FCC/IC-TEST REPORT | Report Number | 709502306448-00A R | ev.1 Date of Is | ssue: November 07, 2023 | |-------------------------------------|--------------------------|------------------------|-------------------------| | | | | | | Model | : MT01-1245-069001 | | | | Product Type | : DCFT 15 ARC Motor | | | | Applicant | : Rollease Acmeda Inc | | | | Address | : 7th Floor / 750 East M | ain Street, Stamford, | CT 06902, USA | | Production Facility | : Ningbo Dooya Mechai | nic & Electronic Techr | nology Co., Ltd. | | Address | : No.168 Shengguang F | Road, Luotuo, Zhenha | ii 315202 Ningbo, | | • | : Zhejiang province Pec | | | | • | , , , , | | | | Test Result | : ■ Positive | ☐ Negative | | | | | | | | Total pages including
Appendices | : 25 | | | TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports. This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval. This revised report replaced all the version issued before. # Table of Contents | 1 | - | Table of Contents | 2 | |----|-----|--|------------| | 2 | I | Details about the Test Laboratory & Report Modification Record | 3 | | 3 | I | Description of the Equipment Under Test | 4 | | 4 | , | Summary of Test Standards | 5 | | 5 | , | Summary of Test Results | 6 | | 6 | (| General Remarks | 7 | | 7 | ; | Systems test configuration | 8 | | 8 | - | Test Setups | 9 | | 9 | - | Test Methodology1 | 0 | | ξ | 9.1 | 1 Conducted Emission 1 | 0 | | Ś | 9.2 | 2 Radiated Emission1 | 5 | | Ś | 9.3 | Bandwidth Measurement & 99% Occupied Bandwidth1 | 9 | | ξ |).4 | 4 Deactivation Time | <u>'</u> 1 | | 10 | - | Test Equipment List | 2 | | 11 | ; | System Measurement Uncertainty2 | :3 | | 12 | | Photographs of Test Set-ups | <u>'</u> 4 | | 13 | | Photographs of FLIT | 5 | # 2 Details about the Test Laboratory & Report Modification Record ## **Details about the Test Laboratory** Test Site 1 Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.16 Lane, 1951 Du Hui Road, Shanghai 201108, P.R. China FCC Registration Number: 820234 Designation CN1183 Number: IC Company 25988 Number: CAB identifier: CN0101 Telephone: +86 21 6141 0123 Fax: +86 21 6140 8600 ## **Report Modification Record:** Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document. | Report No. | Description of Change | Date of Issue | |------------|--|---------------| | -00 | First Issue | 11/07/2023 | | -00 Rev.1 | Second Issue
(Update Standard on page 11, 13. No additional test) | 12/21/2023 | # 3 Description of the Equipment Under Test Product: DCFT 15 ARC Motor Model no./HVIN: MT01-1245-069001 FCC ID: 2AGGZ003B9ACA52 IC: 21769-003B9ACA52 Rating: DC 12V RF Transmission Frequency: 433.92 MHz No. of Operated Channel: 1 Modulation: FSK Antenna Type: Line Antenna Antenna Gain: 1.4 dBi for 433.92MHz SRD Description of the EUT: The Equipment Under Test (EUT) is a DCFT 15 ARC Motor with SRD function. We tested it and listed the worst data in this report. Test sample no.: SHA-751784-2 The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment, antenna gain or any information supplied. # 4 Summary of Test Standards | Test Standards | | | | | | |-----------------------|---|--|--|--|--| | FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES | | | | | | | Subpart C - Intentional Radiators | | | | | | RSS-Gen Issue 5 | General Requirements for the Certification of Radio Apparatus | | | | | | Amendment 2 | | | | | | | February 2021 | | | | | | | RSS-210 Issue 10 | RSS-210 - Licence-exempt Radio Apparatus (All Frequency | | | | | | December 2019 | Bands): Category I Equipment | | | | | All the test methods were according to ANSI C63.10-2013. # 5 Summary of Test Results | | Technical Requiremen | ts | | | |--|---|-------|----------------|-------------| | FCC Part 15 Subpa | art C, RSS-210 Issue 10 | | | | | Test Condition | | Pages | Test Site | Test Result | | §15.207, RSS-GEN
