Report No.: AiTDG-241129002W8

TEST REPORT

Client Information:

Applicant: Shenzhen Chunhong Technology Co., Ltd

1209U8, International Chamber of Commerce Center, 168 Fuhua 3rd Road, Applicant add.:

Futian District, Shenzhen, China

Manufacturer: Shenzhen Chunhong Technology Co., Ltd

1209U8, International Chamber of Commerce Center, 168 Fuhua 3rd Road, Manufacturer add.:

Futian District, Shenzhen, China

Product Information:

Product Name: Mini PC

Model No.: H20

Brand Name: Huidun

FCC ID: 2BMHA-H20

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Prepared By:

Dongguan Yaxu (AiT) Technology Limited

No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

Date of Receipt: Nov. 29, 2024 Date of Test: Nov. 29, 2024~Jan. 09, 2025

Date of Issue: Jan. 10, 2025 Test Result: Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC/ISED requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by: Emiya Lin Approved by: Gimba Huah

Page 2 of

1 Contents

CO	VER PAGE		Page
1	CONTENTS	S	2
2	TEST SUM	MARY	5
	2.1 Sta	atement of the Measurement Uncertainty	5
	2.2 Me	easurement Uncertainty	5
3	TEST FACI	LITY	6
	3.1 De	eviation from standard	6
	3.2 Ab	normalities from standard conditions	6
	3.3 Te	st Location	6
4	GENERAL	INFORMATION	7
	4.1 Te	st frequencies	8
	4.2 EU	JT Peripheral List	9
	4.3 Te	st Peripheral List	9
	4.4 TE	ST METHODOLOGY	10
	4.5 De	escription of Test Modes	11
5	EQUIPMEN	IT USED DURING TEST	12
6	TEST RESI	ULTS AND MEASUREMENT DATA	14
	6.1 An	itenna requirement	14
	6.1.1	Standard requirement:	14
	6.1.2	EUT Antenna:	14
	6.2 Or	Time and Duty Cycle	15
	6.2.1	Standard requirement:	15
	6.2.2	Measuring Instruments and Setting:	15
	6.2.3	Test Procedures	15
	6.2.4	Test Setup Layout	15
	6.2.5	EUT Operation during Test	15
	6.2.6	Test result	15
	6.3 Ma	aximum Conducted Output Peak Power Measurement	16
	6.3.1	Standard requirement:	16
	6.3.2	Measuring Instruments:	16
	6.3.3	Test Procedures:	16
	6.3.4	Test Setup Layout	16
	6.3.5	EUT Operation during Test	16
	6.3.6	Test result	16
	6.4 6 0	dB Spectrum Bandwidth Measurement	17
	6.4.1	Standard requirement:	17
	6.4.2	Measuring Instruments:	17
	6.4.3	Test Procedures	17

7

8

9

	6.4.4	Test Setup Layout	17
	6.4.5	EUT Operation during Test	17
	6.4.6	Test result	17
6.5	Pov	ver Spectral Density	18
	6.5.1	Standard requirement:	18
	6.5.2	Measuring Instruments and Setting:	18
	6.5.3	Test Procedures	18
	6.5.4	Test Setup Layout	18
	6.5.5	EUT Operation during Test	18
	6.5.6	Test result	19
6.6	Cor	nducted Spurious Emissions and Band Edges Test	20
	6.6.1	Standard requirement:	20
	6.6.2	Measuring Instruments and Setting:	20
	6.6.3	Test Procedures	20
	6.6.4	Test Setup Layout	20
	6.6.5	EUT Operation during Test	20
	6.6.6	Test result	21
6.7	Rac	liated Emissions and Restrict-band Band-edge Measurements	22
	6.7.1	Standard requirement:	22
	6.7.2	Measuring Instruments and Setting:	23
	6.7.3	Test Procedures	23
	6.7.4	Test Setup Layout	26
	6.7.5	EUT Operation during Test	27
	6.7.6	Test result	27
6.8	Cor	nducted Emissions	52
	6.8.1	Standard requirement:	52
	6.8.2	Test Setup Layout	52
	6.8.3	Test Procedures	52
	6.8.4	EUT Operation during Test	52
	6.8.5	Test result	52
TES	ST SETU	P PHOTOGRAPHS OF EUT	61
EXT	TERNAL	PHOTOGRAPHS OF EUT	61
INT	ERNAL I	PHOTOGRAPHS OF EUT	61

Page 4 of 61

Report No.: AiTDG-241129002W8

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Jan. 10, 2025	Valid	Initial release

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	§15.203	Pass
On Time and Duty Cycle	1	1
Maximum Conducted Peak Output Power	§15.247 (b)(3)	Pass
Power Spectral Density	§15.247 (e)	Pass
6dB Bandwidth	§15.247 (a)(2)	Pass
Radiated and Conducted Spurious Emissions	§15.205/15.209	Pass
Emissions at Restricted Band	§15.205/15.209	Pass
Conducted Emissions	§15.207(a)	Pass
RF Exposure	§15.247(i)§2.1091	Pass

Note

- 1. Test according to ANSI C63.10:2013.
- 2. The measurement uncertainty is not included in the test result.
- 3. Test results in other test report (RF Exposure Evaluation Report)

Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.2 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)
Radiated Emission	30MHz-1GHz	3.75dB	(1)
Radiated Emission	1GHz-18GHz	3.88dB	(1)
Radiated Emission	18GHz-40GHz	3.88dB	(1)
AC Power Line Conducted	0.15MHz ~ 30MHz	1 20dD	(1)
Emission	0.15WITZ ~ 5UWITZ	1.20dB (
Note (1): The measurement un	certainty is for coverage factor	of k=2 and a level of confidence	e of 95%.

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations: .CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 18, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

3.3 Test Location

Dongguan Yaxu (AiT) Technology Limited

Address: No.22, Jingianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

4 General Information

EUT Name:	Mini PC		
Model No:	H20		
Serial Model:	N/A		
Test sample(s) ID:	AiTDG-241129002-1		
Sample(s) Status:	Engineer sample		
Serial No.:	N/A		
Operation frequency:	802.11b/802.11g /802.11n(HT20)/ax(HE20): 2412MHz~2462MHz 802.11n(HT40)/ax(HE40): 2422MHz~2452MHz		
Channel Number:	802.11b/802.11g /802.11n(HT20)/ax(HT20): 11 802.11n(HT40)/ax(HE40):7		
Channel separation:	5MHz		
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(HT20)/ax(HE20)/802.11n(HT40)/ax(HT40): Orthogonal Frequency Division Multiplexing (OFDM)		
Antenna Type:	FPC Antenna		
Antenna gain:	ANT1(AUX):1.42dBi ANT2(MAIN):2.96dBi		
H/W No.:	T8PLUS_V12		
S/W No.:	23H2		
Power supply:	DC12V from adapter		
Adapter:	Adapter1: MODEL: AD0301-1202500UB INPUT:100-240V~ 50-60Hz 0.8A Max OUTPUT:12.0V2.5A 30.0W Adapter2: MODEL: KA3601A-1202500US INPUT:100-240V~ 50/60Hz 1.0A Max OUTPUT:12.0V2.5A		
Configuration:	Configuration1:CPU(Intel Alder Lake N97) Configuration2:CPU(Intel Alder Lake N95)		
Battery:	N/A		
Model different:	N/A		
Note:	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.		

