report Version: R0

7 POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX G.

Project No.: 2407G080B Page 21 of 86 Report Version: R0

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX H.

Project No.: 2407G080B Page 22 of 86 Report Version: R0

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Two-Line V-Network	R&S	ENV216	101051	2024/6/26	2025/6/25
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2023/12/11	2024/12/10
3	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Pre-Amplifier	EMCI	EMC184045SE	980512	2023/12/11	2024/12/10
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	340	2024/6/27	2025/6/26
3	Test Cable	EMCI	EMC102-KM-KM- 1000	220328	2023/12/11	2024/12/10
4	Test Cable	EMCI	EMC101G-KM-K M-3000	220330	2023/12/11	2024/12/10
5	Broad-Band Horn Antenna	RFSPIN	DRH18-E	210109A18E	2024/1/10	2025/1/9
6	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10
7	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10
8	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10
9	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2023/12/11	2024/12/10
10	EXA Spectrum Analyzer	keysight	N9010A	MY56480554/016	2024/9/13	2025/9/12
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01207	2023/12/18	2024/12/17
12	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26
13	Pre-Amplifier	EMCI	EMC001330-202 01222	980807	2023/12/11	2024/12/10
14	Test Cable	EMCI	EMC-8D-NM-NM -5000	150106	2023/12/11	2024/12/10
15	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2023/12/11	2024/12/10
16	Test Cable	EMCI	EMC-CFD-400-N M-NM-3300	200343	2023/12/11	2024/12/10
17	Loop Ant.	Electro-Metrics	EMCI-LPA600	274	2024/7/5	2025/7/4
18	Pre-Amplifler	EMCI	EMC001340	980555	2023/12/1	2024/11/30
19	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A

	Bandwidth					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A

	Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	USB Peak Power Sensor	Anritsu	MA24408A	12589	2023/10/25	2024/10/24
2	20dbAttenuator	INMET	AHC-20dB	1	N/A	N/A
3	Measurement Software	Anritsu	MA2440A Peak Power analyzer (Ver1.1.0.0)	N/A	N/A	N/A

	Power Spectral Density					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A

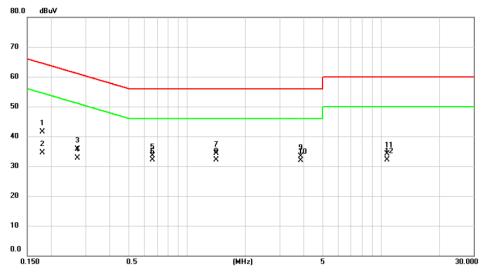
	Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26	
2	10dbAttenuator	INMET	AHC-10dB	1	N/A	N/A	
3	BTL-Conducred Test	N/A	1247788684	N/A	N/A	N/A	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2407G080B Page 24 of 86 Report Version: R0

10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2407G080B-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2407G080B-2 (APPENDIX-EUT PHOTOS).

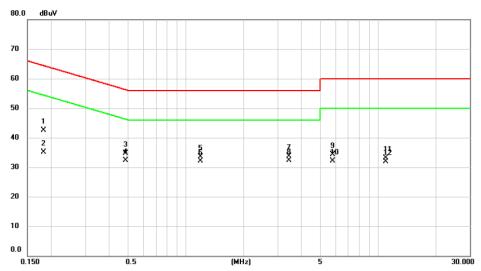
Project No.: 2407G080B Page 25 of 86 Report Version: R0



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2407G080B Page 26 of 86 Report Version: R0

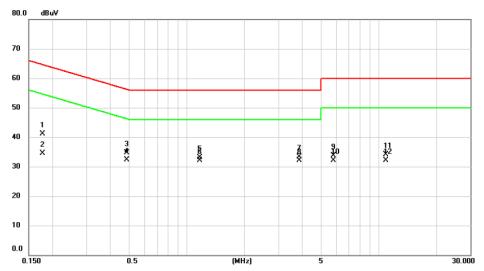
1				I
	Test Mode	Normal	Tested Date	2024/10/4
	Test Frequency	-	Phase	Line


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1797	31.89	9.64	41.53	64.50	-22.97	QP	
2	0.1797	24.94	9.64	34.58	54.50	-19.92	AVG	
3	0.2725	26.02	9.64	35.66	61.04	-25.38	QP	
4	0.2725	23.13	9.64	32.77	51.04	-18.27	AVG	
5	0.6620	23.93	9.67	33.60	56.00	-22.40	QP	
6	0.6620	22.42	9.67	32.09	46.00	-13.91	AVG	
7	1.4135	24.54	9.73	34.27	56.00	-21.73	QP	
8 *	1.4135	22.37	9.73	32.10	46.00	-13.90	AVG	
9	3.8615	23.40	9.86	33.26	56.00	-22.74	QP	
10	3.8615	22.14	9.86	32.00	46.00	-14.00	AVG	
11	10.7250	24.10	10.05	34.15	60.00	-25.85	QP	
12	10.7250	22.03	10.05	32.08	50.00	-17.92	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 27 of 86 Report Version: R0

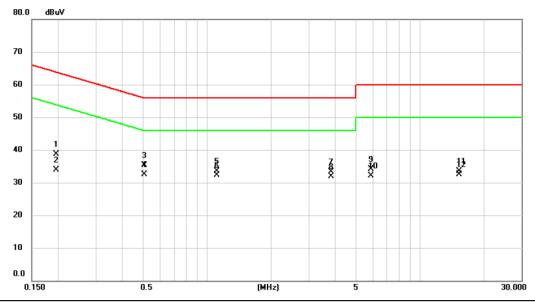
Test Mode	Normal	Tested Date	2024/10/4
Test Frequency	-	Phase	Neutral


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1822	32.95	9.63	42.58	64.38	-21.80	QP	
2		0.1822	25.44	9.63	35.07	54.38	-19.31	AVG	
3		0.4867	24.97	9.64	34.61	56.22	-21.61	QP	
4		0.4867	22.66	9.64	32.30	46.22	-13.92	AVG	
5		1.1930	23.70	9.71	33.41	56.00	-22.59	QP	
6		1.1930	22.48	9.71	32.19	46.00	-13.81	AVG	
7		3.4385	23.79	9.83	33.62	56.00	-22.38	QP	
8	*	3.4385	22.49	9.83	32.32	46.00	-13.68	AVG	
9		5.8000	24.36	9.92	34.28	60.00	-25.72	QP	
10		5.8000	22.28	9.92	32.20	50.00	-17.80	AVG	
11		10.9250	23.11	10.05	33.16	60.00	-26.84	QP	
12		10.9250	21.91	10.05	31.96	50.00	-18.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 28 of 86 Report Version: R0

