

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2202092

FCC RF Test Report

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 9-10F, 1stBldg., No.81BeigingRoad, Haidian District, Beijing, China

Equipment Under Test (EUT)

Product Name: LTE Indoor CPE

Model No.: EG3015M-M30-HP-EUD, EG3015M-M11-HP-EUD

Trade mark: Baicells

FCC ID: 2AG323015MM30HPEUD

Applicable standards: FCC CFR Title 47 Part 2, Part 96, Part 27M

Date of sample receipt: 17 Oct., 2022

Date of Test: 18 Oct., to 13 Nov., 2022

Date of report issued: 22 Nov., 2022

Test Result: PASS

Tested by: Date: 22 Nov., 2022

Reviewed by: Date: 22 Nov., 2022

Manage

Approved by: ______ Date: _____ 22 Nov., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	14 Nov., 2022	Original
01	22 Nov., 2022	Updated page 10.

2 Contents

			Page
C	over Pa	nge	1
1	Vers	sion	2
2	Con	ntents	3
3	Gen	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T	4
	3.3	Test Mode and Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	6
	3.9	Test Instruments list	6
4	Mea	asurement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	8
	4.3	Test Procedure	9
5	Test	t Results	10
	5.1	Summary	10
	5.1.	1 Clause and Data Summary	10
	5.1.2	2 Test Limit	12
	5.2	Effective Isotropic Radiated Power (EIRP)	14
	5.3	Field Strength of Spurious Radiation	17

3 General Information

3.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address:	9-10F, 1stBldg., No.81BeiqingRoad, Haidian District, Beijing, China
Manufacturer	Baicells Technologies Co., Ltd.
Address:	9-10F, 1stBldg., No.81BeiqingRoad, Haidian District, Beijing, China

3.2 General Description of E.U.T.

Product Name:	LTE Indoor CPE	LTE Indoor CPE			
Model No.:	EG3015M-M30-HP-EUD, EG3015M-M11-HP-EUD				
Operation Frequency range:	LTE band 48: 3550MHz~3700MHz				
	LTE Band 41:	2496MHz~2690MHz			
Modulation type:	Uplink	⊠QPSK	⊠16QAM	⊠64QAM	
	Downlink	⊠QPSK	⊠16QAM	⊠64QAM	
Antenna type:	Internal antenna		•		
Antenna gain:	LTE band 48: 5.5	dBi (declare by App	licant)		
	LTE band 41: 3.5	dBi (declare by App	licant)		
Antenna Transmit Mode:	2x4 MIMO (2TX,	4RX)			
	ANT 1, ANT 3 support TXRX				
	ANT 2, ANT 4 only support RX				
Category device:	End user device				
AC adapter:	Model: S24B72-1	120A200-0K			
	Input: AC100-240V, 50/60Hz, 0.8A				
	Output: DC 12.0\				
Remake)15M-M11-HP-EUD a PCB layout, electrical		•	
	functions with the		Components used,	internal wiring and	
		HP-EUD which we ch	ose to be tested an	d only different on	
	LTE Band.			•	
	Different model (s) and LTE band:			
		HP-EUD: B41/B48			
	EG3015M-M11-HP-EUD: B48.				
Test Sample Condition:	The test samples were provided in good working order with no visible				
	defects.				

Report No.: JYTSZ-R12-2202092

3.3 Test Mode and Environment

Test Mode:	
QPSK mode:	Keep the EUT in QPSK modulation mode to communication
16QAM mode:	Keep the EUT in 16QAM modulation mode to communication
64QAM mode:	Keep the EUT in 64QAM modulation mode to communication

Remark:

^{2.} Pre-scan all modulation type (QPSK, 16-QAM, 64-QAM), and found the QPKS and 64-QAM was the worst case.)

