

Test Report				
1. Client				
 Name : Address : 	I-Synapse CO., Ltd. 1401ho 1402ho, 144, Gwangnaru-ro, Seongdong-gu, Seoul, Republic of Korea			
2. Use of Report	FCC Approval			
3. Sample Descri	ption			
Product Name Model Name :	: repeater v1 repeater v1			
4. Date of Receip	t: 2022-09-06			
5. Date of Test :	2022-09-29 ~ 2022-10-06			
6. Test Method :	FCC Part 15 Subpart C 15.247 RSS-247 Issue 2(2017-02), RSS-GEN Issue 5(2019-03)			
7. Test Results :	Refer to the test results			
The results shown	ist not be reproduced or reproduced in any way. in this test report are the results of testing the samples provided. prepared according to the requirements of ISO / IEC 17025.			
Affirmation	Tested byTechnical ManagerDae-Seong, ChoiYong-Min, Won			
	Oct 07, 2022			

EMC Labs Co., Ltd.

行回見に

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 1 / 38

37

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary·····	6
4.	Used equipment on test······	7
5.	Antenna Requirement·····	8
6.	6 dB Bandwidth·····	9
7.	Maximum Peak Output Power	13
8.	Peak Power Spectral Density	16
9.	TX Radiated Spurious Emission and Conducted Spurious Emission	19
10.	Conducted Emission	32
	APPENDIX	
APP	ENDIX I TEST SETUP	35

APPENDIX II UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 2 / 38

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2210-001	Oct 07, 2022	Initial Issue
KR0140-RF2210-001-R1	Oct 07, 2022	Changed the FCC ID

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 3 / 38

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	I-Synapse CO., Ltd.
Applicant Address	1401ho 1402ho, 144, Gwangnaru-ro, Seongdong-gu, Seoul, Republic of Korea
Contact Person	Young Ho, Lee
Telephone No.	+82-10-5517-9048
Fax No.	-
E-mail	lyh@i-synapse.co.kr

1.2. Manufacturer Information

Manufacturer	I-Synapse CO., Ltd.		
Manufacturer Address	1401ho 1402ho, 144, Gwangnaru-ro, Seongdong-gu, Seoul, Republic of Korea		

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.
Applicant Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of
	Korea
Contact Person	Yongmin Won
Telephone No.	+82-2-508-7778
Fax No.	+82-2-538-3668
FCC Designation No.	KR0140
FCC Registration No.	58000
IC Site Registration No.	28751

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	repeater v1
Model Name	repeater v1
FCC ID	2A8VB-REPEATERV1
Power Supply	DC 5.0 V

2.2 Additional Information

Operating Frequency	2 402 MHz ~ 2 480 MHz
Number of channel	40
Modulation Type	GFSK
Antenna Type	Dipole Antenna
Antenna Gain	5 dBi
Firmware Version	1.0
Hardware Version	1.0
Test software	ABOV BLE Production Test v2.3.0

2.3 Test Frequency

Test mode	Test Frequency (MHz)		
	Low Frequency	Middle Frequency	High Frequency
BLE	2 402	2 442	2 480

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
Test Mode	Power	
BLE	1	

2.5 Mode of operation during the test

- The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.6 Modifications of EUT

- None

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 5 / 38

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result	
\square	15.203	-	Antenna Requirement		С	
\square	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		С	
\square	_	RSS GEN (6.7)	Occupied Bandwidth (99%)		С	
\square	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power	Conducted	С	
\square	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		С	
	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		С	
	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С	
\square	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable						

