

Choose Scandinavian trust

# RADIO TEST REPORT – REP044594

Type of assessment: Final product testing Applicant: EchoStar Mobile Limited (EML) 3 Dublin Landings, North Wall Quay, Dublin 1, D01 C4E0 - Ireland

Product: OEM module sensor

Model: EM2050

FCC ID: 2A8O9-EM2050

IC Registration number: 29249-EM2050

Specifications:

- FCC 47 CFR Part 25
- RSS-170, Issue 4, September 29, 2022
- RSS-Gen, Issue 5, April 2018, Amd 1 (March 2019), Amd 2 (Feb 2021)

Date of issue: June 17, 2024

P. Barbieri

Tested by

D. Guarnone

Reviewed by

Signature

Da

Signature

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under test is carried out by the customer. Results indicated in this test report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko. Doc. n. TRF001; Rev. 0; Date: 2020-11-30



Lab locations

| Company name            | Nemko Spa            |
|-------------------------|----------------------|
| Address                 | Via del Carroccio, 4 |
| City                    | Biassono             |
| Province                | MB                   |
| Postal code             | 20853                |
| Country                 | Italy                |
| Telephone               | +39 039 220 12 01    |
| Facsimile               | +39 039 220 12 21    |
| Website                 | www.nemko.com        |
| ISED number             | 9109A                |
| FCC registration number | 682159               |

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



# Table of Contents

| Table of  | Contents                                             | 3    |
|-----------|------------------------------------------------------|------|
| Section 1 | Report summary                                       | 4    |
| 1.1       | Test specifications                                  | 4    |
| 1.2       | Test methods                                         | 4    |
| 1.3       | Exclusions                                           |      |
| 1.4       | Statement of compliance                              | 4    |
| 1.5       | Test report revision history                         | 4    |
| Section 2 | Engineering considerations                           | 5    |
| 2.1       | Modifications incorporated in the EUT for compliance |      |
| 2.2       | Technical judgment                                   |      |
| 2.3       | Deviations from laboratory tests procedures          | 5    |
| Section 3 |                                                      |      |
| 3.1       | Atmospheric conditions                               |      |
| 3.2       | Power supply range                                   | 6    |
| Section 4 | Measurement uncertainty                              | 7    |
| 4.1       | Uncertainty of measurement                           | 7    |
| Section 5 | Information provided by the applicant                | 8    |
| 5.1       | Disclaimer                                           | 8    |
| 5.2       | Applicant/Manufacture                                | 8    |
| 5.3       | EUT information                                      | 8    |
| 5.4       | Radio technical information                          | 9    |
| 5.5       | EUT setup details                                    | 9    |
| Section 6 | Summary of test results                              | . 15 |
| 6.1       | Testing location                                     | . 15 |
| 6.2       | Testing period                                       |      |
| 6.3       | Sample information                                   | . 15 |
| 6.4       | FCC Part §25                                         | . 15 |
| 6.5       | ISED RSS-170, Issue 4, test results                  | . 15 |
| Section 7 | Test equipment                                       | . 16 |
| 7.1       | Test equipment list                                  | . 16 |
| Section 8 | Testing data                                         | . 17 |
| 8.1       | Variation of power source                            | . 17 |
| 8.2       | Number of frequencies                                | . 18 |
| 8.3       | RF power output                                      | . 21 |
| 8.4       | Occupied bandwidth mask                              | . 40 |
| 8.5       | Spurious emissions at antenna terminals              | . 50 |
| 8.6       | Field strength of spurious radiation                 |      |
| 8.7       | Frequency stability                                  | 116  |
| Section 9 | EUT photos                                           | 117  |
| 9.1       | Set-up photos                                        | 117  |
| 9.2       | External photos                                      | 119  |

# Section 1 Report summary

# 1.1 Test specifications

| FCC 47 CFR Part 25                                                 | Satellite Communications                                                                                                               |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| RSS-170, Issue 4, September 29, 2022                               | Mobile Earth Stations (MESs) and Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands |
| RSS-Gen, Issue 5, April 2018, Amd 1 (March 2019), Amd 2 (Feb 2021) | General Requirements for Compliance of Radio Apparatus                                                                                 |

# 1.2 Test methods

| ANSI C63.26 v2015 | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services |
|-------------------|---------------------------------------------------------------------------------------------------|

# 1.3 Exclusions

None

# 1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

# 1.5 Test report revision history

Table 1.5-1: Test report revision history

| Revisio | n # Date of issue | Details of changes made to test report |
|---------|-------------------|----------------------------------------|
| REP044  | 594 June 17, 2024 | Original report issued                 |

# Section 2 Engineering considerations

# 2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

# 2.2 Technical judgment

None

# 2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

# Section 3 Test conditions

# 3.1 Atmospheric conditions

| Temperature       | 15 °C – 35 °C                           |
|-------------------|-----------------------------------------|
| Relative humidity | 20 % – 75 %                             |
| Air pressure      | 86 kPa (860 mbar) – 106 kPa (1060 mbar) |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

The following instruments are used to monitor the environmental conditions:

| Equipment                      | Manufacturer | Model no. | Asset no.    | Cal date | Next cal. |
|--------------------------------|--------------|-----------|--------------|----------|-----------|
| Thermo-hygrometer data loggers | Testo        | 175-H2    | 20012380/305 | 2022-12  | 2024-12   |
| Thermo-hygrometer data loggers | Testo        | 175-H2    | 38203337/703 | 2022-12  | 2024-12   |
| Barometer                      | Castle       | GPB 3300  | 072015       | 2024-04  | 2025-04   |

# 3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

# Section 4 Measurement uncertainty

# 4.1 Uncertainty of measurement

Nèmko

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2, ETSI TR 100 028-1, ETSI TR 100 028-2 and other specific test standards and is documented in Nemko Spa working manuals WML1002 and WML0078.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

| EUT          | Туре            | Test                                                                                    | Range                | Measurement<br>Uncertainty | Notes |
|--------------|-----------------|-----------------------------------------------------------------------------------------|----------------------|----------------------------|-------|
|              |                 | Frequency error                                                                         | 0.001 MHz ÷ 40 GHz   | 0.08 ppm                   | (1)   |
|              |                 |                                                                                         | 0.009 MHz ÷ 30 MHz   | 1.1 dB                     | (1)   |
|              |                 | Carrier power                                                                           | 30 MHz ÷ 18 GHz      | 1.5 dB                     | (1)   |
|              |                 | RF Output Power                                                                         | 18 MHz ÷ 40 GHz      | 3.0 dB                     | (1)   |
|              |                 |                                                                                         | 40 MHz ÷ 140 GHz     | 5.0 dB                     | (1)   |
|              |                 | Adjacent channel power                                                                  | 1 MHz ÷ 18 GHz       | 1.4 dB                     | (1)   |
|              |                 |                                                                                         | 0.009 MHz ÷ 18 GHz   | 3.0 dB                     | (1)   |
|              |                 | Conducted spurious emissions                                                            | 18 GHz ÷ 40 GHz      | 4.2 dB                     | (1)   |
|              |                 |                                                                                         | 40 GHz ÷ 220 GHz     | 6.0 dB                     | (1)   |
|              |                 | Intermodulation attenuation                                                             | 1 MHz ÷ 18 GHz       | 2.2 dB                     | (1)   |
|              |                 | Attack time – frequency behaviour                                                       | 1 MHz ÷ 18 GHz       | 2.0 ms                     | (1)   |
|              |                 | Attack time – power behaviour                                                           | 1 MHz ÷ 18 GHz       | 2.5 ms                     | (1)   |
|              | Conducted       | Release time – frequency behaviour                                                      | 1 MHz ÷ 18 GHz       | 2.0 ms                     | (1)   |
|              | conducted       | Release time – power behaviour                                                          | 1 MHz ÷ 18 GHz       | 2.5 ms                     | (1)   |
| <b>—</b> 111 |                 | Transient behaviour of the transmitter– Transient<br>frequency behaviour                | 1 MHz ÷ 18 GHz       | 0.2 kHz                    | (1)   |
| Transmitter  |                 | Transient behaviour of the transmitter – Power level slope                              | 1 MHz ÷ 18 GHz       | 9%                         | (1)   |
|              |                 | Frequency deviation - Maximum permissible<br>frequency deviation                        | 0.001 MHz ÷ 18 GHz   | 1.3%                       | (1)   |
|              |                 | Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz | 0.001 MHz ÷ 18 GHz   | 0.5 dB                     | (1)   |
|              |                 | Dwell time                                                                              | -                    | 3%                         | (1)   |
|              |                 | Hopping Frequency Separation                                                            | 0.01 MHz ÷ 18 GHz    | 1%                         | (1)   |
|              |                 | Occupied Channel Bandwidth                                                              | 0.01 MHz ÷ 18 GHz    | 2%                         | (1)   |
|              |                 | Modulation Bandwidth                                                                    | 0.01 MHz ÷ 18 GHz    | 2%                         | (1)   |
|              |                 |                                                                                         | 0.009 MHz ÷ 26.5 GHz | 6.0 dB                     | (1)   |
|              |                 | Radiated spurious emissions                                                             | 26.5 GHz ÷ 66 GHz    | 8.0 dB                     | (1)   |
|              | De die te d     |                                                                                         | 66 GHz ÷ 220 GHz     | 10 dB                      | (1)   |
|              | Radiated        |                                                                                         | 10 kHz ÷ 26.5 GHz    | 6.0 dB                     | (1)   |
|              | Effective radia | Effective radiated power transmitter                                                    | 26.5 GHz ÷ 66 GHz    | 8.0 dB                     | (1)   |
|              |                 |                                                                                         | 66 GHz ÷ 220 GHz     | 10 dB                      | (1)   |

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

# Section 5 Information provided by the applicant

# 5.1 Disclaimer

Nemko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

# 5.2 Applicant/Manufacture

| Applicant name      | EchoStar Mobile Limited (EML)       |
|---------------------|-------------------------------------|
| Applicant address   | 3 Dublin Landings, North Wall Quay, |
|                     | Dublin 1, D01 C4E0 - Ireland        |
| Manufacture name    | Same as applicant                   |
| Manufacture address | Same as applicant                   |

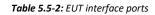
# 5.3 EUT information

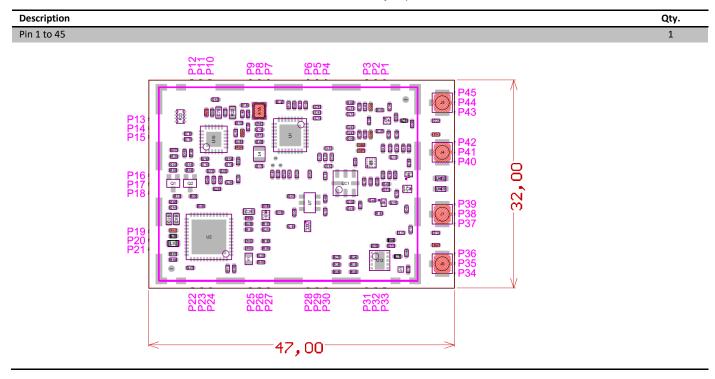
| Product                        | OEM module sensor                                                                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Model                          | EM2050                                                                                                            |
| Serial number                  | 4659020001 (Number assigned by Nemko Spa)                                                                         |
| Power supply requirements      | DC: 3.3 V                                                                                                         |
| Product description and theory | The EUT is an OEM module sensor capable of transmitting and receiving both multiband LoRa® and LR-FHSS signals in |
| of operation                   | licensed S band and ISM band, for the intended scope of satellite communication.                                  |