4.1 Test frequencies

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412MHz	5	2432MHz	9	2452MHz
2	2417MHz	6	2437MHz	10	2457MHz
3	2422MHz	7	2442MHz	11	2462MHz
4	2427MHz	8	2447MHz	-	-

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Transmitting mode	Keep the EUT in continuously transmitting mode.				
Test software:	AX Series MP Toolkit				
Frequency	2412 MHz	2437 MHz	2462 MHz		
Parameters(802.11b)	11	11	11		
Parameters(802.11g)	9	9	9		
Parameters(802.11n20)	3.5	3.5	3.5		
Parameters(802.11ax20)	2.0	2.0	2.0		
Frequency	2422 MHz	2437 MHz	2452 MHz		
Parameters(802.11n40)	3.5	3.5	3.5		
Parameters(802.11ax40)	2.5	2.5	2.5		

4.2 EUT Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	Remark
1	Adapter	Shenzhen ABP Technology Co.,Ltd.	AD0301-120250 0UB	N/A	N/A	N/A
2	Adapter	Shenzhen Keyu Power Supply Technology Co., Ltd.	KA3601A-120 2500US	N/A	N/A	N/A

4.3 Test Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	Remark
1	N/A	N/A	N/A	N/A	N/A	N/A

4.4 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Dongguan Yaxu (AiT) Technology Limited

4.4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.4.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C, ANSI C63.10-2013.

4.4.3 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

4.5 Description of Test Modes

The EUT has been tested under operating condition.

AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case;

AC main conducted emission pre-test at charge from power adapter modes, recorded worst case;

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11b mode (LCH).

Verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	IEEE 802.11b	IEEE 802.11g	IEEE	IEEE
			802.11n(HT20)	802.11n(HT40)
			802.11ax(HE20)	802.11ax(HE40)
Data rate	1Mbps	6Mbps	MCS0	MCS7

Antenna & Bandwidth

Antenna	Chain 1 (ANT1)		Chain 2	Simultaneously	
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	1
IEEE 802.11b			Ø		
IEEE 802.11g	Ø		Ø		
IEEE 802.11n		Ø	☑	Ø	Ø
IEEE 802.11ax	Ø	V	Ø	Ø	\square

Page 12 of 61

5 Equipment Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2024.09.23	2025.09.22
2	EMI Measuring Receiver	R&S	ESR 101660		2024.09.23	2025.09.22
3	Low Noise Pre Amplifier	HP	HP8447E	1937A01855	2024.09.23	2025.09.22
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2024.09.23	2025.09.22
5	Passive Loop	ETS	6512	00165355	2024.09.04	2026.09.03
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2024.08.29	2026.08.28
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2024.08.29	2026.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA917036 7d	2023.09.12	2026.09.11
9	EMI Test Receiver	R&S	ESCI	100124	2024.09.23	2025.09.22
10	LISN	R&S	ESH3-Z5	892785/016	2024.09.23	2025.09.22
11	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA0811250 1	2024.09.23	2025.09.22
12	RF Automatic Test system	MVV	MW100-RFCB	21033016	2024.09.23	2025.09.22
13	Signal Generator	Agilent	N5182A	MY50143009	2024.09.23	2025.09.22
14	Wideband Radio communication tester	R&S	CMW500	1201.0002K5 0	2024.09.23	2025.09.22
15	RF Automatic Test system	MW	MW100-RFCB	21033016	2024.09.23	2025.09.22
16	Pulse Limiter	R&S	ESH3-Z2	03578810.54	2024.09.23	2025.09.22
17	Switch	MFJ Rhinos	MFJ-2702	CZ3457	2024.09.23	2025.09.22
18	DC power supply	ZHAOXIN	RXN-305D-2	2807000255 9	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Page 13 of 61 Report No.: AiTDG-241129002W8

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna requirement

6.1.1 Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded. And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

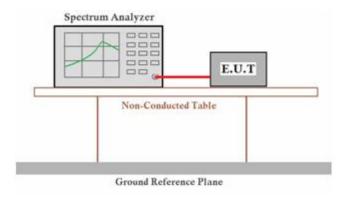
6.1.2 EUT Antenna:

Refer to Section 4(General Information)

6.2 On Time and Duty Cycle

6.2.1 Standard requirement:

None; for reporting purpose only


6.2.2 Measuring Instruments and Setting:

Please refer to equipments list in this report. The following table is the setting of the spectrum analyser.

6.2.3 Test Procedures

- 1. Set the centre frequency of the spectrum analyser to the transmitting frequency;
- 2. Set the span=0MHz, RBW=1MHz, VBW=3MHz, Sweep time=100ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold

6.2.4 Test Setup Layout

6.2.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.2.6 Test result

For reporting purpose only.

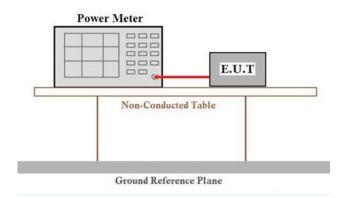
Please refer to Appendix C.1

6.3 Maximum Conducted Output Peak Power Measurement

6.3.1 Standard requirement:

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.


6.3.2 Measuring Instruments:

Please refer to equipment's list in this report.

6.3.3 Test Procedures:

According to KDB558074 D01 15.247 Meas Guidance v05r02 Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

6.3.4 Test Setup Layout

6.3.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.3.6 Test result

PASS

Please refer to Appendix C.2.

Remark

- 1). Measured output power at difference data rate for each mode and recorded worst case for each mode.
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

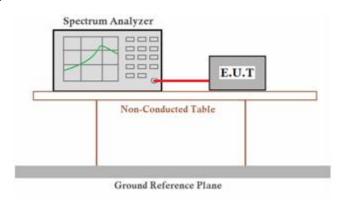
6.4 6 dB Spectrum Bandwidth Measurement

6.4.1 Standard requirement:

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

6.4.2 Measuring Instruments:

Please refer to equipment's list in this report.


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Span Frequency	30MHz
Detector	Peak

6.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

6.4.4 Test Setup Layout

6.4.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.4.6 Test result

PASS

Please refer to Appendix C.3

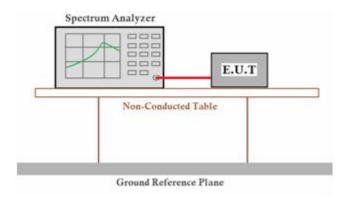
Remark:

- 1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

6.5 Power Spectral Density

6.5.1 Standard requirement:

According to §15.247(e), RSS-247 section 5.2 b: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


6.5.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.5.3 Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 3 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level must shall not be greater than 8dBm in any 3 kHz..

6.5.4 Test Setup Layout

6.5.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report No.: AiTDG-241129002W8

6.5.6 Test result

PASS

Please refer to Appendix C.5.

Remark:

- 1). Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode;
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

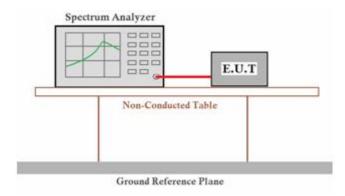
6.6 Conducted Spurious Emissions and Band Edges Test

6.6.1 Standard requirement:

According to §15.247 (d), RSS 247 section 5.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.6.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

6.6.3 Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

6.6.4 Test Setup Layout

6.6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6 Test result

PASS

Please refer to Appendix C.6 for conducted band edge emission.

Please refer to Appendix C.7 for conducted spurious emissions;

Remark:

- 1). Measured at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40
- 4). Not recorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit.

6.7 Radiated Emissions and Restrict-band Band-edge Measurements

6.7.1 Standard requirement:

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China.

