

FCC Report (Bluetooth)

Product Name : Bluetooth Module

Trade mark : N/A

Model No. : RF-BM-4044B2

FCC ID : 2ABN2-BM4044B2

Report Number : BLA-EMC-201908-A35-01

Date of sample receipt : August 13, 2019

Date of Test : August 13, 2019–August 29, 2019

Date of Issue : August 30, 2019

Test standard : FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test result : PASS

Prepared for:

ShenZhen RF-STAR Technology CO., LTD 2F,BLDG.8,Zone A, BaoAn Internet Industry Base, BaoYuan Road,XiXiang, BaoAn DIST, ShenZhen, China

Prepared by:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

TEL: +86-755-28682673 FAX: +86-755-28682673

Compiled by:

zason

Approved by:

Emen li

Review by:

Date: August 30, 201

Report No. : BLA-EMC-201908-A35-01 Page 2 of 36

2 Version

Version No.	Date	Description
00	August 30, 2019	Original

Page 3 of 36

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3		
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	7
	5.5 TEST LOCATION	7
6		
7		
	7.1 ANTENNA REQUIREMENT	
	7.3 CONDUCTED OUTPUT POWER	14
	7.4 CHANNEL BANDWIDTH	
	7.6 BAND EDGES	20
	7.6.1 Conducted Emission Method	
	7.5.2 Radiated Emission Method	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	-
8		
g	FUT CONSTRUCTIONAL DETAILS	35

Report No.: BLA-EMC-201908-A35-01 Page 4 of 36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

-					
Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

Report No.: BLA-EMC-201908-A35-01 Page 5 of 36

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth Module
Model No.:	RF-BM-4044B2
Test Model No.:	RF-BM-4044B2
	are identical in the same PCB layout, interior structure and electrical odel name for commercial purpose.
Serial No.:	N/A
Sample(s) Status	Engineer sample
Hardware:	v1.0
Software:	Tv410u
Operation Frequency:	2402MHz-2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0.0dBi
Power Supply:	DC 3.3V

Report No. : BLA-EMC-201908-A35-01 Page 6 of 36

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
• !			• ::		• ::		
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No. : BLA-EMC-201908-A35-01 Page 7 of 36

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

	Manufacturer	Description	Model	Serial Number
Ī	Lenovo	Notebook computer	E470C	PF-10FB5C

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.5 Test Location

All tests were performed at:

All tests were performed at:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Report No.: BLA-EMC-201908-A35-01 Page 8 of 36

Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023		
2	Broadband Antenna	SCHWARZBECK	VULB9168	00836 P:00227	07-14-2019	07-13-2020		
3	Horn Antenna	SCHWARZBECK	9120D	01892 P:00331	07-14-2019	07-13-2020		
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A		
5	Pre-amplifier	SKET	N/A	N/A	07-19-2019	07-18-2020		
6	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020		
7	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	03-21-2019	03-20-2020		
8	Controller	SKET	N/A	N/A	N/A	N/A		
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020		
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020		
11	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A		
12	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A		
13	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A		

Conduc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2019	06-09-2020		
2	LISN	CHASE	MN2050D	1447	12-18-2018	12-17-2019		
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	07-19-2019	07-18-2020		
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A		
5	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020		
6	Coaxial Cable	BlueAsia	BLA-XC-05	N/A	N/A	N/A		

Page 9 of 36

RF Cond	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2019	05-23-2020		
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020		
3	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020		
4	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020		
5	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO27	05-24-2019	05-23-2020		
6	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO28	05-24-2019	05-23-2020		
7	DC Power Supply	LODESTAR	LP305DE	N/A	07-19-2019	07-18-2020		
8	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020		

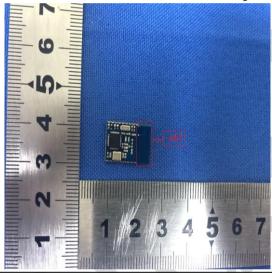
Report No.: BLA-EMC-201908-A35-01 Page 10 of 36