				I
Tes	st Mode	Idle	Tested Date	2024/10/4
Tes	st Frequency	-	Phase	Line


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1776	31.43	9.64	41.07	64.60	-23.53	QP	
2		0.1776	24.87	9.64	34.51	54.60	-20.09	AVG	
3		0.4878	24.99	9.66	34.65	56.21	-21.56	QP	
4	*	0.4878	22.74	9.66	32.40	46.21	-13.81	AVG	
5		1.1660	23.48	9.71	33.19	56.00	-22.81	QP	
6		1.1660	22.47	9.71	32.18	46.00	-13.82	AVG	
7		3.8525	23.44	9.86	33.30	56.00	-22.70	QP	
8		3.8525	22.18	9.86	32.04	46.00	-13.96	AVG	
9		5.8000	23.75	9.92	33.67	60.00	-26.33	QP	
10		5.8000	22.19	9.92	32.11	50.00	-17.89	AVG	
11		10.8500	24.12	10.05	34.17	60.00	-25.83	QP	
12		10.8500	22.11	10.05	32.16	50.00	-17.84	AVG	

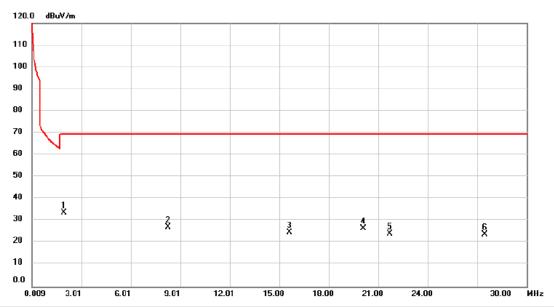
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 29 of 86 Report Version: R0

Test Mode	Idle	Tested Date	2024/10/4
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1958	29.11	9.63	38.74	63.79	-25.05	QP	
2		0.1958	24.19	9.63	33.82	53.79	-19.97	AVG	
3		0.5090	25.57	9.64	35.21	56.00	-20.79	QP	
4	*	0.5090	22.79	9.64	32.43	46.00	-13.57	AVG	
5		1.1120	23.75	9.70	33.45	56.00	-22.55	QP	
6		1.1120	22.54	9.70	32.24	46.00	-13.76	AVG	
7		3.8300	23.39	9.85	33.24	56.00	-22.76	QP	
8		3.8300	22.14	9.85	31.99	46.00	-14.01	AVG	
9		5.8750	24.26	9.92	34.18	60.00	-25.82	QP	
10		5.8750	22.25	9.92	32.17	50.00	-17.83	AVG	
11		15.3000	23.36	10.16	33.52	60.00	-26.48	QP	
12		15.3000	22.36	10.16	32.52	50.00	-17.48	AVG	

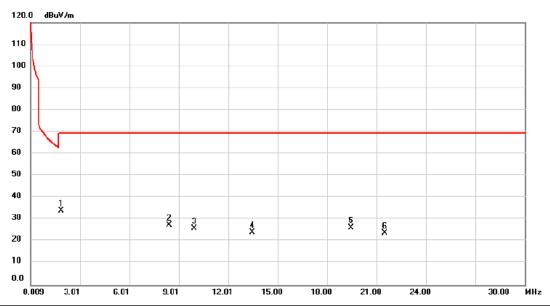
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



APPENDIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2407G080B Page 31 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%



No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 '	*	1.9584	37.36	-3.50	33.86	69.54	-35.68	peak	
2		8.2565	31.03	-3.87	27.16	69.54	-42.38	peak	
3		15.6343	29.47	-4.76	24.71	69.54	-44.83	peak	
4		20.1030	31.05	-4.55	26.50	69.54	-43.04	peak	
5		21.6924	29.60	-5.53	24.07	69.54	-45.47	peak	
6		27.4508	29.88	-6.16	23.72	69.54	-45.82	peak	

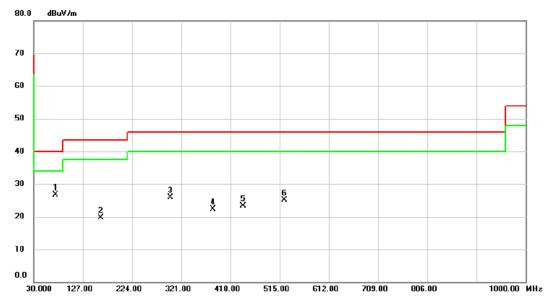
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	1.8684	37.41	-3.25	34.16	69.54	-35.38	peak	
2		8.4065	31.30	-3.92	27.38	69.54	-42.16	peak	
3		9.9660	30.11	-4.13	25.98	69.54	-43.56	peak	
4		13.4450	28.56	-4.41	24.15	69.54	-45.39	peak	
5		19.4432	30.58	-4.45	26.13	69.54	-43.41	peak	
6		21.5125	29.29	-5.39	23.90	69.54	-45.64	peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

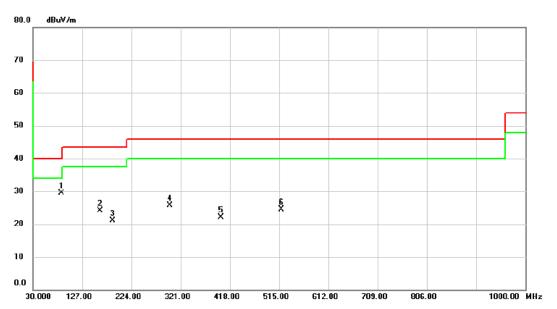
Project No.: 2407G080B Page 33 of 86 Report Version: R0



APPENDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2407G080B Page 34 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/24		
Test Frequency	2462MHz	Polarization	Vertical		
Temp	25°C	Hum.	65%		



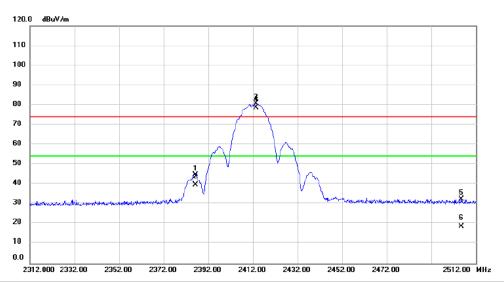
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	72.6800	41.01	-14.32	26.69	40.00	-13.31	peak	
2		162.8900	30.94	-11.26	19.68	43.50	-23.82	peak	
3		299.6600	36.13	-10.25	25.88	46.00	-20.12	peak	
4		384.0500	30.28	-7.93	22.35	46.00	-23.65	peak	
5		443.2200	29.58	-6.20	23.38	46.00	-22.62	peak	
6		524.7000	29.88	-4.73	25.15	46.00	-20.85	peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/10/24
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	86.2600	46.27	-16.86	29.41	40.00	-10.59	peak	
2		162.8900	35.31	-11.26	24.05	43.50	-19.45	peak	
3		187.1400	34.55	-13.44	21.11	43.50	-22.39	peak	
4		299.6600	36.04	-10.25	25.79	46.00	-20.21	peak	
5		400.5400	29.55	-7.47	22.08	46.00	-23.92	peak	
6		519.8500	29.34	-4.83	24.51	46.00	-21.49	peak	

