

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202305-0132-133

Page: 1 of 139

RF Test Report

FCC ID: MSQ-DV6068Y

Report No. : TBR-C-202305-0132-133

Applicant : ASUSTeK Computer Inc

Equipment Under Test (EUT)

EUT Name : Network Media Players

Model No. : DV6068Y

Series Model No. : ----

Brand Name : HAKO

Sample ID : 202305-0132-12-#1 & 202305-0132-12-#2

Receipt Date : 2023-05-24

Test Date : 2023-05-24 to 2023-07-11

Issue Date : 2023-07-11

Standards : FCC Part 15 Subpart E 15.407

Test Method : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor:

Engineer Manager :

Wade Ly Wade Ly Wade Sur Wan Sur My Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202305-0132-133 Page: 2 of 139

Contents

CON	Y I LIV I O	
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	10
	1.4 Description of Support Units	10
	1.5 Description of Test Mode	11
	1.6 Description of Test Software Setting	13
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	18
3.	TEST SOFTWARE	18
4.	TEST EQUIPMENT	19
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	23
	5.2 Test Setup	23
	5.3 Test Procedure	23
	5.4 Deviation From Test Standard	24
	5.5 EUT Operating Mode	24
	5.6 Test Data	24
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	25
	6.1 Test Standard and Limit	25
	6.2 Test Setup	26
	6.3 Test Procedure	27
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	29
	6.6 Test Data	29
7.	RESTRICTED BANDS REQUIREMENT	30
	7.1 Test Standard and Limit	30
	7.2 Test Setup	31
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	32

Report No.: TBR-C-202305-0132-133 Page: 3 of 139

	7.5 EUT Operating Mode	32
	7.6 Test Data	32
8.	BANDWIDTH TEST	33
	8.1 Test Standard and Limit	33
	8.2 Test Setup	33
	8.3 Test Procedure	33
	8.4 Deviation From Test Standard	35
	8.5 EUT Operating Mode	35
	8.6 Test Data	35
9.	MAXIMUM CONDUCTED OUTPUT POWER	36
	9.1 Test Standard and Limit	36
	9.2 Test Setup	36
	9.3 Test Procedure	36
	9.4 Deviation From Test Standard	36
	9.5 EUT Operating Mode	36
	9.6 Test Data	37
10.	POWER SPECTRAL DENSITY TEST	38
	10.1 Test Standard and Limit	38
	10.2 Test Setup	
	10.3 Test Procedure	38
	10.4 Deviation From Test Standard	39
	10.5 Antenna Connected Construction	39
	10.6 Test Data	39
11.	FREQUENCY STABILITY	40
	11.1 Test Standard and Limit	40
	11.2 Test Setup	40
	11.3 Test Procedure	40
	11.4 Deviation From Test Standard	41
	11.5 Antenna Connected Construction	41
	11.6 Test Data	
12.	ANTENNA REQUIREMENT	42
	12.1 Test Standard and Limit	42
	12.2 Deviation From Test Standard	42
	12.3 Antenna Connected Construction	42
	12.4 Test Data	42

Report No.: TBR-C-202305-0132-133 Page: 4 of 139

ATTACHMENT A CONDUCTED EMISSION TEST DATA43
ATTACHMENT BUNWANTED EMISSIONS DATA45
ATTACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND-EDGE TEST DATA
106

Report No.: TBR-C-202305-0132-133 Page: 5 of 139

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202305-0132-133	Rev.01	Initial issue of report	2023-07-11
	WW.		
		TODAY THE	50
	WW.	TO THE REAL PROPERTY.	
		Olive City	N W
		MODEL OF THE	
The same of the sa			No.
	000	CORP TO THE	
The same of			
THE PARTY OF THE P	33	WORK WAS	AN U
The state of the s			
		1033	THE REAL PROPERTY.

Page: 6 of 139

1. General Information about EUT

1.1 Client Information

Applicant	Applicant : ASUSTeK Computer Inc			
Address	dress : 1F, No. 15, Lide Rd. Beitou, Taipei, Taiwan 112			
Manufacturer : Shenzhen SDMC Technology Co., LTD.				
Address	A A	Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China.		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Network Media Playe	Network Media Players			
Models No.):	DV6068Y				
Model Different		WAY WORK TOWN				
Product Description			240MHz, U-NII-2A: 5260MHz~5320MHz 5700MHz, U-NII-3: 5745MHz~5825MHz 802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM) 802.11a: 6/9/12/18/24/36/48/54 Mbps			
TUP	3	Transmitter:	802.11a: up to 150Mbps 802.11ac: at most 433.3 Mbps			
Power Rating	-	USB Input: 5V, 1.5A				
Software Version	:	V10.2.14				
Hardware Version		V2.1				

Remark:

- (1) The antenna gain provided by the applicant, adapter and the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Page: 7 of 139

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5190 5240MHz	36	5180MHz	44	5220MHz
5180~5240MHz (U-NII-1)	38	5190MHz	46	5230MHz
	40	5200MHz	48	5240MHz
	42	5210MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260MHz	60	5300MHz
5260~5320MHz	54	5270MHz	62	5310MHz
(U-NII-2A)	56	5280MHz	64	5320MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500MHz	124	5620MHz
	102	5510MHz	126	5630MHz
	104	5520MHz	128	5640MHz
	106	5530MHz	132	5660MHz
5500~5720MHz	108	5540MHz	134	5670MHz
(U-NII-2C)	110	5550MHz	136	5680MHz
	112	5560MHz	138	5690MHz
	116	5580MHz	140	5700MHz
	118	5590MHz	142	5710MHz
	120	5600MHz	144	5720MHz
	122	5610MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138.

Note: For the protection of Environment, the 5600-5650 MHz band restricted in Canada. So the CH 188/120/122/124/126/128 was restricted use in Canada.

Report No.: TBR-C-202305-0132-133 Page: 8 of 139

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5745~5825MHz	149	5745MHz	157	5785MHz
	151	5755MHz	159	5795MHz
(U-NII-3)	153	5765MHz	161	5805MHz
	155	5775MHz	165	5825MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.

Page: 9 of 139

(5) Antenna information

(U-NII-1) 5180~5240MHz						
Antenna Brand Model Name Type Antenna Gain(dB						
ANT. 1	N/A	N/A	PCB	2.54		
ANT. 2	N/A	N/A	PCB	2.42		

Note:

For MIMO mode: Directional Gain=10 log[(10^G1/20 + 10^G2/20 + ... + 10^GN/20)^2/NANT] =5.49dBi 5G working with 802.11a/n/ac has MIMO mode.

(U-NII-2A) 5260~5320MHz

Antenna Brand		Model Name	Туре	Antenna Gain(dBi)
ANT. 1	N/A	N/A	PCB	3.22
ANT. 2	N/A	N/A	PCB	2.29

Note:

For MIMO mode: Directional Gain=10 log[(10^G1/20 + 10^G2/20 + ... + 10^GN/20)^2/NANT] =5.78dBi 5G working with 802.11a/n/ac has MIMO mode.

(U-NII-2C) 5500~5700MHz

Antenna	Brand	Model Name	Туре	Antenna Gain(dBi)
ANT. 1	N/A	N/A	PCB	3.64
ANT. 2	N/A	N/A	PCB	3.31

Note:

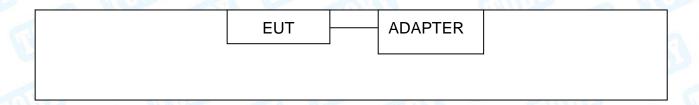
For MIMO mode: Directional Gain=10 log[(10^G1/20 + 10^G2/20 + ... + 10^GN/20)^2/NANT] =6.47dBi 5G working with 802.11a/n/ac has MIMO mode.

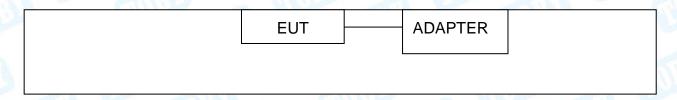
(U-NII-3) 5745~5825MHz

	Antenna	Brand	Model Name	Туре	Antenna Gain(dBi)
	ANT. 1	N/A	N/A	PCB	4.16
1	ANT. 2	N/A	N/A	PCB	3.18

Note:

For MIMO mode: Directional Gain=10 log[(10^G1/20 + 10^G2/20 + ... + 10^GN/20)^2/NANT] =6.68dBi 5G working with 802.11a/n/ac has MIMO mode.




Page: 10 of 139

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information							
Name	Name Model FCC ID/SDOC Manufacturer Used "√"						
Adapter	W. 373			√			
	Cable Information						
Number	Number Shielded Type Ferrite Core Length Note						
			-many	U			
Remark: The ad	dapter is provided by	y Applicant.					

Page: 11 of 139

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test
Final Test Mode Mode 1		Description
		TX a Mode(5180MHz)
	Fo	r Radiated Test Below 1GHz
Fina	al Test Mode	Description
	Mode 2	TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48
U-NII-1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
	Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42
A VIV	Mode 9	TX Mode 802.11a Mode Channel 52/56/64
	Mode 10	TX Mode 802.11n(HT20) Mode Channel 52/56/64
U-NII-2A	Mode 11	TX Mode 802.11ac(VHT20) Mode Channel 52/56/64
U-MII-ZA	Mode 12	TX Mode 802.11n(HT40) Mode Channel 54/62
	Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 54/62
4000	Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 58
	Mode 15	TX Mode 802.11a Mode Channel 100/116/140
	Mode 16	TX Mode 802.11n(HT20) Mode Channel 100/116/140
U-NII-2C	Mode 17	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140
U-MII-2C	Mode 18	TX Mode 802.11n(HT40) Mode Channel 102/110/134
	Mode 19	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134
	Mode 20	TX Mode 802.11ac(VHT80) Mode Channel 106/122
U-NII-3	Mode 21	TX Mode 802.11a Mode Channel 149/157/165
O-INII-O	Mode 22	TX Mode 802.11n(HT20) Mode Channel 149/157/165

Page: 12 of 139

33	Mode 23	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165
TOPY.	Mode 24	TX Mode 802.11n(HT40) Mode Channel 151/159
ARTIC	Mode 25	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 26	TX Mode 802.11ac(VHT80) Mode Channel 155

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 13 of 139

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test Software: CMD		
	U-NII-1		
Mada	F(MIL-)	Paran	neters
Mode	Frequency (MHz)	Ant.1	Ant.2
THU THE	5180	75	80
802.11a	5200	75	80
	5240	75	75
The same	5180	87	92
802.11n(HT20)	5200	87	92
	5240	85	90
	5180	87	92
802.11ac(VHT20)	5200	87	92
	5240	85	90
000 44 = (UT40)	5190	87	92
802.11n(HT40)	5230	87	92
000 44 (////Т40)	5190	87	92
802.11ac(VHT40)	5230	87	92
802.11ac(VHT80)	5210	87	92

Report No.: TBR-C-202305-0132-133 Page: 14 of 139

U-NII-2A				
Mada	Francisco (MIII-)	Parar	meters	
Mode	Frequency (MHz)	Ant.1	Ant.2	
THE STATE OF THE S	5260	95	95	
802.11a	5280	95	95	
	5320	95	95	
	5260	95	95	
802.11n(HT20)	5280	95	95	
	5320	95	95	
	5260	95	95	
802.11ac(VHT20)	5280	95	95	
	5320	95	95	
902 44 m/LIT40\	5270	98	98	
802.11n(HT40)	5310	98	98	
000 44 - (/////T40)	5270	98	98	
802.11ac(VHT40)	5310	98	98	
802.11ac(VHT80)	5290	95	95	

Report No.: TBR-C-202305-0132-133 Page: 15 of 139

U-NII-2C				
Mada	Francisco (MIII-)	Parar	neters	
Mode	Frequency (MHz)	Ant.1	Ant.2	
	5500	78	93	
802.11a	5580	80	90	
	5700	82	82	
	5500	78	93	
802.11n(HT20)	5580	80	90	
	5700	82	82	
	5500	78	93	
802.11ac(VHT20)	5580	80	90	
	5700	82	82	
	5510	78	93	
802.11n(HT40)	5550	80	90	
	5670	82	82	
	5510	78	93	
802.11ac(VHT40)	5550	80	90	
	5670	82	82	
002 44(////T00)	5530	78	93	
802.11ac(VHT80)	5610	80	90	