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2022.12.17
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2022.12.17
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2022.12.15
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2022.12.15
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2022.12.15
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2022.12.15
BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2022.12.15
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2022.12.15
ATTENUATOR	AGILENT	8493C	73193	2022.12.15
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2023.04.11
TERMINATIOM	HEWLETT PACKARD	909D	07492	2022.12.15
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2022.12.15
SLIDE-AC	DAEKWANG TECH	SV-1023	_	-
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2022.12.15
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2022.12.30
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2023.02.03
Biconilog ANT	Schwarzbeck	VULB9168	902	2023.01.14
Horn Ant.	Schwarzbeck	BBHA9120D	974	2023.01.08
Horn Ant.	S/B	BBHA9120D	1497	2023.01.25
Amplifier	TESTEK	TK-PA18H	200104-L	2023.03.17
EMI TEST RECEIVER	ROHDE& SCHWARZ	ESW44	101952	2023.04.07
PROGRAMMABLE DC POWER SUPPLY	ODA	OPE-305Q	oda-01-09-23-1831	2023.01.10
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2023.02.03
POWER SENSOR	AGILENT	U2001H	MY51140028	2023.02.19
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2023.06.28
LISN	ROHDE & SCHWARZ	ENV216	100409	2023.01.10
PULSE LIMITER	lignex1	EPL-30	NONE	2023.01.24

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 7 / 38

5. Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a Dipole Antenna. The directional peak gain of the antenna is 5 dBi.)

6. 6 dB Bandwidth

6.1 Test Setup

Refer to the APPENDIX I.

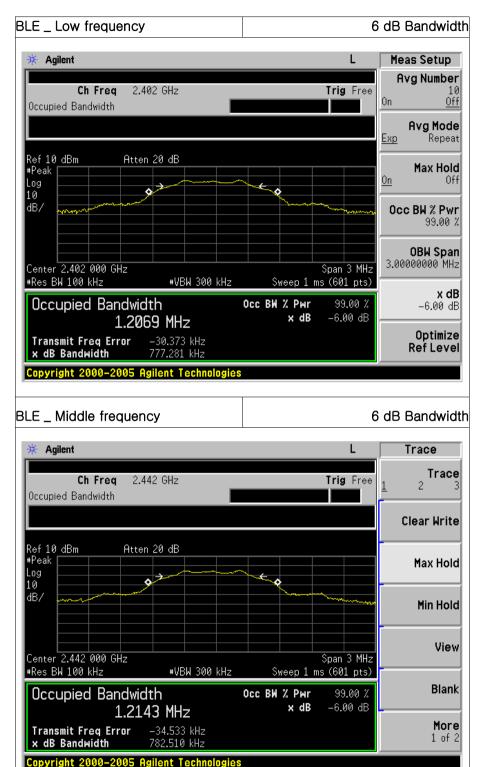
6.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

6.3 Test Procedure

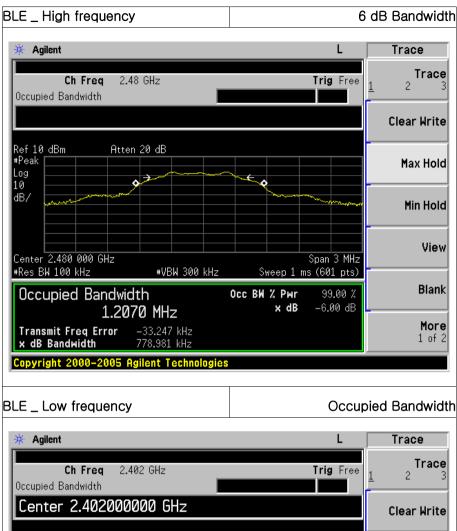
The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

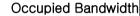
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 - Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW ≥ 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.


6.4 Test Result

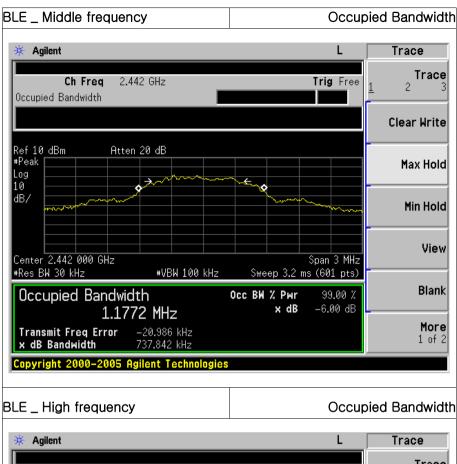
Test Mode	Test Frequency	6 dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
	Low	0.777	1.183
BLE	Middle	0.783	1.177
	High	0.779	1.192

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 9 / 38


6.5 Test Plot



EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 10 / 38





EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 11 / 38

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 12 / 38

7. Maximum Peak Output Power

7.1 Test Setup

Refer to the APPENDIX I.