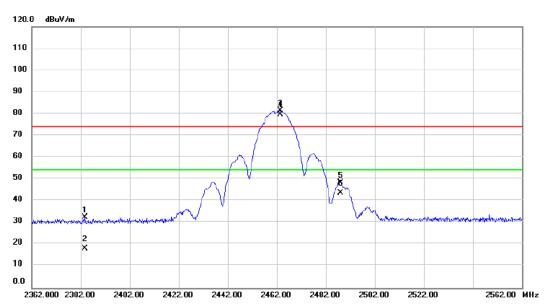
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2407G080B Page 37 of 86 Report Version: R0

Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.200	51.13	-6.13	45.00	74.00	-29.00	peak	
2		2386.200	45.79	-6.13	39.66	54.00	-14.34	AVG	
3	Χ	2413.600	86.82	-6.06	80.76	74.00	6.76	peak	No Limit
4	×	2413.600	84.92	-6.06	78.86	54.00	24.86	AVG	No Limit
5		2505.600	38.38	-5.86	32.52	74.00	-41.48	peak	
6		2505.600	24.56	-5.86	18.70	54.00	-35.30	AVG	

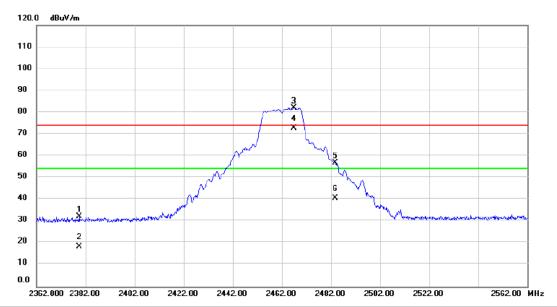
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%

No.	M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2383.800	38.59	-6.13	32.46	74.00	-41.54	peak	
2		2383.800	24.40	-6.13	18.27	54.00	-35.73	AVG	
3	X	2463.400	87.41	-5.96	81.45	74.00	7.45	peak	No Limit
4	*	2463.400	85.51	-5.96	79.55	54.00	25.55	AVG	No Limit
5		2488.000	54.47	-5.90	48.57	74.00	-25.43	peak	
6		2488.000	49.42	-5.90	43.52	54.00	-10.48	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

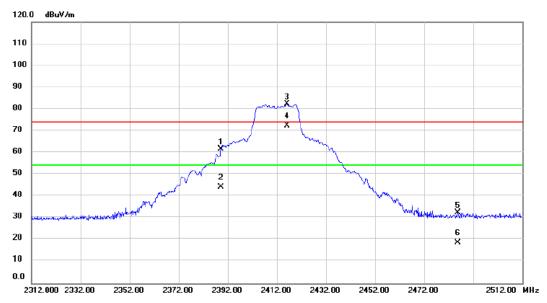
Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%



	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
Ī	1		2389.000	64.64	-6.12	58.52	74.00	-15.48	peak	
Ī	2		2389.000	50.48	-6.12	44.36	54.00	-9.64	AVG	
_	3	X	2417.200	89.08	-6.06	83.02	74.00	9.02	peak	No Limit
-	4	*	2417.200	79.12	-6.06	73.06	54.00	19.06	AVG	No Limit
	5		2485.600	38.49	-5.91	32.58	74.00	-41.42	peak	
_	6		2485.600	24.79	-5.91	18.88	54.00	-35.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

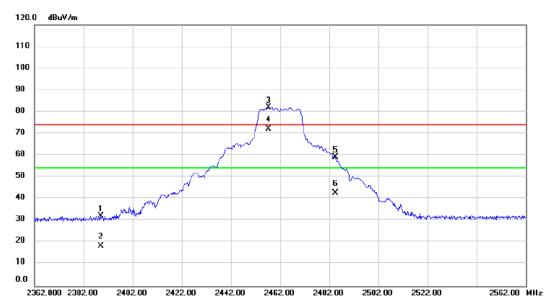
Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%



No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2379.400	38.26	-6.14	32.12	74.00	-41.88	peak	
2		2379.400	24.56	-6.14	18.42	54.00	-35.58	AVG	
3	X	2467.000	88.13	-5.95	82.18	74.00	8.18	peak	No Limit
4	*	2467.000	78.63	-5.95	72.68	54.00	18.68	AVG	No Limit
5		2483.800	62.73	-5.92	56.81	74.00	-17.19	peak	
6		2483.800	46.60	-5.92	40.68	54.00	-13.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%


No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.200	67.65	-6.12	61.53	74.00	-12.47	peak	
2		2389.200	50.49	-6.12	44.37	54.00	-9.63	AVG	
3	X	2416.000	88.43	-6.06	82.37	74.00	8.37	peak	No Limit
4	*	2416.000	78.37	-6.06	72.31	54.00	18.31	AVG	No Limit
5		2485.800	38.43	-5.91	32.52	74.00	-41.48	peak	
6		2485.800	24.80	-5.91	18.89	54.00	-35.11	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 42 of 86 Report Version: R0

Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	l	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.200	38.52	-6.12	32.40	74.00	-41.60	peak	
2		2389.200	24.66	-6.12	18.54	54.00	-35.46	AVG	
3	Χ	2457.400	88.08	-5.97	82.11	74.00	8.11	peak	No Limit
4	*	2457.400	78.08	-5.97	72.11	54.00	18.11	AVG	No Limit
5		2484.400	65.12	-5.91	59.21	74.00	-14.79	peak	
6		2484.400	48.54	-5.91	42.63	54.00	-11.37	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

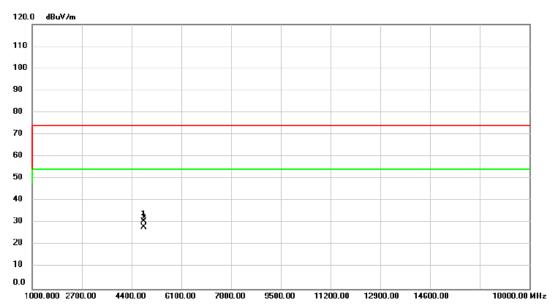
Project No.: 2407G080B Page 43 of 86 Report Version: R0

Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7		
Test Frequency	2412MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		

No.	Mł	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.200	70.31	-6.12	64.19	74.00	-9.81	peak	
2		2389.200	55.42	-6.12	49.30	54.00	-4.70	AVG	
3	Χ	2406.800	90.95	-6.08	84.87	74.00	10.87	peak	No Limit
4	*	2406.800	79.15	-6.08	73.07	54.00	19.07	AVG	No Limit
5		2488.400	38.61	-5.90	32.71	74.00	-41.29	peak	
6		2488.400	27.18	-5.90	21.28	54.00	-32.72	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

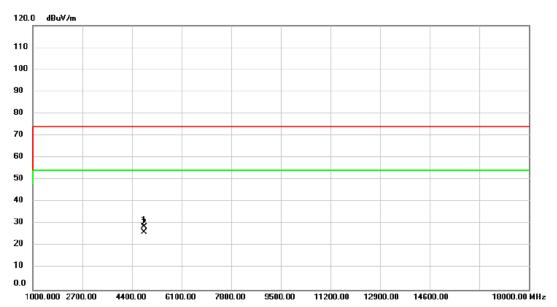
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%



No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2369.800	38.05	-6.16	31.89	74.00	-42.11	peak	
2		2369.800	27.04	-6.16	20.88	54.00	-33.12	AVG	
3	X	2456.800	90.00	-5.97	84.03	74.00	10.03	peak	No Limit
4	*	2456.800	78.38	-5.97	72.41	54.00	18.41	AVG	No Limit
5		2485.200	68.69	-5.91	62.78	74.00	-11.22	peak	
6		2485.200	50.94	-5.91	45.03	54.00	-8.97	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

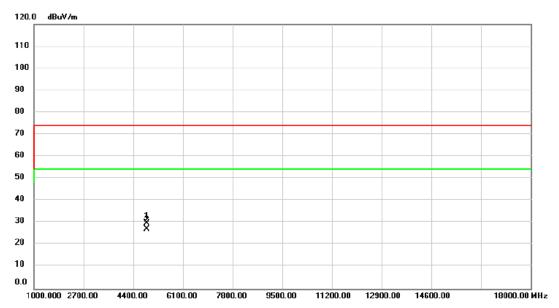
Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	39.19	-8.57	30.62	74.00	-43.38	peak	
2	*	4824.000	36.55	-8.57	27.98	54.00	-26.02	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 46 of 86 Report Version: R0

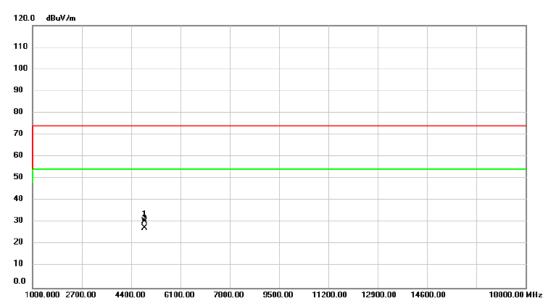
Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%


No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	824.000	37.32	-8.57	28.75	74.00	-45.25	peak	
2 *	* 4	824.000	34.78	-8.57	26.21	54.00	-27.79	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 47 of 86 Report Version: R0

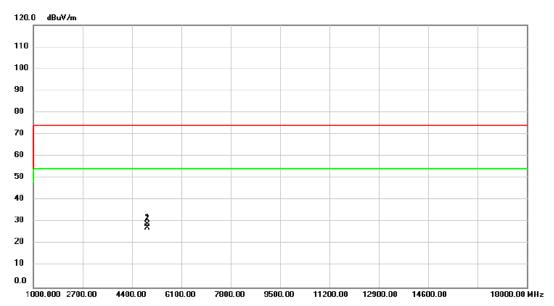
Test Mode	IEEE 802.11b	Test Date	2024/10/7		
Test Frequency	2437MHz	Polarization	Vertical		
Temp	25°C	Hum.	65%		


No.	MI	k. Freq.			Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	38.24	-8.44	29.80	74.00	-44.20	peak	
2	*	4874.000	35.58	-8.44	27.14	54.00	-26.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 48 of 86 Report Version: R0

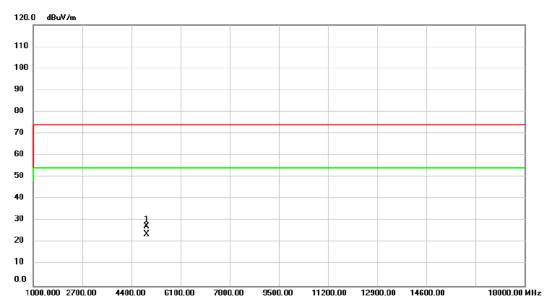
Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2437MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%



No.	М	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		487	74.000	38.87	-8.44	30.43	74.00	-43.57	peak	
2	*	487	74.000	36.00	-8.44	27.56	54.00	-26.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

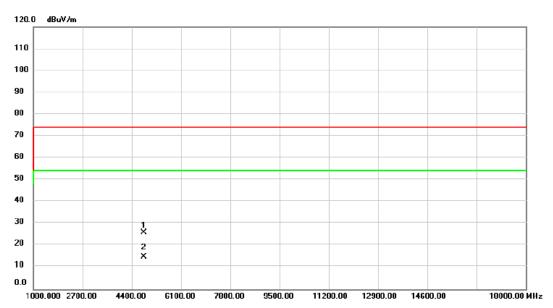
Test Mode	IEEE 802.11b	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	М	k.	Freq.			Measure- ment		Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		49	24.000	37.39	-8.33	29.06	74.00	-44.94	peak	
2	*	49	24.000	35.66	-8.33	27.33	54.00	-26.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 50 of 86 Report Version: R0

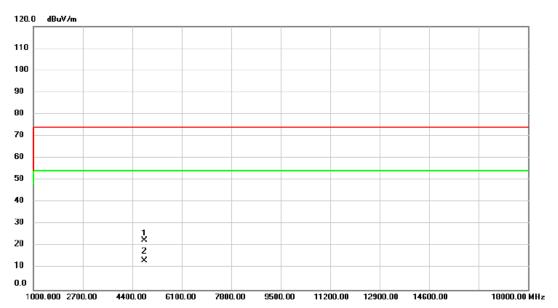
Test Mode	IEEE 802.11b	Test Date	2024/10/7		
Test Frequency	2462MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	35.68	-8.33	27.35	74.00	-46.65	peak	
2	*	4924.000	32.33	-8.33	24.00	54.00	-30.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 51 of 86 Report Version: R0

