Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	2.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.46 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω - 1.1 jΩ	
Return Loss	- 32.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.142 ns	٦
----------------------------------	----------	---

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

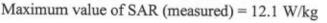
Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 20.11.2023

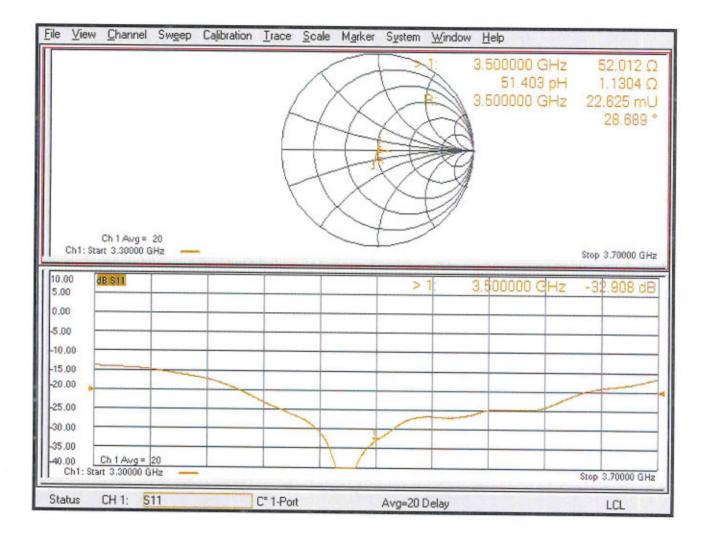
Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1037


Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.91$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 03.10.2023
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.12 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 6.52 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.7%

0 dB = 12.1 W/kg = 10.81 dBW/kg

Impedance Measurement Plot for Head TSL

Appendix C

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Kunshan City

CALIBRATION C	ERTIFICAT		
Object	D3700V2 - SN:1	008	
Calibration procedure(s)	QA CAL-22.v7		
	Calibration Proce	edure for SAR Validation Source	es between 3-10 GHz
Calibration date:	November 20, 20	023	
his calibration certificate document	nts the traceability to nati	onal standards, which realize the physical u	inits of measurements (SI)
he measurements and the uncert	ainties with confidence p	robability are given on the following pages a	and are part of the certificate
Il calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%
		, , ,	o and numberly < 70%.
alibration Equipment used (M&TE	critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
ower sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
ower sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
eference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
ype-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
eference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
AE4	SN: 601	03-Oct-23 (No. DAE4-601_Oct23)	Oct-24
econdary Standards	ID#	Check Date (in house)	
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	Scheduled Check
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
ower sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
letwork Analyzer Agilent E8358A		31-Mar-14 (in house check Oct-22)	In house check: Oct-24
, ş	10110011000117	on-mai-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
alibrated by:	Paulo Pina	Laboratory Technician	
			fortelan
pproved by:	Sven Kühn	Technical Manager	CK
			00
			Issued: November 21, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1008_Nov23

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No. D3700V2-1008_Nov23

S

С

S

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland DC MRA

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	3.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Appendix C

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 5.8 jΩ
Return Loss	- 24.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.139 ns	
	1.100 113	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 20.11.2023

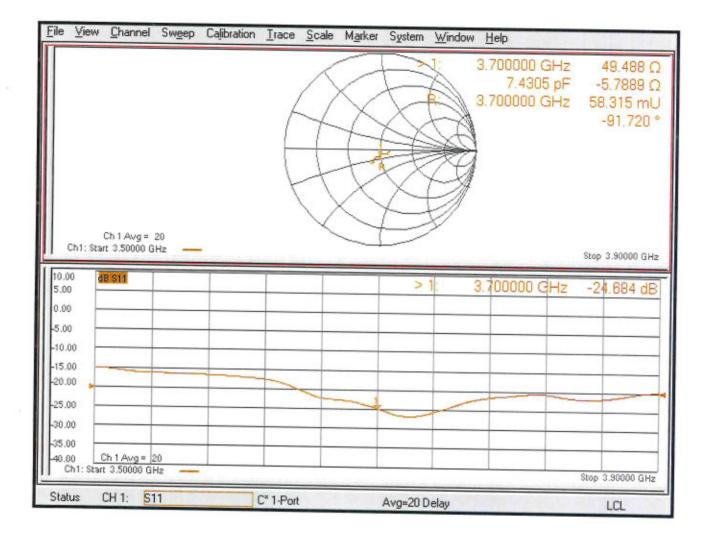
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.06$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 03.10.2023
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.55 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.5% Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.13 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Kunshan City, China

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No.