^{\2\} Above 38.6

6.7.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.7.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Report No.: AiTDG-241129002W8

61

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

Page 24 of

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Report No.: AiTDG-241129002W8

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

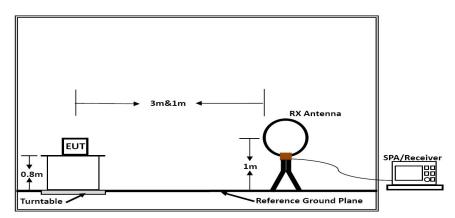
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Page 26 of 61

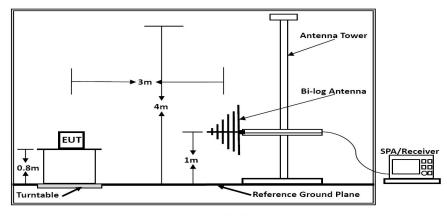
4) Sequence of testing above 18 GHz

Setup:

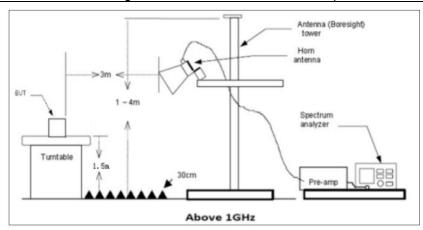
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.


Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


6.7.4 Test Setup Layout

Below 30MHz

Below 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.7.6 Test result

Temperature	Temperature 25.5℃		52.2%	
Test Engineer	Emiya Lin	Configurations	IEEE 802.11b/g/n/ax	

Remarks:

- Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ Results of Radiated Emissions (9 KHz~30MHz)

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all test modes, found worst case at IEEE 802.11b (High Channel), recorded the worst case results in this report (IEEE 802.11b (High Channel)).

Page 28 of 61

Configuration1+Adapter1:

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.3462	26.20	1.49	27.69	40.00	-12.31	QP
2		55.8047	27.96	-0.90	27.06	40.00	-12.94	QP
3		143.3261	31.16	-1.36	29.80	43.50	-13.70	QP
4		204.2377	26.73	0.38	27.11	43.50	-16.39	QP
5		501.1790	30.75	4.89	35.64	46.00	-10.36	QP
6	*	760.7036	26.31	10.89	37.20	46.00	-8.80	QP

Page 29 of 61

/lodel name:	H20			Test Date :	2024-12	-31	
olarization :	Horizon	tal		Test Result:	Test Result:		
80.0 dBuV/m						Limit: — Margin: —	
40					5 4 ×	6 × 0	
1 Maybooksallas	n-tunnya M	warmen water and water	WHIPMAN MAN JAM	and between the second of the second	physical production of the second section of the section of the section of the second section of the section of	nall man or the partition of the	
0.0 30.000 40	50 60	70 80	(MHz)	300	400 500	600 700 1000.0	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.0706	26.80	1.97	28.77	40.00	-11.23	QP
2		55.4147	25.40	1.45	26.85	40.00	-13.15	QP
3		175.6516	25.45	-1.34	24.11	43.50	-19.39	QP
4		417.6411	27.05	7.03	34.08	46.00	-11.92	QP
5	*	501.1790	29.85	8.44	38.29	46.00	-7.71	QP
6		760.7036	25.86	12.28	38.14	46.00	-7.86	QP

30.000

Configuration1+Adapter2::

☐ Pass ☐ Fail		
Limit: — Margin: —		
6 X		
of where we will have the		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

70 80

Measurement Result=Reading Level +Correct Factor;

60

Over Limit= Measurement Result- Limit;

50

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	44.9006	34.09	1.34	35.43	40.00	-4.57	QP
2		67.9129	33.09	-3.80	29.29	40.00	-10.71	QP
3		210.7860	29.51	1.95	31.46	43.50	-12.04	QP
4		434.0651	29.91	4.83	34.74	46.00	-11.26	QP
5		501.1790	30.60	4.89	35.49	46.00	-10.51	QP
6		760.7036	27.03	10.89	37.92	46.00	-8.08	QP

(MHz)

300

400

500

600 700

1000.000

Page 31 of 61

Model name:	H20	Test Date :	2024-12-31
Polarization :	Horizontal	Test Result:	☐ Pass ☐ Fail
80.0 dBuV/m			
			Limit: — Margin: —
			4 5 6
1			and the second second
35133	mun and a second	warning war har har har har har har har har har h	
2558	A granter of Maring	weeks with the beautiful and the same to be a second	
0.0			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.1798	27.08	1.98	29.06	40.00	-10.94	QP
2		56.1974	26.20	1.28	27.48	40.00	-12.52	QP
3		182.5592	26.50	0.61	27.11	43.50	-16.39	QP
4	- 1	411.8240	32.65	6.92	39.57	46.00	-6.43	QP
5		501.1790	30.73	8.44	39.17	46.00	-6.83	QP
6	*	760.7036	28.42	12.28	40.70	46.00	-5.30	QP

30.000

40

Configuration2+Adapter1:

/lodel name:	H20	H20 Test			Date :	2024-12-31		
Polarization :	Vertical			Test F	Result:	Pass Fail		
80.0 dBuV/m	223	30 30 32 30		721			-55 -2- 28	
							Limit: Margin:	
								П
40								
				War Mary Wal		Ť	J.M	Much
1	2			X	1	John Mary Land	What was to have	
Mary War Alle	House way or the following to		1 X V	M	111. J. Holy France with	Man Ju		
M. midule	Lans of March 1. Land Land	AULUMAN WARM	Mary Johnson	Change of the state of the stat	Millian			
		Ab. Lothham	A bull.	PILS.				
2.00000								

(MHz)

300

400

500

600 700

1000.000

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

70 80

Measurement Result=Reading Level +Correct Factor;

60

Over Limit= Measurement Result- Limit;

50

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.3462	24.64	1.49	26.13	40.00	-13.87	QP
2		59.8588	27.51	-1.54	25.97	40.00	-14.03	QP
3		141.3298	25.80	-1.54	24.26	43.50	-19.24	QP
4	- 10	205.6751	30.26	0.76	31.02	43.50	-12.48	QP
5		501.1790	31.04	4.89	35.93	46.00	-10.07	QP
6	*	801.7863	23.72	12.87	36.59	46.00	-9.41	QP

Page 33 of 61

odel name:	H20			Test Date :	2024-12	2-31	
larization :	Horizontal Test Result:						
0.0 dBuV/m							
0.0 dBuV/m						Limit: — Margin: —	
10					6	instantion strange and	
Maryand	2	adjusticion of the state of the	3 Xw.a . M	5 Mr. M. M.	multiple of the state of the st	maller half and	
	The state of the s	apple on the land of the property and the	wholewood I have been broken by	Libratus Internet :			
.0							

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	<mark>d</mark> BuV	dB	dBuV/m	dBuV/m	dB	Detector
1		41.5670	24.31	3.97	28.28	40.00	-11.72	QP
2		55.6094	25.78	1.41	27.19	40.00	-12.81	QP
3		137.4202	26.36	-1.42	24.94	43.50	-18.56	QP
4		199.9856	31.32	-1.32	30.00	43.50	-13.50	QP
5		267.5455	29.99	-0.32	29.67	46.00	-16.33	QP
6	*	501.1790	31.04	8.44	39.48	46.00	-6.52	QP

30.000

Configuration2+Adapter2::

lodel name:	H20			Test Date :	2024-12	-31
olarization :	Vertical			Test Result:	⊠ Pas	s Fail
					·	
0.0 dBuV/m						Limit: — Margin: —
10						
I Washalland Francisch	2	_	3		and the state of t	Marin and Marin