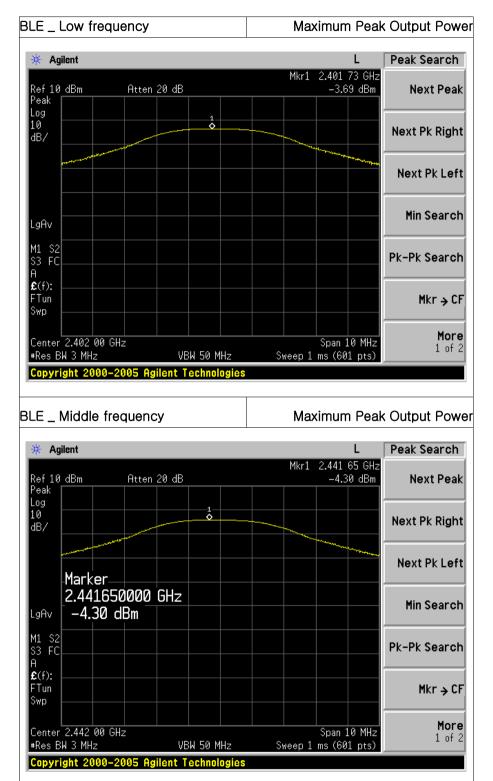
7.2 Limit

The maximum permissible conducted output power is 1 Watt.

7.3 Test Procedure

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set the RBW \geq DTS bandwidth
- 2. Set VBW \geq 3 x RBW
- 3. Set span \geq 3 x RBW.
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak search function to determine the peak amplitude level.


7.4 Test Result

Test Mode	Tost Fraguanay	Peak Out	out Power
Test Mode	Test Frequency	dBm	mW
	Low	-3.69	0.43
BLE	Middle	-4.30	0.37
	High	-5.35	0.29

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 13 / 38

7.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 14 / 38

LE _ High frequency	,	Maximum Peak	Coutput Powe
* Agilent		L	Peak Search
Ref 10 dBm Atter Peak	1 20 dB	Mkr1 2.480 05 GHz -5.35 dBm	Next Peak
Log 10 dB/			Next Pk Right
			Next Pk Left
LgAv			Min Search
M1 S2 S3 FC A			Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Center 2.480 00 GHz #Res BW 3 MHz	VBW 50 MHz	Span 10 MHz Sweep 1 ms (601 pts)	More 1 of 2
Copyright 2000-2005 A	gilent Technologies		

8. Peak Power Spectral Density

8.1 Test Setup

Refer to the APPENDIX I.

