

Radio Satellite Communication

Untertürkheimer Straße 6-10 . D-66117 Saarbrücken Telefon: +49 (0)681 598-0 Telefax: -9075

RSC14 issued test report consists of 14 Pages

Page 1 (14)

Recognized by the Federal Communications Commission Anechoic chamber registration no: 90462 (FCC) Anechoic chamber registration no: 3436 (IC) TCB ID: DE 0001

Accredited BluetoothTM Test Facility (BQTF)

Test Report No.: 2-3666-02-01/04 Output power WLAN and PCS 1900 RA-2

> FCC ID: PDNRA-2 IC: 661R-RA2

CETECOM – ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken, Germany Telephone: + 49 (0) 681 / 598-0 Fax: + 49 (0) 681 / 598-9075

Table of Contents

1 General information

- 1.1 Notes
- 1.2 Testing laboratory
- 1.3 Details of applicant
- 1.4 Application details
- 1.5 Test item
- 1.6 Test standards

2 Technical test

- 2.1 Summary of test results
- 2.2 Test report

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Technical	responsibility	for area	of testing	•
1 Clillicai	I CONOHOLDINITION	iui ai ca	or resums	•

2004-07-02 RSC 8411 Berg M..

Date Section Name Signature

Technical responsibility for area of testing:

2004-07-02 RSC8412 Hausknecht D.

Date Section Name Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Telefone : + 49 681 598 - 9100 Telefax : + 49 681 598 - 9075

E-mail : info@ict.cetecom.de Internet : www.cetecom-ict.de

Accredited testing laboratory

 $\begin{array}{l} \textbf{DAR-registration number: TTI-P-G-081/94-D0} \\ \textbf{Accredited Bluetooth}^{TM} \ \textbf{Test Facility (BQTF)} \end{array}$

BLUETOOTHTM is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

1.3 Details of applicant

Name: Nokia Corporation

Street: P.O.Box 68

City: Fin-33721 Tampere

Country: Finland

Telephone: +358 (0) 718 04 6800

Telefax:

Contact : Mr. Janne Ilkka Telephone: +358 (0)50 38 38 783

1.3 Application details

Date of receipt of application : 2004-06-25
Date of receipt of test item : 2004-06-29
Date of test : 2004-07-02

Test report no.:2-3666-02-01/04 Issue date:2004-07-02 Page 5 (14)

1.4 **Test item**

Type of equipment: GSM / PCS Mobile Handset (GSM 900/1800/PCS 1900) with Wlan 802.11b

Type name: RA-2 / Nokia 9500 Communicator

Manufacturer: Nokia Corporation Keilalahdentie 4 Address: City: Fin-02150 Espoo

Country: Finland

WLAN 2412 to 2462 MHz / GSM 1900 1850.2 to 1909.8 MHz Frequency: WLAN: 17M0P7D (DSSS) / GSM: 300KGXW / 200KQ7W Type of modulation:

Number of channels: WLAN: 11 GSM: 300

Antenna: Integral antenna

3,7V DC Li-Polymer Battery Power supply (normal): EIRP: 29.5 dBm / 891.3 mW Output power GSM 1900: EIRP: 23.82 dBm / 241 mW Output power WLAN:

Transmitter Spurious (worst case) Not tested Receiver Spurious (worst case) Not tested

FCC ID: PDNRA-2 Certification No. IC: 661R-RA2 Open Area Test Site IC No.: 3436

IC Standards RSS210 Issue 5 November 2001

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2004-06-23 RSC 8411 Berg M. Date Section Name Signature

1.6 **Test standards:** FCC Part 15 §15.247 / CANADA RSS-210

FCC Part 24 (RSS132, Issue 1, RSS133, Issue 2, Rev. 1)

Test set-up:

We measured at 11 Mbit/s (DSSS)

We also used special test software to set the samples in the required modes.

2 Technical test

2.1 Summary of test results

For Part 15:

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-1992 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-1992 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

9 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, loop antenna.

30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna

200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna

>1GHz: Average, RBW 1MHz, VBW 10 Hz, wave-guide horn

All measurement settings are according to FCC 15.35, 15.205, 15.209, 15.247 and the "Measurement guidelines for DSSS systems".

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

The product fulfills also the requirements for CANADA RSS-210.

FINAL VERDICT: PASS

2.2 Test report

TEST REPORT

Test Report No.: 2-3666-02-01/04

TEST REPORT REFI	$\mathbf{E}\mathbf{K}$	REI	٧	CE
------------------	------------------------	-----	---	----

LIST OF MEASUREMENTS

PARAMETER TO BE MEASURED	PAGE
MAXIMUM PEAK OUTPUT POWER SUBCLAUSE § 15.247 (b) (1)	9
RF Power Output Radiated Part 24	10
TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	13

MAXIMUM PEAK OUTPUT POWER SUBCLAUSE § 15.247 (b) (1) (RADIATED)

DSSS System

TEST CONDITIONS		MAXIMUM 1	PEAK OUTPUT I	POWER (mW)
Frequenc	ey (MHz)	2412	2437	2462
T _{nom} (23.0)°C	V _{nom} (3.7)V	206.5 mW 23.15 dBm	200.4 mW 23.02 dBm	195.4 mW 22.91 dBm
Correction	on factor		+0.67 dB	
Final corrected result		241 mW	233.9 mW	228.0 mW
		23.82 dBm	23.69 dBm	23.58 dBm
Measuremen	t uncertainty		±3dB	