# 5.4 Radio technical information

| Frequency band                  | Up-link 2010 MHz to 2020 MHz          |
|---------------------------------|---------------------------------------|
|                                 | Down-link 2185 MHz to 2200 MHz        |
| Frequency Min (MHz)             | 2010.0625 MHz for LoRa 125 kHz BW     |
|                                 | 2010.1250 MHz for LoRa 250 kHz BW     |
|                                 | 2010.0680 MHz for LR-FHSS 137 kHz     |
| Frequency Max (MHz)             | 2019.9375 MHz for LoRa 125 kHz BW     |
|                                 | 2019.8750 MHz for LoRa 250 kHz BW     |
|                                 | 2019.9320 MHz for LR-FHSS 137 kHz     |
| RF power Max (W), Conducted     | 0.5 W and (27 dBm)                    |
| Field strength, dBµV/m @ 3 m    | N/A                                   |
| Measured BW (kHz), 99% OBW      | 136.0 kHz for LoRa 125 kHz BW         |
|                                 | 264.5 kHz for LoRa 250 kHz BW         |
|                                 | 138.4 kHz for LR-FHSS 137 kHz         |
| Type of modulation              | LoRa standard                         |
| Emission classification         | W7D                                   |
| Transmitter spurious, dBm @ 3 m | -29.5 dBm, @4039.75 MHz               |
| Antenna information             | Antenna not provided (U.FL connector) |

# 5.5 EUT setup details


# 5.5.1 Radio exercise details


| Operating conditions | The EUT has been forced in TX mode with the following AT commands send by Tera Term application: |
|----------------------|--------------------------------------------------------------------------------------------------|
|                      | LoRa 125 kHz BW                                                                                  |
|                      | AT+TCW=30,2010062500,27,1                                                                        |
|                      | AT+TCW=30,2015000000,27,1                                                                        |
|                      | AT+TCW=30,2019937500,27,1                                                                        |
|                      | LoRa 250 kHz BW                                                                                  |
|                      | AT+TXRAW=0,0,2010125000,27,0,1,12,1,100                                                          |
|                      | AT+TXRAW=0,0,2015000000,27,0,1,12,1,100                                                          |
|                      | AT+TXRAW=0,0,2019875000,27,0,1,12,1,100                                                          |
|                      | LR-FHSS 137 kHz                                                                                  |
|                      | AT+TCW=30,2010068000,27,2                                                                        |
|                      | AT+TCW=30,2015000000,27,2                                                                        |
|                      | AT+TCW=30,2019932000,27,2                                                                        |
| Transmitter state    | Transmitter set in to continuous mode with AT commands                                           |



# 5.5.2 EUT setup configuration

| Table 5.5-1: EUT sub assemblies                                          |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|
| Description Brand name Model, Part number, Serial number, Revision level |  |  |  |  |
|                                                                          |  |  |  |  |







EUT setup configuration, continued

| Pin number | Pin Name        | Pin Type / Direction |                                                               |  |
|------------|-----------------|----------------------|---------------------------------------------------------------|--|
| P1         | UART_RX         | DIG. INPUT           | UART RXD input from external application MCU                  |  |
| P2         | GND             | PWR                  |                                                               |  |
| P3         | UART_TX         | DIG. OUTPUT          | UART TXD output to external application MCU                   |  |
| P4         | TX_2G_CE        | DIG. OUTPUT          | H=TX S-BAND active                                            |  |
|            |                 |                      | L=TX S-BAND inactive                                          |  |
| P5         | GND             | PWR                  |                                                               |  |
| P6         | LNA_GPS_ON      | DIG. OUTPUT          | H=Enable External GPS LNA                                     |  |
|            |                 |                      | L=Disable External GPS LNA                                    |  |
| P7         | SW_ON           | DIG. OUTPUT          | H=Enable External S-BAND Switch                               |  |
|            |                 |                      | L=Disable External S-BAND Switch                              |  |
| P8         | GND             | PWR                  |                                                               |  |
| P9         | VCC             | PWR                  | 3.3VDC supply                                                 |  |
| P10        | MCU_RSTn        | DIG. INPUT           | Apply an external GND level to reset the radio MCU. Internal  |  |
|            |                 |                      | 10Kohm pullup.                                                |  |
| P11        | MCU_PH3         | DIG. I/O             | Reserved, internal 10K pulldown                               |  |
| P12        | DNC             |                      |                                                               |  |
| P13        | DNC             |                      |                                                               |  |
| P14        | DNC             |                      |                                                               |  |
| P15        | GND             | PWR                  |                                                               |  |
| P16        | VCC             | PWR                  | 3.3VDC supply                                                 |  |
| P17        | GND             | PWR                  |                                                               |  |
| P18        | DNC             |                      |                                                               |  |
| P19        | MCU_BUSY / CTSn | DIG. I/O             | H=Radio MCU in sleep mode                                     |  |
|            | /               |                      | L=Radio MCU in active mode                                    |  |
|            | EN_BOOTLOADER   |                      | Internal 100Kohm pullup                                       |  |
|            |                 |                      | Sampled after reset for bootloader activation                 |  |
| P20        | RTSn            | DIG. I/O             | H=Application MCU in sleep mode                               |  |
|            |                 |                      | L=Application MCU in active mode                              |  |
|            |                 |                      | Requires external 100kohm pullup for low-power operation. If  |  |
|            |                 |                      | low-power operation is not required, connect to GND through a |  |
|            |                 |                      | 10kohm pulldown.                                              |  |
| P21        | GND             | PWR                  |                                                               |  |
| P22        | GND             | PWR                  |                                                               |  |
| P23        | I2C_SDA         | DIG. I/O             | I2C bus, SDA line. Internal 1K8 pullup                        |  |
| P24        | I2C_SCL         | DIG. i/o             | I2C bus, SCL line. Internal 1K8 pullup                        |  |
| P25        | GND             | PWR                  |                                                               |  |
| P26        | GND             | PWR                  |                                                               |  |
| P27        | GND             | PWR                  |                                                               |  |
| P28        | VCC             | PWR                  | 3.3VDC supply                                                 |  |
| P29        | GND             | PWR                  |                                                               |  |
| P30        | GND             | PWR                  |                                                               |  |
| P31        | GND             | PWR                  |                                                               |  |



# EUT setup configuration, continued

| P32 | GND           | PWR      |                                                              |  |
|-----|---------------|----------|--------------------------------------------------------------|--|
| P33 | VCC_PA        | PWR      | 3.3VDC supply to the Power Amplifier, max. current 500mA.    |  |
|     |               |          | Tracks must be kept as short as possible to minimize voltage |  |
|     |               |          | drops.                                                       |  |
| P34 | GND           | PWR      |                                                              |  |
| P35 | TX_S-BAND_ANT | RF OUT   | S-Band TX output port                                        |  |
| P36 | GND           | PWR      |                                                              |  |
| P37 | GND           | PWR      |                                                              |  |
| P38 | RX_GPS_ANT    | RF INPUT | RF input for GNSS signal                                     |  |
| P39 | GND           | PWR      |                                                              |  |
| P40 | GND           | PWR      |                                                              |  |
| P41 | RX_S-BAND_ANT | RF INPUT | S-Band RX input port                                         |  |
| P42 | GND           | PWR      |                                                              |  |
| P43 | GND           | PWR      |                                                              |  |
| P44 | 868_915_RF    | RF I/O   | TX/RX port for sub-GHz ISM bands (868 / 915MHz)              |  |
| P45 | GND           | PWR      |                                                              |  |

#### Table 5.5-3: Support equipment

| Description | Brand name | Model, Part number, Serial number, Revision level |
|-------------|------------|---------------------------------------------------|
| PC          | Dell       | Latitude 7480                                     |

Table 5.5-4: Inter-connection cables

| Cable description            | From | То | Length (m) |
|------------------------------|------|----|------------|
| USB (USB/UART TTL converter) | EUT  | PC | 1.5        |



EUT setup configuration, continued

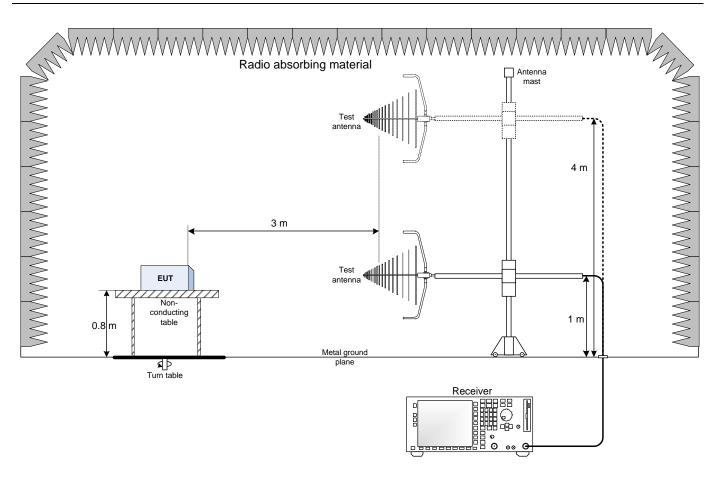



Figure 5.5-1: Radiated testing block diagram (below 1 GHz)

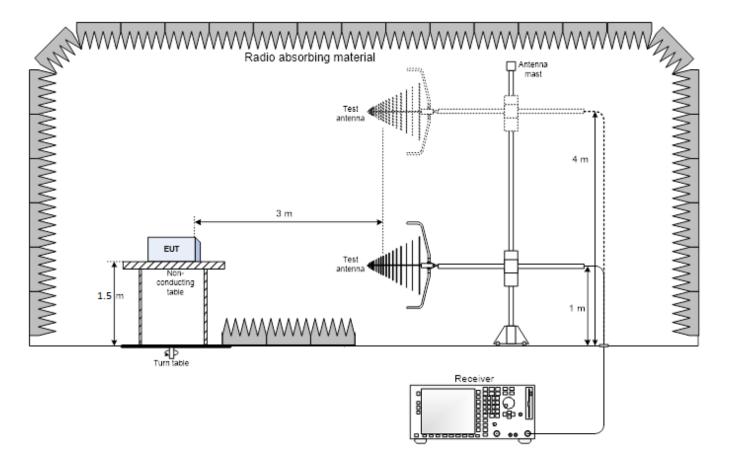



Figure 5.5-2: Radiated testing block diagram (above 1 GHz)

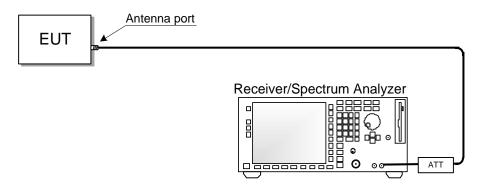



Figure 5.5-3: Antenna port testing block diagram

# Section 6 Summary of test results

#### 6.1 **Testing** location

| Test location (s) | Nemko S.p.A.         |
|-------------------|----------------------|
|                   | Via Del Carroccio, 4 |
|                   | 20853 Biassono (MB)  |
|                   | Italy                |

#### 6.2 Testing period

| Test start date        | May 27, 2024 | Test end date             | June 14, 2024 |
|------------------------|--------------|---------------------------|---------------|
|                        |              |                           |               |
| 6.3 Sample information | n            |                           |               |
| Receipt date           | June 7, 2022 | Nemko sample ID number(s) | 4659020001    |
|                        |              |                           |               |