8.2 Limit

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

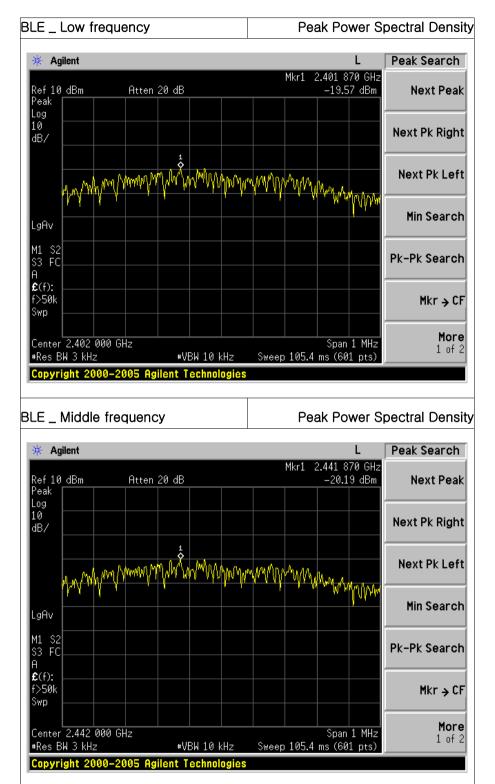
8.3 Test Procedure

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

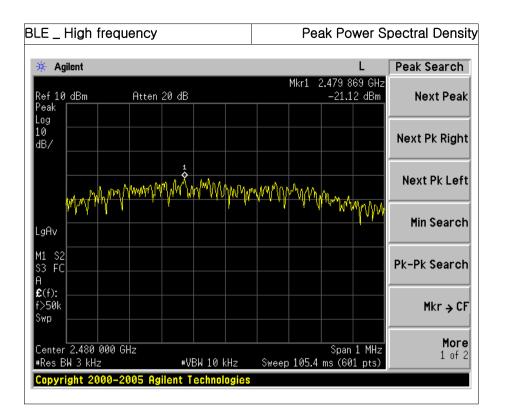
(ANSI C63.10-2013 _ Section 11.10.2 - Method PKPSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto
- 7. Trace mode = Max Hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Mode	Test Frequency	Peak Power Spectral Density (dBm)
	Low	-19.57
BLE	Middle	-20.19
	High	-21.12


8.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 16 / 38



8.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 17 / 38

9. TX Radiated Spurious Emission and Conducted Spurious Emission

9.1 Test Setup

Refer to the APPENDIX I.

9.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

	na otronigti iovolo opocinica in i	the following table
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

radiator shall not exceed the field strength levels specified in the following table

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

9.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

```
Peak Measurement
RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes
```

Average Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 21 / 38

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuming on and off with the transmit cycle, then no duty cycle correction is required for that emission.

9.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below. Frequency range: 30 MHz ~ 26.5 GHz
 RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak, Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

9.5 Test Result

9 kHz \sim 25 GHz Data BLE

• Low frequency

Fraguaday	Frequency Reading		Reading			E	0.05	Lin	nits	Re	sult	Ma	rgin
Frequency	(dBu	(dBuV/m) Pol.		Pol. Factor DCF (dB)		(dBu	IV/m)	(dBu	V/m)	(d	в)		
(MHz)	AV ,	/ Peak		(48)	(00)	AV / Peak		AV /	Peak	AV / Peak			
2 389.80	30.60	48.78	V	11.84	2.01	54.0	74.0	44.5	60.6	9.5	13.4		

• Middle frequency

Fraguanay	Rea	ding			0.05	Lin	nits	Re	sult	Ma	rgin	
Frequency	(dBuV/m)		Pol.	Factor (dB)	DCF (dB)	(dBu	V/m)	(dBu	IV/m)	(d	B)	
(MHz)	AV ,	/ Peak		(42)	(00)	AV /	AV / Peak		AV / Peak		AV / Peak	

• High frequency

Fraguanay	Reading			- ·	0.05	Lin	nits	Re	sult	Mai	rgin
Frequency	(dBuV/m)		Pol.	Factor (dB)	DCF (dB)	(dBu	V/m)	(dBu	V/m)	(d	в)
(MHz)	AV /	Peak		(48)	(00)	AV / Peak		AV / Peak		AV / Peak	
2 483.71	38.28	48.70	V	12.21	2.01	54.0	74.0	52.5	60.9	1.5	13.1

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCF(Duty Cycle Factor)

- T_{on} = 0.393 ms / T_{off} = 0.232 ms

- Duty Cycle = T_{on} / ($T_{on}+T_{off}$) = 0.393 / (0.393+0.232) = 0.629

- DCF = $10 \times \log(1/\text{Duty Cycle}) dB = 10 \times \log(1/0.629) dB = 2.01 dB$

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCF TF = Ant factor + Cable Loss + Filter Loss - Amp Gain