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

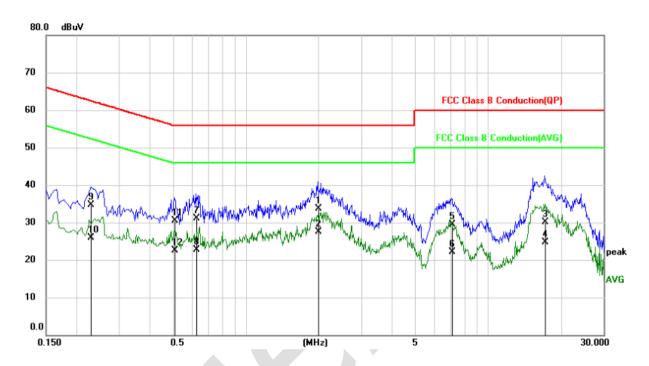
The antenna is PCB antenna, the best case gain of the antenna is 0.0dBi

Report No. : BLA-EMC-201908-A35-01 Page 11 of 36

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Eraguanay ranga (MHZ) Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5 66 to 56* 56 to 4						
	0.5-5 56 46						
	5-30	60	50				
	* Decreases with the logarithm						
Test setup:	Reference Plane						
	AUX Equipment E.U.T EMI Receiver Remark. E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
. 551. 555.161							

Measurement data


Line:

EUT: Bluetooth Module Probe: L1

Model:RF-BM-4044B2Power Source:AC120V/60HzMode:BLE TX modeTest by:Eason

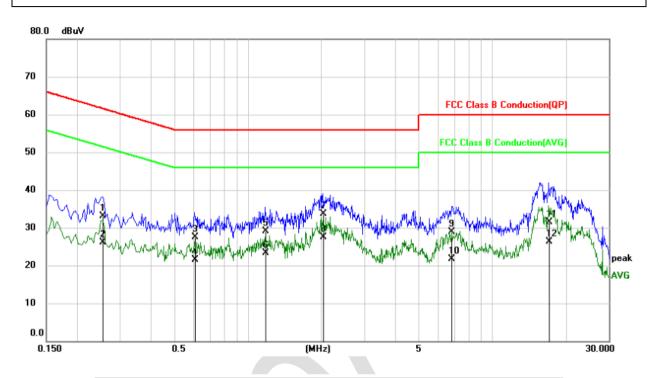
Page 12 of 36

Temp./Hum.(%H): 26°C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detecto
1		1.9860	23.86	9.82	33.68	56.00	-22.32	QP
2	*	1.9860	17.69	9.82	27.51	46.00	-18.49	AVG
3		17.1220	20.04	10.00	30.04	60.00	-29.96	QP
4		17.1220	14.62	10.00	24.62	50.00	-25.38	AVG
5		7.0660	19.61	9.86	29.47	60.00	-30.53	QP
6		7.0660	12.26	9.86	22.12	50.00	-27.88	AVG
7		0.6260	21.36	9.72	31.08	56.00	-24.92	QP
8		0.6260	12.89	9.72	22.61	46.00	-23.39	AVG
9		0.2300	24.85	9.92	34.77	62.45	-27.68	QP
10		0.2300	16.03	9.92	25.95	52.45	-26.50	AVG
11		0.5100	20.78	9.73	30.51	56.00	-25.49	QP
12		0.5100	12.79	9.73	22.52	46.00	-23.48	AVG

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China


Report No.: BLA-EMC-201908-A35-01 Page 13 of 36

EUT: Bluetooth Module Probe: N

Model: RF-BM-4044B2 Power Source: AC120V/60Hz

Mode: BLE TX mode Test by: Eason

Temp./Hum.(%H): 26°C/60%RH

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2540	23.31	9.84	33.15	61.63	-28.48	QP
2	0.2540	16.35	9.84	26.19	51.63	-25.44	AVG
3	0.6060	17.73	9.74	27.47	56.00	-28.53	QP
4	0.6060	11.83	9.74	21.57	46.00	-24.43	AVG
5	1.1820	19.18	9.83	29.01	56.00	-26.99	QP
6	1.1820	13.57	9.83	23.40	46.00	-22.60	AVG
7	2.0260	23.91	9.86	33.77	56.00	-22.23	QP
8 *	2.0260	17.60	9.86	27.46	46.00	-18.54	AVG
9	6.8140	19.10	9.85	28.95	60.00	-31.05	QP
10	6.8140	11.95	9.85	21.80	50.00	-28.20	AVG
11	17.0700	21.54	10.04	31.58	60.00	-28.42	QP
12	17.0700	16.24	10.04	26.28	50.00	-23.72	AVG