Page: 16 of 139

U-NII-3					
Mada	F(A411-)	Parar	neters		
Mode	Frequency (MHz)	Ant.1	Ant.2		
	5745	80	80		
802.11a	5785	80	80		
	5825	80	80		
	5745	80	80		
802.11n(HT20)	5785	80	80		
	5825	80	80		
	5745	80	80		
802.11ac(VHT20)	5785	80	80		
	5825	80	80		
000 44~/UT40\	5755	80	80		
802.11n(HT40)	5795	80	80		
000 44(////Т40)	5755	79	79		
802.11ac(VHT40)	5795	79	79		
802.11ac(VHT80)	5775	79	79		

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 17 of 139

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202305-0132-133 Page: 18 of 139

2. Test Summary

Standard Section	Took Hom	7 (0 1 ()		Remarl
FCC	Test Item	Test Sample(s)	Judgment	
FCC 15.207(a)	Conducted Emission	202305-0132-12-#2	PASS	N/A
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	202305-0132-12-#2	PASS	N/A
FCC 15.203	Antenna Requirement	202305-0132-12-#2	PASS	N/A
FCC 15.407(a)	-26dB Emission Bandwidth	202305-0132-12-#2	PASS	N/A
FCC 15.407(a)	99% Occupied Bandwidth	202305-0132-12-#2	PASS	N/A
FCC 15.407(e)	-6dB Min Emission Bandwidth	202305-0132-12-#2	PASS	N/A
FCC 15.407(a)	Maximum Conducted Output Power	202305-0132-12-#2	PASS	N/A
FCC 15.407(a)	Power Spectral Density	202305-0132-12-#2	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	202305-0132-12-#2	PASS	N/A
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	202305-0132-12-#2	PASS	N/A
FCC 15.407(g)	Frequency Stability	202305-0132-12-#2	PASS	N/A
	On Time and Duty Cycle	202305-0132-12-#2		N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120-3	Tonscend	V3.2.22

Report No.: TBR-C-202305-0132-133 Page: 19 of 139

4. Test Equipment

Equipment	Monufacturer	Model No	Sorial No.	Loot Col	Cal. Due Date
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
	Compliance				WW.
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
MILLER	Inc		(31)		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emissi	on Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum	Dahala 9 Oahuur	E0)/40 N	400407	Luz 00 0000	l 04 0000
Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 22, 2022	Jun. 21, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conduct	ted Emission	1			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 22, 2022	Jun. 21, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 22, 2022	Jun. 21, 2023
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202305-0132-133 Page: 20 of 139

MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep.01.2022	Aug. 31, 2023
DE Dawer Canasa	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 22, 2022	Jun. 21, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

Report No.: TBR-C-202305-0132-133 Page: 21 of 139

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
	Compliance			1019	a William
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
	Inc	11.77	W. Carrier	J. The	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024
Radiation Emissio	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum	511.001	50V40 N	100107		1 40 0004
Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G	(181m)	N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202305-0132-133 Page: 22 of 139

Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep.01.2022	Aug. 31, 2023
DE Davis Ossas	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 20, 2023	Jun. 19, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024

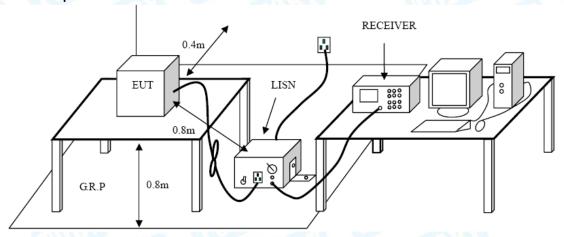
Page: 23 of 139

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ■LISN at least 80 cm from nearest part of EUT chassis.

Page: 24 of 139

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 25 of 139

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

Gener	General field strength limits at frequencies Below 30MHz				
Frequency Field Strength Field Strength Measuremer					
(MHz)	(μA/m)*	(microvolt/meter)**	Distance (meters)		
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300		
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30		
1.705~30.0	0.08	30	30		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

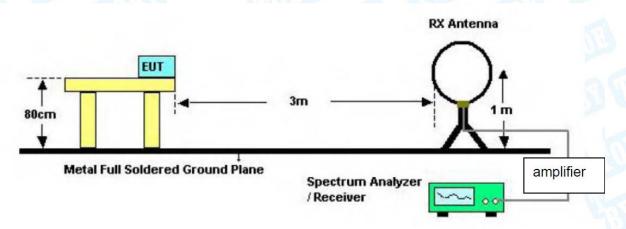
General field strength limits at frequencies above 30 MHz					
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

General field strength limits at frequencies Above 1000MHz					
Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

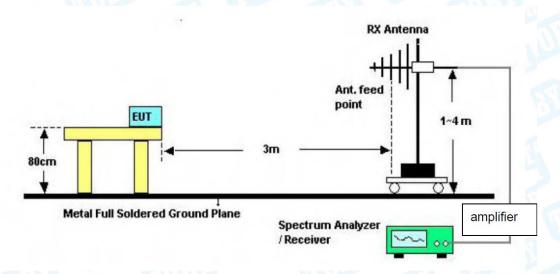
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided



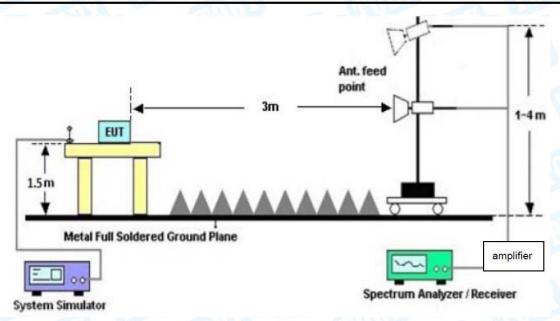
Page: 26 of 139


that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

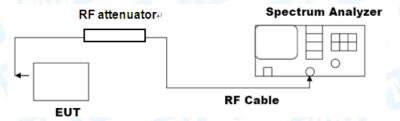
6.2 Test Setup

Radiated measurement

Below 30MHz Test Setup



Below 1000MHz Test Setup



Page: 27 of 139

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode

Page: 28 of 139

measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- ●Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

Page: 29 of 139

requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the Appendix D.

Page: 30 of 139

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)

7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
E70E E00E	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

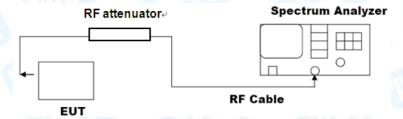
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.


Page: 31 of 139

7.2 Test Setup

Radiated measurement

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- ●Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Page: 32 of 139

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

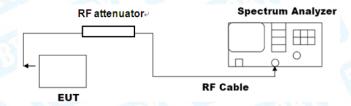
Radiated measurement please refer to the Attachment C inside test report.

Conducted measurement please refer to the Appendix D.

Page: 33 of 139

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
	525	5150~5250
000/ Dan duvidelih		5250~5350
99% Bandwidth	N/A	5500~5725
TODO A		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 34 of 139

--- DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated

Page: 35 of 139

until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

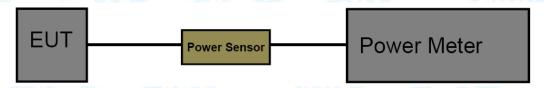
8.6 Test Data

Please refer to the Appendix D.

Page: 36 of 139

9. Maximum Conducted Output Power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.407(a)

9.1.2 Test Limit

	FCC Part 15 Sub	part E(15.407)				
Limale	Frequency Range(MHz)					
Limit	5150~5250	5250~5350	5500~5725	5725~5850		
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	24dBm (250 mW) or 11 dBm+ 10 log B, whichever is lower (B= 26-dB emission BW)		1 Watt (30dBm)		
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon	1 W (30 dBm) with 6 dBi antenna		4 W (36 dBm) with d		
TPC	NO	YES, if Max_EIRP ≥ 500 mW (27 dBm) and able to lower EIRP below 24dBm NO, if Max_EIRP < 500mW (27dBm)		NO		

9.2 Test Setup

9.3 Test Procedure

- The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.
- 9.4 Deviation From Test Standard
 No deviation
- 9.5 EUT Operating Mode

 Please refer to the description of test mode.

Report No.: TBR-C-202305-0132-133 Page: 37 of 139

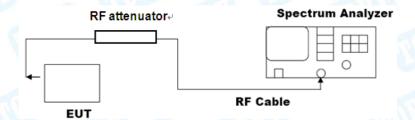
9.6 Test Data

Please refer to the Appendix D.

Page: 38 of 139

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
700	Master Device: 17dBm/MHz Client Device: 11dBm/MHz	5150~5250
Power Spectral	11dBm/MHz	5250~5350
Density	11dBm/MHz	5500~5725
	30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power..."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add

Page: 39 of 139

1 dB to the final result to compensate for the difference between linear averaging and power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

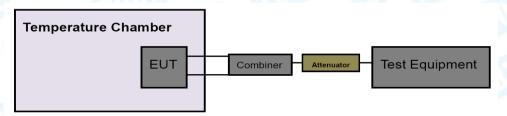
10.6 Test Data

Please refer to the Appendix D.

Page: 40 of 139

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement. 96 The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not

Page: 41 of 139

required (e.g., 1/2, 2/3, and 3/4).

- 4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.
- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW □ 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix D.

Page: 42 of 139

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

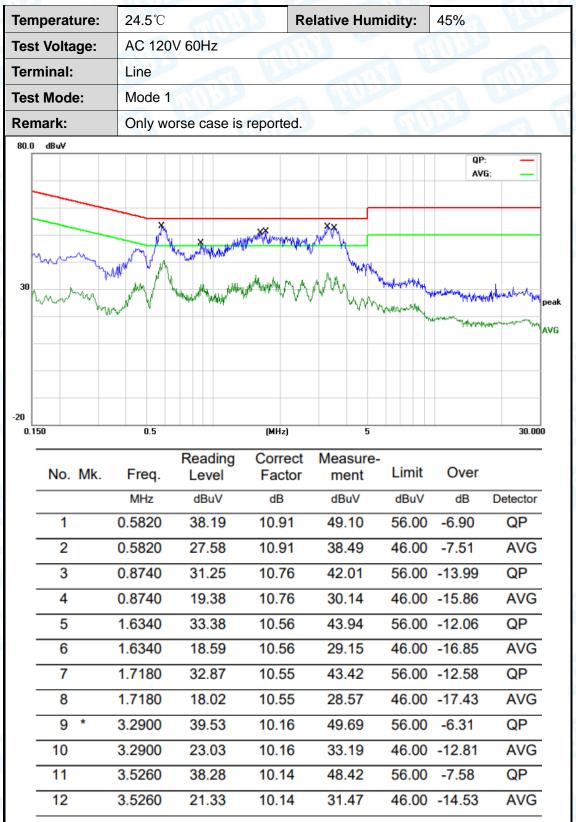
No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is please refer to page 10, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


Antenna Type					
⊠Permanent attached antenna	1				
Unique connector antenna					
☐Professional installation antenna	les				