A8.8 | Conducted emission AC power port | 10-14 | Shield
room | Pass | | §15.205, §15.209,
15.35 (c)§15.231(b),
RSS-210 A.1.2 | Radiated Emission,
30MHz to 4.5GHz | 15-18 | 3m
chamber | Pass | | §15.231(c),
RSS-210 A.1.3 | Bandwidth Measurement & 99%
Occupied Bandwidth | 19-20 | Shield
room | Pass | | §15.231(a)(1), RSS-
210 A.1.1(b) | Deactivation Time | 21 | Shield
room | Pass | | §15.203, RSS-Gen 6. | Antenna requirement | | See Note
2 | Pass | Note 1: N/A=Not Applicable. Conducted emission is not apply for battery operated device. Note 2: The EUT uses a Line Antenna, which gain is 1.4dBi for 433.92MHz SRD. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section. ## 6 General Remarks #### **Remarks** This submittal(s) (test report) is intended for FCC ID: 2AGGZ003B9ACA52, IC: 21769-003B9ACA52 complies with Section 15.207, 15.205, 15.209, 15.231 of the FCC Part 15, Subpart C Rules, RSS-Gen Issue 5 and RSS-210 Issue 10. #### **SUMMARY:** |--| □ - Not Performed The Equipment Under Test - - Fulfills the general approval requirements. - □ **Does not** fulfill the general approval requirements. Sample Received Date: August 25, 2023 Testing Start Date: August 29, 2023 Testing End Date: August 29, 2023 -TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch Reviewed by: Prepared by: Tested by: Hui TONG EMC Section Manager Wenqiang LU EMC Project Engineer Chengjie GUO EMC Test Engineer Curchengiel # 7 Systems test configuration Auxiliary Equipment Used during Test: | DESCRIPTION | MANUFACTURER | MODEL NO.(SHIELD) | S/N(LENGTH) | |-------------|--------------|-------------------|-------------| | | | | | # 8 Test Setups ## 8.1 AC Power Line Conducted Emission test setups ## 8.2 Radiated test setups #### Below 1GHz ### Above 1GHz # 9 Test Methodology ## 9.1 Conducted Emission #### **Test Method** - 1. The EUT was placed on a table, which is 0.8m above ground plane - 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). - 3. Maximum procedure was performed to ensure EUT compliance - 4. A EMI test receiver is used to test the emissions from both sides of AC line #### Limit | Frequency | QP Limit | AV Limit | |-----------------|----------|----------| |
MHz | dΒμV | dΒμV | |
0.150-0.500 | 66-56* | 56-46* | | 0.500-5 | 56 | 46 | | 5-30 | 60 | 50 | Decreasing linearly with logarithm of the frequency # 150k-30MHz Conducted Emission Test ## **EUT Information** EUT Name: DCFT 15 ARC Motor Model MT01-1245-069001 Client: Rollease Acmeda Pty Ltd Op Cond Power on, AC 120V, T21.9, H61.1%, P100.1kPa Operator: Guochengije Standard FCC Part 15C 15.207 Class B Comment: Phase L Sample No.: SHA-751784-1 ## Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted] Hardware Setup: Voltage with 2-Line-LISN Receiver: [ESR 3] Level Unit: dBuV | Subrange | Step Size | Detectors | IF BW | Meas. Time | Preamp | |------------------|-----------|-----------|--------|------------|--------| | 9 kHz - 150 kHz | 100 Hz | PK+ | 200 Hz | 0.02 s | 0 dB | | 150 kHz - 30 MHz | 4.5 kHz | PK+; AVG | 9 kHz | 0.01 s | 0 dB | ## **Final