Notes:

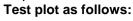
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct factor
- 4. Correct factor = LISN Factor + Cable Loss
- 5. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

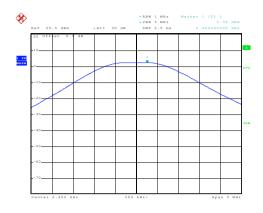
Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

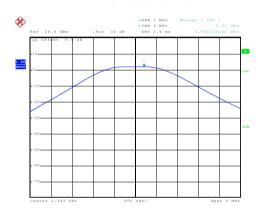
Report No. : BLA-EMC-201908-A35-01 Page 14 of 36

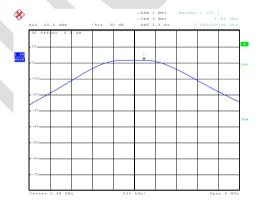
7.3 Conducted Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	2.39		
Middle	2.03	30.00	Pass
Highest	1.61		


Page 15 of 36


Date: 26.AUG.2019 11:38:54

Lowest channel

Date: 26.AUG.2019 11:39:28

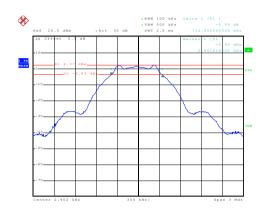
Middle channel

Highest channel

7.4 Channel Bandwidth

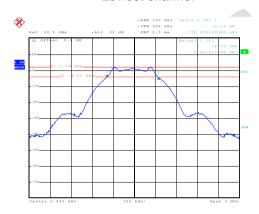
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Page 16 of 36

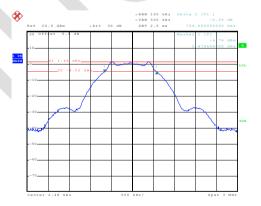

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.732		
Middle	0.738	>500	Pass
Highest	0.744		

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673



Test plot as follows:


Date: 26.AUG.2019 11:49:22

Lowest channel

Date: 26.AUG.2019 11:45:25

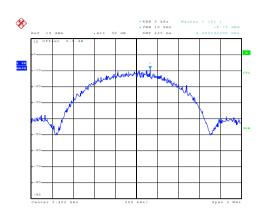
Middle channel

Date: 26.AUG.2019 11:44:09

Highest channel

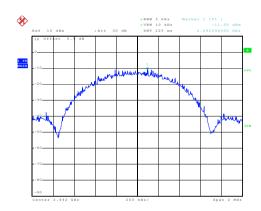
Report No.: BLA-EMC-201908-A35-01 Page 18 of 36

7.5 Power Spectral Density

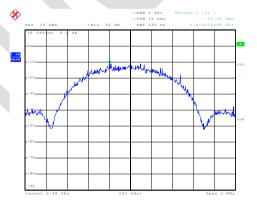

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	8dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

	Test channel	Power Spectral Density (dBm/3KHz)	Limit(dBm/3kHz)	Result
	Lowest	-8.73		
	Middle	-11.05	8.00	Pass
ĺ	Highest	-10.91		


Test plot as follows:

Page 19 of 36

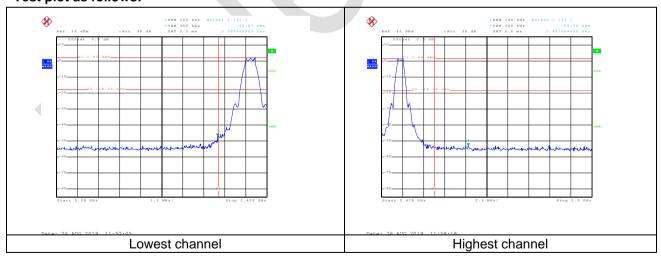

Date: 26.AUG.2019 11:50:26

Lowest channel

Date: 26.AUG.2019 11:50:54

Middle channel

Highest channel


Report No. : BLA-EMC-201908-A35-01 Page 20 of 36

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Report No.: BLA-EMC-201908-A35-01 Page 21 of 36