Page: 43 of 139

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0132-133 Page: 44 of 139

			100					
Temperatu	re:	24.5℃		3 13	Relative H	umidity	: 45%	- ATT
Test Voltag	e:	AC 12	0V 60Hz	13				
Terminal:		Neutra	al		13	6	UP	
Test Mode:	st Mode: Mode 1							
Remark:		Only v	vorse case i	s reported	OND.			
80.0 dBuV								
							QP:	
				x	×			
×		X A	Marin		₩M_			
Marine	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/ V			- Markey Marie			
30	WΛ	Alle pol la	horestand by the philips with the philips and	AN THE PROPERTY OF THE PARTY OF	MANA	and and the state of the	hoof, it horistately a the second	March March
WW.	mysen	Y U		•	. "" (7) 1/4	racial wanter	May no quelled	
							The Appellant	A
-20 0.150		0.5		(MHz)	5			30.000
		0.5	Peading					30.000
	Mk.	o.s Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
0.150	Mk.			Correct	Measure-	Limit	Over	30.000 Detector
0.150		Freq.	Level	Correct Factor	Measure- ment		dB	
0.150 No. M	0	Freq.	Level	Correct Factor	Measure- ment dBuV	dBuV 61.86	dB	Detector
No. M	0	Freq. MHz	dBuV 27.16	Correct Factor dB 10.93	Measure- ment dBuV 38.09	dBuV 61.86 51.86	dB -23.77	Detector QP
No. N	0 0	Freq. MHz .2468	dBuV 27.16 15.58	Correct Factor dB 10.93	Measure- ment dBuV 38.09 26.51	dBuV 61.86 51.86 57.18	dB -23.77 -25.35	Detector QP AVG
No. M	0 0 0	Freq. MHz .2468 .2468 .4340	Level dBuV 27.16 15.58 28.47	Correct Factor dB 10.93 10.93	Measure- ment dBuV 38.09 26.51 39.38	dBuV 61.86 51.86 57.18	dB -23.77 -25.35 -17.80 -18.77	Detector QP AVG QP
No.	0 0 0 0	Freq. MHz .2468 .2468 .4340 .4340 .5820	Level dBuV 27.16 15.58 28.47 17.50	Correct Factor dB 10.93 10.93 10.91 10.91	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23	dBuV 61.86 51.86 57.18 47.18 56.00	dB -23.77 -25.35 -17.80 -18.77 -6.77	Detector QP AVG QP AVG
No. Mo. Mo. Mo. Mo. Mo. Mo. Mo. Mo. Mo. M	0 0 0 0	Freq. MHz .2468 .2468 .4340 .4340 .5820	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58	Correct Factor dB 10.93 10.93 10.91 10.91 10.91	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49	dBuV 61.86 51.86 57.18 47.18 56.00 46.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51	Detector QP AVG QP AVG QP AVG
No.	0 0 0 0 0	Freq. MHz .2468 .2468 .4340 .4340 .5820 .5820 .6019	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58 34.62	Correct Factor dB 10.93 10.93 10.91 10.91 10.91 10.57	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49 45.19	dBuV 61.86 51.86 57.18 47.18 56.00 46.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51 -10.81	Detector QP AVG QP AVG QP AVG
No. Mo. Mo. Mo. Mo. Mo. Mo. Mo. Mo. Mo. M	0 0 0 0 0 0	Freq. MHz .2468 .2468 .4340 .4340 .5820 .5820 .6019	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58 34.62 20.24	Correct Factor dB 10.93 10.93 10.91 10.91 10.91 10.57 10.57	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49 45.19 30.81	dBuV 61.86 51.86 57.18 47.18 56.00 46.00 46.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51 -10.81 -15.19	Detector QP AVG QP AVG QP AVG AVG
No.	0 0 0 0 0 0 1 1	Freq. MHz .2468 .2468 .4340 .4340 .5820 .5820 .6019 .7180	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58 34.62 20.24 33.20	Correct Factor dB 10.93 10.93 10.91 10.91 10.91 10.57 10.57	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49 45.19 30.81 43.75	dBuV 61.86 51.86 57.18 47.18 56.00 46.00 56.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51 -10.81 -15.19 -12.25	Detector QP AVG QP AVG QP AVG QP AVG QP AVG
No.	0 0 0 0 0 1 1 1	Freq. MHz .2468 .2468 .4340 .4340 .5820 .5820 .6019 .6019 .7180	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58 34.62 20.24 33.20 18.16	Correct Factor dB 10.93 10.93 10.91 10.91 10.57 10.55 10.55	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49 45.19 30.81 43.75 28.71	dBuV 61.86 51.86 57.18 47.18 56.00 46.00 56.00 46.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51 -10.81 -15.19 -12.25 -17.29	Detector QP AVG QP AVG QP AVG QP AVG AVG
No.	0 0 0 0 0 1 1 1 1	Freq. MHz .2468 .2468 .4340 .4340 .5820 .5820 .6019 .7180	Level dBuV 27.16 15.58 28.47 17.50 38.32 27.58 34.62 20.24 33.20	Correct Factor dB 10.93 10.93 10.91 10.91 10.91 10.57 10.57	Measure- ment dBuV 38.09 26.51 39.38 28.41 49.23 38.49 45.19 30.81 43.75	dBuV 61.86 51.86 57.18 47.18 56.00 46.00 56.00 46.00 56.00	dB -23.77 -25.35 -17.80 -18.77 -6.77 -7.51 -10.81 -15.19 -12.25 -17.29	Detector QP AVG QP AVG QP AVG QP AVG QP AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 45 of 139

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temper	ature:	24.3°	C		Relative Hu	ımidity:	45%		
Test Vol	tage:	AC 1	AC 120V 60Hz						
Ant. Po		Horiz	Horizontal						
Test Mo	de:	Mode	Mode 2 TX a Mode 5180MHz						
Remark	•	Only worse case is reported.						3	
30.0 dBu	V/m								
70									
0						(RF)FCC 150	C 3M Radiation	, _	
0						Margin -6 dE			
o					**************************************	4			
					My Vanny	Mi l	5 6 X X		
0					[]		1 1 4	k Jupea	
20	is to Loubs Adv. Monte of Sparrey	- Aller and Aller	الرين حفات	A THE RESERVE THE PARTY AND A SECOND PORTY OF THE PARTY O	M. A. A. A. MANNI	Marian	Luth	//www.pea	
o hakkiki	elle beeker det saages al er een	managarah/M-a	withing a partie some	April Market	MU KAMAN	Manuel	h.l., millim / h.m	pea	
O madelija	egipholosopesies-on	han garage de Albana,	william of the state of the sta	North Control of the State of t	MU AAMAA	Manage	hole miller Am	i blanch an Deal	
0	elaturaturaturatur	~,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-	water was properly from the Party	North Market	MUI VANA	Jan Marian Maria	Llywillan	i khun khu pea	
0	is to health was a single of the pro-	60.00	ndifficulty of the state of the	(MHz)	300.	" Management	h Lamillan Am		
0	Frequ (MI	60.00 ency	Reading (dBuV)	North Control of the	M,	DO Limit	Margin (dB)	1000.00	
10 20 30.000	Frequ	60.00 Hency	Reading	(MHz)	300.	DO Limit	Margin	1000.00	
10 20 30.000	Frequ (Mh	60.00 lency Hz) 2678	Reading (dBuV)	(MHz) Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00	
10 20 30.000 No.	Frequ (MF 215.2	60.00 lency Hz) 2678	Reading (dBuV) 59.13	Factor (dB/m)	Level (dBuV/m) 34.97	Limit (dBuV/m) 43.50	Margin (dB) -8.53	<u> </u>	
No.	Frequ (MF 215.2 239.9	60.00 Hency Hz) 2678 9874 9370	Reading (dBuV) 59.13 65.70	(MHz) Factor (dB/m) -24.16 -22.91	Level (dBuV/m) 34.97 42.79	Limit (dBuV/m) 43.50 46.00	Margin (dB) -8.53 -3.21	Detector peak peak	
No. 1 2 * 3 !	Frequ (MF 215.2 239.9 319.9	60.00 dency Hz) 2678 9874 9370 0274	Reading (dBuV) 59.13 65.70 60.69	(MHz) Factor (dB/m) -24.16 -22.91 -20.42	Level (dBuV/m) 34.97 42.79 40.27	Limit (dBuV/m) 43.50 46.00 46.00	Margin (dB) -8.53 -3.21 -5.73	Detector peak peak peak	

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 46 of 139

remper	ature:	24.3°	C		R	Relative Hur	midity:	45%	
Test Vo	Itage:	AC 12	AC 120V 60Hz						Alle
Ant. Po	l.	Vertic	Vertical						
Test Mo	de:	Mode 2 TX a Mode 5180MHz Only worse case is reported.					MH.		
Remark	(:								
80.0 dBu	iV/m								
70									
60							(RF)FCC 15	C 3M Radiatio	n _
50							Margin -6 d	В	
40			4						
30					1.	3 4 4 × 5	6 X	New Authorities of the second	J Mw pea
The sparkers	who was read	andre fraging art happed has	Muses	MAN MAN MAN	product Company of profile	My Www		NAC PROPERTY AND	
10	www.	and the second	Myana	ertelitetet eringelit	production of the second	The state of the s	Markey Market Company	nder den fassionalites property	
10	www.	a-are-today ar shipday	Mlyavea	ertelenter ometr	HANNING THE PARTY OF THE PARTY		A CONTRACTOR OF THE STATE OF TH	nder bereiten betreit er betreit bereiten bereiten bereiten bereiten bereiten bereiten bereiten besteht besteh	
10 -10 -10		and the second	Mlyanen	erteleter verselv	proston, the			nder de legen de les de legen de les de legen d	
10 -10 -10		60.00	Mlynna	of the same	(MHz)	300	, **	No. of the Control of	
10			Read (dBt	_	(MHz) Factor (dB/m)	Level	, **	Margin (dB)	
10 0 -10 -20 30.000	(M	60.00 uency		uV)	Factor	Level	.oo	Margin	1000.00
10 0 -10 -20 30.000	(M 163.	uency Hz)	(dBı	uV) 55	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00
10 0 -10 -20 30.000 No.	(M 163. 189.	60.00 uency Hz)	(dB)	uV) 55 24	Factor (dB/m) -22.41	Level (dBuV/m) 26.14	Limit (dBuV/m) 43.50	Margin (dB) -17.36	Detector peak
10 0 -10 -20 30.000 No.	(M 163. 189. 213.	60.00 uency Hz) 1818 0743	(dBu	uV) 55 24 59	Factor (dB/m) -22.41 -24.33	Level (dBuV/m) 26.14 30.91	Limit (dBuV/m) 43.50 43.50	Margin (dB) -17.36 -12.59	Detector peak peak
No. 1 2 * 3	(M 163. 189. 213. 233.	uency Hz) 1818 0743	(dBt 48. 55. 52.	55 24 59 78	Factor (dB/m) -22.41 -24.33 -24.27	Level (dBuV/m) 26.14 30.91 28.32	Limit (dBuV/m) 43.50 43.50 43.50	Margin (dB) -17.36 -12.59 -15.18	Detector peak peak peak

*:Maximum data

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

x:Over limit !:over margin

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 47 of 139

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		The same of the sa
Ant. Pol.	Horizontal	annin a	THU
Test Mode:	TX 802.11a Mode 5180N	1Hz (U-NII-1) (ANT.1+A	ANT.2)

No).	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	*	10360.227	44.14	6.12	50.26	54.00	-3.74	AVG
2		10360.531	53.51	6.12	59.63	68.30	-8.67	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	The state of the s	
Ant. Pol.	Vertical	Tiving	
Test Mode:	TX 802.11a Mode 5180N	MHz (U-NII-1) (ANT.1+A	NT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.414	44.04	6.12	50.16	54.00	-3.84	AVG
2	10360.774	52.81	6.12	58.93	68.30	-9.37	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 139