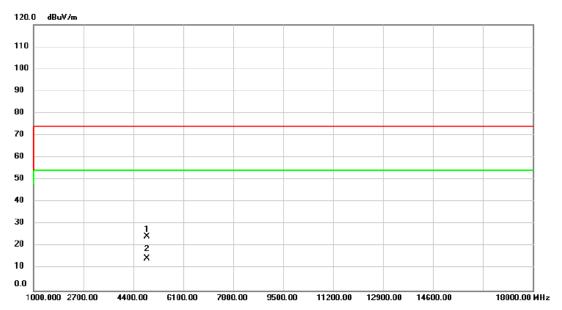
Test Mode	IEEE 802.11g	Test Date	2024/10/7		
Test Frequency	2412MHz	Polarization	Vertical		
Temp	25°C	Hum.	65%		


No.	MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	34.41	-8.57	25.84	74.00	-48.16	peak	
2	*	4824.000	23.36	-8.57	14.79	54.00	-39.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 52 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/7		
Test Frequency	2412MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	31.36	-8.57	22.79	74.00	-51.21	peak	
2	*	4824.000	21.86	-8.57	13.29	54.00	-40.71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 53 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2437MHz	Polarization	Vertical
Temp	25°C	Hum.	65%

No.	M	k. Freq.			Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	32.79	-8.44	24.35	74.00	-49.65	peak	
2	*	4874.000	23.12	-8.44	14.68	54.00	-39.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 54 of 86 Report Version: R0

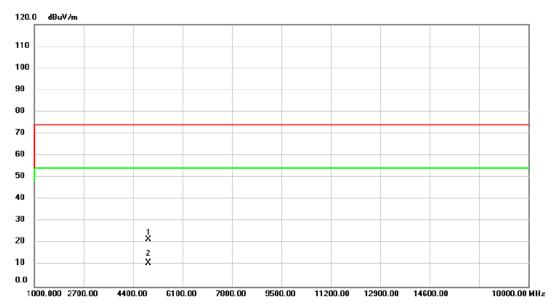
Test Mode	IEEE 802.11g	Test Date	2024/10/7		
Test Frequency	2437MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	Mk	c. Freq.			Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	34.69	-8.44	26.25	74.00	-47.75	peak	
2	*	4874.000	23.32	-8.44	14.88	54.00	-39.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 55 of 86 Report Version: R0

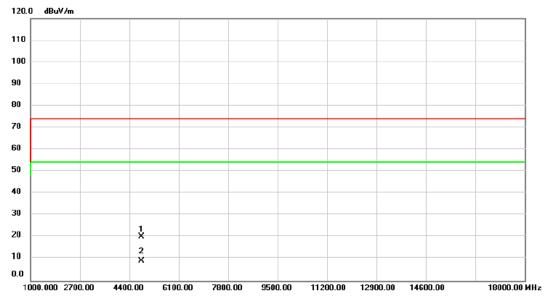
Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%



No.	Mk	. Freq.			Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	32.09	-8.33	23.76	74.00	-50.24	peak	
2	*	4924.000	20.22	-8.33	11.89	54.00	-42.11	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

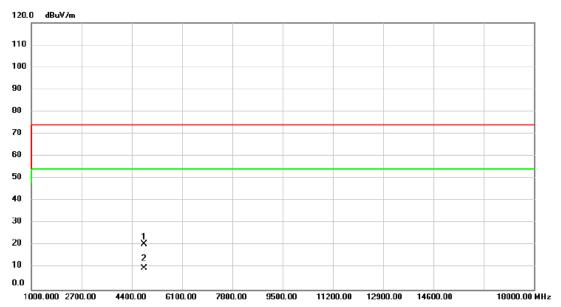
Test Mode	IEEE 802.11g	Test Date	2024/10/7		
Test Frequency	2462MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	Ν	Иk.	Freq.			Measure- ment		Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4	4924.000	29.97	-8.33	21.64	74.00	-52.36	peak	
2	1	* 4	4924.000	19.22	-8.33	10.89	54.00	-43.11	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 57 of 86 Report Version: R0

Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No. Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Limit Margin			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	28.96	-8.57	20.39	74.00	-53.61	peak	
2	*	4824.000	17.69	-8.57	9.12	54.00	-44.88	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

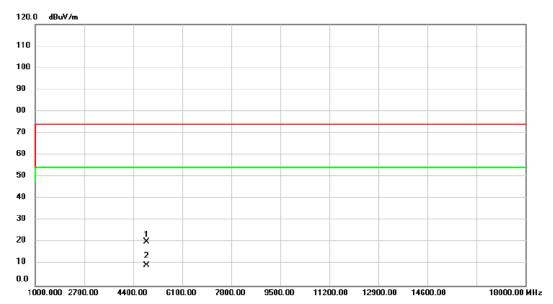
Project No.: 2407G080B Page 58 of 86 Report Version: R0

Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%

No. N	Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4	824.000	29.27	-8.57	20.70	74.00	-53.30	peak	
2 '	* 4	824.000	18.26	-8.57	9.69	54.00	-44.31	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

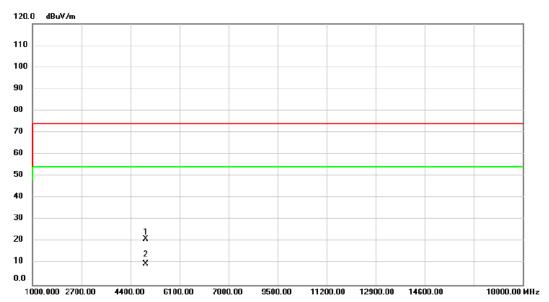
Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2437MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	29.60	-8.44	21.16	74.00	-52.84	peak	
2	*	4874.000	18.43	-8.44	9.99	54.00	-44.01	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 60 of 86 Report Version: R0

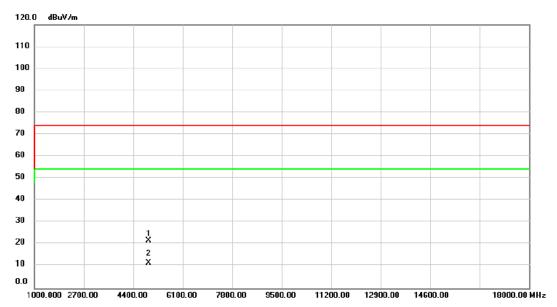
Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7		
Test Frequency	2412MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	Mk	. Freq.	Reading Correct Measure- Level Factor ment Limit Margin						
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	28.75	-8.44	20.31	74.00	-53.69	peak	
2	*	4874.000	18.01	-8.44	9.57	54.00	-44.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 61 of 86 Report Version: R0