#### FCC Part §25 6.4

| Part          | Test description                        | Verdict |
|---------------|-----------------------------------------|---------|
| §25.204       | RF power output                         | Pass    |
| §25.202(f)    | Occupied bandwidth mask                 | Pass    |
| §25.202(f)(3) | Spurious emissions at antenna terminals | Pass    |
| §25.202(f)(3) | Field strength of spurious radiation    | Pass    |
| §25.202(d)    | Frequency stability                     | Pass    |
| Notes:        |                                         |         |

Notes:

#### ISED RSS-170, Issue 4, test results 6.5

# Table 6.5-1: ISED requirements results

| Part | Test description                        | Verdict |
|------|-----------------------------------------|---------|
| 5.4  | RF power output                         | Pass    |
| 5.4  | Occupied bandwidth mask                 | Pass    |
| 5.4  | Spurious emissions at antenna terminals | Pass    |
| 5.4  | Field strength of spurious radiation    | Pass    |
| 5.3  | Frequency stability                     | Pass    |

Notes:

---

# Section 7 Test equipment

# 7.1 Test equipment list

Nemko

| Table 7.1-1: Equipment list   |                             |                              |               |           |           |
|-------------------------------|-----------------------------|------------------------------|---------------|-----------|-----------|
| Equipment                     | Manufacturer                | Model no.                    | Asset no.     | Cal cycle | Next cal. |
| Spectrum Analyzer             | Rohde & Schwarz             | FSW43                        | 101767        | 2023-12   | 2024-12   |
| EMI Receiver                  | Rohde & Schwarz             | ESW44                        | 101620        | 2023-08   | 2024-08   |
| EMI Receiver                  | Rohde & Schwarz             | ESU8                         | 100202        | 2021-07   | 2024-07   |
| Antenna Trilog 25MHz - 8GHz   | Schwarzbeck Mess-Elektronik | VULB9162                     | 9162-025      | 2021-09   | 2024-09   |
| Antenna 1 - 18 GHz            | Schwarzbeck Mess-Elektronik | STLP9148                     | STLP 9148-152 | 2023-04   | 2026-04   |
| Double Ridge Horn Antenna     | RFSpin                      | DRH40                        | 061106A40     | 2024-03   | 2025-03   |
| Broadband Amplifier           | Schwarzbeck Mess-Elektronik | BBV9718C                     | 00121         | 2024-05   | 2025-05   |
| Broadband Bench Top Amplifier | Sage                        | STB-1834034030-KFKF-L1       | 18490-01      | NCR       | NCR       |
| Controller                    | Maturo                      | FCU3.0                       | 10041         | NCR       | NCR       |
| Tilt antenna mast             | Maturo                      | TAM4.0-E                     | 10042         | NCR       | NCR       |
| Turntable                     | Maturo                      | TT4.0-5T                     | 2.527         | 2023-09   | 2025-09   |
| Semi-anechoic chamber         | Nemko S.p.a.                | 10m semi-anechoic chamber    | 530           | 2023-09   | 2024-09   |
| EMI receiver                  | R&S                         | ESU8                         | 100202        | 2023-07   | 2024-07   |
| Attenuator                    | Aeroflex / Weinschel        | 2                            | CC8577        | 2024-03   | 2025-03   |
| LISN 9 kHz ÷ 30 MHz           | R&S                         | ESH2-Z5                      | 881 362/006   | NCR       | NCR       |
| Shielded room                 | Siemens                     | Conducted emission test room | 1862          | 2023-10   | 2024-10   |
| Climatic chamber              | espec                       | ARS-1100                     | 410000067     | NCR       | NCR       |
| Cable set                     | Rosenberger                 | ST.ALO-02                    | 1.650         | 2023-12   | 2024-12   |
| Software turntable and mast   | Maturo                      | mcApp                        | 8.1.0.5410    | 2023-08   | 2024-08   |

Notes: NCR - no calibration required, VOU - verify on use



# Section 8 Testing data

# 8.1 Variation of power source

### 8.1.1 References, definitions and limits

#### FCC §15.31 (e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### 8.1.2 Test summary

| Verdict   | Pass        |           |              |
|-----------|-------------|-----------|--------------|
| Tested by | P. Barbieri | Test date | May 28, 2024 |
|           |             |           |              |

### 8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

#### 8.1.4 Test data

| EUT Power requirements:                                                                           | □ AC  | 🛛 DC | □ Battery |
|---------------------------------------------------------------------------------------------------|-------|------|-----------|
| If EUT is an AC or a DC powered, was the noticeable output power variation observed?              | □ YES | 🖾 NO | 🗆 N/A     |
| If EUT is battery operated, was the testing performed using fresh batteries?                      | 🗆 YES | 🗆 NO | 🖾 N/A     |
| If EUT is rechargeable battery operated, was the testing performed using fully charged batteries? | □ YES | □ NO | 🖾 N/A     |

# 8.2 Number of frequencies

#### 8.2.1 References, definitions and limits

#### FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

#### RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

#### Table 8.2-1: Frequency Range of Operation

| Frequency range over which the device                                                                                                  |                                     | Location of measurement frequency inside the      |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|--|
| operates (in each band)                                                                                                                | Number of test frequencies required | operating frequency range                         |  |
| 1 MHz or less                                                                                                                          | 1                                   | Center (middle of the band)                       |  |
| 1–10 MHz                                                                                                                               | 2                                   | 1 near high end, 1 near low end                   |  |
| Greater than 10 MHz                                                                                                                    | 3                                   | 1 near high end, 1 near center and 1 near low end |  |
| tes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates. |                                     |                                                   |  |

# 8.2.2 Test summary

| Verdict   | Pass        |           |              |
|-----------|-------------|-----------|--------------|
| Tested by | P. Barbieri | Test date | May 28, 2024 |

#### 8.2.3 Observations, settings and special notes

#### ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

#### ANSI C63.10, Clause 5.6.2.2:

- For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:
- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.



# 8.2.4 Test data

| Table 8.2-2: Test channels selection for LoRa 125 kHz BW |
|----------------------------------------------------------|
| Table 8.2-2: Test channels selection for LoRa 125 kHz BW |

| Start of Frequency<br>range, MHz | End of Frequency<br>range, MHz | Frequency range<br>bandwidth, MHz | Low channel, MHz | Mid channel, MHz | High channel, MHz |
|----------------------------------|--------------------------------|-----------------------------------|------------------|------------------|-------------------|
| 2010                             | 2020                           | 10                                | 2010.0625        | 2015.0000        | 2019.9375         |

## Table 8.2-3: Test channels selection for LoRa 250 kHz BW

| Start of Frequency<br>range, MHz | End of Frequency<br>range, MHz | Frequency range<br>bandwidth, MHz | Low channel, MHz | Mid channel, MHz | High channel, MHz |
|----------------------------------|--------------------------------|-----------------------------------|------------------|------------------|-------------------|
| 2010                             | 2020                           | 10                                | 2010.1250        | 2015.0000        | 2019.8750         |

# Table 8.2-3: Test channels selection for LoRa LR-FHSS 137 kHz

| Start of Frequency<br>range, MHz | End of Frequency<br>range, MHz | Frequency range bandwidth, MHz | Low channel, MHz | Mid channel, MHz | High channel, MHz |
|----------------------------------|--------------------------------|--------------------------------|------------------|------------------|-------------------|
| 2010                             | 2020                           | 10                             | 2010.0680        | 2015.0000        | 2019.9320         |



# 8.3 Antenna requirement

#### 8.3.1 References, definitions and limits

#### FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### FCC §15.247:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

#### 8.3.2 Test summary

| Verdict    |                             | Pass                |                |              |              |  |
|------------|-----------------------------|---------------------|----------------|--------------|--------------|--|
| Tested by  |                             | P. Barbieri         |                | Test date    | May 28, 2024 |  |
| 8.3.3      | Observations, setting       | s and special notes |                |              |              |  |
| None       |                             |                     |                |              |              |  |
| 024        | Test data                   |                     |                |              |              |  |
| 8.3.4      |                             |                     |                |              |              |  |
|            | EUT be professionally insta | lled?               | ⊠ YES          |              |              |  |
| Must the E |                             |                     | ⊠ YES<br>□ YES | □ NO<br>⊠ NO |              |  |

### Table 8.3-1: Antenna information

| Antenna type | Manufacturer | Model number | Maximum gain | Connector type |
|--------------|--------------|--------------|--------------|----------------|
|              |              |              |              |                |

Note: Antenna not provided. The EUT is a chip to be use in a hosting device.



# 8.4 RF power output

#### 8.4.1 References, definitions and limits

#### FCC §25.204:

(a) In bands shared coequally with terrestrial radio communication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station, other than an ESV, operating in frequency bands between 1 and 15 GHz, shall not exceed the following limits except as provided for in paragraph (c) of this section:

+ 40 dBW in any 4 kHz band for  $\theta \leq 0^{\circ}$ 

where  $\theta$  is the angle of elevation of the horizon viewed from the center of radiation of the antenna of the earth station and measured in degrees as positive above the horizontal plane and negative below it.

#### RSS-170, Clause 5.4:

The maximum e.i.r.p. of ATC mobile equipment transmitting in the band 1610-1626.5 MHz shall not exceed 1 dBW in a 1.25 MHz bandwidth.

The maximum e.i.r.p. of ATC mobile equipment transmitting in the band 1626.5-1660.5 MHz shall not exceed 0 dBW in a channel.

The maximum e.i.r.p. of ATC mobile and base station equipment transmitting in the band 2483.5 2495 MHz shall not exceed 6 dBW per channel bandwidth, and the maximum conducted transmitter output power shall not exceed 0 dBW.

The maximum e.i.r.p. of ATC base stations transmitting in the band 2000-2020 MHz shall not exceed 65 dBm/MHz. For base stations equipped with active antenna systems (AAS), the maximum TRP shall not exceed 46 dBm/MHz.

The limits in this RSS are specified for the purpose of certification and may not apply to all deployment scenarios. For more details, consult Standard Radio System Plan SRSP-519, Technical Requirements for the Ancillary Terrestrial Component of Mobile-Satellite Service Systems Operating in the Bands 2000 2020 MHz and 2180-2200 MHz.