Operating Environment:			
Temperature:	Normal: 15° ~ 35° , Extreme: -10° ~ $+45^{\circ}$		
Humidity:	5 % ~ 95 % RH		
Atmospheric Pressure:	1008 mbar		
Voltage:	Nominal: 120 Vac, Extreme: Low 102 Vac, High 138 Vac		

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-190-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

^{1.} The EUT has been tested under continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

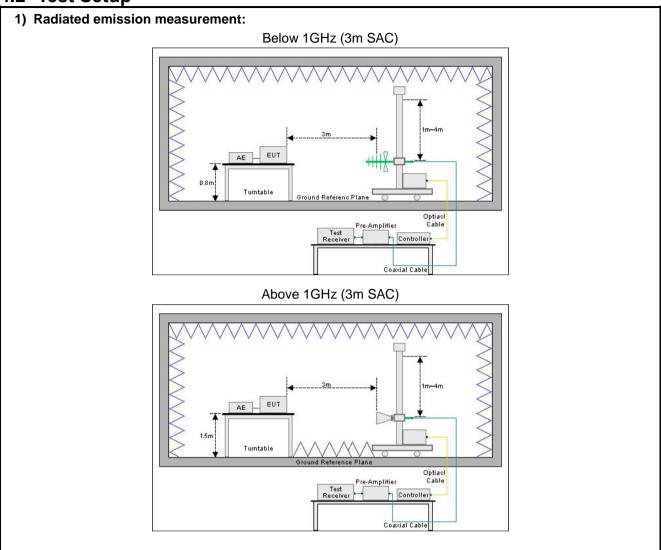
Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments list

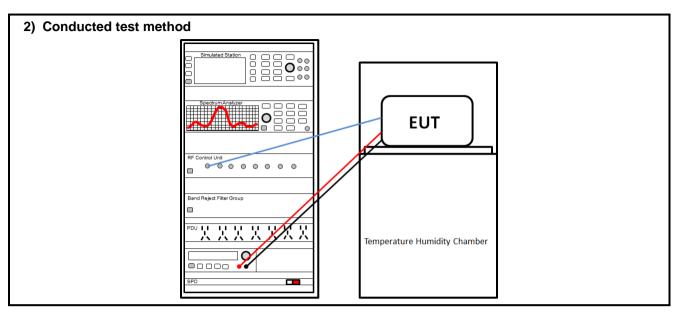
Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-02-2021	07-01-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	04-07-2022	04-06-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2021	10-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	//A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Method:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
Spectrum Analyzer	Keysight	N9020B	WXJ081-1	06-29-2022	06-28-2023		
Spectrum Analyzer	Agilent	N9020A	WXJ004-1	10-17-2022	10-16-2023		
Simulated Station	Rohde & Schwarz	CMW500	WXJ081	06-29-2022	06-28-2023		
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023		
DC Power Supply	Keysight	E3642A	WXJ025-2	N	/A		
RF Control Unit	Tonscend	JS0806-1	WXG010	N/A			
Band Reject Filter Group	Tonscend	JS0806-F	WXG010-1	N/A			
Test Software	Tonscend	TS+	V	Version: 2.6.9.0526			

4 Measurement Setup and Procedure


4.1 Test Channel

According to ANSI C63.26-2015 chapter 5.1.2.1 Table 2 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:


frequency points are as follows:							
LTE band 48							
L Channels I '		Frequency (MHz)	Channels		Frequency (MHz)		
	10 MHz			20 MHz			
Lowest channel	55290	3555.0	Lowest channel	55340	3560.0		
Middle channel	55990	3625.0	Middle channel	55990	3625.0		
Highest channel	56690	3695.0	Highest channel	56640	3690.0		
LTE band 41(2496MHz ~ 2690MHz)							
Channe	ls	Frequency (MHz)	Channels		Frequency (MHz)		
	5 MHz		10 MHz				
Lowest channel	39675	2498.5	Lowest channel	39700	2501.0		
Middle channel	40620	2593.0	Middle channel	40620	2593.0		
Highest channel	41565	2687.5	Highest channel	41540	2685.0		
15 MHz				20 MHz			
Lowest channel	39725	2503.5	Lowest channel	39750	2506.0		
Middle channel	40620	2593.0	Middle channel	40620	2593.0		
Highest channel	41515	2682.5	Highest channel	41490	2680.0		

4.2 Test Setup

4.3 Test Procedure

4.3 Test Procedure	
Test method	Test step
Radiated emission	For below 1GHz: 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all
	modulation modes. 3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report was amended on FCC ID: 2AG32EG3015MM30HP. The original report: JYTSZ-R12-2201514, issued by JianYan Testing Group Shenzhen Co., Ltd. The EG3015M-M30-HP-EUD and the original model were identical inside, the electrical circuit design, layout, components used and internal wiring, the differences between them as below: the software for EG3015M-M30-HP-EUD reduces the output power of LTE Band 48, update the model. So retest the LTE B48.