D3900V2-1048_Mar23

Object	D3900V2 - SN:1048		
Calibration procedure(s)	QA CAL-22.v7 Calibration Proc	edure for SAR Validation Source	s between 3-10 GHz
Calibration date:	March 09, 2023		
All calibrations have been conduct	tainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar ry facility: environment temperature (22 ± 3)°(nd are part of the certificate.
Calibration Equipment used (M&T)	E critical for calibration)		
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
imary Standards ower meter NRP	ID # SN: 104778		Scheduled Calibration
mary Standards wer meter NRP wer sensor NRP-Z91		Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	Apr-23
mary Standards wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-22 (No. 217-03525/03524)	Apr-23 Apr-23
imary Standards wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91 ference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	Apr-23 Apr-23 Apr-23
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator rpe-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23 Apr-23 Apr-23 Apr-23
imary Standards over meter NRP over sensor NRP-Z91 over sensor NRP-Z91 eference 20 dB Attenuator pe-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	Apr-23 Apr-23 Apr-23
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe EX3DV4 AE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A = generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz 4100 MHz ± 1 MHz	(

Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	3.23 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.41 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	6.68 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	67.0 W/kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.33 W/kg	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	47.3 Ω - 3.3 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Head TSL at 4100 MHz

Impedance, transformed to feed point	59.7 Ω + 0.1 jΩ	
Return Loss	- 21.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.104 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

-

Manufactured by	SPEAG
	SFEAG

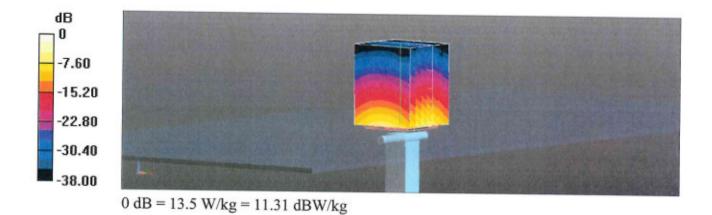
DASY5 Validation Report for Head TSL

Date: 09.03.2023

Test Laboratory: SPEAG, Zurich, Switzerland

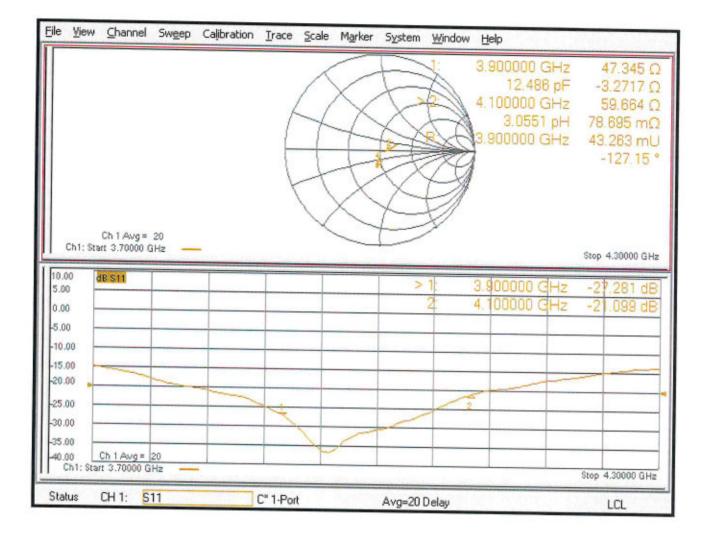
DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1048

Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.23 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.41 S/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,


dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.78 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 6.88 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.4% Maximum value of SAR (measured) = 13.5 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.74 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 13.3 W/kg