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:20						
Test Frequency Range:	All of the restrict 2390MHz, 2483		•		ind's (2310MHz to		
Test site:	Measurement D		,				
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
•		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque		Limit (dBuV/m @3m)		Value		
	Above 1	GH ₇	54.0		Average		
	Above	OFIZ	74.0	0	Peak		
Test setup:	Tum Table Colombia Receiver Preamplifier Pre						
Test Procedure:	the ground a determine the 2. The EUT was antenna, whistower. 3. The antenna ground to deshorizontal and measuremer. 4. For each sussand then the and the rota the maximum. 5. The test-recesspecified Ba. 6. If the emission the limit specified Ba. 6. If the rota the limit specified Ba. 7. The radiation and found the foun	t a 3 meter care position of the set 3 meters ch was mounted by the set of the man and vertical polarit. Spected emission antenna was to table was turned reading. Silver system would be reported any measurement of the set of the se	mber. The tall le highest race away from the ed on the top ed from one neaximum value rizations of the con, the EUT caned to heigh ed from 0 decens set to Peal laximum Hole EUT in peak ling could be ed. Otherwise re-tested or a specified arts are performoning which is	ole was rotated diation. The interference of a variable of the field state antenna at the antenna at the arranged has from 1 may grees to 360 at Detect Furd Mode. The mode was 10 stopped and the emission of the mode was 10 stopped and the mode was 10 sto	e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and DdB lower than the peak values ons that did not ing peak, quasi-		
Test Instruments:	worst case mode is recorded in the report. Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test mode. Test results:	Pass	. J. 2 101 GCtalls	•				
TEST TESUITS.	. 550						

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:		Lowest

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Peak value:

Page 22 of 36

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	53.20	-14.56	38.64	74.00	-35.36	Horizontal
2390.00	73.92	-14.19	59.73	74.00	-14.27	Horizontal
2310.00	52.72	-14.85	37.87	74.00	-36.13	Vertical
2390.00	63.08	-14.52	48.56	74.00	-25.44	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	41.88	-14.56	27.32	54.00	-26.68	Horizontal
2390.00	54.85	-14.19	40.68	54.00	-13.32	Horizontal
2310.00	41.09	-14.85	26.24	54.00	-27.76	Vertical
2390.00	42.34	-14.52	27.82	54.00	-26.18	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	55.46	-13.66	41.80	74.00	-32.20	Horizontal
2500.00	53.87	-13.57	40.30	74.00	-33.70	Horizontal
2483.50	63.37	-14.05	49.32	74.00	-24.68	Vertical
2500.00	54.70	-13.97	40.73	74.00	-33.27	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.81	-13.66	30.15	54.00	-23.85	Horizontal
2500.00	41.07	-13.57	27.50	54.00	-26.50	Horizontal
2483.50	45.83	-14.05	31.78	54.00	-22.22	Vertical
2500.00	41.79	-13.97	27.82	54.00	-26.18	Vertical

Remark:

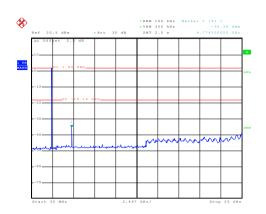
- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

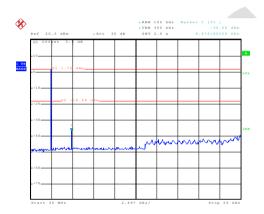
Report No. : BLA-EMC-201908-A35-01 Page 23 of 36

7.7 Spurious Emission

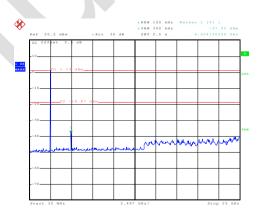

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	·				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:


Lowest channel

Page 24 of 36

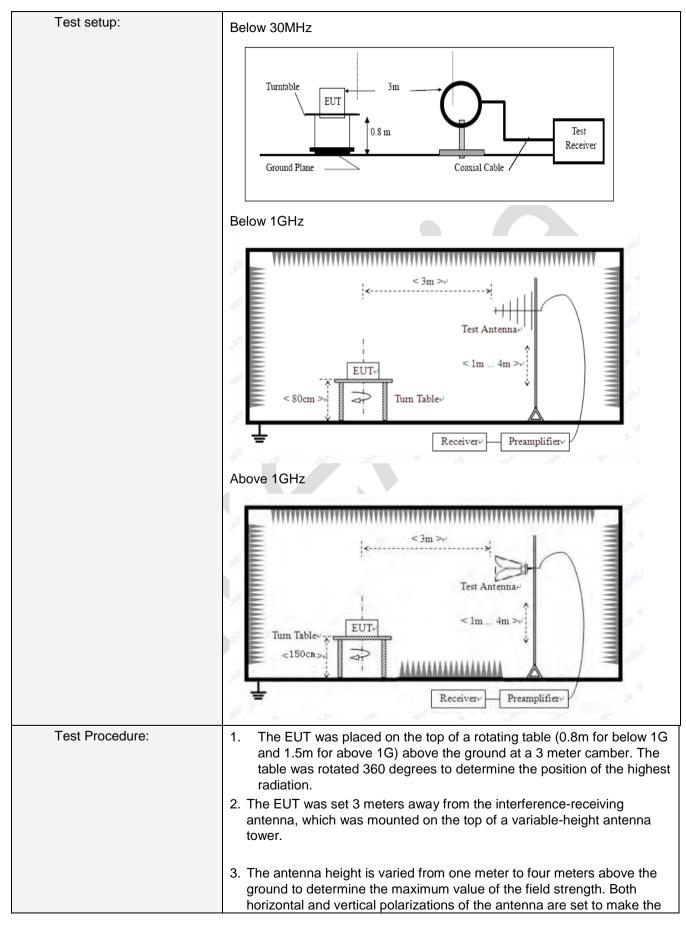

Date: 26.AUG.2019 12:29:29 30MHz~25GHz

Middle channel

Date: 26,AUG.2019 12:08:16 30MHz~25GHz

Highest channel

Date: 26.AUG.2019 12:01:48


30MHz~25GHz

Report No.: BLA-EMC-201908-A35-01 Page 25 of 36

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value			
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	z Quasi-peak			
	150KHz-30MHz	Qı	uasi-peak	9KI	Ηz	30KHz	z Quasi-peak			
	30MHz-1GHz	Qı	ıasi-peak	120k	Ήz	300KH	z Quasi-peak			
	Above 1GHz		Peak	1Mł	Ηz	3MHz	Peak			
	Above 1G112		Peak	1MHz		10Hz	Average			
Limit: (Spurious Emissions)	Frequency		Limit (uV/m)		Value		Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(KHz)		QP		300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		c) QP		30m			
	1.705MHz-30MH	lz	30		QP		30m			
	30MHz-88MHz		100			QP				
	88MHz-216MHz	Z	150			QP				
	216MHz-960MH	z	200			QP	3m			
	960MHz-1GHz	V	500			QP	3111			
	Above 1GHz		500		Average					
	715070 10112		5000		Peak					
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.									

Report No.: BLA-EMC-201908-A35-01 Page 26 of 36

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No.: BLA-EMC-201908-A35-01 Page 27 of 36

Troport No DET ENIO 201300	1 age 27 01 30
	measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

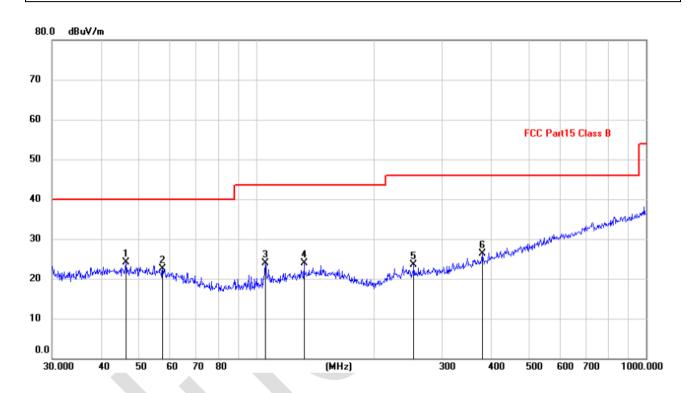
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No. : BLA-EMC-201908-A35-01 Page 28 of 36


■ Below 1GHz

Horizontal:

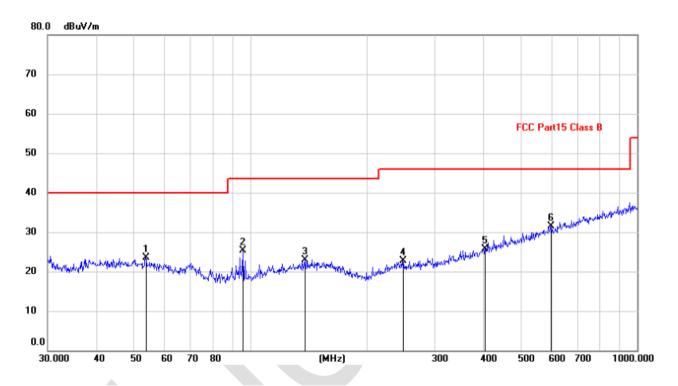
EUT:Bluetooth ModulePolarziation:HorizontalModel:RF-BM-4044B2Power Source:DC3.3V

Mode: BLE TX mode Test by: Eason

Temp./Hum.(%H): 26 °C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	46.5030	10.31	13.88	24.19	40.00	-15.81	QP
2		57.5939	9.41	13.19	22.60	40.00	-17.40	QP
3		105.6415	12.92	10.89	23.81	43.50	-19.69	QP
4		132.6850	11.16	12.80	23.96	43.50	-19.54	QP
5		253.8367	10.85	12.68	23.53	46.00	-22.47	QP
6		379.9141	10.35	15.92	26.27	46.00	-19.73	QP

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673


Report No. : BLA-EMC-201908-A35-01 Page 29 of 36

Vertical:

EUT:Bluetooth ModulePolarziation:VerticalModel:RF-BM-4044B2Power Source:DC3.3V

Mode: BLE TX mode Test by: Eason

Temp./Hum.(%H): 26 °C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		53.6932	9.86	13.59	23.45	40.00	-16.55	QP
2		95.7622	15.34	9.90	25.24	43.50	-18.26	QP
3		138.3873	9.91	13.00	22.91	43.50	-20.59	QP
4		247.6819	10.05	12.70	22.75	46.00	-23.25	QP
5		404.6665	9.02	16.61	25.63	46.00	-20.37	QP
6	*	599.3212	10.55	20.92	31.47	46.00	-14.53	QP

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Above 1GHz

Test channel: Lowest

Page 30 of 36

Pea	L	va	 Δ.
rea	ĸ	va	 :

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	61.78	-7.43	54.35	74.00	-19.65	Vertical
7206.00	58.31	-2.42	55.89	74.00	-18.11	Vertical
9608.00	59.64	-2.38	57.26	74.00	-16.74	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	58.59	-7.43	51.16	74.00	-22.84	Horizontal
7206.00	57.71	-2.42	55.29	74.00	-18.71	Horizontal
9608.00	59.28	-2.38	56.90	74.00	-17.10	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Average value:

Average var	uo.					
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	57.36	-7.43	49.93	54.00	-4.07	Vertical
7206.00	46.32	-2.42	43.90	54.00	-10.10	Vertical
9608.00	45.18	-2.38	42.80	54.00	-11.20	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	53.39	-7.43	45.96	54.00	-8.04	Horizontal
7206.00	45.58	-2.42	43.16	54.00	-10.84	Horizontal
9608.00	45.37	-2.38	42.99	54.00	-11.01	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- Correct factor = Antenna Factor + Cable Loss Preamplifier Factor 3.

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-201908-A35-01 Page 31 of 36

Test channel:			Middle	Middle				
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	60.28	-7.49	52.79	74.00	-21.21	Vertical		
7326.00	58.86	-2.40	56.46	74.00	-17.54	Vertical		
9768.00	59.41	-2.38	57.03	74.00	-16.97	Vertical		
12210.00	*			74.00		Vertical		
14652.00	*			74.00		Vertical		
4884.00	57.16	-7.49	49.67	74.00	-24.33	Horizontal		
7326.00	57.72	-2.40	55.32	74.00	-18.63	Horizontal		
9768.00	58.55	-2.38	56.17	74.00	-17.83	Horizontal		
12210.00	*			74.00		Horizontal		
14652.00	*			74.00		Horizontal		
Average value:								