Result** | Frequency | QuasiPeak | CAverage | Limit | Margin | Meas. | Bandwidth | Line | Corr. | |-----------|-----------|----------|--------|--------|--------|-----------|------|-------| | (MHz) | (dBuV) | (dBuV) | (dBuV) | (dB) | Time | (kHz) | | (dB) | | | | | | | (ms) | | | | | 0.150000 | 49.56 | - | 66.00 | 16.44 | 1000.0 | 9.000 | L1 | 19.6 | | 0.168000 | | 27.62 | 55.06 | 27.44 | 1000.0 | 9.000 | L1 | 19.6 | | 0.604500 | | 36.70 | 46.00 | 9.30 | 1000.0 | 9.000 | L1 | 19.6 | | 0.604500 | 41.82 | - | 56.00 | 14.18 | 1000.0 | 9.000 | L1 | 19.6 | | 1.045500 | | 24.82 | 46.00 | 21.18 | 1000.0 | 9.000 | L1 | 19.6 | | 1.230000 | 26.89 | - | 56.00 | 29.11 | 1000.0 | 9.000 | L1 | 19.6 | | 2.377500 | 25.64 | | 56.00 | 30.36 | 1000.0 | 9.000 | L1 | 19.6 | | 3.129000 | | 22.26 | 46.00 | 23.74 | 1000.0 | 9.000 | L1 | 19.6 | | 7.867500 | 25.92 | | 60.00 | 34.08 | 1000.0 | 9.000 | L1 | 19.6 | | 8.529000 | | 21.06 | 50.00 | 28.94 | 1000.0 | 9.000 | L1 | 19.6 | | 16.183500 | | 24.27 | 50.00 | 25.73 | 1000.0 | 9.000 | L1 | 19.8 | | 21.597000 | 25.33 | - | 60.00 | 34.67 | 1000.0 | 9.000 | L1 | 20.0 | Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator # 150k-30MHz Conducted Emission Test ## **EUT Information** EUT Name: DCFT 15 ARC Motor Model MT01-1245-069001 Client: Rollease Acmeda Pty Ltd Op Cond Power on, AC 120V, T21.9, H61.1%, P100.1kPa Operator: Guochengjie Standard FCC Part 15C 15.207 Class B Comment: Phase N Sample No.: SHA-751784-1 ## Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted] Hardware Setup: Voltage with 2-Line-LISN Receiver: [ESR 3] Level Unit: dBuV | Subrange | Step Size | Detectors | IF BW | Meas. Time | Preamp | |------------------|-----------|-----------|--------|------------|--------| | 9 kHz - 150 kHz | 100 Hz | PK+ | 200 Hz | 0.02 s | 0 dB | | 150 kHz - 30 MHz | 4.5 kHz | PK+; AVG | 9 kHz | 0.01 s | 0 dB | ## **Final Result** | Frequency | QuasiPeak | CAverage | Limit | Margin | Meas. | Bandwidth | Line | Corr. | |-----------|-----------|----------|--------|--------|--------|-----------|------|-------| | (MHz) | (dBuV) | (dBuV) | (dBuV) | (dB) | Time | (kHz) | | (dB) | | . , | | | , , | , , | (ms) | . , | | , , | | 0.150000 | | 29.43 | 56.00 | 26.57 | 1000.0 | 9.000 | N | 19.6 | | 0.150000 | 49.65 | | 66.00 | 16.35 | 1000.0 | 9.000 | N | 19.6 | | 0.600000 | | 36.98 | 46.00 | 9.02 | 1000.0 | 9.000 | N | 19.5 | | 0.600000 | 42.57 | | 56.00 | 13.43 | 1000.0 | 9.000 | N | 19.5 | | 1.045500 | | 25.51 | 46.00 | 20.49 | 1000.0 | 9.000 | N | 19.5 | | 1.045500 | 29.80 | | 56.00 | 26.20 | 1000.0 | 9.000 | N | 19.5 | | 2.850000 | 27.66 | | 56.00 | 28.34 | 1000.0 | 9.000 | N | 19.5 | | 3.142500 | | 22.88 | 46.00 | 23.12 | 1000.0 | 9.000 | N | 19.5 | | 8.430000 | 27.42 | | 60.00 | 32.58 | 1000.0 | 9.000 | N | 19.6 | | 8.776500 | | 21.65 | 50.00 | 28.35 | 1000.0 | 9.000 | N | 19.6 | | 16.489500 | | 24.54 | 50.00 | 25.46 | 1000.0 | 9.000 | N | 19.9 | | 21.570000 | 26.51 | | 60.00 | 33.49 | 1000.0 | 9.000 | N | 20.0 | Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator ### 9.2 Radiated Emission #### **Test Method** - 1. 