Test items	Standard clause	Test data	Result
RF Exposure	Part 1.1307 Part 2.1091	See Report: JYTSZ-R12-2202093	Pass
Effective Isotropic Radiated Power (EIRP)	Part 2.1046 Part 27.50 (h)(1) Part 96.41(b)	See Section 5.2 Appendix – LTE band 48	Pass
Peak-to-average power ratio (PAPR)	Part 96.41(g) Band 41:N/A report	Appendix – LTE band 48	Pass
	only	For Band 41, reference report JYTSZ-R12-2201514	Pass*
99% Occupied Bandwidth	Part 2.1049 Part 27.53(m)	Appendix – LTE band 48	Pass
-26 dB Occupied Bandwidth	Part 96.41(e)(3)	For Band 41, reference report JYTSZ-R12-2201514	Pass*
		Appendix – LTE band 48	Pass
Emission Mask	Part 96.41(e)(1)	For Band 41, reference report JYTSZ-R12-2201514	Pass*
Adjacent Channel Leakage Ratio	Part 96.41(e)(1)	Appendix – LTE band 48	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(m)	Appendix – LTE band 48	Pass
opunous Emissions at Antenna Terminal	Part 96.41(e)(1)(2)	For Band 41, reference report JYTSZ-R12-2201514	Pass*
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(m) Part 96.41(e)(1)(2)	See Section 5.3	Pass
Fraguency stability	Part 2.1055(a)(b)	Appendix – LTE band 48	Pass
Frequency stability	Part 27.54	For Band 41, reference report JYTSZ-R12-2201514	Pass*

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Duty cycle=(1.96ms/5ms)*100%
- 3. Offset Ext Gain = ATT loss + Cable loss + Duty cycle correction= 3dB + 1dB + 4dB(For Band 48)
- 4. Pass*: For band 41,please refer to FCC ID 2AG32EG3015MM30HP, report JYTSZ-R12-2201514 which is issued by JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2202092

ANSI/TIA-603-E-2016

ANSI C63.26-2015

Test Method: KDB 971168 D01 Power Meas License Digital Systems v03r01

KDB 940660 D01 Part 96 CBRS Eqpt v03

KDB 662911 D01 Multiple Transmitter Output v02r01

5.1.2 Test Limit

Test items	Limit						
Effective Isotropic Radiated Power (EIRP)	LTE band 41: Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power. LTE band 48:						
Power Spectral Density (PSD)	Device End User Device Category A CBSD Category B CBSD	Maximum EIRP (dBm/10 MHz) 23 30 47	Maximum PSD (dBm/MHz) N/A 20 37				
Peak-to-Average Power Ratio		eport only eak-to-average powe ower must not exceed		y CBSD			
26dB Emission Bandwidth 99% Occupied Bandwidth	N/A						
Emission Mask	channel and frequencies of this section (what have a conducted por fundamental emiss of this section (what have of this section (where of this section (whe	se specified in paragriency assignments may be soon bandwidth as specified in the upper SAS-assignelow the lower SAS-assignelow the conducted the exceed -25 dBm/MH edges are the upper to a CBSD by an SAS els, the upper and lowels. The specified in paragraph and the upper and lower specified in paragraph and the lower of any Emental emission (whe shall not exceed -13 els is the bandwidth in the lower CBSD-assigned channel the lower CBSD-assigned channel edge, the consistent han B megahertz and ledge and less than Emphannel edge, the consistent han ledge, the consistent han ledge, the consistent han ledge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge and less than Emphannel edge, the consistent has ledge and less than Emphannel edge and l	ade by the SAS to Cossion outside the ecified in paragraph inside or outside of dBm/MHz within 0-ned channel edge assigned channel edge above the upper SAO MHz below the lor power of any CBSC dand lower limits of a S, or in the case of ever limits of the company of the second User Device empty of the End User Device enducted power of and L-25 dBm/MHz. this paragraph, the Attribute of the End User Device enducted power of and L-25 dBm/MHz.	cesson, (e) (3) the 10 nd within ge. At all as wer SAS ower SAS ower SAS any multiple bined ection, for and User dission f the to B assigned oevice) 0 to B At all asD the lower y End Adjacent			