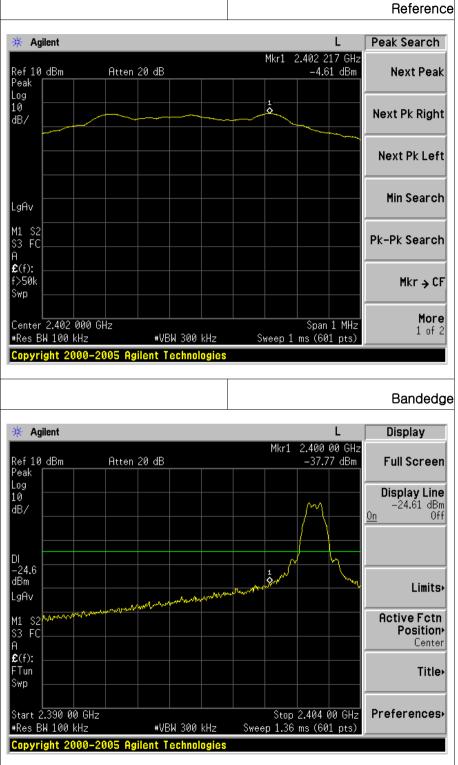
9.6 Test Plot for Radiated Spurious Emission

• BLE _ Low frequency

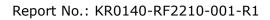
ultiView 🕀		X Spectru		Spectrum 3	X Spectru	um 4 🛛 🕱	l		∇
RefLevel 87 Att	0 dB S	WT 1.01 ms ⊜ VB		de Auto Sweep			Fn	equency 2.3	500000 GH
Input Frequency S	1 AC P Sweep	S On No	tch Off						●1Pk Max
								M1[1]	48.78 dBµ\ 2.3898002 GH
dBµV−−−−									
dBµV									
dBµV									
dBµV									
								der	and and a second of the
dBµV							and the second	and a second	
dвµV		ه المطلب الديني	alman un	a way by my and a series	ahnowman	Maddaharagharandand			
MANY MAN	yumhali	a Asada wa ara 1990							
dBµV									
dBµV									
dBµV									
			1001 ;	ots	8	Res	tricted	Band -	
31 GHz	Spectrum	X Spectra				Res	tricted	Band -	
31 GHz ultīView	0 dB S	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res			Averag
o dBµV 31 GHz 31 GHz Ref Level 87 Att Input Frequency S	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	⊽ 500000 GH • 1Rm Avg
31 GHz ultiView Ref Level 87 Att Input Frequency S	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	Averag
31 GHz ultiView Ref Level 87 Att Input Frequency S	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz ultiView Ref Level 87 Att Input Frequency dBpv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz ultiView Ref Level 87 Att Input Frequency dBpv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz ultiView 33 Ref Level 87 Att input requency 4 dBµv dBµv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
<u>al GHz</u> ultiView Ref Level 87 Att приt теquency d8µv d8µv d8µv d8µv d8µv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
<u>al GHz</u> ultiView Ref Level 87 Att приt теquency d8µv d8µv d8µv d8µv d8µv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res		equency 2.3	 Averaç
31 GHz ultiView Ref Level 87 Att Input rrequency dBµV dBµV dBµV dBµV	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView E Ref Level 87 Att Input	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input rrequency dBµV dBµV dBµV dBµV	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input rrequency 4 d8µv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input rrequency 4 d8µv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input requencys dBµv dBµv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input rrequency d8µv d8µv d8µv d8µv d8µv d8µv d8µv d8µv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	• Averaç 500000 GH • 180 Avg 30,60 dBµ 2,3895604 GH
31 GHz ultiView Ref Level 87 Att Input requencys dBµv dBµv	7.00 dBµV 0 dB S 1 AC P	● RB WT 1.01 ms ● VB	ım 2	Spectrum 3	SGL Spectra	Res	Fr	equency 2.3	 Averaç