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	55.28	-7.49	47.79	54.00	-6.21	Vertical
7326.00	46.36	-2.40	43.96	54.00	-10.04	Vertical
9768.00	45.51	-2.38	43.13	54.00	-10.87	Vertical
12210.00	*			54.00		Vertical
14652.00	*			54.00		Vertical
4884.00	52.44	-7.49	44.95	54.00	-9.05	Horizontal
7326.00	47.62	-2.40	45.22	54.00	-8.78	Horizontal
9768.00	45.59	-2.38	43.21	54.00	-10.79	Horizontal
12210.00	*			54.00		Horizontal
14652.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3 . Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

Report No.: BLA-EMC-201908-A35-01 Page 32 of 36

Test channel:	Highest
---------------	---------

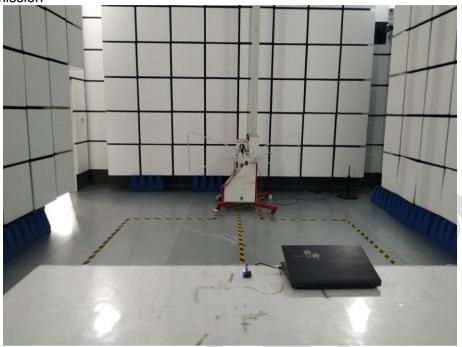
Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	59.79	-7.47	52.32	74.00	-21.68	Vertical
7440.00	58.13	-2.45	55.68	74.00	-18.32	Vertical
9920.00	58.03	-2.37	55.66	74.00	-18.34	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	55.38	-7.47	47.91	74.00	-26.09	Horizontal
7440.00	57.62	-2.45	55.17	74.00	-18.83	Horizontal
9920.00	58.47	-2.37	56.10	74.00	-17.90	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

Average valu						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	53.48	-7.47	46.01	54.00	-7.99	Vertical
7440.00	45.23	-2.45	42.78	54.00	-11.22	Vertical
9920.00	45.11	-2.37	42.74	54.00	-11.26	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	50.34	-7.47	42.87	54.00	-11.13	Horizontal
7440.00	46.17	-2.45	43.72	54.00	-10.28	Horizontal
9920.00	45.28	-2.37	42.91	54.00	-11.09	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

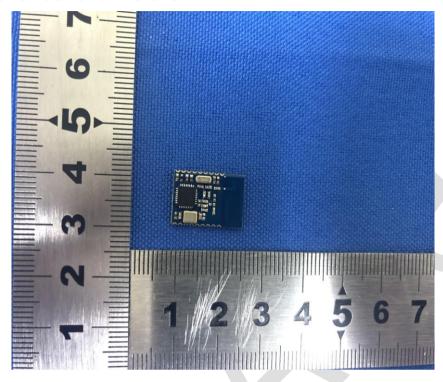
Remark:

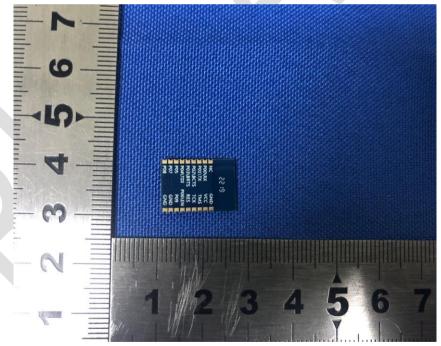

- Final Level = Receiver Read level + Correct factor.
 "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor.

Report No.: BLA-EMC-201908-A35-01 Page 33 of 36

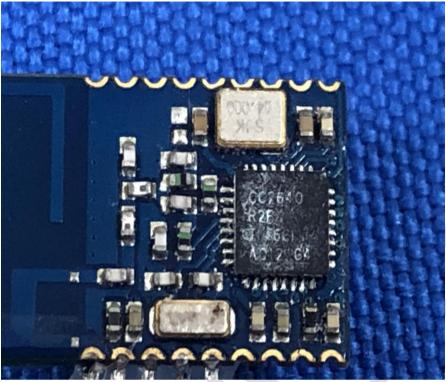
8 Test Setup Photo

Radiated Emission


Report No.: BLA-EMC-201908-A35-01 Page 34 of 36


Conducted Emission

port No. : BLA-EMC-201908-A35-01 Page 35 of 36


9 EUT Constructional Details

Report No.: BLA-EMC-201908-A35-01 Page 36 of 36

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.