A STATE OF THE PERSON OF THE P			
Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mod	e 5200MHz (U-NII-1) (ANT.1+A	NT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10400.133	53.42	6.27	59.69	68.30	-8.61	peak
2 *	10400.332	44.18	6.27	50.45	54.00	-3.55	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	(10)	MAN
Test Mode:	TX 802.11a Mode 5200N	MHz (U-NII-1) (ANT.1+A	NT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10400.347	44.02	6.27	50.29	54.00	-3.71	AVG
2	10400.528	53.29	6.27	59.56	68.30	-8.74	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mode 5240N	ИНz (U-NII-1) (ANT.1+A	NT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.357	43.69	6.42	50.11	54.00	-3.89	AVG
2	10480.521	52.81	6.42	59.23	68.30	-9.07	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	COLUMN TO THE PARTY OF THE PART	THU
Test Mode:	TX 802.11a Mode 5240M	1Hz (U-NII-1) (ANT.1+A	NT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10480.225	43.93	6.42	50.35	54.00	-3.65	AVG
2	10480.374	53.43	6.42	59.85	68.30	-8.45	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1) (A	NT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.124	53.51	6.12	59.63	68.30	-8.67	peak
2 *	10360.132	44.35	6.12	50.47	54.00	-3.53	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	CLODING.	THU
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1) (A	NT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.327	52.65	6.12	58.77	68.30	-9.53	peak
2 *	10360.327	44.41	6.12	50.53	54.00	-3.47	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1) (A	NT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10400.331	51.69	6.27	57.96	68.30	-10.34	peak
2 *	10400.452	43.58	6.27	49.85	54.00	-4.15	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	CLODING.	THU
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1) (A	NT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10400.327	43.51	6.27	49.78	54.00	-4.22	AVG
2	10400.548	53.36	6.27	59.63	68.30	-8.67	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 52 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1) (ANT.1+ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10480.344	44.05	6.42	50.47	54.00	-3.53	AVG
2	10480.544	51.70	6.42	58.12	68.30	-10.18	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1) (ANT.1+ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.347	53.21	6.42	59.63	68.30	-8.67	peak
2 *	10480.784	44.05	6.42	50.47	54.00	-3.53	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 53 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) (ANT.1+ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.347	44.35	6.12	50.47	54.00	-3.53	AVG
2	10360.584	53.40	6.12	59.52	68.30	-8.78	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	The state of the s				
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10360.168	44.41	6.12	50.53	54.00	-3.47	AVG
2	10360.327	52.99	6.12	59.11	68.30	-9.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 54 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.547	52.27	6.27	58.54	68.30	-9.76	peak
2 *	10400.668	44.09	6.27	50.36	54.00	-3.64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V		mm's y			
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.124	52.18	6.27	58.45	68.30	-9.85	peak
2 *	10400.337	43.87	6.27	50.14	54.00	-3.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 55 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11 ac(VHT20) Mode 5240MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.433	43.59	6.42	50.01	54.00	-3.99	AVG
2	10480.457	52.21	6.42	58.63	68.30	-9.67	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.327	52.36	6.42	58.78	68.30	-9.52	peak
2 *	10480.396	44.13	6.42	50.55	54.00	-3.45	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 56 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10380.021	43.90	6.21	50.11	54.00	-3.89	AVG
2	10380.211	53.42	6.21	59.63	68.30	-8.67	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	The state of the s			
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.212	44.10	6.21	50.31	54.00	-3.69	AVG
2	10380.477	52.31	6.21	58.52	68.30	-9.78	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 57 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V	The state of the s			
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1) (ANT.1+ANT.2)				

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	*	10460.635	43.95	6.37	50.32	54.00	-3.68	AVG
2	2	10460.937	51.74	6.37	58.11	68.30	-10.19	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	Marie Control			
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10460.124	52.00	6.37	58.37	68.30	-9.93	peak
2 *	10460.314	44.37	6.37	50.74	54.00	-3.26	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 58 of 139

Temperature:	25.2℃	Relative Humidity:	53%	
Test Voltage:	DC 5V			
Ant. Pol.	Horizontal		1000	
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) (ANT.1+ANT.2)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.665	44.11	6.21	50.32	54.00	-3.68	AVG
2	10380.744	52.03	6.21	58.24	68.30	-10.06	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	The same			
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10380.245	52.42	6.21	58.63	68.30	-9.67	peak
2 *	10380.771	43.93	6.21	50.14	54.00	-3.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 59 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V	The state of the s			
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11ac(VHT40) Mc	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) (ANT.1+ANT.2)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10460.245	53.17	6.37	59.54	68.30	-8.76	peak
2 *	10460.331	43.77	6.37	50.14	54.00	-3.86	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	The same			
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10460.635	44.05	6.37	50.42	54.00	-3.58	AVG
2	10460.711	52.41	6.37	58.78	68.30	-9.52	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 60 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V	133	1000		
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) (ANT.1+ANT.2)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10420.374	52.20	6.30	58.50	68.30	-9.80	peak
2 *	10420.825	43.94	6.30	50.24	54.00	-3.76	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V	THU TO				
Ant. Pol.	Vertical	THUE				
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10420.661	44.03	6.30	50.33	54.00	-3.67	AVG
2	10420.844	53.39	6.30	59.69	68.30	-8.61	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 61 of 139

5260MHz-5320MHz(U-NII-2A)

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	MUDE	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5260M	1Hz (U-NII-2A) (ANT.1+	-ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10520.356	44.12	6.44	50.56	54.00	-3.44	AVG
2	10520.587	52.53	6.44	58.97	68.30	-9.33	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%	
Test Voltage:	DC 5V		WURN .	
Ant. Pol.	Vertical			
Test Mode: TX 802.11a Mode 5260MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10520.127	53.11	6.44	59.55	68.30	-8.75	peak
2 *	10520.379	43.85	6.44	50.29	54.00	-3.71	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 62 of 139

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V	DC 5V				
Ant. Pol.	Horizontal	(17:3)	1000			
Test Mode:	TX 802.11a Mode 5280N	ИНz (U-NII-2A) (ANT.1-	-ANT.2)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10560.345	52.92	6.43	59.35	68.30	-8.95	peak
2 *	10560.741	43.81	6.43	50.24	54.00	-3.76	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%	
Test Voltage:	DC 5V		WURN .	
Ant. Pol.	Vertical			
Test Mode: TX 802.11a Mode 5280MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10560.668	43.89	6.43	50.32	54.00	-3.68	AVG
2	10560.744	53.20	6.43	59.63	68.30	-8.67	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 63 of 139

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11a Mode 5320N	1Hz (U-NII-2A) (ANT.1+	-ANT.2)		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10640.378	52.32	6.67	58.99	68.30	-9.31	peak
2 *	10640.425	43.68	6.67	50.35	54.00	-3.65	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	THE STATE OF	
Test Mode:	TX 802.11a Mode 5320N	MHz (U-NII-2A) (ANT.1+	-ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10640.245	52.86	6.67	59.53	68.30	-8.77	peak
2 *	10640.337	43.70	6.67	50.37	54.00	-3.63	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 64 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5260MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10520.414	44.07	6.44	50.51	54.00	-3.49	AVG
2	10520.714	52.50	6.43	58.93	68.30	-9.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	N. C.			
Test Mode:	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10520.127	52.23	6.44	58.67	68.30	-9.63	peak
2 *	10520.357	43.45	6.44	49.89	54.00	-4.11	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 65 of 139

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal		1000			
Test Mode:	TX 802.11n(HT20	TX 802.11n(HT20) Mode 5280MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10559.149	52.29	6.43	58.72	68.30	-9.58	peak
2 *	10559.545	44.03	6.43	50.46	54.00	-3.54	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical	THE STATE OF			
Test Mode:	TX 802.11n(HT20) Mode 5280MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10559.396	43.61	6.43	50.04	54.00	-3.96	AVG
2	10559.687	52.50	6.43	58.93	68.30	-9.37	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 66 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10640.357	51.31	6.67	57.98	68.30	-10.32	peak
2 *	10640.452	43.96	6.67	50.63	54.00	-3.37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V		WILLIAM .		
Ant. Pol.	Vertical	N. C.			
Test Mode:	TX 802.11n(HT20) Mode 5320MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10640.359	43.80	6.67	50.47	54.00	-3.53	AVG
2	10640.521	52.65	6.67	59.32	68.30	-8.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 67 of 139

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal		1000			
Test Mode:	TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10520.351	52.03	6.44	58.47	68.30	-9.83	peak
2 *	10520.595	43.78	6.43	50.21	54.00	-3.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical	The same			
Test Mode:	TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10520.254	52.22	6.44	58.66	68.30	-9.64	peak
2 *	10520.478	43.92	6.44	50.36	54.00	-3.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 68 of 139

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal	(13)	1000			
Test Mode:	TX 802.11ac(VHT20) Mode 5280MHz (U-NII-2A) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10560.275	43.95	6.43	50.38	54.00	-3.62	AVG
2	10560.764	52.50	6.43	58.93	68.30	-9.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical	The same of the sa			
Test Mode:	TX 802.11ac(VHT20) Mode 5280MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10560.771	44.09	6.43	50.52	54.00	-3.48	AVG
2	10560.826	53.20	6.43	59.63	68.30	-8.67	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 69 of 139

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal		1000			
Test Mode:	TX 802.11 ac(VHT20) Mode 5320MHz (U-NII-2A) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10640.321	51.90	6.67	58.57	68.30	-9.73	peak
2 *	10640.612	43.86	6.67	50.53	54.00	-3.47	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical	The same			
Test Mode:	TX 802.11ac(VHT20) Mode 5320MHz (U-NII-2A) (ANT.1+ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	I
1	10640.251	52.86	6.67	59.53	68.30	-8.77	peak	
2 *	10640.741	43.99	6.67	50.66	54.00	-3.34	AVG	

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 70 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	The state of the s	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5270MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10540.357	43.70	6.44	50.14	54.00	-3.86	AVG
2	10540.451	52.73	6.44	59.17	68.30	-9.13	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX 802.11n(HT40) Mod	de 5270MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10540.227	43.91	6.44	50.35	54.00	-3.65	AVG
2	10540.334	52.03	6.44	58.47	68.30	-9.83	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 71 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT40) Mode	5310MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10620.278	44.15	6.53	50.68	54.00	-3.32	AVG
2	10620.377	52.43	6.53	58.96	68.30	-9.34	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		mm's s
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) I	Mode 5310MHz (U-NII-2A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10620.214	51.72	6.53	58.25	68.30	-10.05	peak
2 *	10620.347	43.77	6.53	50.30	54.00	-3.70	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 72 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5270MHz (U-NII-2A	(ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10540.312	52.13	6.44	58.57	68.30	-9.73	peak
2 *	10540.668	43.93	6.44	50.37	54.00	-3.63	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11ac(VHT40) I	Mode 5270MHz (U-NII-2A	A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10540.245	53.01	6.44	59.45	68.30	-8.85	peak
2 *	10540.327	43.97	6.44	50.41	54.00	-3.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 73 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5310MHz (U-NII-2A	A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10620.244	44.04	6.53	50.57	54.00	-3.43	AVG
2	10620.638	52.21	6.53	58.74	68.30	-9.56	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical						
Test Mode:	TX 802.11ac(VHT4	TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10620.397	43.64	6.53	50.17	54.00	-3.83	AVG
2	10620.945	52.90	6.55	59.45	68.30	-8.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 74 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	(13)	1000
Test Mode:	TX 802.11ac(VHT80) Mo	ode 5290MHz (U-NII-2A	A) (ANT.1+ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10580.257	52.68	6.43	59.11	68.30	-9.19	peak
2 *	10580.379	44.26	6.43	50.69	54.00	-3.31	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical	The same					
Test Mode:	TX 802.11ac(VHT80)	TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A) (ANT.1+ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10580.341	52.56	6.43	58.99	68.30	-9.31	peak
2 *	10580.545	44.23	6.43	50.66	54.00	-3.34	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 75 of 139

5500MHz-5700MHz(U-NII-2C)