#### 8.4.2 Test summary

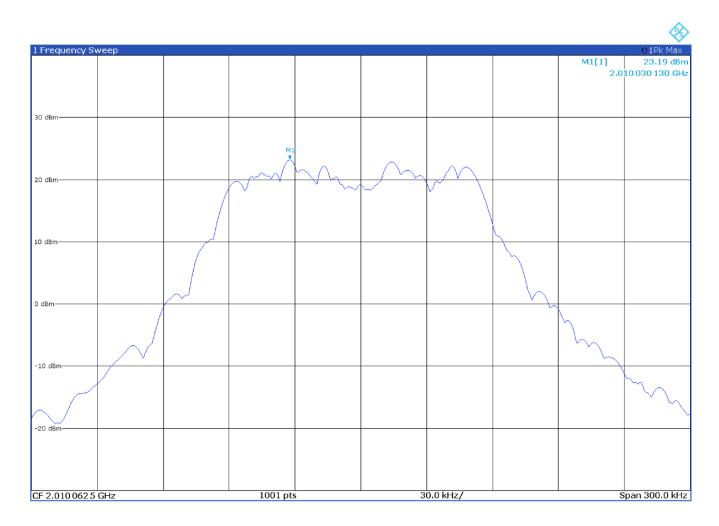
| Verdict   | Pass        |           |              |
|-----------|-------------|-----------|--------------|
| Tested by | P. Barbieri | Test date | May 29, 2024 |

### 8.4.3 Observations, settings and special notes

Spectrum analyser settings:

| Resolution bandwidth | 4 kHz     |
|----------------------|-----------|
| Video bandwidth      | ≥ 3 x RBW |
| Frequency span       | ≥ 2 x OBW |
| Detector mode        | Peak      |
| Trace mode           | Max Hold  |

#### 8.4.4 Test equipment used


| Equipment         | Manufacturer    | Model no. | Asset no. |
|-------------------|-----------------|-----------|-----------|
| Spectrum Analyzer | Rohde & Schwarz | FSW43     | 101767    |



# 8.4.5 Test data

| Table 8.4-1: Output power and EIRP results |                |      |                   |           |                 |                 |
|--------------------------------------------|----------------|------|-------------------|-----------|-----------------|-----------------|
| Output power,                              |                |      |                   |           |                 |                 |
| Modulation                                 | Frequency, MHz | dBm  | Antenna gain, dBi | EIRP, dBm | EIRP limit, dBm | EIRP margin, dB |
| LoRa 125 kHz BW                            | 2010.0625      | 23.2 | 0                 | 23.2      | 70.00           | -46.8           |
|                                            | 2015.0000      | 23.3 | 0                 | 23.3      | 70.00           | -46.7           |
|                                            | 2019.9375      | 22.0 | 0                 | 22.0      | 70.00           | -48.0           |
| LoRa 250 kHz BW                            | 2010.1250      | 19.9 | 0                 | 19.9      | 70.00           | -50.1           |
|                                            | 2015.0000      | 21.5 | 0                 | 21.5      | 70.00           | -48.5           |
|                                            | 2019.8750      | 18.8 | 0                 | 18.8      | 70.00           | -51.2           |
| LR-FHSS 137 kHz                            | 2010.0680      | 27.0 | 0                 | 27.0      | 70.00           | -43.0           |
|                                            | 2015.0000      | 27.0 | 0                 | 27.0      | 70.00           | -43.0           |
|                                            | 2019.9320      | 26.8 | 0                 | 26.8      | 70.00           | -43.2           |

Notes: EIRP = Output power + Antenna gain (assuming a maximum antenna gain of 0 dBi)