Certificate No: D3900V2-1048_Mar23

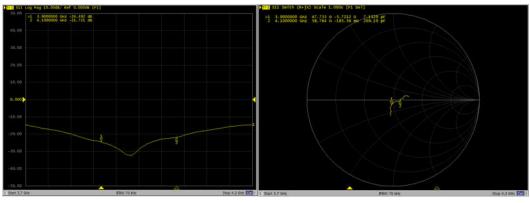
Impedance Measurement Plot for Head TSL

D3900V2, Serial No. 1048 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior

calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D3900V2 – serial no. 1048						
	3900 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2023.3.9	-27.281		47.345		-3.2717	
2024.3.8	-24.492	-10.22	47.733	-0.388	-5.7212	2.4495


D3900V2 – serial no. 1048						
	4100 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2023.3.9	-21.099		59.664		0.078695	
2024.3.8	-21.721	2.95	58.764	0.9	0.18556	-0.106865

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D3900V2, serial no. 1048

3900MHz&4100Mhz - Head

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton Certificate No: D5GHzV2-1113_Sep22

S

С

S

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	113	
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	edure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	September 23, 2	022	
The measurements and the uncert	ainties with confidence p ed in the closed laborato	ional standards, which realize the physical ur robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Saf Alp
Approved by:	Sven Kühn	Technical Manager	S.L
This calibration certificate shall not I	be reproduced except in	full without written approval of the laboratory.	Issued: September 26, 2022

Page:63/112

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

1849 (1849)	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1000	

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
010		

3	Containen	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.0 Ω - 6.2 jΩ	
Return Loss	- 23.9 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.2 Ω - 2.4 jΩ		
Return Loss	- 25.3 dB		

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.1 Ω - 1.1 jΩ		
Return Loss	- 27.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SP	EAG
--------------------	-----

DASY5 Validation Report for Head TSL

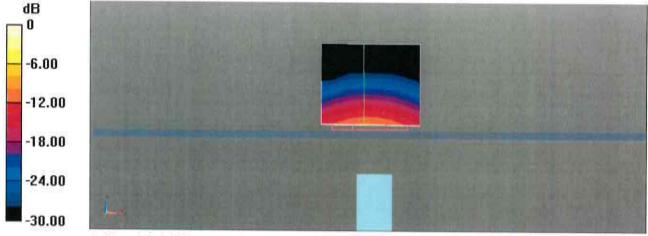
Date: 23.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1113

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.95 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.11 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.87 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 70.5% Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.04 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 8.30 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 19.3 W/kg Appendix C


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 72.94 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 66% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.87 dBW/kg

Impedance Measurement Plot for Head TSL

D5GHzV2, Serial No. 1113 Extended Dipole Calibrations

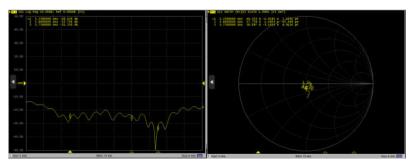
If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D5GHzV2 – serial no. 1113						
	5250 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-23.942		49.021		-6.2252	
2023/9/22	-26.63	11.23	46.533	2.488	-4.0285	-2.1967

D5GHzV2 – serial no. 1113						
	5600 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-25.273		55.212		-2.3941	
2023/9/22	-23.746	-6.04	57.759	-2.547	1.4943	-3.8884

D5GHzV2 – serial no. 1113						
	5750 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-27.750		54.124		-1.0959	
2023/9/22	-31.350	12.97	50.097	4.027	-3.1053	2.0094

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D5GHzV2, serial no. 1113

5250MHz&5600MHz&5750MHz - Head - 2023.9.22

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

s

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: D6.5GHzV2-1031_Feb23

ALIBRATION CE	RTIFICAT		
bject [D6.5GHzV2 - SN	:1031	
	QA CAL-22.v7 Calibration Proce	edure for SAR Validation Sources	between 3-10 GHz
alibration date:	February 22, 202	3	
The measurements and the uncertain	nties with confidence p	onal standards, which realize the physical unit robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor R&S NRP33T Reference 20 dB Attenuator Mismatch combination Reference Probe EX3DV4 DAE4	SN: 100967 SN: BH9394 (20k) SN: 84224 / 360D SN: 7405 SN: 908	01-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03527) 26-Apr-22 (No. 217-03545) 02-Jun-22 (No. EX3-7405_Jun22) 27-Jun-22 (No. DAE4-908_Jun22)	Apr-23 Apr-23 Apr-23 Jun-23 Jun-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
F generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Dec-21)	In house check: Dec-23
Vetwork Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sal There
Approved by:	Niels Kuster	Quality Manager	K
	2 2 est	n full without written approval of the laboratory	Issued: February 24, 2023