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

70 80

Measurement Result=Reading Level +Correct Factor;

60

Over Limit= Measurement Result- Limit;

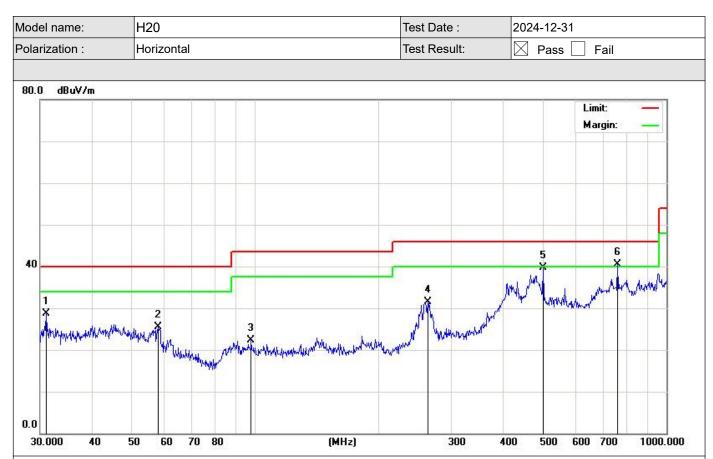
50

40

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.3462	25.54	1.49	27.03	40.00	-12.97	QP
2		58.8185	28.13	-1.39	26.74	40.00	-13.26	QP
3		142.8243	30.52	-1.41	29.11	43.50	-14.39	QP
4		208.5803	32.31	1.72	34.03	43.50	-9.47	QP
5		501.1790	31.83	4.89	36.72	46.00	-9.28	QP
6	*	793.3960	24.02	12.88	36.90	46.00	-9.10	QP

(MHz)

300


400

500

600 700

1000.000

Page 35 of 61

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.0706	26.82	1.97	28.79	40.00	-11.21	QP
2		58.2030	24.92	0.51	25.43	40.00	-14.57	QP
3		97.7983	24.55	-2.19	22.36	43.50	-21.14	QP
4	3	262.8955	31.74	-0.25	31.49	46.00	-14.51	QP
5	i	501.1790	31.24	8.44	39.68	46.00	-6.32	QP
6	*	760.7036	28.24	12.28	40.52	46.00	-5.48	QP

Page 36 of 61 Report No.: AiTDG-241129002W8

Results for Radiated Emissions (1- 26 GHz)

Note: All the modes have been tested and recorded worst mode in the report.

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Botootor Typo
4824.000	49.39	5.08	54.47	74.00	-19.53	PEAK
4824.000	37.90	5.08	42.98	54.00	-11.02	AVG
7236.000	41.19	7.55	48.74	74.00	-25.26	PEAK
7236.000	33.88	7.55	41.43	54.00	-12.57	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Botoote, Type
4824.000	46.73	5.08	51.81	74.00	-22.19	PEAK
4824.000	37.95	5.08	43.03	54.00	-10.97	AVG
7236.000	42.29	7.55	49.84	74.00	-24.16	PEAK
7236.000	34.70	7.55	42.25	54.00	-11.75	AVG

Test mode: 802.11b	Test channel:	Middle
--------------------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	.,,,,,
4874.000	48.28	5.13	53.41	74.00	-20.59	PEAK
4874.000	37.49	5.13	42.62	54.00	-11.38	AVG
7311.000	43.27	7.49	50.76	74.00	-23.24	PEAK
7311.000	32.63	7.49	40.12	54.00	-13.88	AVG

V

V						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	
4874.000	46.39	5.13	51.52	74.00	-22.48	PEAK
4874.000	39.09	5.13	44.22	54.00	-9.78	AVG
7311.000	41.11	7.49	48.60	74.00	-25.40	PEAK
7311.000	33.99	7.49	41.48	54.00	-12.52	AVG

Page 37 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11b Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tura
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	49.32	5.18	54.50	74.00	-19.50	PEAK
4924.000	37.58	5.18	42.76	54.00	-11.24	AVG
7386.000	41.21	7.82	49.03	74.00	-24.97	PEAK
7386.000	33.78	7.82	41.60	54.00	-12.40	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	46.39	5.18	51.57	74.00	-22.43	PEAK
4924.000	37.68	5.18	42.86	54.00	-11.14	AVG
7386.000	41.15	7.82	48.97	74.00	-25.03	PEAK
7386.000	30.72	7.82	38.54	54.00	-15.46	AVG

Test mode:	802.11g	Test channel:	lowest
------------	---------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.69	5.08	53.77	74.00	-20.23	PEAK
4824.000	38.46	5.08	43.54	54.00	-10.46	AVG
7236.000	43.11	7.55	50.66	74.00	-23.34	PEAK
7236.000	33.06	7.55	40.61	54.00	-13.39	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	46.57	5.08	51.65	74.00	-22.35	PEAK
4824.000	37.66	5.08	42.74	54.00	-11.26	AVG
7236.000	41.32	7.55	48.87	74.00	-25.13	PEAK
7236.000	32.28	7.55	39.83	54.00	-14.17	AVG

Page 38 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11g Test channel: Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.75	5.13	53.88	74.00	-20.12	PEAK
4874.000	36.90	5.13	42.03	54.00	-11.97	AVG
7311.000	42.40	7.49	49.89	74.00	-24.11	PEAK
7311.000	32.15	7.49	39.64	54.00	-14.36	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	46.52	5.13	51.65	74.00	-22.35	PEAK
4874.000	38.95	5.13	44.08	54.00	-9.92	AVG
7311.000	41.80	7.49	49.29	74.00	-24.71	PEAK
7311.000	30.89	7.49	38.38	54.00	-15.62	AVG

Test mode: 802.11g	Test channel:	Highest
--------------------	---------------	---------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(Db)	Detector Type
4924.000	48.55	5.18	53.73	74.00	-20.27	PEAK
4924.000	36.62	5.18	41.80	54.00	-12.20	AVG
7386.000	39.43	7.82	47.25	74.00	-26.75	PEAK
7386.000	32.73	7.82	40.55	54.00	-13.45	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	45.82	5.18	51.00	74.00	-23.00	PEAK
4924.000	36.88	5.18	42.06	54.00	-11.94	AVG
7386.000	43.06	7.82	50.88	74.00	-23.12	PEAK
7386.000	33.56	7.82	41.38	54.00	-12.62	AVG

Page 39 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11n(HT20) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.34	5.08	53.42	74.00	-20.58	PEAK
4824.000	37.95	5.08	43.03	54.00	-10.97	AVG
7236.000	43.03	7.55	50.58	74.00	-23.42	PEAK
7236.000	32.09	7.55	39.64	54.00	-14.36	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	46.25	5.08	51.33	74.00	-22.67	PEAK
4824.000	40.12	5.08	45.20	54.00	-8.80	AVG
7236.000	41.71	7.55	49.26	74.00	-24.74	PEAK
7236.000	31.22	7.55	38.77	54.00	-15.23	AVG

Н

٠.							
	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	4874.000	48.99	5.13	54.12	74.00	-19.88	PEAK
Ī	4874.000	35.92	5.13	41.05	54.00	-12.95	AVG
	7311.000	42.88	7.49	50.37	74.00	-23.63	PEAK
Ī	7311.000	31.97	7.49	39.46	54.00	-14.54	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	46.32	5.13	51.45	74.00	-22.55	PEAK
4874.000	36.55	5.13	41.68	54.00	-12.32	AVG
7311.000	43.73	7.49	51.22	74.00	-22.78	PEAK
7311.000	32.04	7.49	39.53	54.00	-14.47	AVG