## Figure 8.4-1: Output power on low channel - LoRa 125 kHz BW



Test data, continued

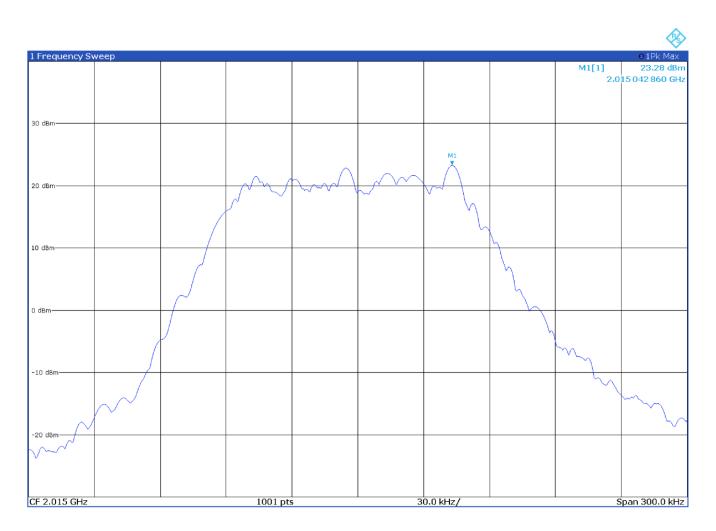



Figure 8.4-2: Output power on mid channel - LoRa 125 kHz BW



Test data, continued

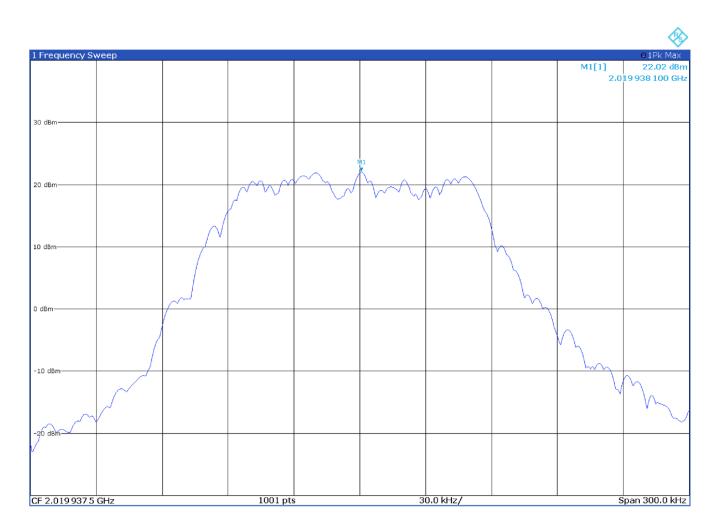



Figure 8.4-3: Output power on high channel - LoRa 125 kHz BW



Section 8 Specification Testing data

FCC Part 15 Subpart A

Test data, continued

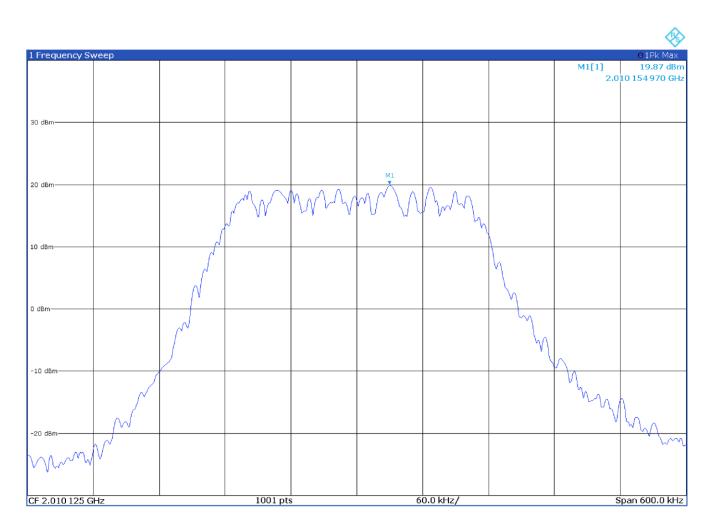



Figure 8.4-4: Output power on low channel - LoRa 250 kHz BW



Section 8 Specification

Testing data

FCC Part 15 Subpart A

Test data, continued

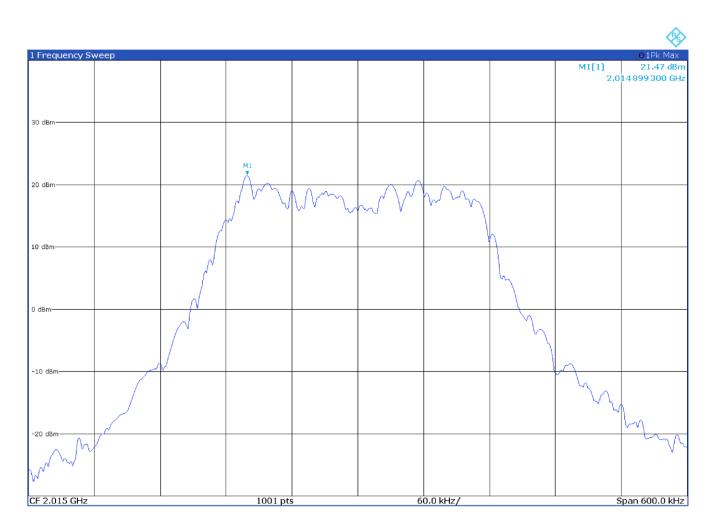



Figure 8.4-5: Output power on mid channel - LoRa 250 kHz BW



Test data, continued

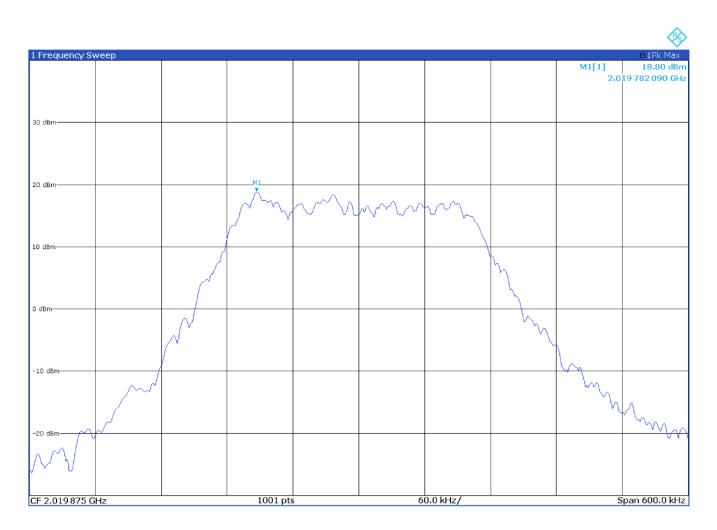



Figure 8.4-6: Output power on high channel - LoRa 250 kHz BW



Test data, continued

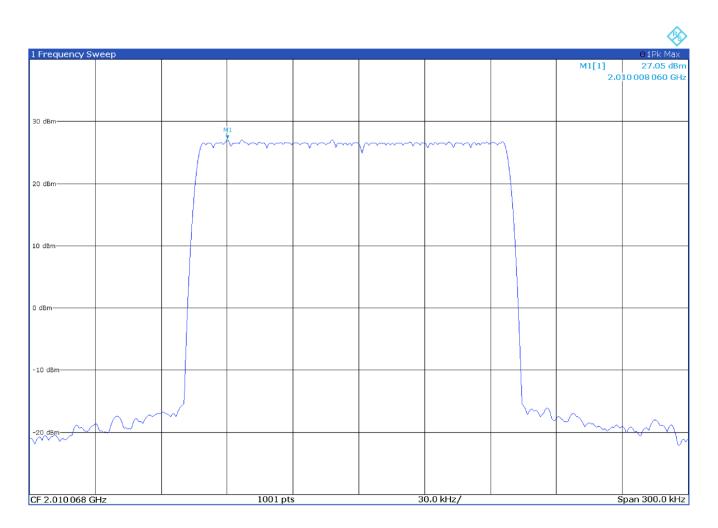



Figure 8.4-7: Output power on low channel - LR-FHSS 137 kHz



Test data, continued

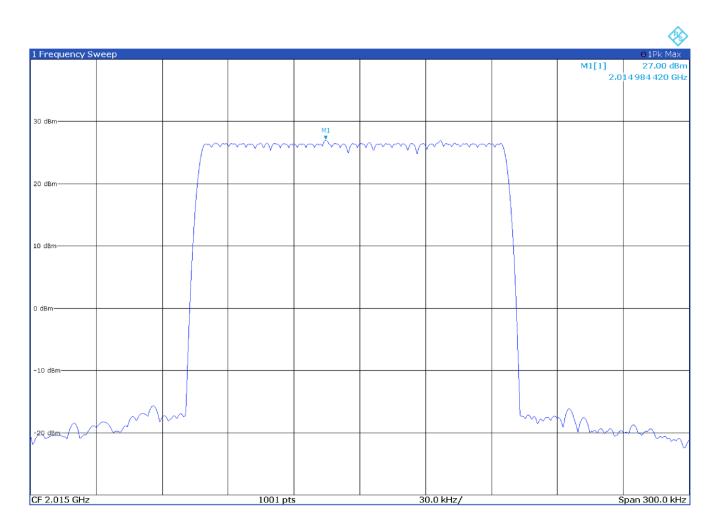



Figure 8.4-8: Output power on mid channel - LR-FHSS 137 kHz



Test data, continued

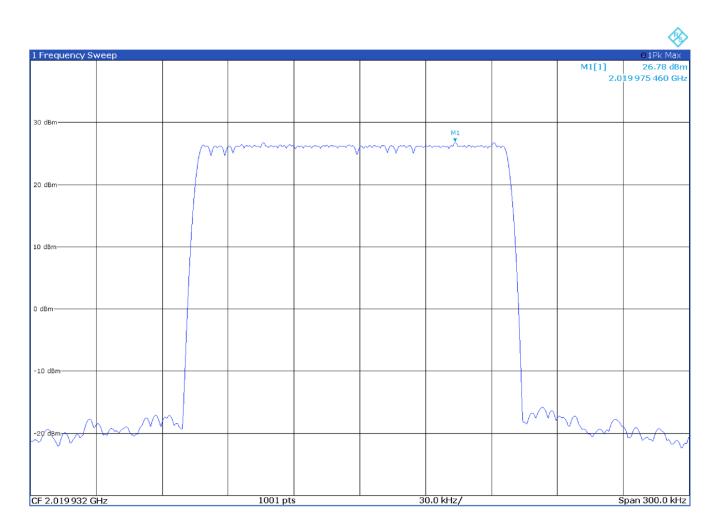



Figure 8.4-9: Output power on high channel - LR-FHSS 137 kHz



## Test data, continued

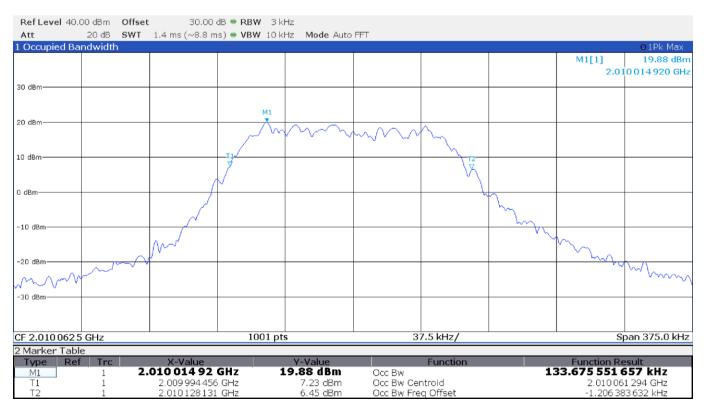



Figure 8.4-10: 99% bandwidth on low channel for LoRa 125 kHz BW



Test data, continued

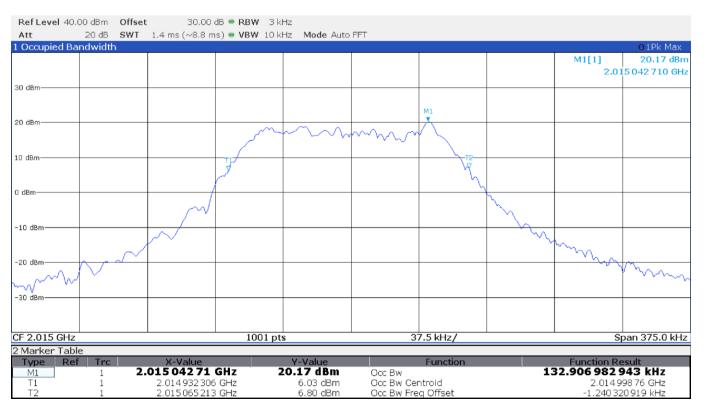



Figure 8.4-11: 99% bandwidth on mid channel for LoRa 125 kHz BW



Test data, continued



Figure 8.4-12: 99% bandwidth on high channel for LoRa 125 kHz BW



Test data, continued

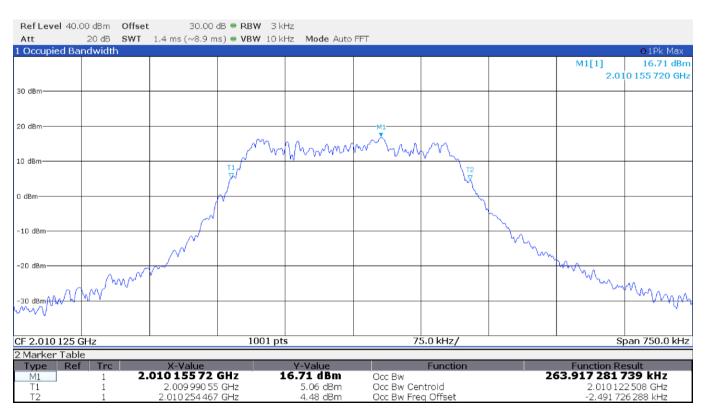



Figure 8.4-13: 99% bandwidth on low channel for LoRa 250 kHz BW



Test data, continued

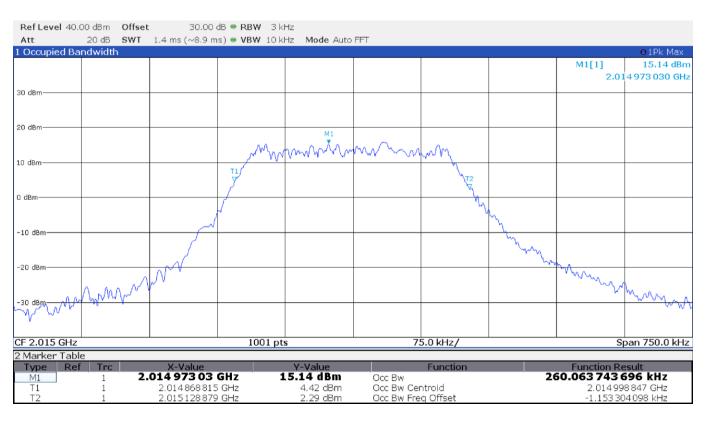



Figure 8.4-14: 99% bandwidth on mid channel for LoRa 250 kHz BW



Test data, continued

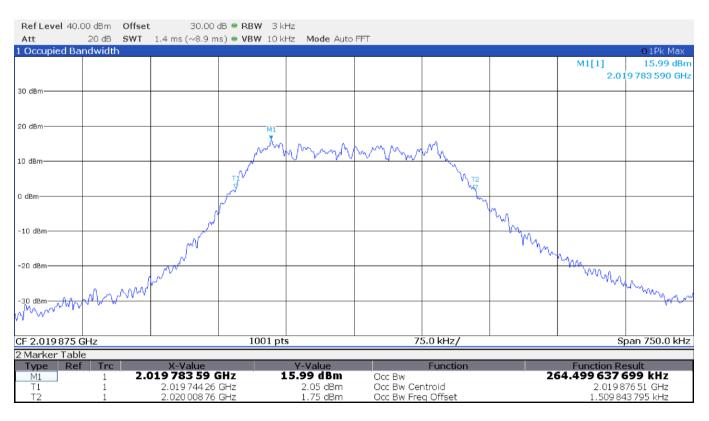



Figure 8.4-15: 99% bandwidth on high channel for LoRa 250 kHz BW



Section 8Testing dataSpecificationFCC Part 15 Subpart A

## Test data, continued

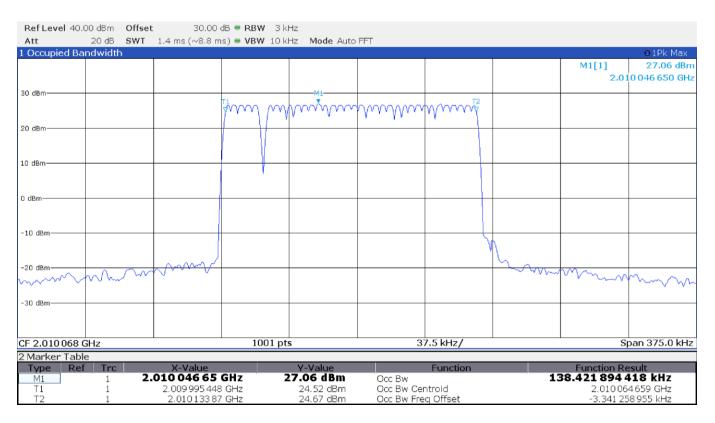



Figure 8.4-16: 99% bandwidth on low channel for LR-FHSS 137 kHz



Section 8Testing dataSpecificationFCC Part 15 Subpart A

Test data, continued

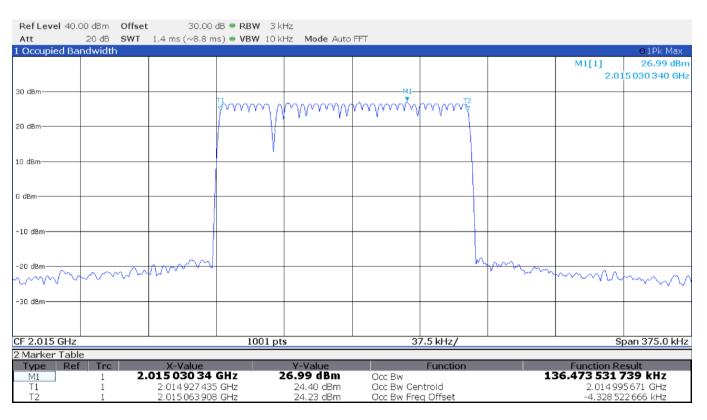



Figure 8.4-17: 99% bandwidth on mid channel for LR-FHSS 137 kHz



Section 8Testing dataSpecificationFCC Part 15 Subpart A

Test data, continued

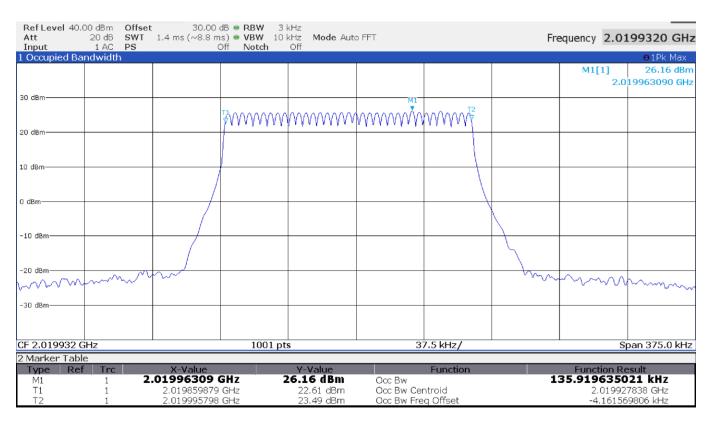
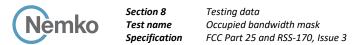




Figure 8.4-18: 99% bandwidth on high channel for LR-FHSS 137 kHz



## 8.5 Occupied bandwidth mask

### 8.5.1 References, definitions and limits

#### FCC §25.202(f):

Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

- (1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;
- (2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;
- (3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;
- (4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

#### RSS-170, Clause 5.4:

- The unwanted emissions of ATC base station equipment transmitting in the bands 2000-2020 MHz and 2180-2200 MHz shall comply with the following:
- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB
- (2) For equipment operating in the band 2180-2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of -100.6 dBW/4 kHz.