	LTE band 41:			
Out of Band Emission at Antenna	For all fixed digital user stations, the attenuation factor shall be not less than 43 + 10 log (P) dB at the channel edge.			
Terminals	LTE band 48: Notwithstanding paragraph (e)(1) of this section, for			
	CBSDs and End User Devices, the conducted power of emissions			
Field Strength of Spurious Radiation	below 3540 MHz or above 3710 MHz shall not exceed −25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above			
	3720 MHz shall not exceed -40dBm/MHz.			
Frequency Stability	The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.			

5.2 Effective Isotropic Radiated Power (EIRP)

Sport check for Band 41:

					ANT1	ANT3	MIMO	MIMO	EIDD.	
				RB	Conducted	Conducted	Conducted	EIRP	EIRP	
Band	Bandwidth	Modulation	Channel	Configuration	Power	Power	Power	(dBm)	Limit	Verdict
				3	(dBm)	(dBm)	(dBm)	,	(dBm)	
					(ubiii)	(ubiii)	(ubiii)			
Band41	5MHz	QPSK	39675	25RB#0	26.23	26.31	29.28	32.78	33.01	PASS
Band41	5MHz	QPSK	40620	25RB#0	26.25	25.88	29.08	32.58	33.01	PASS
Band41	5MHz	QPSK	41565	25RB#0	25.67	25.79	28.74	32.24	33.01	PASS
Band41	5MHz	64QAM	39675	25RB#0	26.04	26.26	29.16	32.66	33.01	PASS
Band41	5MHz	64QAM	40620	25RB#0	25.56	25.98	28.79	32.29	33.01	PASS
Band41	5MHz	64QAM	41565	25RB#0	25.89	25.93	28.92	32.42	33.01	PASS

Remark: EIRP (dBm) = Conducted power (dBm) + Antenna Gain (dBi).

Band 48:

For 10MHz measurement bandwidth									
Modulation	Test channel	ANT. Port	Output Power	Total Power	Directional	EIRP	Limit		
Modulation Test Chainle	ANT. Port	(dBm/10MHz)	(dBm/10MHz)	gain (dBi)	(dBm/10MHz)	(dBm/10MHz)			
1	Lowest	ANT 1	14.14	17.19		22.69			
	Lowest	ANT 3	14.21						
QPSK	Middle	ANT 1	12.26	15.12	5.5	20.02			
(10MHz)	ivildale	ANT 3	11.96	15.12	5.5	20.62			
	Llighoot	ANT 1	13.43	16 21		21.82			
	Highest	ANT 3	13.16	16.31		21.82	23.00		
	Lowest	ANT 1	14.21	17.20		22.80	23.00		
	Lowest	ANT 3	14.36	17.30	5.5	22.00			
64QAM	Middle	ANT 1	12.52	15.27		20.77			
(10MHz)		ANT 3	11.98			20.77			
	Highest	ANT 1	13.46	16.55		22.05			
		ANT 3	13.61						
	Lowest	ANT 1	14.25	17.20	5.5	22.70			
		ANT 3	14.12						
QPSK	Middle	ANT 1	12.17	14.98		20.48			
(20MHz)	ivildale	ANT 3	11.75	14.90		20.40			
	Highest	ANT 1	12.90	15.43		20.93	1		
	nignest	ANT 3	11.89	10.43		20.93	23.00		
	Lowest	ANT 1	14.19	17.21	5.5	22.71	23.00		
	Lowest	ANT 3	14.21	17.21		22.11			
64QAM	Middlo	ANT 1	12.07	15.10		20.60			
(20MHz)	Middle	ANT 3	12.11	15.10					
	Highoot	ANT 1	12.64	15.74		21.24			
	Highest	ANT 3	12.81	15.74					

Remark:

^{1.} All transmit signals are completely uncorrelated with each other, Directional gain = GANT =5.5 dBi.