Page 40 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11n(HT20) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	48.27	5.18	53.45	74.00	-20.55	PEAK
4924.000	37.10	5.18	42.28	54.00	-11.72	AVG
7386.000	43.09	7.82	50.91	74.00	-23.09	PEAK
7386.000	31.88	7.82	39.70	54.00	-14.30	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	45.98	5.18	51.16	74.00	-22.84	PEAK
4924.000	37.76	5.18	42.94	54.00	-11.06	AVG
7386.000	42.94	7.82	50.76	74.00	-23.24	PEAK
7386.000	31.37	7.82	39.19	54.00	-14.81	AVG

Test mode: 802.11n(HT40) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	48.22	5.11	53.33	74.00	-20.67	PEAK
4844.000	36.88	5.11	41.99	54.00	-12.01	AVG
7266.000	38.98	7.29	46.27	74.00	-27.73	PEAK
7266.000	31.67	7.29	38.96	54.00	-15.04	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	45.50	5.11	50.61	74.00	-23.39	PEAK
4844.000	36.63	5.11	41.74	54.00	-12.26	AVG
7266.000	42.46	7.29	49.75	74.00	-24.25	PEAK
7266.000	29.85	7.29	37.14	54.00	-16.86	AVG

Page 41 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11n(HT40) Test channel: Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	47.31	5.13	52.44	74.00	-21.56	PEAK
4874.000	36.71	5.13	41.84	54.00	-12.16	AVG
7311.000	40.16	7.49	47.65	74.00	-26.35	PEAK
7311.000	30.25	7.49	37.74	54.00	-16.26	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.84	5.13	50.97	74.00	-23.03	PEAK
4874.000	37.30	5.13	42.43	54.00	-11.57	AVG
7311.000	40.14	7.49	47.63	74.00	-26.37	PEAK
7311.000	32.36	7.49	39.85	54.00	-14.15	AVG

Test mode: 802.11	n(HT40) Test channel:	Highest
-------------------	-----------------------	---------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	47.66	5.16	52.82	74.00	-21.18	peak
4904.000	37.58	5.16	42.74	54.00	-11.26	AVG
7356.000	39.67	7.69	47.36	74.00	-26.64	peak
7356.000	32.04	7.69	39.73	54.00	-14.27	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	44.82	5.16	49.98	74.00	-24.02	peak
4904.000	37.25	5.16	42.41	54.00	-11.59	AVG
7356.000	39.79	7.69	47.48	74.00	-26.52	peak
7356.000	28.78	7.69	36.47	54.00	-17.53	AVG

Page 42 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11ax(HE20) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.69	5.08	53.77	74.00	-20.23	PEAK
4824.000	38.78	5.08	43.86	54.00	-10.14	AVG
7236.000	42.10	7.55	49.65	74.00	-24.35	PEAK
7236.000	32.33	7.55	39.88	54.00	-14.12	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	46.46	5.08	51.54	74.00	-22.46	PEAK
4824.000	37.93	5.08	43.01	54.00	-10.99	AVG
7236.000	41.22	7.55	48.77	74.00	-25.23	PEAK
7236.000	32.75	7.55	40.30	54.00	-13.70	AVG

Test mode:	802.11ax(HE20)	Test channel:	Middle
	00=:::0::(::==0)		

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.31	5.13	53.44	74.00	-20.56	PEAK
4874.000	36.36	5.13	41.49	54.00	-12.51	AVG
7311.000	41.56	7.49	49.05	74.00	-24.95	PEAK
7311.000	32.93	7.49	40.42	54.00	-13.58	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	46.22	5.13	51.35	74.00	-22.65	PEAK
4874.000	39.18	5.13	44.31	54.00	-9.69	AVG
7311.000	41.40	7.49	48.89	74.00	-25.11	PEAK
7311.000	32.73	7.49	40.22	54.00	-13.78	AVG

Page 43 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11ax(HE20) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	48.31	5.18	53.49	74.00	-20.51	PEAK
4924.000	37.37	5.18	42.55	54.00	-11.45	AVG
7386.000	43.03	7.82	50.85	74.00	-23.15	PEAK
7386.000	31.75	7.82	39.57	54.00	-14.43	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	45.98	5.18	51.16	74.00	-22.84	PEAK
4924.000	38.06	5.18	43.24	54.00	-10.76	AVG
7386.000	42.18	7.82	50.00	74.00	-24.00	PEAK
7386.000	29.90	7.82	37.72	54.00	-16.28	AVG

Test mode: 802.11ax(HE40) Test channel: Lowest
--

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	47.76	5.11	52.87	74.00	-21.13	PEAK
4844.000	37.19	5.11	42.30	54.00	-11.70	AVG
7266.000	39.72	7.29	47.01	74.00	-26.99	PEAK
7266.000	32.29	7.29	39.58	54.00	-14.42	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	44.24	5.11	49.35	74.00	-24.65	PEAK
4844.000	36.32	5.11	41.43	54.00	-12.57	AVG
7266.000	42.05	7.29	49.34	74.00	-24.66	PEAK
7266.000	32.02	7.29	39.31	54.00	-14.69	AVG

Page 44 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11ax(HE40) Test channel: Middle

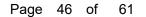
Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.03	5.13	53.16	74.00	-20.84	PEAK
4874.000	36.57	5.13	41.70	54.00	-12.30	AVG
7311.000	40.58	7.49	48.07	74.00	-25.93	PEAK
7311.000	32.50	7.49	39.99	54.00	-14.01	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.88	5.13	51.01	74.00	-22.99	PEAK
4874.000	36.14	5.13	41.27	54.00	-12.73	AVG
7311.000	40.65	7.49	48.14	74.00	-25.86	PEAK
7311.000	32.61	7.49	40.10	54.00	-13.90	AVG

Н


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	47.10	5.16	52.26	74.00	-21.74	peak
4904.000	37.69	5.16	42.85	54.00	-11.15	AVG
7356.000	38.90	7.69	46.59	74.00	-27.41	peak
7356.000	30.83	7.69	38.52	54.00	-15.48	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	45.08	5.16	50.24	74.00	-23.76	peak
4904.000	34.96	5.16	40.12	54.00	-13.88	AVG
7356.000	40.46	7.69	48.15	74.00	-25.85	peak
7356.000	30.11	7.69	37.80	54.00	-16.20	AVG

Notes:

- 1). Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40
- 5). Margin=Reading level + Factor Limit

Results for Restrict-band Band-edge

Note: All the modes have been tested and recorded worst mode in the report.