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	THE PARTY OF THE P	
Ant. Pol.	Horizontal	773	
Test Mode:	TX 802.11a Mode 5500M	1Hz (U-NII-2C) (ANT.1+	- ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.225	51.38	8.17	59.55	68.30	-8.75	peak
2 *	11000.451	42.22	8.17	50.39	54.00	-3.61	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	THE STATE OF				
Test Mode:	TX 802.11a Mode 5500N	TX 802.11a Mode 5500MHz (U-NII-2C) (ANT.1+ ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.357	51.48	8.17	59.65	68.30	-8.65	peak
2 *	11000.613	42.16	8.17	50.33	54.00	-3.67	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 76 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	NO.	
Ant. Pol.	Horizontal		1
Test Mode:	TX 802.11a Mode 5580N	MHz (U-NII-2C) (ANT.1-	- ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11160.135	51.13	7.84	58.97	68.30	-9.33	peak
2 *	11160.563	42.68	7.84	50.52	54.00	-3.48	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5580N	ИНz (U-NII-2C) (ANT.1-	+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11160.337	42.44	7.84	50.28	54.00	-3.72	AVG
2	11160.424	51.12	7.84	58.96	68.30	-9.34	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 77 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mode 5700	MHz (U-NII-2C) (ANT.1-	+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.258	48.54	8.98	57.52	68.30	-10.78	peak
2 *	11400.317	40.70	8.98	49.68	54.00	-4.32	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 570	00MHz (U-NII-2C) (ANT.1+	- ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.225	49.39	8.98	58.37	68.30	-9.93	peak
2 *	11400.257	40.95	8.98	49.93	54.00	-4.07	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 78 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5500MHz (U-NII-2C) (ANT.1+ ANT.2)

İ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	I
	1 *	11000.232	41.95	8.17	50.12	54.00	-3.88	AVG	
	2	11000.245	50.79	8.17	58.96	68.30	-9.34	peak	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11 n(HT20) Mo	ode 5500MHz (U-NII-2C)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.323	50.79	8.17	58.96	68.30	-9.34	peak
2 *	11000.331	42.15	8.17	50.32	54.00	-3.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 79 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	11160.447	43.01	7.84	50.85	54.00	-3.15	AVG	
2	11160.674	51.41	7.84	59.25	68.30	-9.05	peak	ſ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	THU .	
Ant. Pol.	Vertical	THUL	
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C) ((ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11160.125	51.84	7.84	59.68	68.30	-8.62	peak
2 *	11160.313	42.42	7.84	50.26	54.00	-3.74	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 80 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.357	41.16	8.98	50.14	54.00	-3.86	AVG
2	11400.554	50.87	8.98	59.85	68.30	-8.45	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	THE STATE OF	
Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.357	49.81	8.98	58.79	68.30	-9.51	peak
2 *	11400.358	41.67	8.98	50.65	54.00	-3.35	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 81 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5500MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.122	50.70	8.17	58.87	68.30	-9.43	peak
2 *	11000.411	42.46	8.17	50.63	54.00	-3.37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX 802.11 ac(VHT20)	Mode 5500MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.312	50.30	8.17	58.47	68.30	-9.83	peak
2 *	11000.645	42.11	8.17	50.28	54.00	-3.72	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 82 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11 ac(VHT20) M	ode 5580MHz (U-NII-2	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11160.377	51.57	7.84	59.41	68.30	-8.89	peak
2 *	11160.842	42.48	7.84	50.32	54.00	-3.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V		WURN .			
Ant. Pol.	Vertical	N. W.				
Test Mode:	TX 802.11 ac(VHT20) Mode 5580MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11160.414	51.70	7.84	59.54	68.30	-8.76	peak
2 *	11160.422	42.26	7.84	50.10	54.00	-3.90	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 83 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	NU.	
Ant. Pol.	Horizontal		73 800
Test Mode:	TX 802.11 ac(VHT20) M	ode 5700MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.124	50.39	8.98	59.37	68.30	-8.93	peak
2 *	11400.331	41.91	8.98	50.89	54.00	-3.11	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V	40					
Ant. Pol.	Vertical		WURN .				
Test Mode:	TX 802.11 ac(VHT20) M	TX 802.11 ac(VHT20) Mode 5700MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.366	48.68	8.98	57.66	68.30	-10.64	peak
2 *	11400.614	41.05	8.98	50.03	54.00	-3.97	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 84 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	133	1000
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11020.122	50.14	8.09	58.23	68.30	-10.07	peak
2 *	11020.683	42.14	8.08	50.22	54.00	-3.78	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V		WILLIAM .				
Ant. Pol.	Vertical	Marie Control					
Test Mode:	TX 802.11n(HT40) Mod	TX 802.11n(HT40) Mode 5510MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11020.247	50.33	8.08	58.41	68.30	-9.89	peak
2 *	11020.547	42.55	8.08	50.63	54.00	-3.37	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 85 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V	RU					
Ant. Pol.	Horizontal	THE PROPERTY OF	1				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11100.337	50.48	7.76	58.24	68.30	-10.06	peak
2 *	11100.412	42.56	7.76	50.32	54.00	-3.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V	40					
Ant. Pol.	Vertical		WURN .				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11100.129	51.47	7.76	59.23	68.30	-9.07	peak
2 *	11100.871	42.25	7.76	50.01	54.00	-3.99	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 86 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5670MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11340.322	41.70	8.91	50.61	54.00	-3.39	AVG
2	11340.521	49.66	8.91	58.57	68.30	-9.73	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V		WILLIAM .				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT40) Mode 5670MHz (U-NII-2C) (ANT.1+ ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.275	41.21	8.91	50.12	54.00	-3.88	AVG
2	11340.324	48.98	8.91	57.89	68.30	-10.41	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 87 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11ac(VHT40) Mo	TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11020.379	42.09	8.08	50.17	54.00	-3.83	AVG
2	11020.815	51.46	8.08	59.54	68.30	-8.76	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT40)	TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11020.186	42.57	8.08	50.65	54.00	-3.35	AVG
2	11020.784	50.31	8.08	58.39	68.30	-9.91	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 88 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5550MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11100.128	42.48	7.76	50.24	54.00	-3.76	AVG
2	11100.647	50.95	7.76	58.71	68.30	-9.59	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11ac(VHT40) I	Mode 5550MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11020.774	42.31	8.08	50.39	54.00	-3.61	AVG
2	11020.869	50.81	8.08	58.89	68.30	-9.41	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 89 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5670MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11340.305	50.53	8.91	59.44	68.30	-8.86	peak
2 *	11340.359	41.26	8.91	50.17	54.00	-3.83	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11ac(VHT40) I	Mode 5670MHz (U-NII-20	c) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.455	41.65	8.91	50.56	54.00	-3.44	AVG
2	11340.657	50.06	8.91	58.97	68.30	-9.33	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 90 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5530MHz (U-NII-20	C) (ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	-
1	11060.368	50.79	7.92	58.71	68.30	-9.59	peak	
2 *	11060.457	42.77	7.92	50.69	54.00	-3.31	AVG	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%					
Test Voltage:	DC 5V	THE STATE OF	The same					
Ant. Pol.	Vertical	TUUL						
Test Mode:	TX 802.11ac(VHT80) Mc	TX 802.11ac(VHT80) Mode 5530MHz (U-NII-2C) (ANT.1+ ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11060.245	51.64	7.92	59.56	68.30	-8.74	peak
2 *	11060.398	42.79	7.92	50.71	54.00	-3.29	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 91 of 139

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5610MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11220.252	51.26	8.10	59.36	68.30	-8.94	peak
2 *	11220.475	42.19	8.10	50.29	54.00	-3.71	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	The same of the sa				
Test Mode:	TX 802.11ac(VHT80) Mode 5610MHz (U-NII-2C) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11220.068	42.27	8.10	50.37	54.00	-3.63	AVG
2	11220.359	50.67	8.10	58.77	68.30	-9.53	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 92 of 139

5745MHz-5825MHz(U-NII-3)

Temperature:	25.2℃	Relative Humidity:					
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3) (ANT.1+ ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.432	49.68	8.99	58.67	68.30	-9.63	peak
2 *	11490.455	41.17	8.99	50.16	54.00	-3.84	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	THE STATE OF				
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.331	41.06	8.99	50.05	54.00	-3.95	AVG
2	11490.457	50.66	8.99	59.65	68.30	-8.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 93 of 139

Temperature:	25.2℃	Relative Humidity:	53%					
Test Voltage:	DC 5V							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 802.11a Mode 5785N	TX 802.11a Mode 5785MHz (U-NII-3) (ANT.1+ ANT.2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	I
1	11570.541	49.88	8.75	58.63	68.30	-9.67	peak	
2 *	11570.554	41.28	8.75	50.03	54.00	-3.97	AVG	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical	THE STATE OF			
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3) (ANT.1+ ANT.2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.217	41.60	8.75	50.35	54.00	-3.65	AVG
2	11570.327	50.53	8.75	59.28	68.30	-9.02	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 94 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mode 5825N	//Hz (U-NII-3) (ANT.1+	ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11650.253	41.63	8.70	50.33	54.00	-3.67	AVG
2	11650.314	50.26	8.70	58.96	68.30	-9.34	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	THE STATE OF	
Test Mode:	TX 802.11a Mode 5825N	MHz (U-NII-3) (ANT.1+ A	ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.214	50.85	8.70	59.55	68.30	-8.75	peak
2 *	11650.327	41.37	8.70	50.07	54.00	-3.93	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 95 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11490.237	41.57	8.99	50.56	54.00	-3.44	AVG
2	11490.356	49.97	8.99	58.96	68.30	-9.34	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.287	50.57	8.99	59.56	68.30	-8.74	peak
2 *	11490.612	41.15	8.99	50.14	54.00	-3.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 96 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11570.357	41.41	8.75	50.16	54.00	-3.84	AVG
2	11570.547	49.90	8.75	58.65	68.30	-9.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	N. C.	
Test Mode:	TX 802.11n(HT20) Mo	de 5785MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11570.228	41.58	8.75	50.33	54.00	-3.67	AVG
2	11570.367	50.16	8.75	58.91	68.30	-9.39	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 97 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	No.	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.344	49.75	8.70	58.45	68.30	-9.85	peak
2 *	11650.754	41.86	8.70	50.56	54.00	-3.44	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		WURR
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.121	50.43	8.70	59.13	68.30	-9.17	peak
2 *	11650.567	41.48	8.70	50.18	54.00	-3.82	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 98 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5745MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11490.311	49.97	8.99	58.96	68.30	-9.34	peak
2 *	11490.364	41.24	8.99	50.23	54.00	-3.77	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical	THE STATE OF					
Test Mode:	TX 802.11ac(VHT20)	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) (ANT.1+ ANT.2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.377	41.09	8.99	50.08	54.00	-3.92	AVG
2	11490.454	50.37	8.99	59.36	68.30	-8.94	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 99 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5785MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11570.104	49.33	8.75	58.08	68.30	-10.22	peak
2 *	11570.640	41.96	8.75	50.71	54.00	-3.29	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX 802.11ac(VHT20) I	Mode 5785MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11570.333	49.50	8.75	58.25	68.30	-10.05	peak
2 *	11570.585	41.59	8.75	50.34	54.00	-3.66	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 100 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	THE PARTY OF THE P	A FILL
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5825MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Ī
1	11650.332	49.44	8.70	58.14	68.30	-10.16	peak	
2 *	11650.421	41.46	8.70	50.16	54.00	-3.84	AVG	Γ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX 802.11ac(VHT20) I	Mode 5825MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11650.117	41.32	8.70	50.02	54.00	-3.98	AVG
2	11650.232	50.75	8.70	59.45	68.30	-8.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 101 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.432	50.19	8.95	59.14	68.30	-9.16	peak
2 *	11510.447	41.68	8.95	50.63	54.00	-3.37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.014	50.17	8.95	59.12	68.30	-9.18	peak
2 *	11510.212	41.25	8.95	50.20	54.00	-3.80	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 102 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.451	49.89	8.69	58.58	68.30	-9.72	peak
2 *	11590.616	41.59	8.69	50.28	54.00	-3.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	THE STATE OF	
Test Mode:	TX 802.11n(HT40) Mod	e 5795MHz (U-NII-3) (A	NT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.387	50.88	8.69	59.57	68.30	-8.73	peak
2 *	11590.876	42.00	8.69	50.69	54.00	-3.31	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 103 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5755MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.285	41.29	8.95	50.24	54.00	-3.76	AVG
2	11510.358	50.02	8.95	58.97	68.30	-9.33	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		WILLIAM .
Ant. Pol.	Vertical	N. C.	
Test Mode:	TX 802.11ac(VHT40) I	Mode 5755MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.658	41.83	8.95	50.78	54.00	-3.22	AVG
2	11510.669	49.73	8.95	58.68	68.30	-9.62	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 104 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5795MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11590.374	41.97	8.69	50.66	54.00	-3.34	AVG
2	11590.825	50.17	8.69	58.86	68.30	-9.44	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V	W. College	3 110
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5795MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11590.676	42.17	8.69	50.86	54.00	-3.14	AVG
2	11590.774	49.87	8.69	58.56	68.30	-9.74	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 105 of 139