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 24 / 38

• BLE _ High frequency


						Restrict	ed Bar	ia – Pea
/ultiView ⊞ Spectr	um 🕱 Spect	trum 2	Spectrum 3	Spectru	m 4 🕅 🕱			∇
	B S₩T 1.01 ms 🖷 🛚	ABW 1 MHz /BW 3 MHz Mod	le Auto Sweep			Fn	equency 2.4	4917500 GH
Input 1 A Frequency Sweep	C PS On M	Notch Off						∙1Pk Max
о dвµv							M1[1]	48.70 dBμ\ 2.4837060 GHz
0 0000								
0 dBµV								
0 dBµV								
1 dBµV								
D dBµV	in the manufacture of the second	WWW	All Marshall and					
				applement	mound	mer Male.		
0 dBµV							and the state of t	the marker was
0 dBµV								
n neha								
) dBµV								
dBµV								
		1001 pt	is	1.	65 MHz/ Res	tricted	Band -	
1.4835 GHz		trum 2 🕱	Spectrum 3	X Spectru	Res	tricted	Band -	2.5 GHz
L4835 GHz	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res			- Averag
.4835 GHz tultiView Spectr Ref Level 87.00 dbµ Att 0 d Input 1 A	V • F	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res			- Averag +917500 GH:
Lat835 GHz Lat835 GHz Ref Level 87.00 dBμ Att 0 d Input 1 At Frequency Sweep	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag +917500 GH:
.4835 GHz tultiView ₽ Spectr Ref Level 87.00 dBµ Att 0 d Input 1 Ar Frequency Sweep 0 dBµV-	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
.4835 GHz tultiView ₽ Spectr Ref Level 87.00 dBµ Att 0 d Input 1 Ar Frequency Sweep 0 dBµV-	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
Later of the second s	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
Later of the second s	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
4835 GHz Spectr Ref Level 87.00 dBμ Att 0 d Input 1 At Frequency Sweep 0 dBμV 0 dBμV 0 dBμV	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
1.4835 GHz IultiView Espectr Ref Level 87.00 dbµ Att 0 d Input 1 Ai Frequency Sweep 0 dbµV 0 0 dbµV 0 0 dbµV 0 0 dbµV 0	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
.4835 GHz IultiView Spectr Ref Level 87.00 dbµ Att 0 d Input 1 Ai Frequency Sweep 0 dbµV 0 dbµV 0 0 dbµV 0 0 dbµV 0	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
.4835 GHz IultiView Spectr Ref Level 87.00 dbju Att 0 d Input 1 A Frequency Sweep 0 dbju 0 dbju 0 dbju 0 dbju	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
.4835 GHz IultiView Spectr Ref Level 87.00 dbju Att 0 d Input 1 A Frequency Sweep 0 dbju 0 dbju 0 dbju 0 dbju	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
1.4835 GHz IultiView Spectr Ref Level 87.00 dbµ Att 0 d Input 1 A Frequency Sweep 0 0 dbµV 0	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
1.4835 GHz 0.41 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4845 G	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
1.4835 GHz 0.41 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4835 GHz 1.4845 G	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
.4835 GHz IultiView Spectr Ref Level \$7.00 dbj Att 0 d Input 1 A Frequency Sweep 0 dbj/v	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV
Ref Level 87.00 dBµ Att 0 d	V ● F B SWT 1.01 ms ● V	trum 2 🕱 RBW 1 MHz RBW 3 MHz Mod	Spectrum 3	Spectru SGL	Res		equency 2.4	- Averag v 4917500 GH: • 1Rm Avg 38.28 dBµV

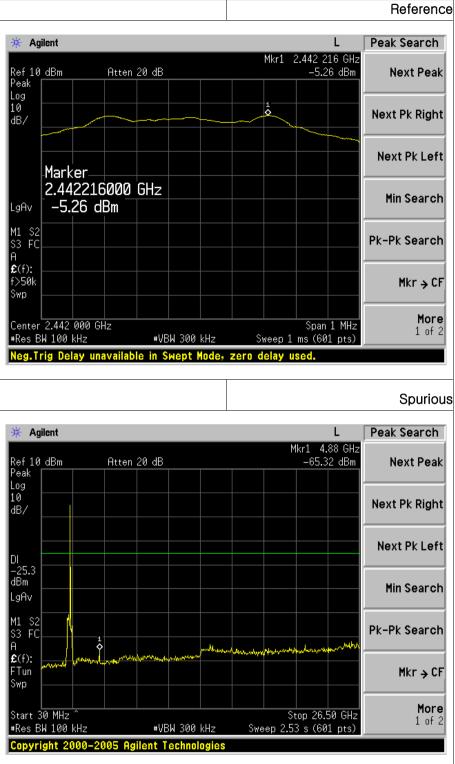
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 25 / 38