Test mode:	802.11b	Test channel:	Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2390.000	43.98	-5.70	38.28	74.00	-35.72	peak	
2390.000	31.82	-5.70	26.12	54.00	-27.88	AVG	

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	41.81	-5.70	36.11	74.00	-37.89	peak
2390.000	32.40	-5.70	26.70	54.00	-27.30	AVG

Test mode: 802.11b	Test channel:	Highest	
--------------------	---------------	---------	--

Η

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.40	-4.98	38.42	74.00	-35.58	peak
2483.500	32.49	-4.98	27.51	54.00	-26.49	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.78	-4.98	38.80	74.00	-35.20	peak
2483.500	32.79	-4.98	27.81	54.00	-26.19	AVG

Page 47 of 61 Report No.: AiTDG-241129002W8

Test mode:	802.11g	Test channel:	lowest
------------	---------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	43.53	-5.70	37.83	74.00	-36.17	peak
2390.000	32.30	-5.70	26.60	54.00	-27.40	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	42.10	-5.70	36.40	74.00	-37.60	peak
2390.000	32.48	-5.70	26.78	54.00	-27.22	AVG

Test mode:	802.11g	Test channel:	Highest
	00=g		19

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	44.02	-4.98	39.04	74.00	-34.96	peak
2483.500	31.91	-4.98	26.93	54.00	-27.07	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	42.92	-4.98	37.94	74.00	-36.06	peak
2483.500	32.42	-4.98	27.44	54.00	-26.56	AVG

Page 48 of 61 Report No.: AiTDG-241129002W8

Test mode:	802.11n(HT20)	Test channel:	Lowest
------------	---------------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	44.03	-5.70	38.33	74.00	-35.67	peak
2390.000	32.03	-5.70	26.33	54.00	-27.67	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	42.38	-5.70	36.68	74.00	-37.32	peak
2390.000	32.01	-5.70	26.31	54.00	-27.69	AVG

Test mode:	802.11n(HT20)	Test channel:	Highest
TOST HIDUC.	002.1111(11120)	TOST GHAIHIGH.	riigiicat

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.49	-4.98	38.51	74.00	-35.49	peak
2483.500	32.51	-4.98	27.53	54.00	-26.47	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.79	-4.98	38.81	74.00	-35.19	peak
2483.500	32.06	-4.98	27.08	54.00	-26.92	AVG

Page 49 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11n(HT40) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	44.49	-5.70	38.79	74.00	-35.21	peak
2390.000	32.17	-5.70	26.47	54.00	-27.53	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	43.81	-5.70	38.11	74.00	-35.89	peak
2390.000	32.88	-5.70	27.18	54.00	-26.82	AVG

Test mode: 802)2.11n(HT40)	Test channel:	Highest
----------------	--------------	---------------	---------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	44.94	-4.98	39.96	74.00	-34.04	peak
2483.500	32.25	-4.98	27.27	54.00	-26.73	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.57	-4.98	38.59	74.00	-35.41	peak
2483.500	32.31	-4.98	27.33	54.00	-26.67	AVG

Page 50 of 61 Report No.: AiTDG-241129002W8

Test mode:	802.11ax(HE20)	Test channel:	Lowest
------------	----------------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	43.01	-5.70	37.31	74.00	-36.69	peak
2390.000	31.12	-5.70	25.42	54.00	-28.58	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	43.86	-5.70	38.16	74.00	-35.84	peak
2390.000	31.98	-5.70	26.28	54.00	-27.72	AVG

Test mode:	802.11ax(HE20)	Test channel:	Highest
1001111000.	002:11ax(11220)	100t orialiiloi.	Ingilioti

Н

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.500	43.15	-4.98	38.17	74.00	-35.83	peak
Ī	2483.500	31.28	-4.98	26.30	54.00	-27.70	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	43.61	-4.98	38.63	74.00	-35.37	peak
2483.500	31.92	-4.98	26.94	54.00	-27.06	AVG

Page 51 of 61 Report No.: AiTDG-241129002W8

Test mode: 802.11ax(HE40)	Test channel:	Lowest	
---------------------------	---------------	--------	--

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	45.41	-5.70	39.71	74.00	-34.29	peak
2390.000	32.55	-5.70	26.85	54.00	-27.15	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390.000	45.63	-5.70	39.93	74.00	-34.07	peak
2390.000	32.24	-5.70	26.54	54.00	-27.46	AVG

Test mode: 802.11ax(HE40) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	45.15	-4.98	40.17	74.00	-33.83	peak
2483.500	32.08	-4.98	27.10	54.00	-26.90	AVG

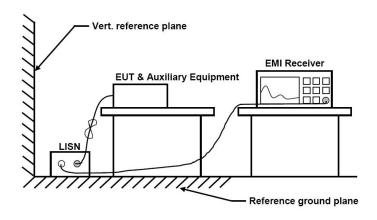
٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	45.29	-4.98	40.31	74.00	-33.69	peak
2483.500	32.05	-4.98	27.07	54.00	-26.93	AVG

Remarks:

- 1). Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2). The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3). The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

6.8 Conducted Emissions


6.8.1 Standard requirement:

According to §15.207 (a), RSS-Gen Issue 5: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dE	βμV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

^{*} Decreasing linearly with the logarithm of the frequency

6.8.2 Test Setup Layout

6.8.3 Test Procedures

The transmitter output is connected to EMI receiver. The resolution bandwidth is set to 9 kHz. The video bandwidth is set to 30 kHz, Sweep time=Auto

The spectrum from 150 kHz to 30MHz is investigated with the transmitter set to the lowest, middle, and highest channels.

6.8.4 EUT Operation during Test

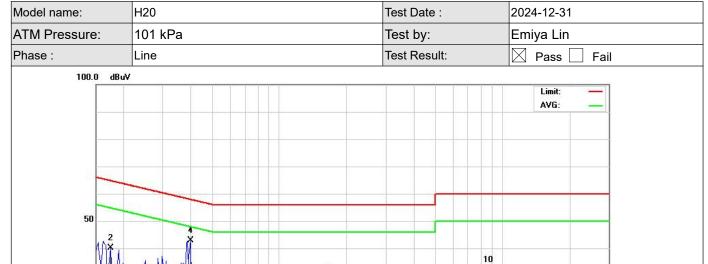
The EUT was programmed to be in continuously transmitting mode.

6.8.5 Test result

PASS

The test data please refer to following page.

Temperature	25.5℃	Humidity	52.2%
Test Engineer	Emiya Lin	Configurations	IEEE 802.11b/g/n/ax



Page 53 of 61

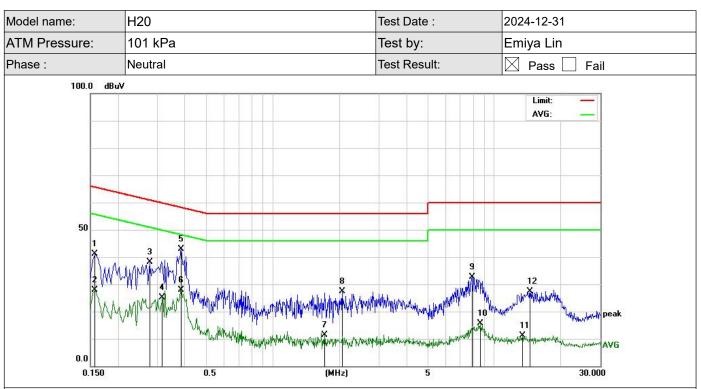
Measurement data:

AC Conducted Emission of charge from Adapter mode @ AC 120V/60Hz @ IEEE 802.11b (worst case)

Configuration1+Adapter1::

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch.