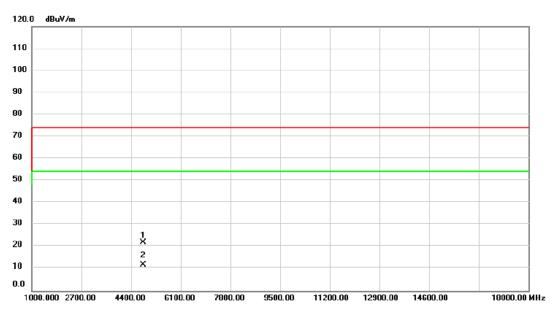
Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	No. Mk. Freq.				Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	29.62	-8.33	21.29	74.00	-52.71	peak	
2	*	4924.000	18.01	-8.33	9.68	54.00	-44.32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 62 of 86 Report Version: R0

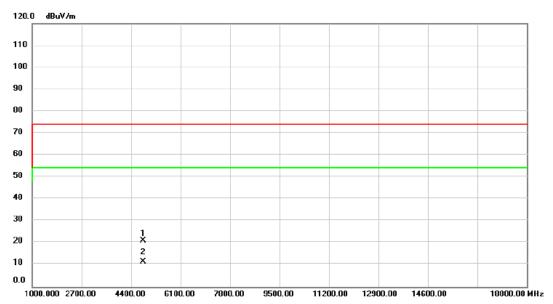
Test Mode	IEEE 802.11n (HT20)	Test Date	2024/10/7		
Test Frequency	2462MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		


No.	MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	30.13	-8.33	21.80	74.00	-52.20	peak	
2	*	4924.000	19.86	-8.33	11.53	54.00	-42.47	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 63 of 86 Report Version: R0

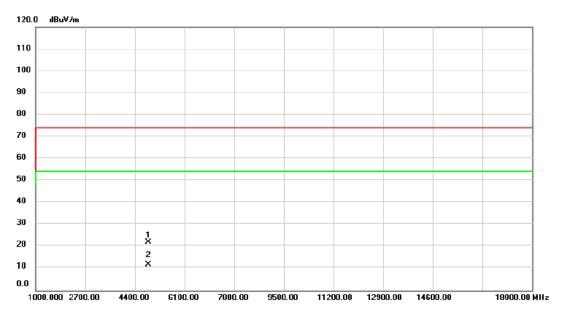
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Vertical
Temp	25°C	Hum.	65%



N	lo.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1		4824.000	30.51	-8.57	21.94	74.00	-52.06	peak	
	2	*	4824.000	20.42	-8.57	11.85	54.00	-42.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

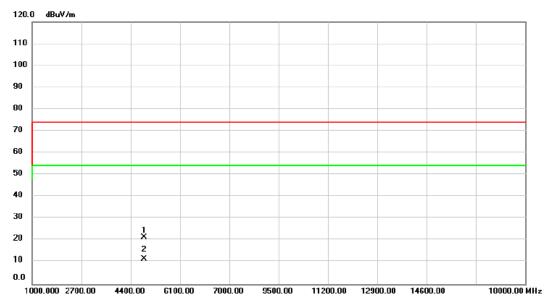
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2412MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	29.58	-8.57	21.01	74.00	-52.99	peak	
2	*	4824.000	20.00	-8.57	11.43	54.00	-42.57	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 65 of 86 Report Version: R0

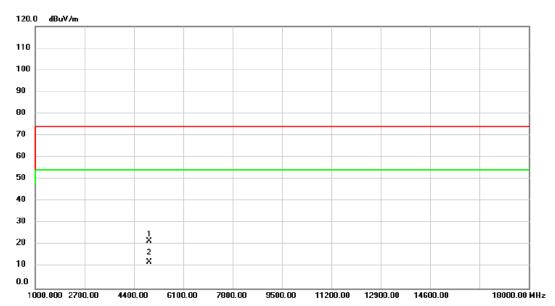
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2437MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	MI	k. Freq.			Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	30.37	-8.44	21.93	74.00	-52.07	peak	
2	*	4874.000	20.23	-8.44	11.79	54.00	-42.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 66 of 86 Report Version: R0

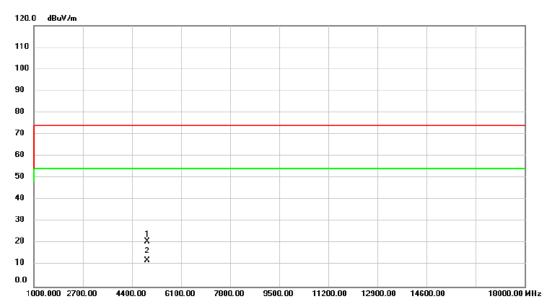
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7		
Test Frequency	2412MHz	Polarization	Horizontal		
Temp	25°C	Hum.	65%		



No.	MI	k.	Freq.			Measure- ment		Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		48	74.000	30.03	-8.44	21.59	74.00	-52.41	peak	
2	*	48	74.000	19.85	-8.44	11.41	54.00	-42.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

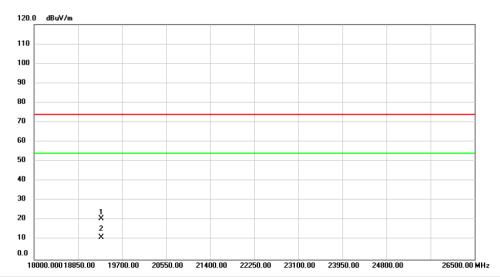
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	30.02	-8.33	21.69	74.00	-52.31	peak	
2	*	4924.000	20.47	-8.33	12.14	54.00	-41.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 68 of 86 Report Version: R0

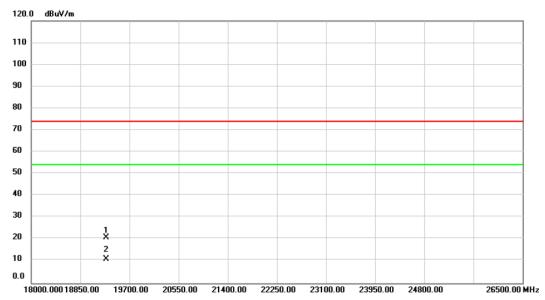
Test Mode	IEEE 802.11ax (HE20)	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	29.21	-8.33	20.88	74.00	-53.12	peak	
2	*	4924.000	20.47	-8.33	12.14	54.00	-41.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2407G080B Page 69 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Vertical
Temp	25°C	Hum.	65%