1 The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. Set to the maximum power setting and enable the EUT transmit continuously - 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - 6. Use the following spectrum analyzer settings According to C63.10: - (1) Span shall wide enough to fully capture the emission being measured; - (2) Set RBW=100 kHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold; - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥1 GHz for peak measurement. For average measurement: - VBW = 10 Hz, when duty cycle is no less than 98 percent. - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. - 7. Repeat above procedures until all frequencies measured were complete. #### Limit According to §15.231 (b) & RSS-210, the field strength of emissions from intentional radiators operated under this section shall not exceed the following: | Fundamental frequency
(MHz) | Field Strength of
Fundamental (Microvolts /meter) | Field Strength of spurious emissions ((Microvolts /meter) | |--------------------------------|--|---| | 40.66-40.70 | 2,250 | 225 | | 70-130 | 1,250 | 125 | | 130-174 | 1,250 to 3,370 * | 125 to 375 * | | 174-260 | 3,750 | 375 | | 260-470 √ | 3,750 to 12, 500* | 375 to 1,250* | | Above 470 | 12,500 | 1,250 | | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | |-----------------|-----------------------------------|-------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Limits for 15.209 & RSS-GEN Radiated emission limits; general requirements | Frequency | Limit at 3m (dBuV/m) | |-----------------------|----------------------------| | 0.009 MHz - 0.490 MHz | 128.5 to 93.8 ¹ | | 0.490 MHz – 1.705 MHz | 73.8 to 63 ¹ | | 1.705 MHz – 30 MHz | 69.5 ¹ | | 30 MHz – 88 MHz | 40.0 ¹ | | 88 MHz – 216 MHz | 43.5 ¹ | | 216 MHz – 960 MHz | 46.0 ¹ | | Above 960 MHz | 54.0 ¹ | | Above 1000 MHz | 54.0 ² | | Above 1000 MHz | 74.0 ³ | ¹Limit is with detector with bandwidths as defined in CISPR-16-1-1 except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz where an Average detector is used. ²Limit is with 1 MHz measurement bandwidth and using an Average detector ³Limit is with 1 MHz measurement bandwidth and using a Peak detector #### Spurious radiated emissions for transmitter According to C63.10 & RSS-GEN, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit | Antenna
polarization | Frequency
(MHz) | Duty Cycle
Factor(dB) | Corrected
Reading
(dBuV/m) | Emission
Type | Limit (dBuV/m) | Margin | Detector | |-------------------------|--------------------|--------------------------|----------------------------------|------------------|----------------|--------|----------| | Н | 433.908 | 0 | 80.723 | Fundamental | 100.80 | 20.077 | PK | | Н | 433.908 | -22.62 | 58.103 | Fundamental | 80.80 | 22.697 | AV | | V | 433.908 | 0 | 76.553 | Fundamental | 100.80 | 24.247 | PK | | V | 433.908 | -22.62 | 53.933 | Fundamental | 80.80 | 26.867 | AV | | Н | 2169.6 | 0 | 36.806 | Harmonics | 80.80 | 43.994 | PK | | Н | 3468.0 | 0 | 41.881 | Harmonics | 80.80 | 38.919 | PK | | V | 2169.8 | 0 | 35.837 | Harmonics | 80.80 | 44.963 | PK | #### Remark: - 1: AV Emission Level= PK Emission Level+20log (duty cycle) - 2: Other than listed in the table are attenuated more than 20dB below the permissible limit of the field strength, therefore no data appear in the report. - 3: "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205. - 4: Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss - 5. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz)6. Corrected Reading = Original Receiver Reading + Correct Factor - 7. Only the worst data listed in this report Duty Cycle = 7.391ms/100 (ms) =7.391% Duty Cycle Factor =20log (Duty Cycle) =-22.62 Date: 29.AUG.2023 16:53:36 Date: 29.AUG.2023 16:52:27 ## 9.3 Bandwidth Measurement & 99% Occupied Bandwidth #### **Test Method** - 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously. - 3. Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW =1% to 5% of the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold - 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results. - 5. Repeat above procedures until all frequencies measured were complete. #### Limit The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier. The limit for the EUT = 0.25% * 433.92 MHz = 1085 kHz #### **Test Result** | Channel | 20dB Bandwidth (KHz) | Limit (KHz) | |---------|----------------------|-------------| | 1 | 81.94 | 1085 | | | | | | Channel | 99% Bandwidth (KHz) | Limit (KHz) | | 1 | 73.08 | N/A | Date: 29.AUG.2023 16:25:31 Date: 30.AUG.2023 15:19:16 ### 9.4 Deactivation Time #### **Test Method** - 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT in transmitting mode. - 3. Set center frequency of spectrum analyzer=operating frequency. - 4. Set the spectrum analyzer as RBW=120 KHz, VBW=1MHz, Span=0Hz. - 5. Repeat above procedures until all frequency measured was complete. #### Limit According to FCC Part 15.231 (a) & RSS-210 A.1.1(b), the transmitter shall be complied the following requirements: - ($\sqrt{}$) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. - (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation. - (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour. #### **Test Result** | Channel | Frequency | Deactivation Time | Result | |---------|-----------|-------------------|--------| | 1 | 433.92MHz | 266.42ms | Pass | Date: 29.AUG.2023 16:42:58 # 10 Test Equipment List ## **List of Test Instruments** ## **RF Test** | Description | Manufacturer | Model no. | Serial no. | Calibration
Date | Calibration
Due | |------------------------------|--------------|-----------|-----------------|---------------------|--------------------| | Signal and spectrum analyzer | R&S | FSV40 | S1503003-YQ-EMC | 2022-8-01 | 2023-7-31 | ### **Radiated Emission Test** | USED | Equipment
Name | Model | Manufacturer | Equipment ID. | Calibration
Date | Calibration
Due | |-------------|--------------------------------------|-----------------|--------------|-----------------|---------------------|--------------------| | | EMI test receiver | ESR3 | R&S | S1503109-YQ-EMC | 2022-8-01 | 2023-7-31 | | | Trilog super broadband test antenna | SCHWARZBE
CK | VULB9168 | S1808296-YQ-EMC | 2021-9-23 | 2024-9-22 | | | Double-ridged waveguide horn antenna | HF907 | R&S | S1503009-YQ-EMC | 2021-4-13 | 2024-4-12 | | | Signal
conditioning
unit | SCU-18D | R&S | S1503012-YQ-EMC | 2022-8-01 | 2023-7-31 | | | Signal and
spectrum
analyzer | FSV40 | R&S | S1503003-YQ-EMC | 2022-8-01 | 2023-7-31 | | \boxtimes | Loop antenna | HFH2-Z2 | R&S | S1503013-YQ-EMC | 2022-6-15 | 2024-6-14 | # 11 System Measurement Uncertainty For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were: | Items | Extended Uncertainty | |----------------------|------------------------------------| | Radiated Disturbance | 30MHz to 1GHz, 5.03dB (Horizontal) | | | 5.11dB (Vertical) | | | 1GHz to 18GHz, 5.15dB (Horizontal) | | | 5.12dB (Vertical) | | | 18GHz to 25GHz, 4.76dB | Measurement Uncertainty Decision Rule: Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1. # 12 Photographs of Test Set-ups Refer to the < Test Setup photos >. # 13 Photographs of EUT Refer to the < External Photos > & < Internal Photos >. THE END