Measurement Result=Reading Level +Correct Factor;

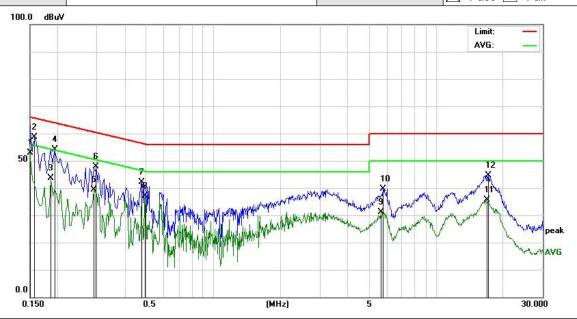

(MHz)

Over Limit= Measurement Result- Limit;

0.0

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1620	12.64	11.68	24.32	55.36	-31.04	AVG
2		0.1740	28.61	11.48	40.09	64.76	-24.67	QP
3		0.3860	16.73	10.13	26.86	48.15	-21.29	AVG
4	*	0.3980	32.65	10.13	42.78	57.89	-15.11	QP
5		0.7060	3.50	9.98	13.48	46.00	-32.52	AVG
6		0.7340	17.16	9.97	27.13	56.00	-28.87	QP
7		1.6620	18.21	9.97	28.18	56.00	-27.82	QP
8		1.6620	2.98	9.97	12.95	46.00	-33.05	AVG
9		8.3940	3.18	10.20	13.38	50.00	-36.62	AVG
10		8.4940	21.93	10.20	32.13	60.00	-27.87	QP
11		18.4420	8.89	1.84	10.73	50.00	-39.27	AVG
12		18.7860	24.13	1.88	26.01	60.00	-33.99	QP

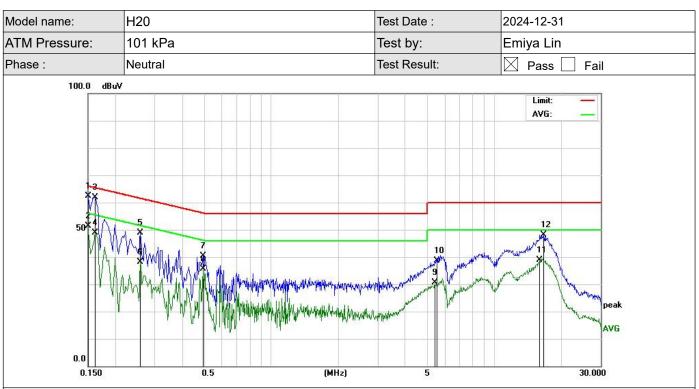
Page 54 of 61


Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1580	29.41	11.75	41.16	65.56	-24.40	QP
2		0.1580	16.02	11.75	27.77	55.56	-27.79	AVG
3		0.2779	27.42	10.80	38.22	60.88	-22.66	QP
4		0.3180	14.82	10.20	25.02	49.76	-24.74	AVG
5	*	0.3860	32.81	10.13	42.94	58.15	-15.21	QP
6		0.3860	17.71	10.13	27.84	48.15	-20.31	AVG
7		1.7100	1.41	9.97	11.38	46.00	-34.62	AVG
8		2.0579	17.36	9.99	27.35	56.00	-28.65	QP
9		7.8940	22.55	10.19	32.74	60.00	-27.26	QP
10		8.6100	5.54	10.20	15.74	50.00	-34.26	AVG
11		13.3820	9.86	1.36	11.22	50.00	-38.78	AVG
12		14.4580	25.99	1.39	27.38	60.00	-32.62	QP

Configuration1+Adapter2::

	<u> </u>		
Model name:	H20	Test Date :	2024-12-31
ATM Pressure:	101 kPa	Test by:	Emiya Lin
Phase :	Line	Test Result:	Pass Fail


Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch.

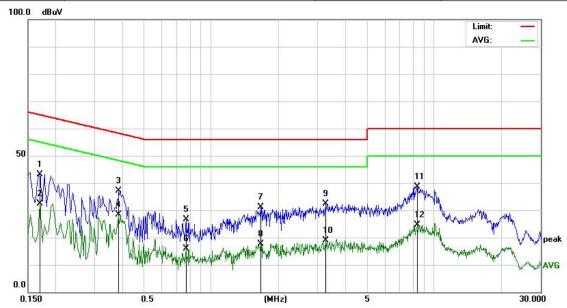
Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1500	40.94	11.94	52.88	55.99	-3.11	AVG
2		0.1580	46.95	11.75	58.70	65.56	-6.86	QP
3		0.1860	32.39	11.31	43.70	54.21	-10.51	AVG
4		0.1940	43.02	11.21	54.23	63.86	-9.63	QP
5		0.2900	28.80	10.50	39.30	50.52	-11.22	AVG
6		0.2980	37.65	10.26	47.91	60.30	-12.39	QP
7		0.4780	32.10	10.04	42.14	56.37	-14.23	QP
8		0.4940	27.18	10.02	37.20	46.10	-8.90	AVG
9		5.6460	20.99	10.12	31.11	50.00	-18.89	AVG
10		5.7580	29.43	10.12	39.55	60.00	-20.45	QP
11		16.8980	34.00	1.64	35.64	50.00	-14.36	AVG
12		17.1500	42.92	1.68	44.60	60.00	-15.40	QP

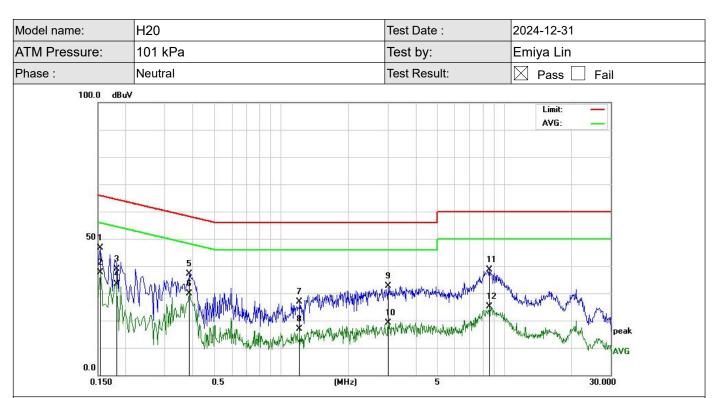
Page 56 of 61

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.1500	50.39	11.94	62.33	65.99	-3.66	QP
	0.1500	39.55	11.94	51.49	55.99	-4.50	AVG
*	0.1620	50.29	11.68	61.97	65.36	-3.39	QP
	0.1620	37.24	11.68	48.92	55.36	-6.44	AVG
	0.2580	38.06	10.87	48.93	61.49	-12.56	QP
	0.2580	27.31	10.87	38.18	51.49	-13.31	AVG
	0.4940	30.46	10.02	40.48	56.10	-15.62	QP
	0.4940	25.61	10.02	35.63	46.10	-10.47	AVG
	5.3900	20.52	10.12	30.64	50.00	-19.36	AVG
	5.5340	28.63	10.12	38.75	60.00	-21.25	QP
	16.0340	37.25	1.53	38.78	50.00	-11.22	AVG
	16.6700	46.63	1.61	48.24	60.00	-11.76	QP
		MHz 0.1500 0.1500 * 0.1620 0.2580 0.2580 0.4940 0.4940 5.3900 5.5340 16.0340	Mk. Freq. Level MHz dBuV 0.1500 50.39 0.1500 39.55 * 0.1620 50.29 0.1620 37.24 0.2580 38.06 0.2580 27.31 0.4940 30.46 0.4940 25.61 5.3900 20.52 5.5340 28.63 16.0340 37.25	Mk. Freq. Level Factor MHz dBuV dB 0.1500 50.39 11.94 0.1500 39.55 11.94 * 0.1620 50.29 11.68 0.1620 37.24 11.68 0.2580 38.06 10.87 0.2580 27.31 10.87 0.4940 30.46 10.02 0.4940 25.61 10.02 5.3900 20.52 10.12 5.5340 28.63 10.12 16.0340 37.25 1.53	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1500 50.39 11.94 62.33 0.1500 39.55 11.94 51.49 * 0.1620 50.29 11.68 61.97 0.1620 37.24 11.68 48.92 0.2580 38.06 10.87 48.93 0.2580 27.31 10.87 38.18 0.4940 30.46 10.02 40.48 0.4940 25.61 10.02 35.63 5.3900 20.52 10.12 30.64 5.5340 28.63 10.12 38.75 16.0340 37.25 1.53 38.78	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1500 50.39 11.94 62.33 65.99 0.1500 39.55 11.94 51.49 55.99 * 0.1620 50.29 11.68 61.97 65.36 0.1620 37.24 11.68 48.92 55.36 0.2580 38.06 10.87 48.93 61.49 0.2580 27.31 10.87 38.18 51.49 0.4940 30.46 10.02 40.48 56.10 0.4940 25.61 10.02 35.63 46.10 5.3900 20.52 10.12 30.64 50.00 5.5340 28.63 10.12 38.75 60.00 16.0340 37.25 1.53 38.78 50.00	Mk. Freq. Level Factor MHz ment Limit Limit Limit MBuV Over dBuV MHz dBuV dB dBuV dBuV dBuV dB 0.1500 50.39 11.94 62.33 65.99 -3.66 0.1500 39.55 11.94 51.49 55.99 -4.50 * 0.1620 50.29 11.68 61.97 65.36 -3.39 0.1620 37.24 11.68 48.92 55.36 -6.44 0.2580 38.06 10.87 48.93 61.49 -12.56 0.2580 27.31 10.87 38.18 51.49 -13.31 0.4940 30.46 10.02 40.48 56.10 -15.62 0.4940 25.61 10.02 35.63 46.10 -10.47 5.3900 20.52 10.12 30.64 50.00 -19.36 5.5340 28.63 10.12 38.75 60.00 -21.25 16.0340 37.25 1.53