No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		19296.00	31.27	-10.43	20.84	74.00	-53.16	peak	
2	*	19296.00	21.79	-10.43	11.36	54.00	-42.64	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

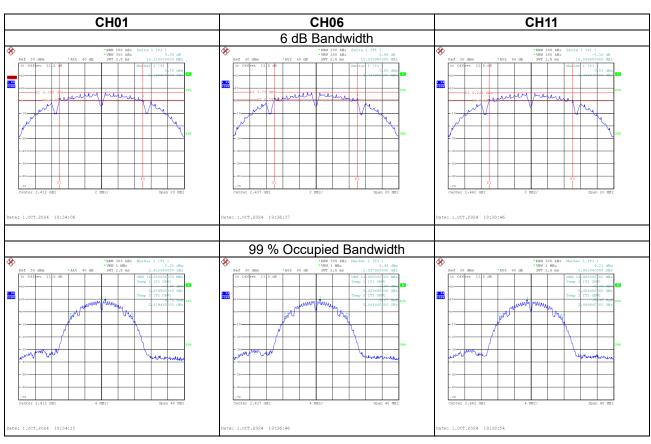
Project No.: 2407G080B Page 70 of 86 Report Version: R0

Test Mode	IEEE 802.11g	Test Date	2024/10/7
Test Frequency	2462MHz	Polarization	Horizontal
Temp	25°C	Hum.	65%

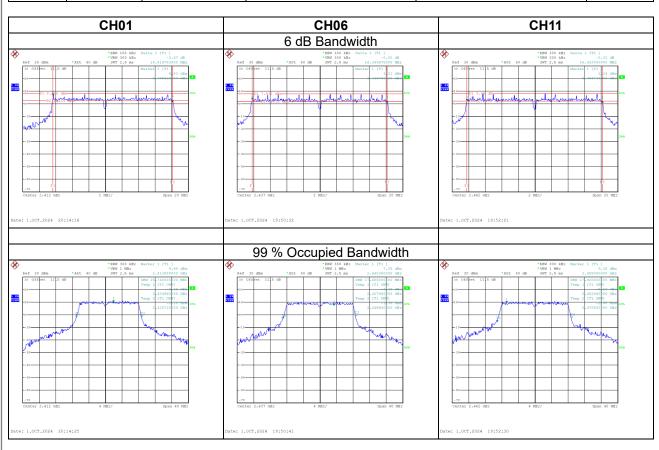
No.	MI	k. Freq.		Correct Factor	Measure- ment		Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		19296.00	31.17	-10.43	20.74	74.00	-53.26	peak	
2	*	19296.00	21.30	-10.43	10.87	54.00	-43.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

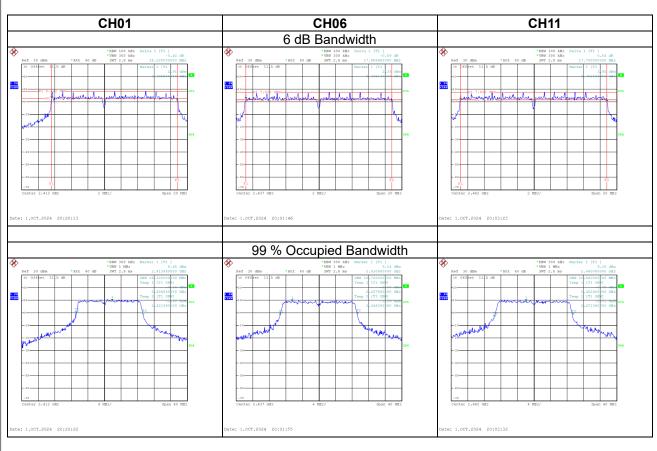
Project No.: 2407G080B Page 71 of 86 Report Version: R0

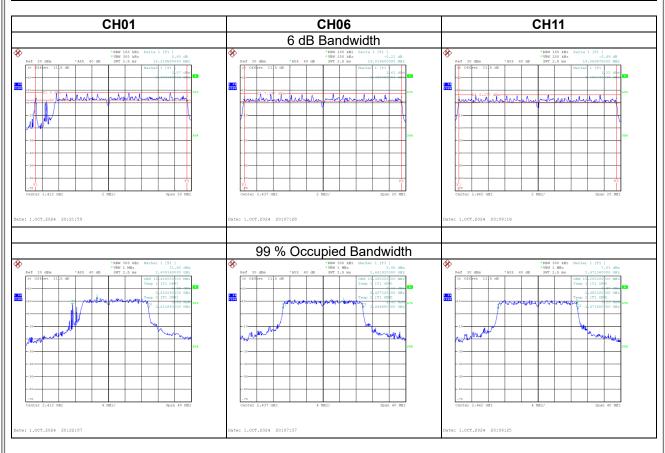

3 TL		Report No.: BTL-FCCP-5-2407G080B
	APPENDIX E	BANDWIDTH

Project No.: 2407G080B Page 72 of 86 Report Version: R0


ı		
ı	Test Mode	TV D Marilia
ı		IIX R MODE
	i lest Mode	TX B Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	10.110	14.880	0.5	Complies
06	2437	10.040	14.960	0.5	Complies
11	2462	10.090	14.960	0.5	Complies


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	14.520	15.760	0.5	Complies
06	2437	16.350	17.680	0.5	Complies
11	2462	16.420	17.920	0.5	Complies


Test Mode	TX N(HT20) Mode	
-----------	-----------------	--

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	15.220	16.320	0.5	Complies
06	2437	17.660	18.720	0.5	Complies
11	2462	17.700	18.960	0.5	Complies

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	18.320	18.400	0.5	Complies
06	2437	19.020	19.360	0.5	Complies
11	2462	19.070	19.280	0.5	Complies

APPENDIX F	OUTPUT POWER

Project No.: 2407G080B Page 77 of 86 Report Version: R0

Test Mode	IEEE 802.11b		2024/10/1
	ILLE GOZ. 116	rested Date	2024/10/1

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	19.24	0.43	19.67	30.00	1.0000	Complies
06	2437	19.22	0.43	19.65	30.00	1.0000	Complies
11	2462	19.33	0.43	19.76	30.00	1.0000	Complies

Test Mode IEEE 802.11g	Tested Date 2024	/10/1
------------------------	------------------	-------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	19.22	0.47	19.69	30.00	1.0000	Complies
06	2437	19.39	0.47	19.86	30.00	1.0000	Complies
11	2462	19.15	0.47	19.62	30.00	1.0000	Complies