### 8.5.2 Test summary

| Verdict   | Pass        |           |              |
|-----------|-------------|-----------|--------------|
| Tested by | P. Barbieri | Test date | May 29, 2024 |

### 8.5.3 Observations, settings and special notes

Spectrum analyser settings:

| Resolution bandwidth | 4 kHz             |
|----------------------|-------------------|
| Video bandwidth      | ≥ 3 × RBW         |
| Frequency span       | ≥ 250% of the OBW |
| Detector mode        | Peak              |
| Trace mode           | Max Hold          |

#### 8.5.4 Test equipment used

| Equipment         | Manufacturer    | Model no. | Asset no. |
|-------------------|-----------------|-----------|-----------|
| Spectrum Analyzer | Rohde & Schwarz | FSW43     | 101767    |



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

## 8.5.5 Test data

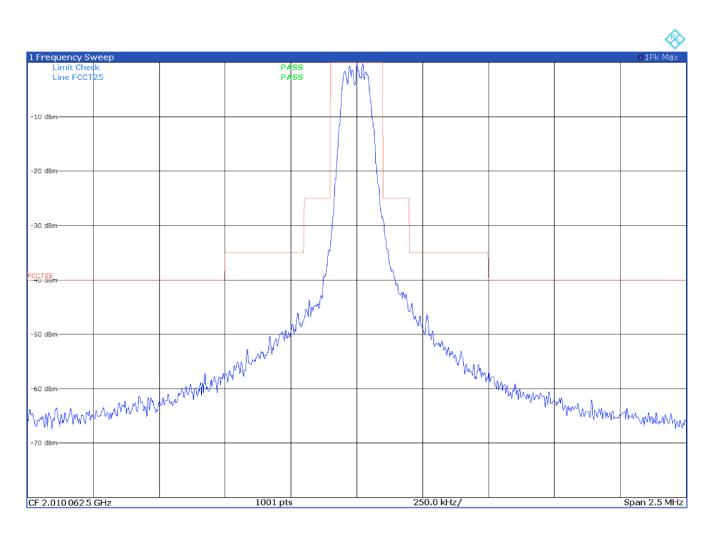



Figure 8.5-1: Occupied bandwidth mask on low channel for LoRa 125 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued



Figure 8.5-2: Occupied bandwidth mask on mid channel for LoRa 125 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued

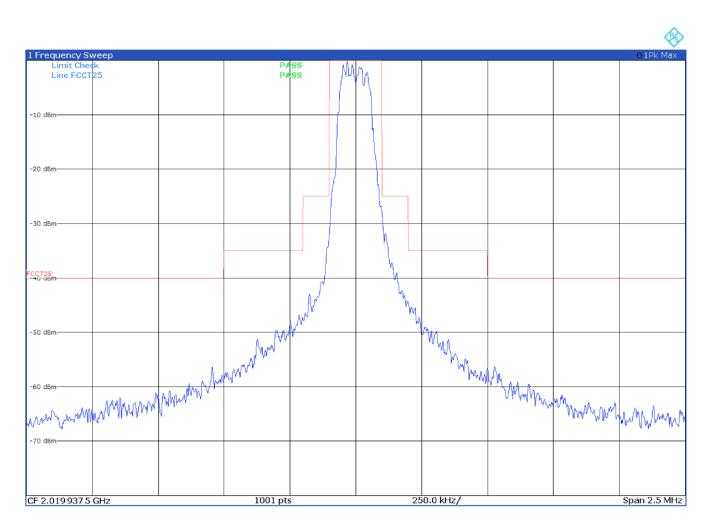



Figure 8.5-3: Occupied bandwidth mask on high channel for LoRa 125 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

## 8.5.1 Test data

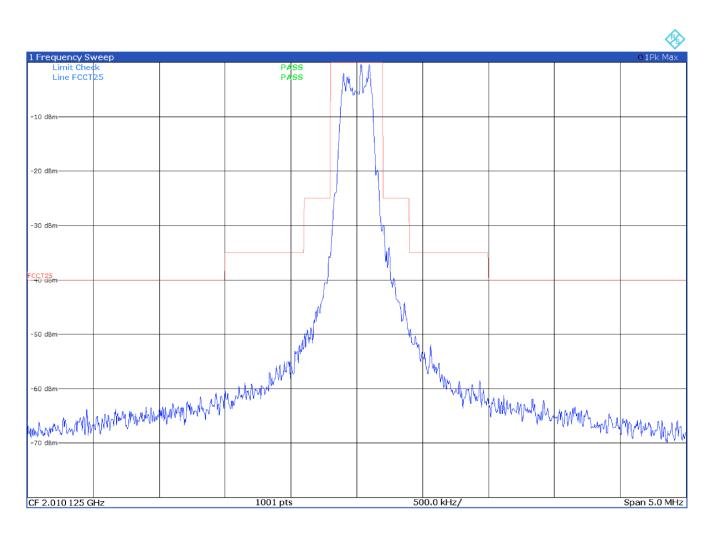



Figure 8.5-4: Occupied bandwidth mask on low channel for LoRa 250 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued

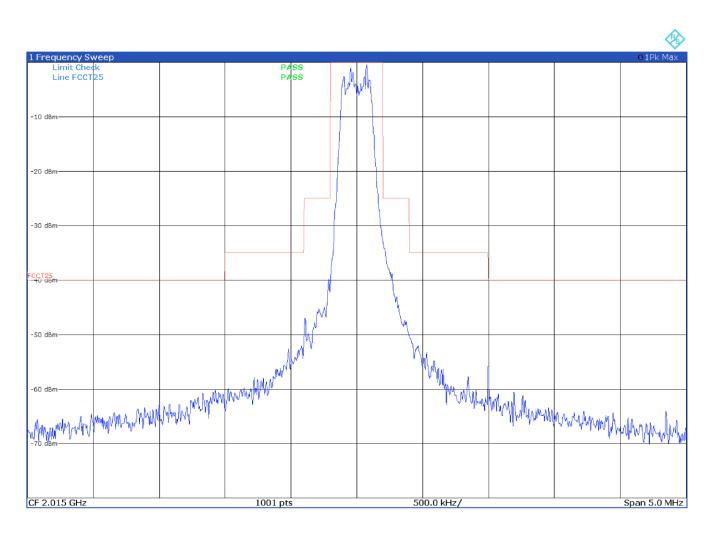



Figure 8.5-5: Occupied bandwidth mask on mid channel for LoRa 250 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued

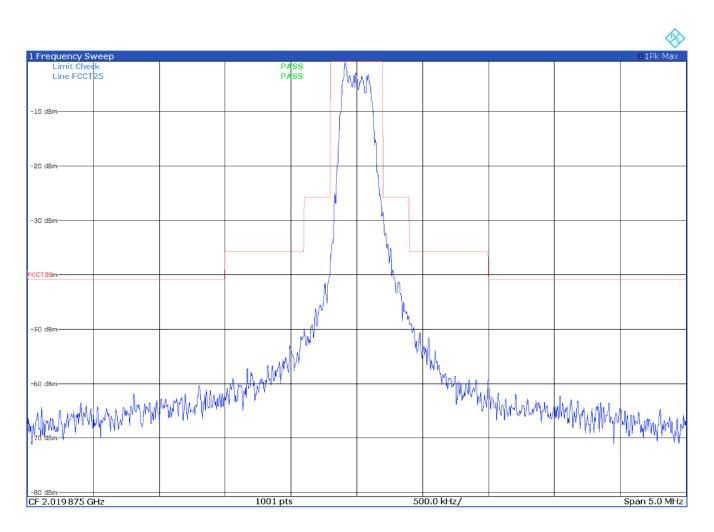



Figure 8.5-6: Occupied bandwidth mask on high channel for LoRa 250 kHz BW



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

## 8.5.1 Test data

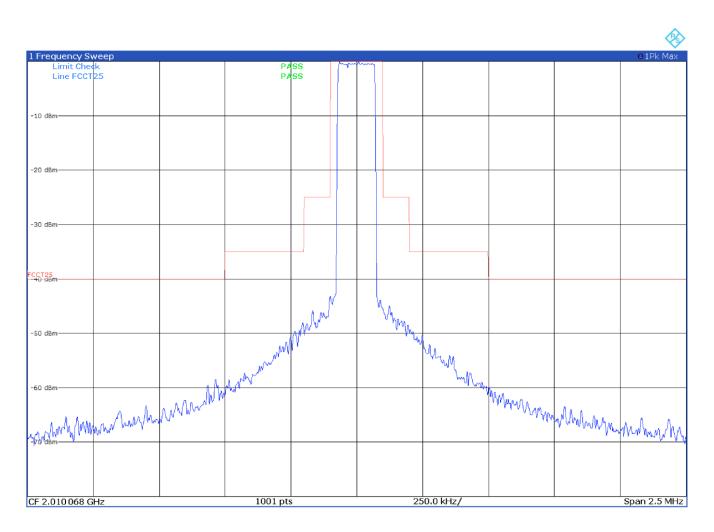



Figure 8.5-7: Occupied bandwidth mask on low channel for LR-FHSS 137 kHz



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued

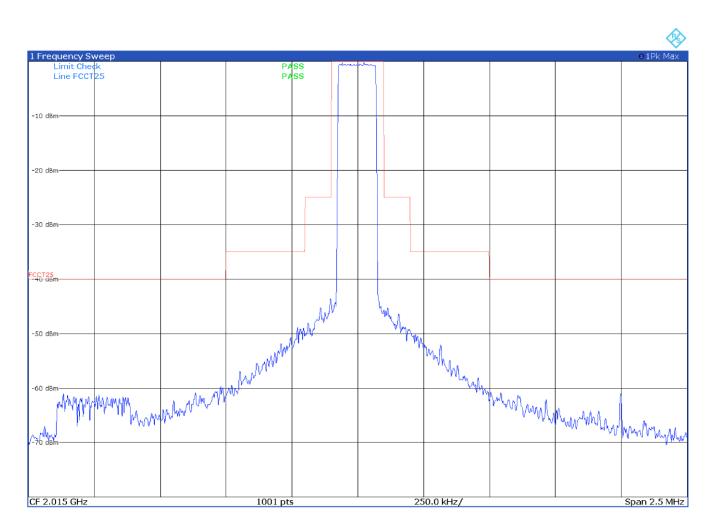



Figure 8.5-8: Occupied bandwidth mask on mid channel for LR-FHSS 137 kHz



Testing data Occupied bandwidth mask FCC Part 25 and RSS-170, Issue 3

### Test data, continued

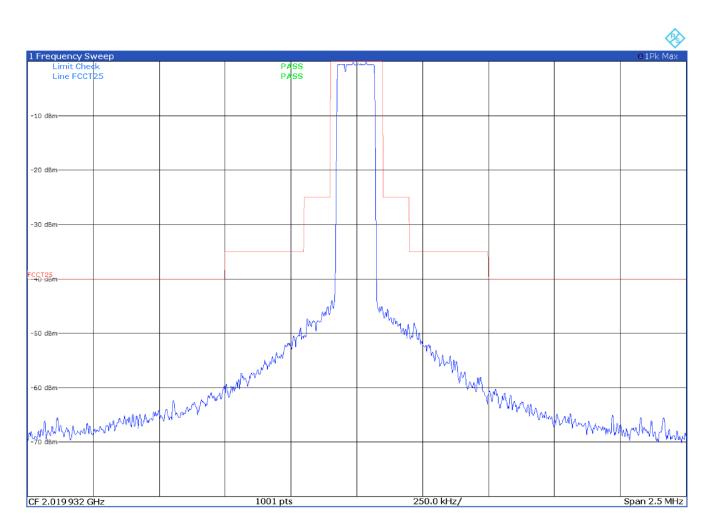



Figure 8.5-9: Occupied bandwidth mask on high channel for LR-FHSS 137 kHz

## 8.6 Spurious emissions at antenna terminals

### 8.6.1 References, definitions and limits

### FCC §25.202(f):

Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

- (1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;
- (2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;
- (3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;
- (4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

#### RSS-170, Clause 5.4:

- The unwanted emissions of ATC base station equipment transmitting in the bands 2000-2020 MHz and 2180-2200 MHz shall comply with the following:
- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB
- (2) For equipment operating in the band 2180-2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of -100.6 dBW/4 kHz.