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5775MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11550.147	41.41	8.82	50.23	54.00	-3.77	AVG
2	11550.886	50.91	8.82	59.73	68.30	-8.57	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	25.2℃	Relative Humidity:	53%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	The same	
Test Mode:	TX 802.11ac(VHT80)	Mode 5775MHz (U-NII-3)	(ANT.1+ ANT.2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11550.127	50.74	8.82	59.56	68.30	-8.74	peak
2 *	11550.457	41.81	8.82	50.63	54.00	-3.37	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 106 of 139

Attachment C-- Restricted Bands Requirement and

Band-edge Test Data

5180MHz-5240MHz(U-NII-1)

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n20 Mode 518	BO MHz (U-NII-1) (ANT.	1+ANT.2)
Remark:	Only worse case is repo	rted.	
120.0 dBuV/m			
110			
00			
90			3 X ₄
30			
70		RLAN Re	stricted Band-(Peak)
60			
60		* · · · · · · · · · · · · · · · · · · ·	stricted Band-(AVG)
10		3	pea
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	41.19	12.08	53.27	74.00	-20.73	peak
2 *	5150.000	33.87	12.08	45.95	54.00	-8.05	AVG
3	5175.300	80.34	12.17	92.51			peak
4	5176.000	76.76	12.17	88.93			AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 107 of 139

Page:

Temperature:	23.6℃	Relative Humid	dity:	49%				
Test Voltage:	DC 5V	SU TU	1)		A TOTAL	AL SE		
Ant. Pol.	Vertical		6	UPP		A		
Test Mode:	TX 802.11n20 N	TX 802.11n20 Mode 5180 MHz (U-NII-1) (ANT.1+ANT.2)						
Remark:	Only worse cas	e is reported.						
120.0 dBuV/m						7		
110								
90				3 *				
80		B	RLAN Restri	icted Band-(Pea	kj			
70								
60		1 <u>x</u>	RLAN Restri	icted Band-(AVG) \			
50		3	<i>_</i>		power	∽pea		
40								
30						-		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	43.11	12.08	55.19	74.00	-18.81	peak
2 *	5150.000	33.70	12.08	45.78	54.00	-8.22	AVG
3	5177.100	76.77	12.17	88.94			AVG
4	5183.600	80.99	12.19	93.18			peak

20.0

5096.000 5106.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 108 of 139

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		73 1111
Ant. Pol.	Horizontal		WORL)
Test Mode:	TX 802.11ac40 M	lode 5190 MHz (U-NII-1) (AN	T.1+ANT.2)
Remark:	Only worse case	is reported.	
120.0 dBuV/m			
110			
100			
90		:	3
80		BLAN RO	estricted Band-(Peak)
70			
60		1 RLAN RO	estricted Band-(AVG)
50		3	peal
40			
30			
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	43.01	12.08	55.09	74.00	-18.91	peak
2 *	5150.000	36.58	12.08	48.66	54.00	-5.34	AVG
3	5180.700	80.56	12.18	92.74			peak
4	5182.050	74.25	12.19	86.44			AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 109 of 139

Temperature:	23.6℃	Relative Humidit	y : 49%
Test Voltage:	DC 5V	SUP TOUR	
Ant. Pol.	Vertical		CLUDY A
Test Mode:	TX 802.11ac40	Mode 5190 MHz (U-NII-1) (A	ANT.1+ANT.2)
Remark:	Only worse cas	e is reported.	
120.0 dBuV/m			
110			
100			
90			3 3
80			N Restricted Band-(Peak)
70			n nestricted band-(Feak)
60		1 × /BLA	N Restricted Band-(AVG)
50		2	pea
40			
30			
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	44.15	12.08	56.23	74.00	-17.77	peak
2 *	5150.000	36.20	12.08	48.28	54.00	-5.72	AVG
3	5180.700	80.51	12.18	92.69			peak
4	5185.200	74.56	12.19	86.75			AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 110 of 139

Temperature:	23.6℃	Relative Humidity: 4	9%
Test Voltage:	DC 5V		A LIVE
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac80 Mode	5210 MHz (U-NII-1) (ANT.1+	ANT.2)
Remark:	Only worse case is re	ported.	
120.0 dBuV/m			
110			
100			
90		3 X	
80		Marine Marine Marine Marine	androwald harmon hard
70		RLAN Restricte	d Band-(Peak)
60		1	
50		RLAN Restricte	d Band-(AVG)
40			
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	44.78	12.08	56.86	74.00	-17.14	peak
2 *	5150.000	39.44	12.08	51.52	54.00	-2.48	AVG
3	5186.600	81.34	12.20	93.54			peak
4	5193.000	74.09	12.23	86.32			AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 111 of 139

Temperature:	23.6℃	Relative	Humidity:	49%	
Test Voltage:	DC 5V	33	CHILL ST.		
Ant. Pol.	Vertical		6	William	
Test Mode:	TX 802.11ac80	Mode 5210 MHz (l	J-NII-1) (ANT.	1+ANT.2)	
Remark:	Only worse case	e is reported.	U	10	
120.0 dBuV/m					
110					
100					
90			4 X		
80			many man	Market Stranger Stran	
70			RLAN Res	tricted Band-(Peak)	
60					
50		- Lander - L	RLAN Res	tricted Band-(AVG)	peal
40					
30					
20.0					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	43.23	12.08	55.31	74.00	-18.69	peak
2 *	5150.000	39.74	12.08	51.82	54.00	-2.18	AVG
3	5192.600	73.32	12.23	85.55			AVG
4	5201.400	81.11	12.25	93.36			peak

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

5398.00

5408.00

Page: 112 of 139

5260MHz-5320MHz(U-NII-2A)

A Comment			
Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		cons
Ant. Pol.	Horizontal	A LIVE	
Test Mode:	TX 802.11n20 M	ode 5320 MHz (U-NII-2A) (AN	T.1+ANT.2)
Remark:	Only worse case	e is reported.	WILL STATE OF THE
120.0 dBuV/m			
110			
100	<u> </u>		
90	2		
80		RLAN Re	stricted Band-(Peak)
70			
60		3 RLAN Re	stricted Band-(AVG)
50		\$	
40			
30			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5323.800	82.07	12.54	94.61			peak
2	5324.100	76.08	12.54	88.62			AVG
3	5350.000	41.81	12.68	54.49	74.00	-19.51	peak
4 *	5350.000	34.86	12.68	47.54	54.00	-6.46	AVG

(MHz)

5368.00

5378.00

Remark:

5308.000 5318.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

5338.00

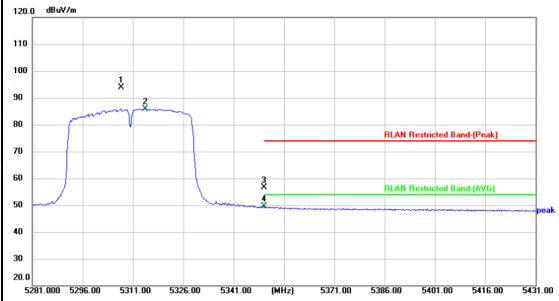
5348.00

5328.00

Report No.: TBR-C-202305-0132-133 Page: 113 of 139

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		1000
Test Mode:	TX 802.11n20 Mc	ode 5320 MHz (U-NII-2A) (AN	T.1+ANT.2)
Remark:	Only worse case	is reported.	
120.0 dBuV/m			
110 100 90 80 70		RLAN Re	stricted Band-(Peak)
50	ham ham	RLAN Re	stricted Band-(AVG)
40 30 20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5317.700	81.11	12.50	93.61			AVG
2	5323.800	84.47	12.54	97.01			peak
3	5350.000	41.65	12.68	54.33	74.00	-19.67	peak
4 *	5350.000	35.55	12.68	48.23	54.00	-5.77	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 114 of 139

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac40	Mode 5310 MHz (U-NII-2A) (Al	NT.1+ANT.2)
Remark:	Only worse cas	se is reported.	
120.0 dBuV/m			
110			

No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5307.400	81.33	12.44	93.77			peak
2	5314.750	73.46	12.49	85.95			AVG
3	5350.000	43.93	12.68	56.61	74.00	-17.39	peak
4	* 5350.000	36.93	12.68	49.61	54.00	-4.39	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 115 of 139

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V	33	THE REAL PROPERTY.
Ant. Pol.	Vertical		1000
Test Mode:	TX 802.11ac40	Mode 5310 MHz (U-NII-2A) (AN	T.1+ANT.2)
Remark:	Only worse case	e is reported.	
120.0 dBuV/m			
110			
100			
90	1 2		
80		RI ÁN Resi	tricted Band-(Peak)
70			unded Dana (r dan)
60		3 X RLAN Resi	tricted Band-(AVG)
50		Manager and the second	pe
40			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5312.350	80.72	12.47	93.19			peak
2	5317.150	73.13	12.50	85.63			AVG
3	5350.000	43.71	12.68	56.39	74.00	-17.61	peak
4 *	5350.000	36.71	12.68	49.39	54.00	-4.61	AVG

(MHz)

5371.00

5386.00

5401.00

5416.00

5431.00

5341.00

20.0

5281.000 5296.00

5311.00

5326.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 116 of 139

Temperatu	re:	23.6℃			Relativ	ve Humidity:	49%	
Test Voltag	e:	DC 5V		THE STATE OF THE S		WILLIAM STATE	- A 1	MA
Ant. Pol.		Horizo	ntal		1173			
Test Mode:		TX 802	2.11ac	80 Mode	5290 MHz	(U-NII-2A) (AN	NT.1+ANT.2)	1397
Remark:		Only w	orse c	ase is re	ported.	NO.	10	
120.0 dBuV/m								
110								
100		1						
90		½	2					
80		Y				RLAN Res	stricted Band-(Peak)	
70								
60					3 X	RLAN Res	stricted Band-(AVG)	
50					· · · · · · · · · · · · · · · · · · ·	·		pea
40								
20.0								
	2.00	5282.00 5	302.00	5322.00	(MHz) 536	2.00 5382.00	5402.00 5422.00	5442.0

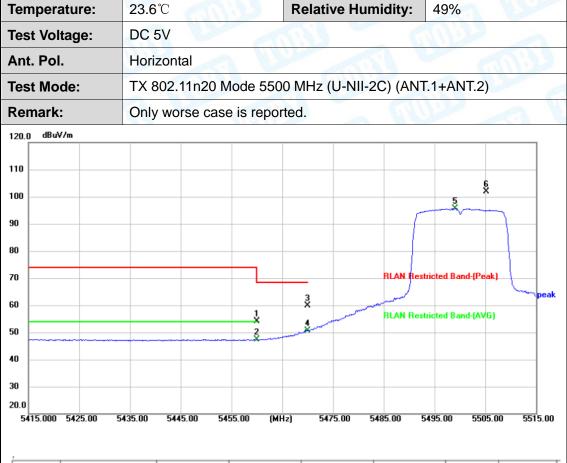
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5286.800	80.72	12.38	93.10			peak
2	5306.600	72.80	12.44	85.24			AVG
3	5350.000	43.56	12.68	56.24	74.00	-17.76	peak
4 *	5350.000	37.98	12.68	50.66	54.00	-3.34	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 117 of 139