9.7 Test Plot for Conducted Spurious Emission

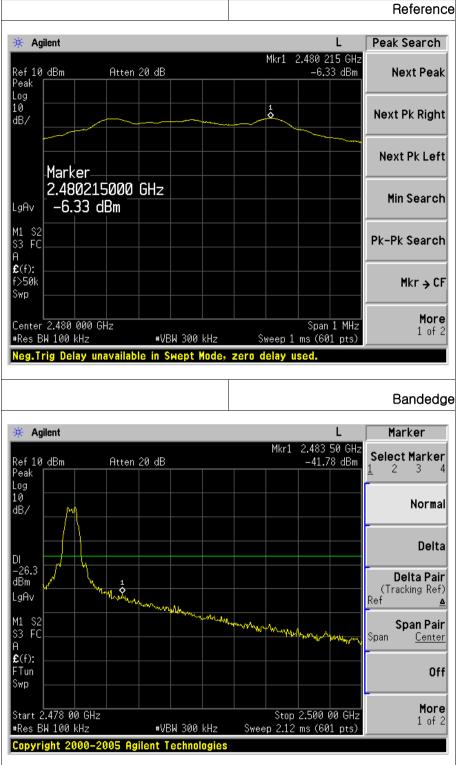
• BLE _ Low frequency

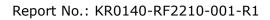
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 26 / 38



🗧 Agi	ilent									L	Peak Search
ef 10 eak	dBm		Atten	20 dB				M		.79 GHz 34 dBm	Next Peal
og Ø B/											Next Pk Righ
	Marl	ker									Next Pk Lef
24.6 Bm gAv	4.79	90000 .34 c		GHz							Min Search
1 S2 3 FC						press from the day	hellow about 1-10		-	Mulanditarya	Pk-Pk Search
(f): Tun ′ ⊮p	portain open	hurren	and a start of the	ar Massler	hakkaharaharat						Mkr y Cl
	0 MHz W 100				3W 300		<u> </u>	 		50 GHz	More 1 of 3

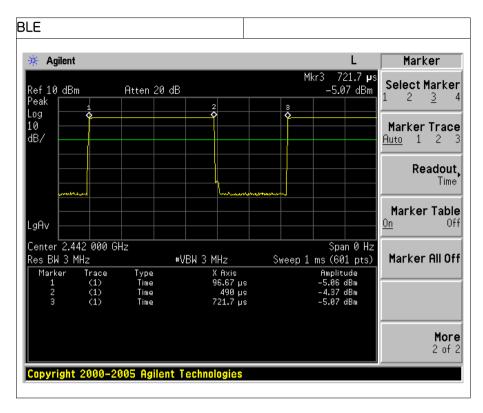
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 27 / 38


• BLE _ Middle frequency


EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 28 / 38

• BLE _ High frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 29 / 38



Agilent								L	Peak Search
ef 10 dBm eak	Atte	n 20 dB				M		.97 GHz 15 dBm	Next Peal
og Ø B/									Next Pk Righ
. Mark	er								Next Pk Lef
^{26.3} 4.97	0000000 45 dBm	I GHz							Min Search
1 S2 3 FC	1			- AMAMAN AND - AMAMAN AND -		nlunn	monden	Northeast	Pk-Pk Search
(f): Tun wp	prosecution of the second s	- Material Instation	what have						Mkr 🔶 Cl
tart 30 MHz Res BW 100 I			W 300		<u> </u>	St ep 2.53		50 GHz	More 1 of 3

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 30 / 38

9.8 Test Plot for Duty Cycle

10. Conducted Emission

10.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

10.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

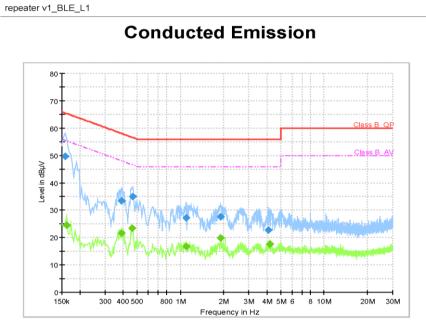
Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency

10.3 Test Procedure

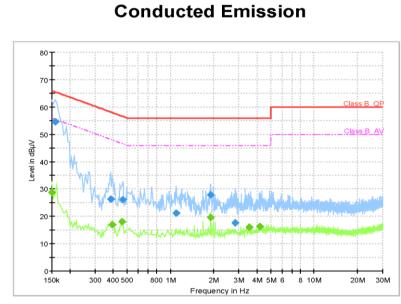
Conducted emissions from the EUT were measured according to the ANSI C63.10.


- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 32 / 38

10.4 Test Result

• AC Line Conducted Emission (Graph)



Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.158	49.78		65.57	15.79	9	L1	19.4
0.162		24.53	55.36	30.83	9	L1	19.4
0.390		21.69	48.06	26.37	9	L1	19.8
0.390	33.40		58.06	24.66	9	L1	19.8
0.462		23.32	46.66	23.34	9	L1	19.8
0.466	34.89		56.59	21.69	9	L1	19.8
1.100	27.16		56.00	28.84	9	L1	19.7
1.100		16.81	46.00	29.19	9	L1	19.7
1.910	27.58		56.00	28.42	9	L1	19.7
1.910		19.77	46.00	26.23	9	L1	19.7
4.080	22.78		56.00	33.22	9	L1	19.8
4.190		17.51	46.00	28.49	9	L1	19.8

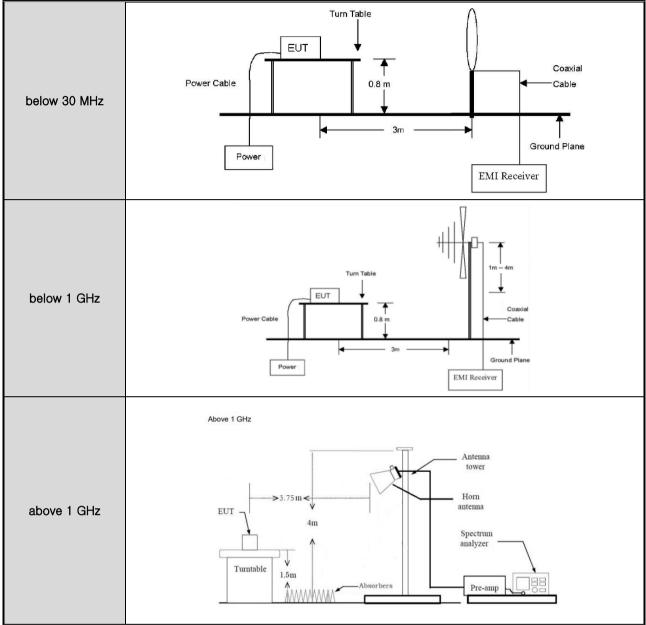
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 33 / 38

repeater v1_BLE_N

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.150		28.85	56.00	27.15	9	N	19.2
0.158	54.53		65.57	11.04	9	N	19.4
0.386	26.40		58.15	31.75	9	N	19.8
0.394		16.93	47.98	31.05	9	N	19.8
0.462		18.06	46.66	28.60	9	N	19.8
0.466	26.09		56.59	30.49	9	N	19.8
1.100	21.27		56.00	34.73	9	N	19.7
1.910	27.95		56.00	28.05	9	N	19.7
1.910		19.64	46.00	26.36	9	N	19.7
2.830	17.70		56.00	38.30	9	N	19.7
3.530		15.96	46.00	30.04	9	N	19.8
4.190		16.31	46.00	29.69	9	N	19.8

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 34 / 38


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 35 / 38

Radiated Measurement

• Conducted Measurement

Conducted	EUT	Attenuator	Spectrum Analyzer

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 36 / 38

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 37 / 38

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)		
Conducted RF power	0.32 dB		
Conducted Spurious Emissions	0.32 dB		
Radiated Spurious Emissions	6.34 dB		
Conducted Emissions	1.74 dB		