Certificate No: D6.5GHzV2-1031_Feb23

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	6.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	297 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.72 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.9 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.8 W/kg ± 24.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.3 Ω - 4.9 jΩ	
Return Loss	- 25.5 dB	

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	296 W/m ²
APD measured	normalized to 1W	2960 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	134 W/m ²
APD measured	normalized to 1W	1340 W/m ² ± 28.9 % (k=2)

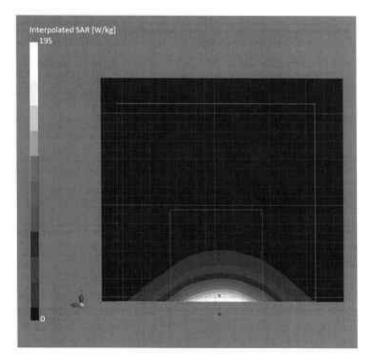
'The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

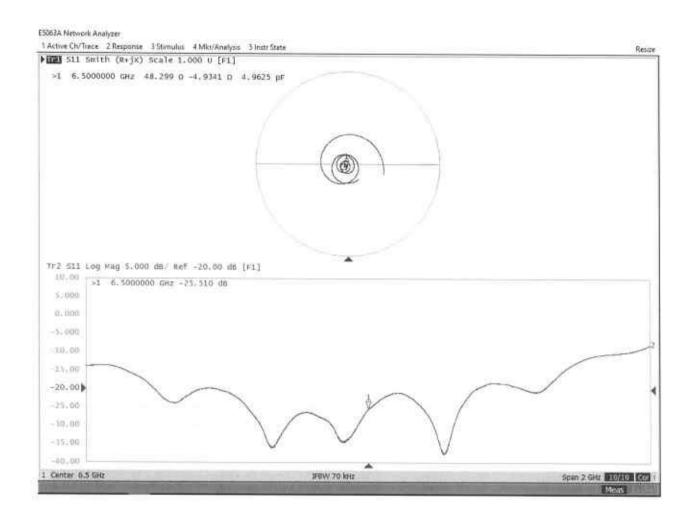
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY6 Validation Report for Head TSL

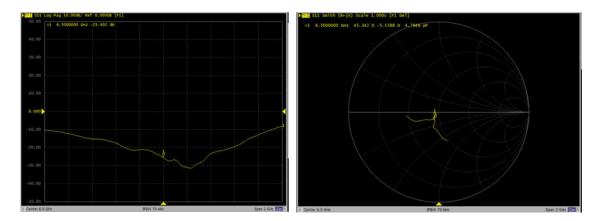

Measurement Report for D6.5GHz-1031, UID 0 -, Channel 6500 (6500.0MHz)

Device under	Test Properties						
Name, Manufacturer D6.5GHz		Dimensions [mm] 16.0 x 6.0 x 300.0		IMEI DUT Type		e	
				N: 1031	333		
Exposure Cond	ditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Cond.	TSL
Section, TSL	Distance [mm]		UID	[MHz]	Factor	[S/m]	Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	6.15	33.8
Hardware Set	up						
Phantom		TSL		Probe, Calibration Date		DAE, Calibration Date	
MFP V8.0 Cent	ter - 1182 H	HBBL600-10000V6		EX3DV4 - SN7405, 2022-06-02		DAE4 Sn908, 2022-06-27	
Scan Setup				Measureme	ent Results		
			Zoom Scar	1 /4			Zoom Scan
Grid Extents [mm]		22.0 x 22.0 x 22.0		Date		2023-02-22, 11:41	
Grid Steps [mm]		3.4 x 3.4 x 1.4		psSAR1g [W/Kg]		29.8	
Sensor Surface [mm]		1.4		psSAR8g [W/Kg]		6.72	
Graded Grid		Yes		psSAR10g [W/Kg]		5.51	
Grading Ratio	C	1.4		Power Drift [dB]		0.00	
MAIA		N/A		Power Scaling		Disabled	
Surface Detection		VMS + 6p		Scaling Fa	Scaling Factor [dB]		
Scan Method	1		Measured	TSL Correction		No correction	
				M2/M1 [9	6]		49.5
				Dist 3dB P	eak [mm]		4.8