RBW/VBW: 10 MHz

The correction factor is calculated by 10*log (measured BW / used BW) (dB)

 $10*\log (11.663 \text{ MHz} / 10 \text{ MHz}) = 0.67 \text{ dB}$

Measured at a distance of 3m

LIMIT SUBCLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	1.0 Watt / 30 dBm

RF Power Output Radiated Part 24

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):

DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz $\}$.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

- $(o) \ Adjust \ both \ transmitting \ and \ receiving \ antenna \ in \ a \ HORIZONTAL \ polarization, \ then \ repeat \ step \ (k) \ to \ (o)$
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Power Step	Burst PEAK EIRP (dBm)
0	<33

Test Results: Output Power (radiated) i n 2-slot GPRS mode

Frequency		BURST PEAK EIRP
(MHz)	Power Step	(dBm)
1850.2	0	29.5
1880.0	0	29.4
1909.8	0	29.4
Measurement uncertainty	±3 dB	

Sample Calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERIP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dΒμV	dBm	dBi	dBd	dB	dBm		
1880.0	1267	24.43	8.4	0.0	3.33	29.5		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Calibr
110	mstrament/memary	Type	Manufacturer	Serial 140.	ated
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257	Yes
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860	Yes
03	Oscilloscope	7633	Tektronix	230054	Yes
04	Radio Communication	CMTA 54	Rohde & Schwarz	894 043/010	Yes
	Analyzer				
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027	Yes
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867	Yes
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012	Yes
08	Function Generator	AFGU	Rohde & Schwarz	862 480/032	Yes
09	Regulating	MPL	Erfi	91350	n.a.
	Transformer				
10	LISN	NNLA 8120	Schwarzbeck	8120331	Yes
11	Relay-Matrix	PSU	Rohde & Schwarz	893 285/020	Yes
12	Power-Meter	436 A	Hewlett-Packard	2101A12378	Yes
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156	Yes
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616	Yes
15	Modulation Meter	9008	Racal-Dana	2647	Yes
16	Frequency Counter	5340 A	Hewlett-Packard	1532A03899	Yes
17	Anechoic Chamber		MWB	87400/002	Yes
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306	Yes
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541	Yes
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131	Yes
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768	Yes
22	Biconical Antenna	3104	Emco	3758	Yes
23	Log. Per. Antenna	3146	Emco	2130	Yes
24	Double Ridged Horn	3115	Emco	3088	Yes
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013	Yes
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008	Yes
27	Biconical Antenna	HK 116	Rohde & Schwarz	888 945/013	Yes
28	Log. Per. Antenna	HL 223	Rohde & Schwarz	825 584/002	Yes
29	Relay-Switch-Unit	RSU	Rohde & Schwarz	375 339/002	Yes
30	Highpass	HM985955	FSY Microwave	001	n.a.
31	Amplifier	P42-GA29	Tron-Tech	B 23602	Yes
32	Anechoic Chamber		Frankonia		Yes
33	Control Computer	PSM 7	Rohde & Schwarz	834 621/004	Yes
34	EMI Test Receiver	ESMI	Rohde & Schwarz	827 063/010	Yes
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010	Yes

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Calibr
					ated
36	Control Computer	HD 100	Deisel	100/322/93	n.a.
37	Relay Matrix	PSN	Rohde & Schwarz	829 065/003	Yes
38	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008	Yes
39	Relay Switch Unit	RSU	Rohde & Schwarz	316 790/001	Yes
40	Power Supply	6032A	Hewlett Packard	2846A04063	Yes
41	Spectrum Monitor	EZM	Rohde & Schwarz	883 720/006	n.a.
42	Measuring Receiver	ESH 3	Rohde & Schwarz	890 174/002	Yes
43	Measuring Receiver	ESVP	Rohde & Schwarz	891 752/005	Yes
44	Bicon Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011	Yes
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010	Yes
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461	Yes
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002	Yes
48	Polarisation Network	HL 024 Z1	Rohde & Schwarz	341 570/002	Yes
49	Double Ridged Horn	3115	EMCO	9107-3696	Yes
	Antenna 1-26.5 GHz				
50	Microw. Sys. Amplifier 0.5- 26.5 GHz	8317A	Hewlett Packard	3123A00105	Yes
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04	Yes
52	Controler	PSM 7	Rohde & Schwarz	883 086/026	Yes
53	DC V-Network	ESH3-Z6	Rohde & Schwarz	861 406/005	Yes
54	DC V-Network	ESH3-Z6	Rohde & Schwarz	893 689/012	Yes
55	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	861 189/014	Yes
56	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	894 981/019	Yes
57	AC-3 Phase V-Network	ESH2-Z5	Rohde & Schwarz	882 394/007	Yes
58	Power Supply	6032A	Rohde & Schwarz	2933A05441	Yes
59	RF-Test Receiver	ESVP.52	Rohde & Schwarz	881 487/021	Yes
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026	n.a.
61	RF-Test Receiver	ESH3	Rohde & Schwarz	881 515/002	Yes
62	Relay Matrix	PSU	Rohde & Schwarz	882 943/029	Yes
63	Relay Matrix	PSU	Rohde & Schwarz	828 628/007	Yes
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27	Yes
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773	Yes
68					