Report No.: AiTDG-241129002W8

Configuration2+Adapter1::


Model name:	H20	Test Date :	2024-12-31
ATM Pressure:	101 kPa	Test by:	Emiya Lin
Phase :	Line	Test Result:	

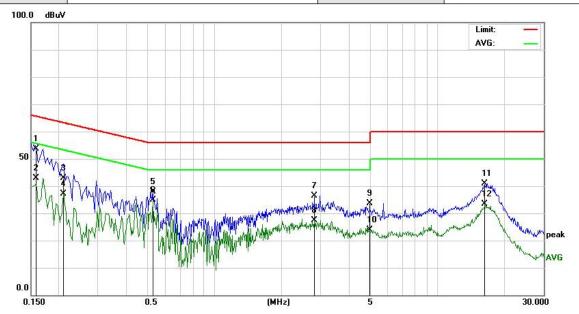
Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch.

Measurement Result=Reading Level +Correct Factor;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1700	31.58	11.55	43.13	64.96	-21.83	QP
2		0.1700	20.85	11.55	32.40	54.96	-22.56	AVG
3		0.3820	27.02	10.14	37.16	58.23	-21.07	QP
4	*	0.3820	18.26	10.14	28.40	48.23	-19.83	AVG
5		0.7700	16.62	9.97	26.59	56.00	-29.41	QP
6		0.7700	5.85	9.97	15.82	46.00	-30.18	AVG
7		1.6700	21.20	9.97	31.17	56.00	-24.83	QP
8		1.6700	7.74	9.97	17.71	46.00	-28.29	AVG
9		3.2620	22.41	10.03	32.44	56.00	-23.56	QP
10		3.2620	8.80	10.03	18.83	46.00	-27.17	AVG
11		8.3740	28.31	10.20	38.51	60.00	-21.49	QP
12		8.3740	14.40	10.20	24.60	50.00	-25.40	AVG

61

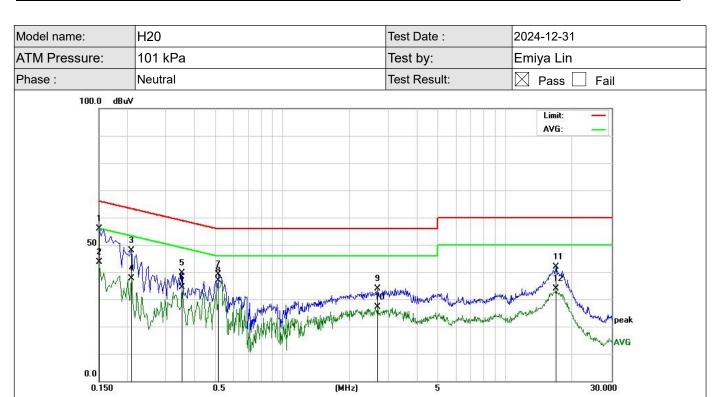
Page 58 of


Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	34.67	11.84	46.51	65.78	-19.27	QP
2	*	0.1539	25.74	11.84	37.58	55.78	-18.20	AVG
3		0.1819	27.57	11.36	38.93	64.39	-25.46	QP
4		0.1819	21.94	11.36	33.30	54.39	-21.09	AVG
5		0.3860	27.03	10.13	37.16	58.15	-20.99	QP
6		0.3860	19.73	10.13	29.86	48.15	-18.29	AVG
7		1.2059	16.93	9.95	26.88	56.00	-29.12	QP
8		1.2059	7.00	9.95	16.95	46.00	-29.05	AVG
9		3.0140	22.60	10.03	32.63	56.00	-23.37	QP
10		3.0140	8.99	10.03	19.02	46.00	-26.98	AVG
11		8.5659	28.54	10.20	38.74	60.00	-21.26	QP
12		8.5659	14.86	10.20	25.06	50.00	-24.94	AVG

Configuration2+Adapter2::

	<u> </u>		
Model name:	H20	Test Date :	2024-12-31
ATM Pressure:	101 kPa	Test by:	Emiya Lin
Phase :	Line	Test Result:	Pass Fail



Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1582	41.86	11.75	53.61	65.55	-11.94	QP
2		0.1582	31.25	11.75	43.00	55.55	-12.55	AVG
3		0.2100	31.72	11.06	42.78	63.20	-20.42	QP
4		0.2100	26.17	11.06	37.23	53.20	-15.97	AVG
5		0.5299	27.92	10.01	37.93	56.00	-18.07	QP
6	*	0.5299	24.77	10.01	34.78	46.00	-11.22	AVG
7		2.8140	26.35	10.03	36.38	56.00	-19.62	QP
8		2.8140	17.31	10.03	27.34	46.00	-18.66	AVG
9		4.9780	23.41	10.11	33.52	56.00	-22.48	QP
10		4.9780	13.70	10.11	23.81	46.00	-22.19	AVG
11		16.3700	39.23	1.58	40.81	60.00	-19.19	QP
12		16.3700	31.73	1.58	33.31	50.00	-16.69	AVG

61

Page 60 of

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	43.87	11.94	55.81	65.99	-10.18	QP
2		0.1500	31.69	11.94	43.63	55.99	-12.36	AVG
3		0.2100	36.75	11.06	47.81	63.20	-15.39	QP
4		0.2100	26.46	11.06	37.52	53.20	-15.68	AVG
5		0.3540	29.49	10.17	39.66	58.87	-19.21	QP
6		0.3540	24.15	10.17	34.32	48.87	-14.55	AVG
7		0.5180	29.08	10.01	39.09	56.00	-16.91	QP
8	*	0.5180	26.86	10.01	36.87	46.00	-9.13	AVG
9		2.6780	23.93	10.02	33.95	56.00	-22.05	QP
10		2.6780	17.01	10.02	27.03	46.00	-18.97	AVG
11		16.8740	40.28	1.64	41.92	60.00	-18.08	QP
12		16.8740	32.35	1.64	33.99	50.00	-16.01	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7

Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

Page 61 of 61

8 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

9 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

-----End-----