Certificate No: D6.5GHzV2-1031_Feb23

Impedance Measurement Plot for Head TSL

D6.5GV2, Serial No. 1031 Extended Dipole Calibrations


If dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D6.5GV2 – serial no. 1031											
	6500 Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)					
2023.2.22	-25.510		48.299		-4.9341						
2024.2.21	-25.402	-0.42	45.342	2.957	-5.1388	0.2047					

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D6.5GV2, serial no. 1031 6500MHz – Head - 2024.2.21

Page:79/112

Appendix C

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Iac-MRA

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton Shenzhen City

Certificate No. CLA13-1023_Jan24

CALIBRATION CERTIFICATE CLA13 - SN: 1023 Object QA CAL-15.v10 Calibration procedure(s) Calibration Procedure for SAR Validation Sources below 700 MHz January 22, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration 30-Mar-23 (No. 217-03804/03805) Mar-24 Power meter NRP2 SN: 104778 Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: CC2552 (20x) 30-Mar-23 (No. 217-03809) Mar-24 Type-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Reference Probe EX3DV4 SN: 3877 10-Jan-24 (No. EX3-3877_Jan24) Jan-25 Jan-25 DAE4 SN: 654 15-Jan-24 (No. DAE4-654 Jan24) Scheduled Check ID# Secondary Standards Check Date (in house) SN: 107193 In house check: Dec-24 Power meter NRP2 08-Nov-21 (in house check Dec-22) Power sensor NRP-Z91 SN: 100922 15-Dec-09 (in house check Dec-22) In house check: Dec-24 01-Jan-04 (in house check Dec-22) In house check: Dec-24 Power sensor NRP-Z91 SN: 100418 SN: US3642U01700 04-Aug-99 (in house check Jun-22) In house check: Jun-24 RF generator HP 8648C SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A Function Signature Name Krešimir Franjić Calibrated by: Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: January 23, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

- Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	13 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.606 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.621 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.327 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.335 W/kg ± 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω + 2.5 jΩ	
Return Loss	- 31.9 dB	

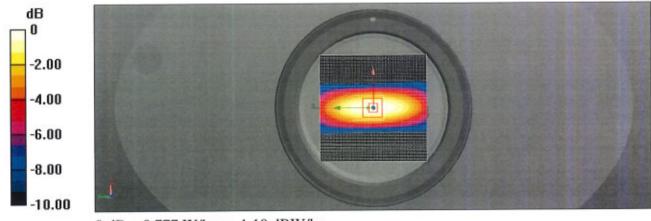
Additional EUT Data

Manufactured by	SPEAG
Inalitiactured by	

DASY5 Validation Report for Head TSL

Date: 22.01.2024

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1023

Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 10.01.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn908; Calibrated: 15.01.2024
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 33.35 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.327 W/kg Smallest distance from peaks to all points 3 dB below = 21.1 mm Ratio of SAR at M2 to SAR at M1 = 75.9% Maximum value of SAR (measured) = 0.777 W/kg