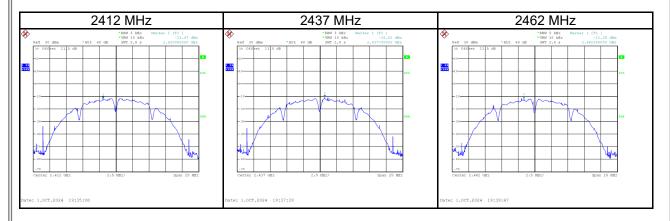
	Test Mode	IEEE 802.11n (HT20)	Tested Date	2024/10/1
--	-----------	---------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	19.09	0.44	19.53	30.00	1.0000	Complies
06	2437	19.27	0.44	19.71	30.00	1.0000	Complies
11	2462	19.31	0.44	19.75	30.00	1.0000	Complies

Test Mode	IEEE 802.11ax (HE20)	Tested Date	2024/10/1
-----------	----------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	19.29	0.30	19.59	30.00	1.0000	Complies
06	2437	19.26	0.30	19.56	30.00	1.0000	Complies
11	2462	19.35	0.30	19.65	30.00	1.0000	Complies

Project No.: 2407G080B Page 78 of 86 Report Version: R0


APPENDIX G POWER SPECTRAL DENSITY

Project No.: 2407G080B Page 79 of 86 Report Version: R0

Test Mode IE	EEE 802.11b
--------------	-------------

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-11.47	8.00	Pass
2437	-10.63	8.00	Pass
2462	-11.35	8.00	Pass

ш		
ш		
ш	 Test Mode	IEEE 802.11g
ш		HEEE 807 110
ш	 I COL MOUC	IILLL OVZ. I IU
ш	 	

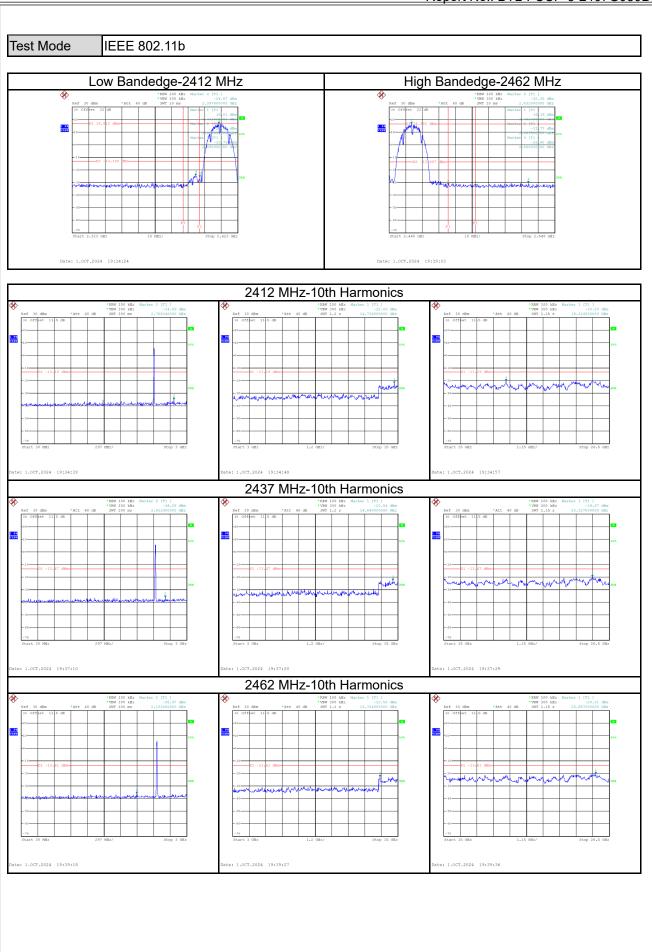

Test Frequency (MHz)	• • •		Result
2412	-9.00	8.00	Pass
2437	-9.19	8.00	Pass
2462	-9.20	8.00	Pass

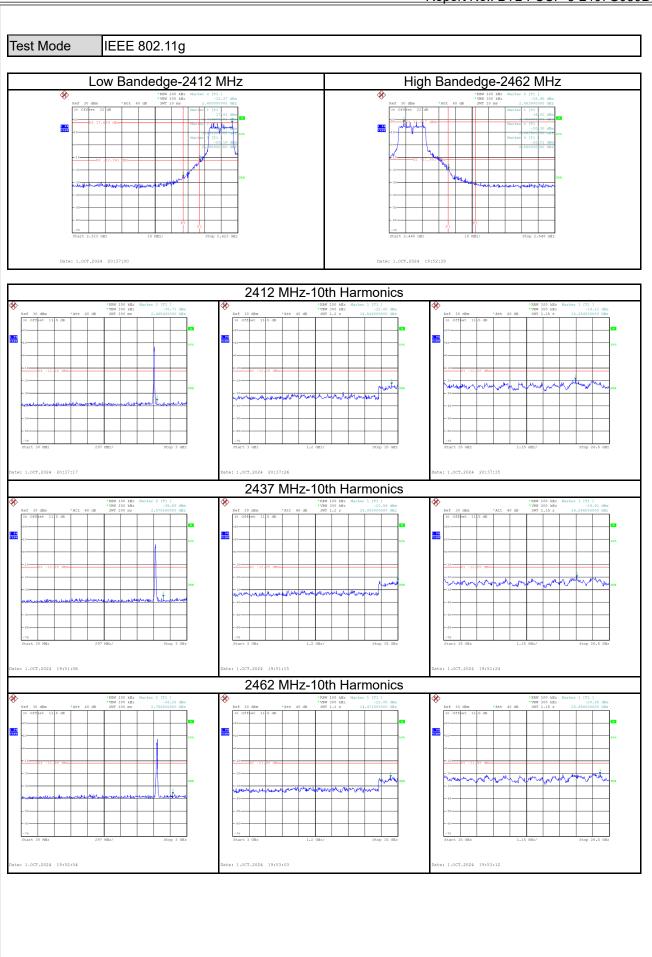
	Test Mode	IEEE 802.11n (HT.	20)
ı	163t Mode		20,

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-8.95	8.00	Pass
2437	-8.59	8.00	Pass
2462	-9.11	8.00	Pass

Test Mode	IEEE 802.11ax	(HE20)

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-8.62	8.00	Pass
2437	-9.22	8.00	Pass
2462	-8.23	8.00	Pass




APPENDIX H	ANTENNA CONDUCTED SPURIOUS EMISSIONS

Project No.: 2407G080B Page 82 of 86 Report Version: R0