Temperature:	23.6℃	Relative Humidity:	49%							
Test Voltage:	DC 5V									
Ant. Pol.	Vertical		WILLIAM STATE							
Test Mode:	TX 802.11ac80 Mode 5290 MHz (U-NII-2A) (ANT.1+ANT.2)									
Remark:	Only worse case is	reported.								
120.0 dBuV/m										
110 100 90 80	ž	RLAN Re	stricted Band-(Peak)							
50		RLAN Re	stricted Band-(AVG)							
40										
20.0										

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5306.600	72.38	12.44	84.82			AVG
2	5314.400	80.31	12.48	92.79			peak
3	5350.000	42.64	12.68	55.32	74.00	-18.68	peak
4 *	5350.000	37.88	12.68	50.56	54.00	-3.44	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 118 of 139

5500MHz-5700MHz(U-NII-2C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5460.000	40.89	13.24	54.13	68.30	-14.17	peak
2 *	5460.000	34.04	13.24	47.28	54.00	-6.72	AVG
3	5470.000	46.55	13.30	59.85	68.30	-8.45	peak
4	5470.000	37.39	13.30	50.69	68.30	-17.61	AVG
5	5499.000	82.26	13.43	95.69			AVG
6	5505.200	88.56	13.43	101.99			peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 119 of 139

Temper	ature:	23.6	${}^{\circ}\mathbb{C}$		a 1	Relativ	ve Hur	nidity:	499	%	ATT.	
Test Vo	Itage:	DC :	5V	M	33		EN.	1111		(1)	A Partie	
Ant. Po	l.	Vert	ical			THE STATE OF THE S			111			Pa.
Test Mc	de:	TX 8	302.11n	20 N	lode 550	0 MHz (U-NII-2	2C) (AN	T.1+ <i>F</i>	NT.2)	M'	
Remark	(:	Only	worse	case	is repor	ted.	MA			1 1		
120.0 dBu	V/m											,
110												
100										8 8		
90										5	~	
80												
70						3 X		RLAN Res	tricted l	Band-(Peak	1	
60					1 X	^	- ALLANA	RLAN Res	tricted I	Band-(AVG)	www	pea
50					2							
40												-
30												
20.0 5415.000	5425.00	5435.00	5445.00	54	55.00 (MH	lz) 547	75.00 <u>5</u>	485.00	5495.00	5505.0	00 55] 15.0
No.	Frequ (MF		Readi (dBu)		Facto (dB/m		vel uV/m)	Limi (dBuV/		Margin (dB)	Detec	ctor
1	5460.	000	41.6	7	13.24	54	.91	68.3	0	-13.39	pea	ak
2	5460.	000	34.2	2	13.24	47	'.46	54.0	0	-6.54	AV	G
3 *	5470.	000	48.8	4	13.30	62	2.14	68.3	0	-6.16	pea	ık
4	5470.	000	36.1	3	13.30	49	.43	68.3) .	-18.87	AV	G
												_

Remark:

5499.000

5505.100

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

81.22

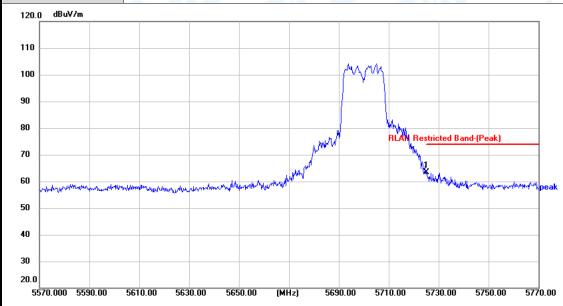
88.43

13.43

13.43

94.65

101.86


AVG

peak

Page: 120 of 139

Temperature:	23.6℃	Relative Humidity:	49%						
Test Voltage:	DC 5V		7						
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX 802.11n20 Mode 570	TX 802.11n20 Mode 5700 MHz (U-NII-2C) (ANT.1+ANT.2)							
Remark:	Only worse case is repo	rted.							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	5725.000	49.69	13.58	63.27	74.00	-10.73	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 121 of 139

emperature:	23.6℃		Relative Humidit	y : 49%	
est Voltage:	DC 5V				A British
Ant. Pol.	Vertical		(1)	CIND	3
est Mode:	TX 802.11r	120 Mode 570	0 MHz (U-NII-2C) (ANT.1+ANT.	2)
Remark:	Only worse	case is repor	ted.		13-
120.0 dBuV/m					
110			mount		
90					
70			<i></i>	AN Restricted Band-	[Peak]
60	nangennahannan dahabelan	Mary James and James Conference of	War.	Mary May part of the Comment of the	hybrandondddynyn peak
50					
40					
20.0					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	54.37	13.58	67.95	74.00	-6.05	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 122 of 139

Temper	rature:	23.6	${}^{\circ}\mathbb{C}$		Relat	ive Hum	idity:	19%		
Test Vo	ltage:	DC :	DC 5V							
Ant. Po	ol.	Hori	zontal		ARV.			11:373		
Test Mo	ode:	TX 8	TX 802.11ac40 Mode 5510 MHz (U-NII-2C) (ANT.1+ANT.2)							
Remark	k:	Only	y worse ca	ase is rep	orted.	MAR		a i		
120.0 dB	uV/m									
110										
100							5 5	~~~		
30							1			
70					a X	$\downarrow \downarrow$	RLAN Restric	ted Band-[Peak		
60				1 X 2	***************************************		RLAN Restric	ted Band-(AVG)	pea	
50				- Aller and a second						
10										
30 20.0 5398.25	0 5413.25	5428.25	5443.25	5458.25	(MU-)	5488.25 5	503.25 551	8.25 5533.2	25 5548.2	
3330.23	U 9413.29	U420.23	3443.23	5450.25	(MHz) 5	J400.ZJ 3	303.23 331	0.23 3333.1	23 3348.2	
No.	Freque (MH		Reading (dBuV)			evel	Limit (dBuV/m	Margin (dB)	Detector	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5460.000	44.88	13.24	58.12	68.30	-10.18	peak
2 *	5460.000	38.51	13.24	51.75	54.00	-2.25	AVG
3	5470.000	52.09	13.30	65.39	68.30	-2.91	peak
4	5470.000	42.55	13.30	55.85	68.30	-12.45	AVG
5	5513.150	80.46	13.42	93.88			AVG
6	5513.300	87.46	13.42	100.88			peak

Remark:

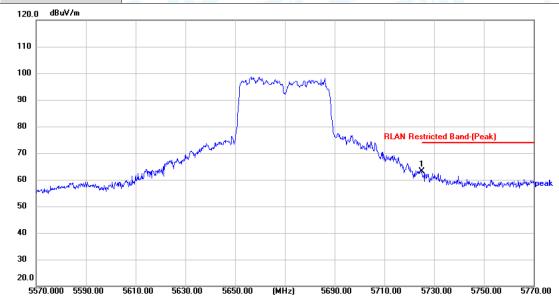
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 123 of 139

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V	THE PARTY OF THE P	
Ant. Pol.	Vertical	1773	1000
est Mode:	TX 802.11ac40 Mode 55	510 MHz (U-NII-2C) (AN	IT.1+ANT.2)
Remark:	Only worse case is repo	rted.	
120.0 dBuV/m			
10			
00		6 X 5	
00		A American	
0			
70	3 X	RLAN Res	stricted Band-[Peak]
60	1 3		ре
:0	3	RLAN Hes	stricted Band-(AVG)
10			
0			
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5460.000	45.87	13.24	59.11	68.30	-9.19	peak
2	5460.000	38.60	13.24	51.84	54.00	-2.16	AVG
3 *	5470.000	52.98	13.30	66.28	68.30	-2.02	peak
4	5470.000	42.89	13.30	56.19	68.30	-12.11	AVG
5	5513.300	80.95	13.42	94.37			AVG
6	5513.450	86.76	13.42	100.18			peak

Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 124 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac40 Mode 5670 MHz (U-NII-2C) (ANT.1+ANT.2)						
Remark:	Only worse case is reported.						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	5725.000	49.61	13.58	63.19	74.00	-10.81	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 125 of 139

Tem	perature:	23.6℃		2	Relativ	ve Humid	ity:	49%		
Гes	t Voltage:	DC 5V		33		CHIT.		-1	167	A SE
A nt	. Pol.	Vertical	P. S.		19.7		61	UPP		A
Гes	t Mode:	TX 802.1	TX 802.11ac40 Mode 5670 MHz (U-NII-2C) (ANT.1+ANT.2)							
Ren	nark:	Only wor	se case	is repor	ted.	HO		A I		6
120.0	dBuV/m									
110										
100				phorophy	Monther					
90						l l				-
80	a fortraction and the fourth		LUMAN MAN			braphony depression to the state of the stat	LAN Res <u>tri</u>	cted Band-(Pe	ak)	
70			Name .			1.040		<u>.</u>		-
60	har some some some some some some some some	Janes Maria Maria					XIII	agraphyddolly Aldydd ydd bro	at forther was	,k, pea
50										-
40										-
30										_
20.0										770.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	48.72	13.58	62.30	74.00	-11.70	peak
2 *	5727.200	52.70	13.58	66.28	74.00	-7.72	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202305-0132-133 Page: 126 of 139

Tempera	ature:	23.6°	C	R	Relative Hun	nidity:	49%	
Test Vol	tage:	DC 5	V	333	THE STATE		-0	Alle
Ant. Pol		Horiz	ontal		19.0		MAR	
Test Mo	de:	TX 80	02.11ac80 l	Mode 5530	MHz (U-NII-	-2C) (AN	T.1+ANT.2)	
Remark	:	Only worse case is reported.						
120.0 dBu	V/m							
110								
100								
90							5 X 6	
80						γ	_	~
70						RI AN Resi	tricted Band-(Peak	
				1 × 3		TILAN TIES	incted band (i eak)	
60				1 × × 2	man.	RLAN Rest	ricted Band-(AVG)	pe
50			and the same of th					
40								
20.0								
5376.000	5396.00 54	116.00	5436.00 54	Factor	5496.00 !	5516.00 5	5536.00 5556.0 Margin	
No.	(MHz)		(dBuV)	(dB/m)	(dBuV/m)		9	Detector
1	5460.00	00	45.14	13.24	58.38	68.30	-9.92	peak
2 *	5460.00	00	38.26	13.24	51.50	54.00	-2.50	AVG
3	5470.00	00	46.82	13.30	60.12	68.30	-8.18	peak
4	5470.00	00	39.29	13.30	52.59	68.30	-15.71	AVG
5	5533.80	00	81.01	13.43	94.44			peak

6 Remark:

5537.600

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

74.29

13.42

87.71

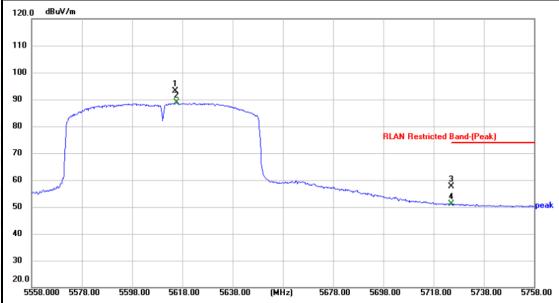
AVG

Report No.: TBR-C-202305-0132-133 Page: 127 of 139

Temperature:	23.6℃	Relati	ve Humidity:	49%	
Test Voltage:	DC 5V	133	alline		
Ant. Pol.	Vertical		6	William I	
Test Mode:	TX 802.11ac80	Mode 5530 MHz	(U-NII-2C) (AN	T.1+ANT.2)	1
Remark:	Only worse cas	e is reported.	Miller	a v	
120.0 dBuV/m					
110					
100			5		
90			5 X	6	
во		-	γ		
70			RLAN Rest	ricted Band-(Peak)	
60		3 1.			pea
50			RLAN Rest	ricted Band-(AVG)	
40					
30					
20.0 5376.000 5396.00	5416.00 5436.00 54	156.00 (MHz) 54	96.00 5516.00 5	536.00 5556.00	5576.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5460.000	42.83	13.24	56.07	68.30	-12.23	peak
2 *	5460.000	38.28	13.24	51.52	54.00	-2.48	AVG
3	5470.000	47.75	13.30	61.05	68.30	-7.25	peak
4	5470.000	39.22	13.30	52.52	68.30	-15.78	AVG
5	5513.800	80.98	13.42	94.40			peak
6	5542.000	74.44	13.42	87.86			AVG