0 dB = 0.777 W/kg = -1.10 dBW/kg

Impedance Measurement Plot for Head TSL

					/	-	>	J: 1	3.0	00000	MHz	4	9.976 (
					Z	XAX				31.18	6 nH		.5473 (
		Ch 1 Avg = art 10.0000		-	×	_	E	Y				Stop 1	6.0000 MI
5.00		dB S11					>	1: 1	13.0	00000	MHz	-31	.879 di
5.00 2.00		dB S11		- FUL	_	~	>	1: 1	13.0	00000	MHz	-31	.879 di
5.00 2.00 -1.00 -4.00		db s11			_	7	, (1: 1	13.0	00000	MHz	-31	.879 dl
5.00 2.00 -1.00 -4.00		dB \$11					> (1: 1	13.0	00000	MHz	-31	.879 di
5.00 2.00 4.00 7.00		JB S11					>	1: 1	13.0	00000	MHz	-3	.879 dl
5.00 2.00 -1.00 -4.00 -7.00 -10.0		dB S11					>	1: 1	13.0	00000	MHz	-31	.879 dl
5.00 2.00 -1.00 -7.00 -7.00 -10.0 -13.0)	JB S11					>	1: 1	13.0	00000	MHz	-31	.879 dl
5.00 2.00 -1.00 -4.00 -7.00 -10.0 -13.0 -13.0)	dB S11					>	1: 1	13.0	00000	MHz	-31	.879 dl
5.00 2.00 -1.00 -7.00 -7.00 -13.0 -13.0 -13.0 -13.0 -22.0)	dB S11 Ch 1 Avg = art 10.0000	20				>		13.0	00000	MHz		.879 dl

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland MR

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Kunshan City

Certificate No:	DAE4-1303	Nov23
-----------------	-----------	-------

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1303 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 20, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID # Cal Date (Certificate No.) Primary Standards Keithley Multimeter Type 2001 SN: 0810278 29-Aug-23 (No:37421) Aug-24 Scheduled Check ID # Check Date (in house) Secondary Standards Auto DAE Calibration Unit SE UWS 053 AA 1001 27-Jan-23 (in house check) In house check: Jan-24 Calibrator Box V2.1 SE UMS 006 AA 1002 27-Jan-23 (in house check) In house check: Jan-24 Signature Name Function Calibrated by: Dominique Steffen Laboratory Technician Sven Kühn Technical Manager Approved by: Issued: November 20, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst S
 - Service suisse d'étalonnage
- C Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on . the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of . zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery ۰ alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.997 ± 0.02% (k=2)	405.027 ± 0.02% (k=2)	404.749 ± 0.02% (k=2)
Low Range	3.94759 ± 1.50% (k=2)	4.01956 ± 1.50% (k=2)	3.99729 ± 1.50% (k=2)

Appendix C

Connector Angle

Connector Ang	le to be used in DASY system	243.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)	
Channel X	+ Input	200032.21	-5.32	-0.00	
Channel X	+ Input	20006.02	-0.91	-0.00	
Channel X	- Input	-20003.63	1.95	-0.01	
Channel Y	+ Input	200032.29	-5.13	-0.00	
Channel Y	+ Input	20006.14	-0.71	-0.00	
Channel Y	- Input	-20005.73	-0.06	0.00	
Channel Z	+ Input	200033.42	-4.08	-0.00	
Channel Z	+ Input	20006.69	-0.16	-0.00	
Channel Z	- Input	-20004.77	0.98	-0.00	

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2002.07	-0.09	-0.00
Channel X	+ Input	201.95	-0.12	-0.06
Channel X	- Input	-197.81	0.06	-0.03
Channel Y	+ Input	2002.26	0.20	0.01
Channel Y	+ Input	200.84	-1.03	-0.51
Channel Y	- Input	-199.12	-1.04	0.53
Channel Z	+ Input	2002.26	0.12	0.01
Channel Z	+ input	201.32	-0.62	-0.31
Channel Z	- input	-199.09	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-21.25	-22.23
	- 200	23.33	21.70
Channel Y	200	-6.05	-6.51
	- 200	4.39	4.29
Channel Z	200	8.92	9.14
	- 200	-10.26	-10.58

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	0.01	-3.72
Channel Y	200	6.84	-	2.70
Channel Z	200	9.01	5.02	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15891	15473
Channel Y	15980	16700
Channel Z	15844	15203

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.89	-1.26	2.18	0.50
Channel Y	-0.72	-1.45	0.99	0.39
Channel Z	-0.59	-1.87	0.60	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

willing.

ac-MRA

Inhalas

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Kunshan City

Certificate No.