### 8.6.2 Test summary

| Verdict   | Pass        |           |               |
|-----------|-------------|-----------|---------------|
| Tested by | P. Barbieri | Test date | June 10, 2024 |

### 8.6.3 Observations, settings and special notes

Spectrum analyser settings:

| Resolution bandwidth | 4 kHz            |
|----------------------|------------------|
| Video bandwidth      | $\geq$ 3 × RBW   |
| Frequency range      | 30 MHz to 22 GHz |
| Detector mode        | Peak             |
| Trace mode           | Max Hold         |

#### 8.6.4 Test equipment used

| Equipment         | Manufacturer    | Model no. | Asset no. |
|-------------------|-----------------|-----------|-----------|
| Spectrum Analyzer | Rohde & Schwarz | FSW43     | 101767    |



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

8.6.5 Test data

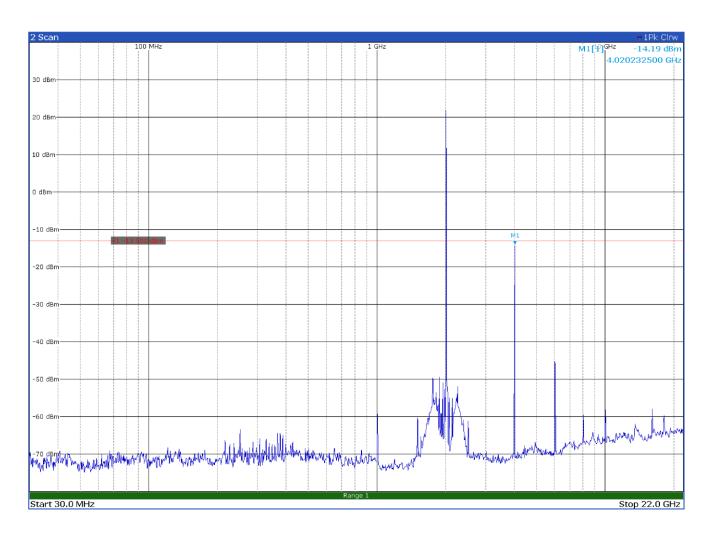



Figure 8.6-1: Spurious emissions at antenna terminals on low channel for LoRa 125 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

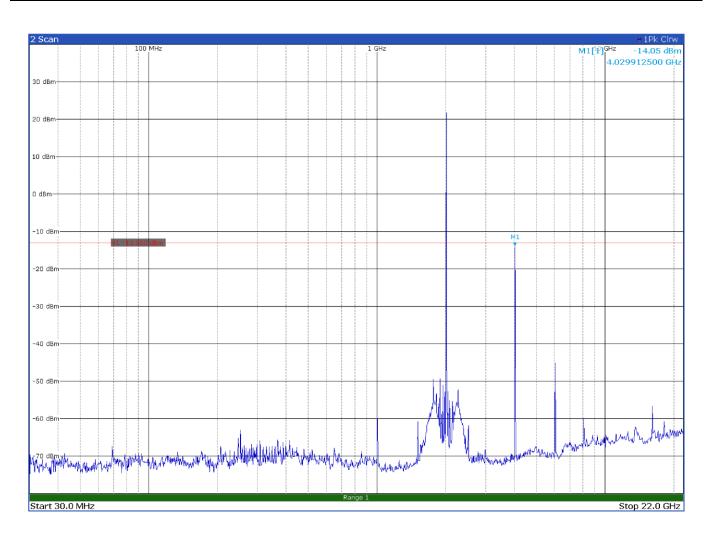



Figure 8.6-2: Spurious emissions at antenna terminals on mid channel for LoRa 125 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

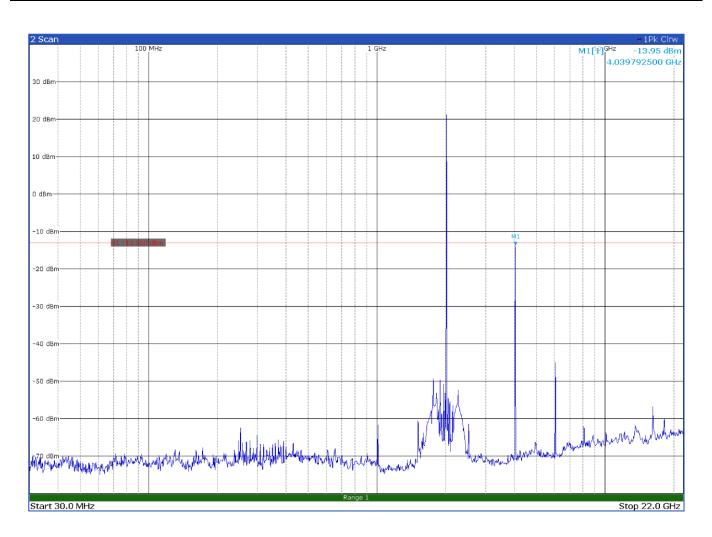



Figure 8.6-3: Spurious emissions at antenna terminals on high channel for LoRa 125 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

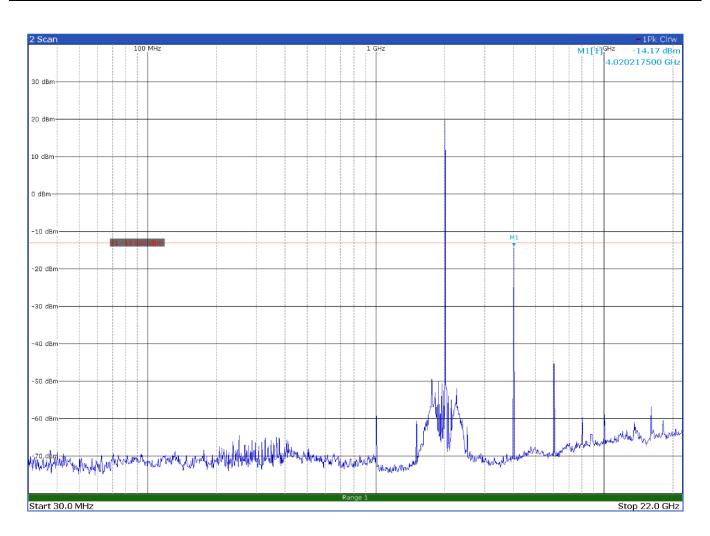



Figure 8.6-4: Spurious emissions at antenna terminals on low channel for LoRa 250 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

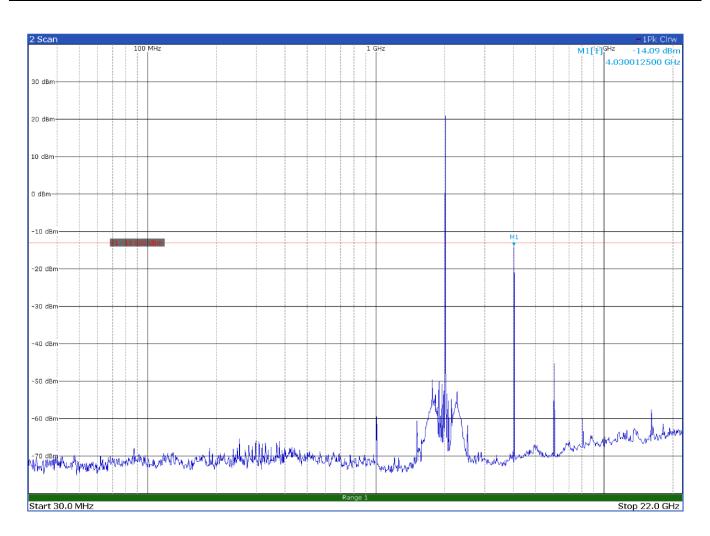



Figure 8.6-5: Spurious emissions at antenna terminals on mid channel for LoRa 250 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

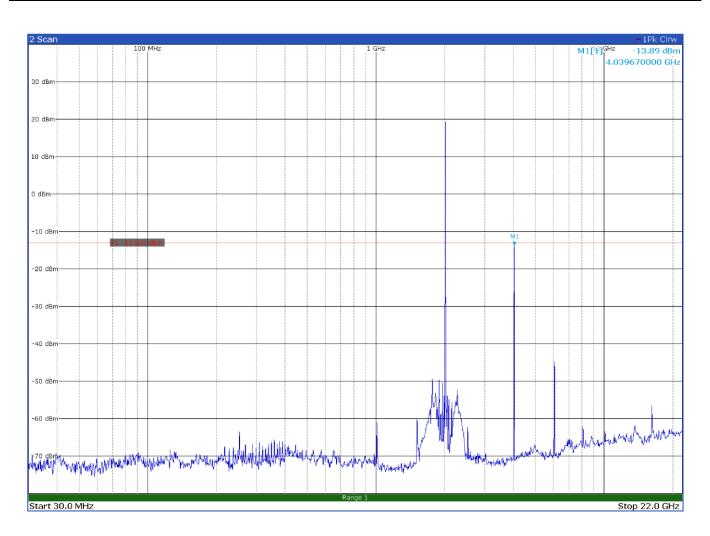



Figure 8.6-6: Spurious emissions at antenna terminals on high channel for LoRa 250 kHz BW



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

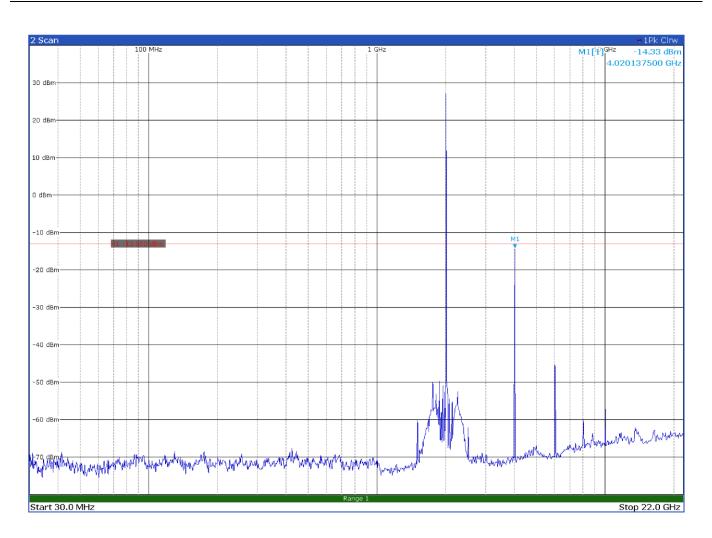



Figure 8.6-7: Spurious emissions at antenna terminals on low channel for LR-FHSS 137 kHz