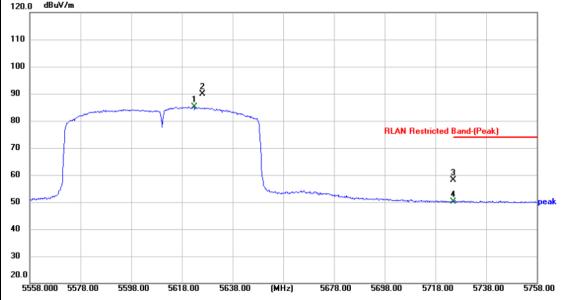
Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 128 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V		73 100				
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac80 Mode 56	TX 802.11ac80 Mode 5610 MHz (U-NII-2C) (ANT.1+ANT.2)					
Remark:	Only worse case is repor	ted.					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5615.200	79.70	13.44	93.14			peak
2	5615.800	75.38	13.44	88.82			AVG
3 *	5725.000	44.07	13.58	57.65	74.00	-16.35	peak
4	5725.000	37.43	13.58	51.01	74.00	-22.99	AVG

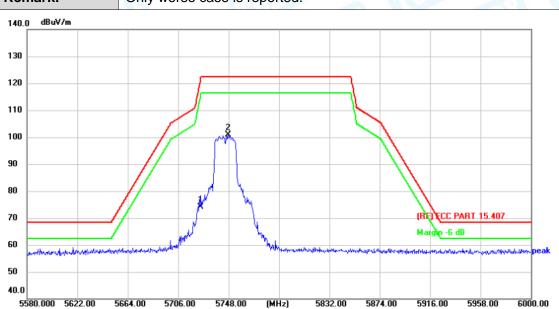

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 129 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V		7				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac80 Me	ode 5610 MHz (U-NII-2C) (Al	NT.1+ANT.2)				
Remark:	Only worse case is	s reported.					
120.0 dBuV/m	120.0 dBuV/m						
110							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	I
1	5622.800	71.68	13.46	85.14			AVG	
2	5626.200	76.40	13.47	89.87			peak	
3 *	5725.000	44.59	13.58	58.17	74.00	-15.83	peak	
4	5725.000	36.50	13.58	50.08	74.00	-23.92	AVG	

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 130 of 139

5745MHz-5825MHz(U-NII-3)

Temperature:	23.6℃	Relative Humidity:	49%			
Test Voltage:	DC 5V		1000			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac20 Mode 57	TX 802.11ac20 Mode 5745 MHz (U-NII-3) (ANT.1+ANT.2)				
Remark:	Only worse case is reported.					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	60.54	13.58	74.12	122.30	-48.18	peak
2 *	5747.580	87.42	13.55	100.97	122.30	-21.33	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

131 of 139 Page:

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		A W
Ant. Pol.	Vertical		1000
Test Mode:	TX 802.11ac20 M	ode 5745 MHz (U-NII-3) (ANT	T.1+ANT.2)
Remark:	Only worse case i	s reported.	
140.0 dBuV/m			
130			
120			
110			
100	3		
90			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	65.67	13.58	79.25	122.30	-43.05	peak
2 *	5742.120	87.86	13.56	101.42	122.30	-20.88	peak

(MHz)

5832.00

5916.00

5958.00

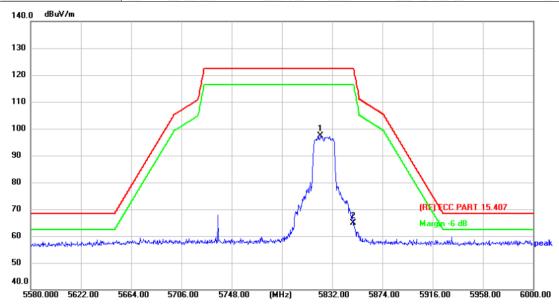
60

50 40.0

5580.000 5622.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

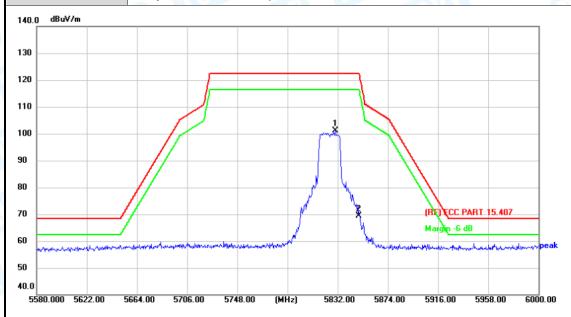
5706.00


5748.00

Page: 132 of 139

Temperature:	23.6℃	Relative Humidity:	49%			
Test Voltage:	DC 5V		73			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac20 M	ode 5825 MHz (U-NII-3) (AN	T.1+ANT.2)			
Remark:	Only worse case is reported.					
140.0 dBuV/m						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5822.760	83.93	13.51	97.44	122.30	-24.86	peak
2	5850.000	51.25	13.54	64.79	122.30	-57.51	peak

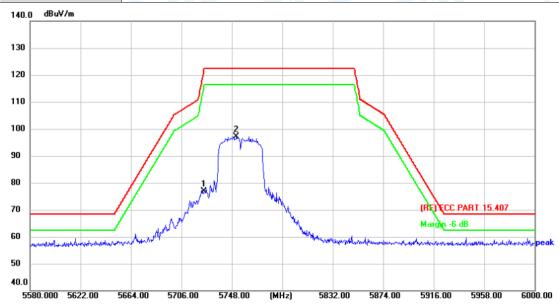

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 133 of 139

Temperature:	23.6℃	Relative Humidity:	49%	
Test Voltage:	DC 5V	THE PROPERTY OF	13 Km	
Ant. Pol.	Vertical	(17.7)	1000	
Test Mode:	TX 802.11ac20 Mode 5825 MHz (U-NII-3) (ANT.1+ANT.2)			
Remark:	Only worse case is repor	ted.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5829.900	87.66	13.53	101.19	122.30	-21.11	peak
2	5850.000	55.96	13.54	69.50	122.30	-52.80	peak

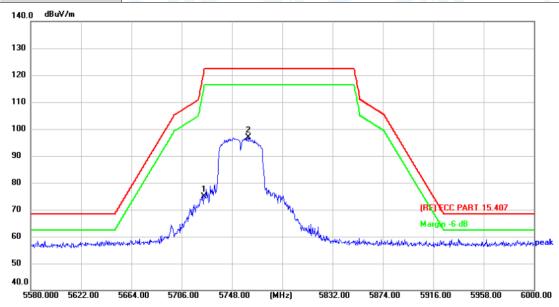
Remark


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 134 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V	CHILD IN	7				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11ac40 Mode 57	TX 802.11ac40 Mode 5755 MHz (U-NII-3) (ANT.1+ANT.2)					
Remark:	Only worse case is reported.						

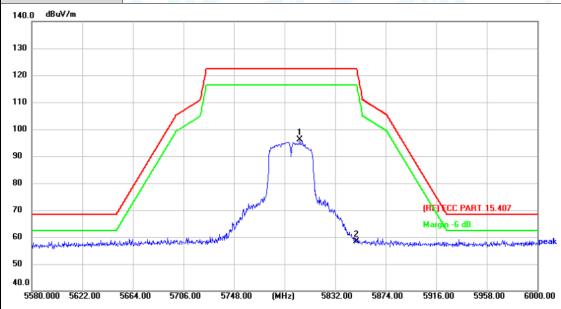
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	63.20	13.58	76.78	122.30	-45.52	peak
2 *	5751.780	83.68	13.55	97.23	122.30	-25.07	peak


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 135 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V						
Ant. Pol.	Vertical		TO SECOND				
Test Mode:	TX 802.11ac40 Mode 5755 MHz (U-NII-3) (ANT.1+ANT.2)						
Remark:	Only worse case	e is reported.					
140.0 dBuV/m							
130							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	61.42	13.58	75.00	122.30	-47.30	peak
2 *	5762.280	83.38	13.54	96.92	122.30	-25.38	peak


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 136 of 139

	-				
23.6℃	Relative Humidity:	49%			
DC 5V					
Horizontal					
TX 802.11ac40 Mode 579	.1+ANT.2)				
Only worse case is reported.					
	DC 5V Horizontal TX 802.11ac40 Mode 579	DC 5V Horizontal TX 802.11ac40 Mode 5795 MHz (U-NII-3) (ANT			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	ı
1 *	5802.600	82.56	13.50	96.06	122.30	-26.24	peak	
2	5850.000	44.87	13.54	58.41	122.30	-63.89	peak	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

90

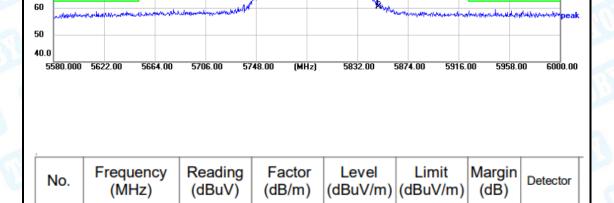
80

70

Report No.: TBR-C-202305-0132-133

ECC PART 15.407

-24.20


-61.99

peak

peak

Page: 137 of 139

Temperature:	23.6℃	Relative Humidity: 49%				
Test Voltage:	DC 5V					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac40 Mc	TX 802.11ac40 Mode 5795 MHz (U-NII-3) (ANT.1+ANT.2)				
Remark:	Only worse case is	s reported.				
140.0 dBuV/m						
130						
120						
110						
100						

13.51

13.54

98.10

60.31

122.30

122.30

Domark:

1 *

2

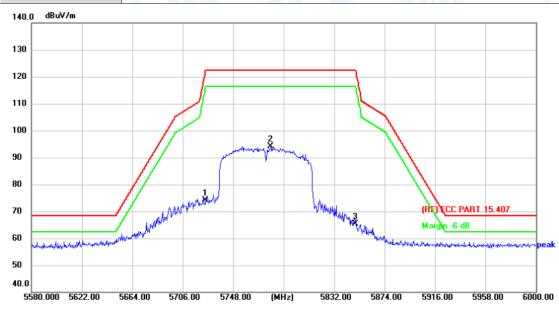
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

5790.840

5850.000

- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

84.59


46.77

Page: 138 of 139

Temperature:	23.6℃	Relative Humidity:	49%				
Test Voltage:	DC 5V	DC 5V					
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac80 Mode 57	T.1+ANT.2)					
Remark:	Only worse case is reported.						
140.0 dBuV/m							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	60.66	13.58	74.24	122.30	-48.06	peak
2 *	5779.080	80.63	13.53	94.16	122.30	-28.14	peak
3	5850.000	51.91	13.54	65.45	122.30	-56.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.6℃	Relative Humidity:	49%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		TO STATE OF
Test Mode:	TX 802.11ac80 Mo	de 5775 MHz (U-NII-3) (AN	T.1+ANT.2)
Remark:	Only worse case is	reported.	
140.0 dBuV/m			
130			
120			
110			
100			
30	The same	any market	
80	/ with	Mary 3 Mary and a second	
70	white white the same of the sa	The state of the s	(RE) CC PART 15.407 Margin -6 dB
60 maritiment manufactured	Mary Mary Mary Mary Mary Mary Mary Mary	The state of the s	Harmond and the property of the south of the second of the
40.0		0 (MHz) 5832.00 5874.00	5916.00 5958.00 6000.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	ı
1	5725.000	59.16	13.58	72.74	122.30	-49.56	peak	
2 *	5792.100	81.05	13.51	94.56	122.30	-27.74	peak	Γ
3	5850.000	56.69	13.54	70.23	122.30	-52.07	peak	

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

END OF THE REPORT-----