EX-7706 Jan24

S

C

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7706
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	January 24, 2024
This calibration certificate docu The measurements and the un	iments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.
	fucted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
SN: 1249	05-Oct-23 (OCP-DAK3.5-1249 Oct23)	Oct-24
SN: 1016	05-Oct-23 (OCP-DAK12-1016 Oct23)	Oct-24
SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
SN: 660	16-Mar-23 (No. DAE4-660 Mar23)	Mar-24
SN: 7349	03-Nov-23 (No. EX3-7349 Nov23)	Nov-24
	SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660	SN: 104778 30-Mar-23 (No. 217-03804/03805) SN: 103244 30-Mar-23 (No. 217-03804) SN: 1249 05-Oct-23 (OCP-DAK3.5-1249_Oct23) SN: 1016 05-Oct-23 (OCP-DAK12-1016_Oct23) SN: CC2552 (20x) 30-Mar-23 (No. 217-03809) SN: 660 16-Mar-23 (No. DAE4-660_Mar23)

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	Affellang
Approved by	Sven Kühn	Technical Manager	56
This calibration certificate	shall not be reproduced except in	full without written approval of the lab	Issued: January 24, 2024 oratory.

Appendix C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s

- Service suisse d'étalonnage С
- Servizio svizzero di taratura s
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:7706

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.72	0.66	0.68	±10.1%
DCP (mV) B	103.2	105.9	104.4	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0 CW	CW	X	0.00	0.00	1.00	0.00	127.5	±2.1%	±4.7%
		Y	0.00	0.00	1.00		139.5		
		Z	0.00	0.00	1.00		121.5	·	
10352 Pulse Wave	Pulse Waveform (200Hz, 10%)	X	1.49	60.50	6.33	10.00	60.0	±2.5%	±9.6%
		Y	1.58	60.93	6.58		60.0		
		Z	1.63	61.10	6.54		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.83	60.00	4.98	6.99	80.0	±2.3%	±9.6%
		Y	0.83	60.00	5.06		80.0		
		Z	20.00	74.00	9.00		80.0		
10354 Pulse Wave	Pulse Waveform (200Hz, 40%)	X	24.00	72.00	7.00	3.98	95.0	±2.5%	±9.6%
	· · · · · · · · · · · · · · · · · · ·	Y	0.45	60.00	3.96		95.0		
		Z	0.00	121.60	0.73		95.0		
10355 Pulse Wa	ulse Waveform (200Hz, 60%)	X	11.69	153.21	11.36	2.22	120.0	±1.5%	±9.6%
		Y	10.57	157.13	4.61		120.0		
		Z	0.00	155.21	22.99		120.0	1	
10387 QPSK	QPSK Waveform, 1 MHz	X	0.78	64.36	12.37	1.00	150.0	±4.1%	±9.6%
		Y	0.68	65.00	13.10		150.0		
		Z	0.55	61.86	10.99		150.0		
10388 QPSK Wave	QPSK Waveform, 10 MHz	X	1.46	65.14	13.78	0.00	150.0	±1.4%	±9.6%
		Y	1.45	66.24	14.30	1.000000	150.0		
		Z	1.27	64.00	12.96		150.0		
10396 64-QAM Wa	4-QAM Waveform, 100 kHz	X	1.72	64.37	15.57	3.01	150.0	±1.2%	±9.6%
		Y	1.76	65.01	16.04		150.0		
		Z	1.55	62.88	15.13	1	150.0		
10399 64-QA	64-QAM Waveform, 40 MHz	X	2.94	65.94	14.87	0.00	150.0	±1.8%	±9.6%
		Y	2.91	66.40	15.16		150.0	- State State State	
		Z	2.77	65.35	14.54		150.0	1	
10414 WLAN CCE	WLAN CCDF, 64-QAM, 40 MHz	X	4.03	65.51	15.09	0.00	150.0	±3.4%	±9.6%
		Y	3.92	65.95	15.29		150.0	Steel Office	1220-2364
		Z	3.98	65.92	15.23		150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.