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

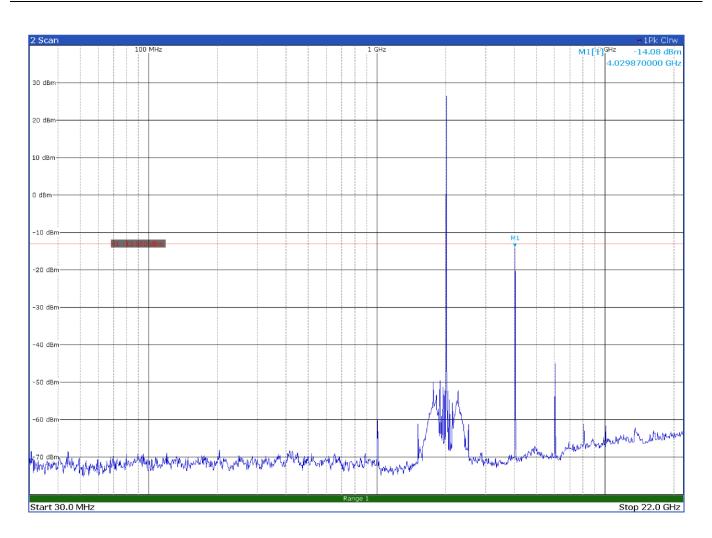



Figure 8.6-8: Spurious emissions at antenna terminals on mid channel for LR-FHSS 137 kHz



Testing data Spurious emissions at antenna terminals FCC Part 25 and RSS-170, Issue 3

Test data, continued

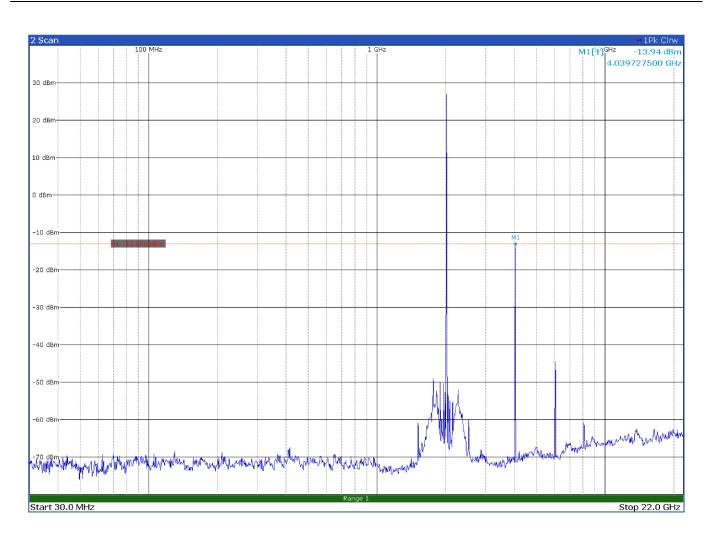



Figure 8.6-9: Spurious emissions at antenna terminals on high channel for LR-FHSS 137 kHz



# 8.7 Field strength of spurious radiation

### 8.7.1 References, definitions and limits

#### FCC §25.202(f):

Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

- (1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;
- (2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;
- (3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;
- (4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

#### RSS-170, Clause 5.4:

- The unwanted emissions of ATC base station equipment transmitting in the bands 2000-2020 MHz and 2180-2200 MHz shall comply with the following:
- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB
- (2) For equipment operating in the band 2180-2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of -100.6 dBW/4 kHz.

### 8.7.2 Test summary

| Verdict   | Pass        |           |               |
|-----------|-------------|-----------|---------------|
| Tested by | P. Barbieri | Test date | June 11, 2024 |

### 8.7.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 10<sup>th</sup> harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle.
- Radiated measurements were performed at a distance of 3 m.

#### Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

| Resolution bandwidth: | 100 kHz  |
|-----------------------|----------|
| Video bandwidth:      | 300 kHz  |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 3 MHz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |



Testing data Field strength of spurious radiation FCC Part 25 and RSS-170, Issue 3

## 8.7.4 Test equipment used

| Equipment                     | Manufacturer                | Model no.                 | Asset no.     |
|-------------------------------|-----------------------------|---------------------------|---------------|
| EMI Receiver                  | Rohde & Schwarz             | ESW44                     | 101620        |
| Antenna Trilog 25MHz - 8GHz   | Schwarzbeck Mess-Elektronik | VULB9162                  | 9162-025      |
| Antenna 1 - 18 GHz            | Schwarzbeck Mess-Elektronik | STLP9148                  | STLP 9148-152 |
| Double Ridge Horn Antenna     | RFSpin                      | DRH40                     | 061106A40     |
| Broadband Amplifier           | Schwarzbeck Mess-Elektronik | BBV9718C                  | 00121         |
| Broadband Bench Top Amplifier | Sage                        | STB-1834034030-KFKF-L1    | 18490-01      |
| Controller                    | Maturo                      | FCU3.0                    | 10041         |
| Tilt antenna mast             | Maturo                      | TAM4.0-E                  | 10042         |
| Turntable                     | Maturo                      | TT4.0-5T                  | 2.527         |
| Semi-anechoic chamber         | Nemko S.p.a.                | 10m semi-anechoic chamber | 530           |
| Cable set                     | Rosenberger                 | ST.ALO-02                 | 1.650         |
| Software turntable and mast   | Maturo                      | mcApp                     | 8.1.0.5410    |



Testing data Field strength of spurious radiation FCC Part 25 and RSS-170, Issue 3

8.7.5 Test data

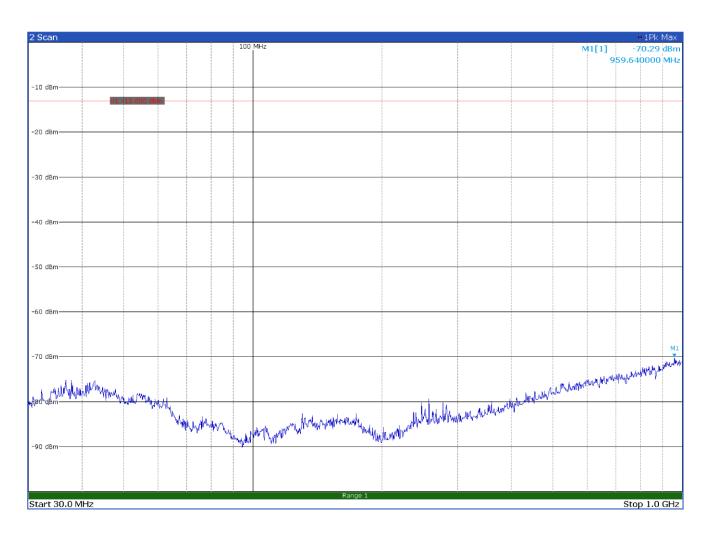



Figure 8.7-1: Radiated spurious emissions on low channel - LoRa 125 kHz BW – Antenna in horizontal polarization



Testing data Field strength of spurious radiation FCC Part 25 and RSS-170, Issue 3

Test data, continued

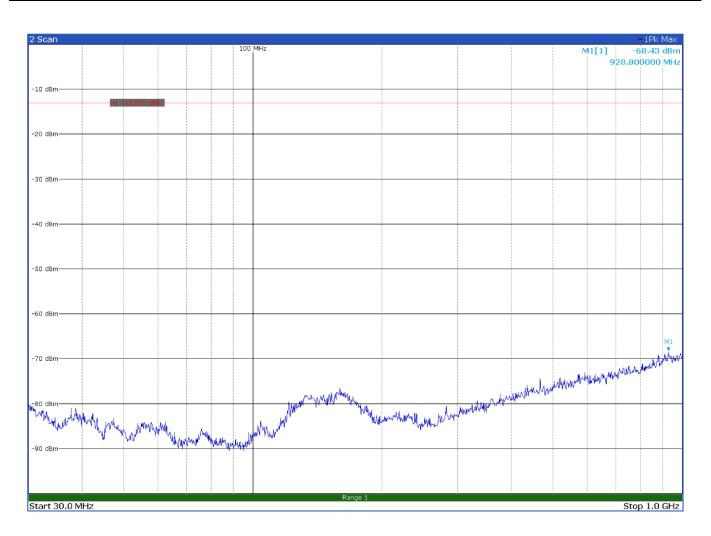



Figure 8.7-2: Radiated spurious emissions on low channel - LoRa 125 kHz BW – Antenna in vertical polarization



Testing data Field strength of spurious radiation FCC Part 25 and RSS-170, Issue 3

Test data, continued

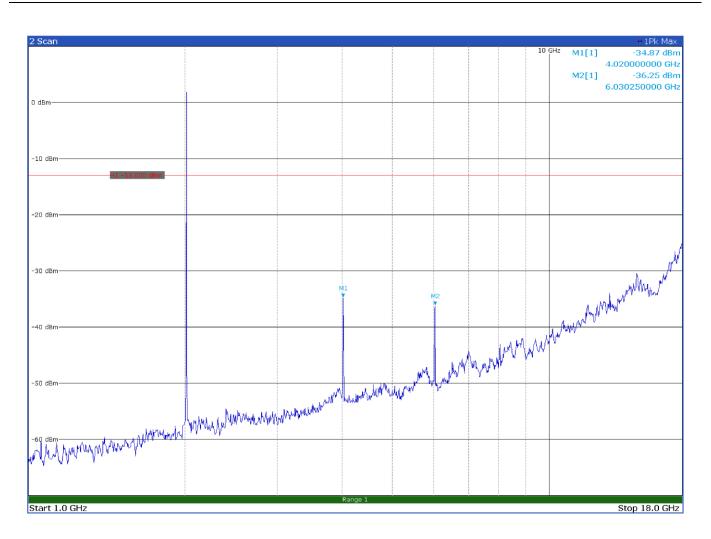



Figure 8.7-3: Radiated spurious emissions on low channel - LoRa 125 kHz BW – Antenna in horizontal polarization



Testing data Field strength of spurious radiation FCC Part 25 and RSS-170, Issue 3

Test data, continued

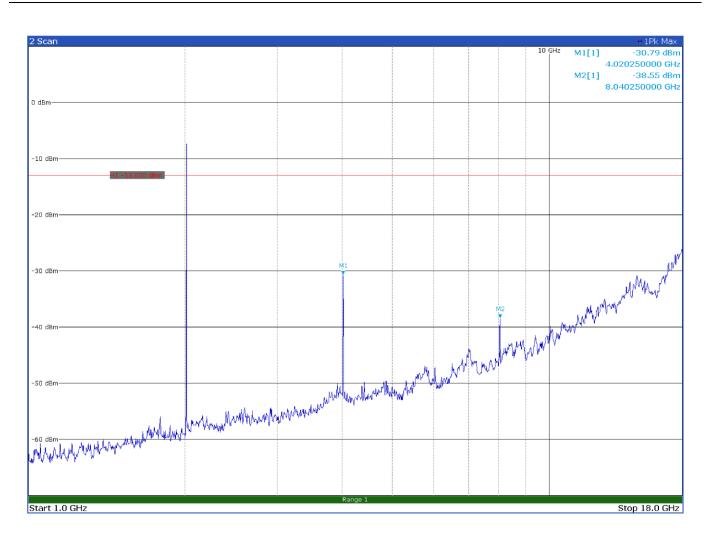



Figure 8.7-4: Radiated spurious emissions on low channel - LoRa 125 kHz BW - Antenna in vertical polarization