For 20Mz bandwidth measurement bandwidth									
Modulation	Test channel	ANT. Port	Output Power (dBm/20MHz)	Total Power (dBm/20MHz)	Directional gain (dBi)	EIRP (dBm/20MHz)	Limit (dBm/20 MHz)		
	Lowest	ANT 1	16.68	19.79		05.00			
	Lowest	ANT 3	16.88	19.79		25.29			
QPSK	QPSK (20MHz) Middle	ANT 1	15.69	18.56	5.5	24.06			
(20MHz)		ANT 3	15.40	10.50	3.3				
	Highest	ANT 1	15.62	18.54		24.04			
		ANT 3	15.43	10.54			N/A		
	Lowest	ANT 1	16.16	10.20		24.89	IN/A		
	Lowest	ANT 3	16.59	19.39		24.09			
64QAM (20MHz)	Middle	ANT 1	15.22	18.03	<i>E E</i>	22.52			
	ivildale	ANT 3	14.81		5.5	23.53	-		
	Llighoot	ANT 1	15.96	18.76		24.26			
	Highest	ANT 3	15.52						

Remark:

^{1.} All transmit signals are completely uncorrelated with each other, Directional gain = GANT =5.5 dBi.

5.3 Field Strength of Spurious Radiation

Sport check for Band 41:

LTE band 41 – 20 MHz bandwidth									
Lowest channel									
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5012.00	-37.48	3.70	-33.78	-13.00	20.78	Vertical			
7518.00	-42.91	11.74	-31.17	-13.00	18.17	Vertical			
10024.00	-36.31	17.18	-19.13	-13.00	6.13	Vertical			
5012.00	-29.94	3.26	-26.68	-13.00	13.68	Horizontal			
7518.00	-41.05	10.25	-30.80	-13.00	17.80	Horizontal			
10024.00	-37.25	16.69	-20.56	-13.00	7.56	Horizontal			
Middle channel									
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5186.00	-37.46	4.00	-33.46	-13.00	20.46	Vertical			
7779.00	-42.67	11.19	-31.48	-13.00	18.48	Vertical			
10372.00	-36.01	19.16	-16.85	-13.00	3.85	Vertical			
5186.00	-29.85	3.50	-26.35	-13.00	13.35	Horizontal			
7779.00	-41.34	10.72	-30.62	-13.00	17.62	Horizontal			
10372.00	-36.26	17.88	-18.38	-13.00	5.38	Horizontal			
		Hi	ghest channel						
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5360.00	-37.62	3.87	-33.75	-13.00	20.75	Vertical			
8040.00	-42.73	12.42	-30.31	-13.00	17.31	Vertical			
10720.00	-35.72	19.45	-16.27	-13.00	3.27	Vertical			
5360.00	-29.34	3.36	-25.98	-13.00	12.98	Horizontal			
8040.00	-41.56	11.96	-29.60	-13.00	16.60	Horizontal			
10720.00	-37.02	18.93	-18.09	-13.00	5.09	Horizontal			

Remark:

^{1.} The emission levels of below 1 GHz are lower than the limit 20dB, so not show in test report.

Remark: During the test, pre-scan the QPSK, 64QAM modulation, and found the QPSK modulation is the worst case.(for Band 48)

LTE band 48 (20 MHz) - QPSK									
Lowest channel									
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
7120.00	-52.36	3.70	-48.66	-40.00	8.66	Vertical			
10680.00	-57.86	11.74	-46.12	-40.00	6.12	Vertical			
7120.00	-51.79	3.26	-48.53	-40.00	8.53	Horizontal			
10680.00	-55.88	10.25	-45.63	-40.00	5.63	Horizontal			
Middle channel									
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
7250.00	-52.48	4.00	-48.48	-40.00	8.48	Vertical			
10875.00	-56.75	11.19	-45.56	-40.00	5.56	Vertical			
7250.00	-49.68	3.50	-46.18	-40.00	6.18	Horizontal			
10875.00	-56.18	10.72	-45.46	-40.00	5.46	Horizontal			
		l	Highest channel						
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization			
7380.00	-52.48	3.87	-48.61	-40.00	8.61	Vertical			
11070.00	-57.64	12.42	-45.22	-40.00	5.22	Vertical			
7380.00	-51.62	3.36	-48.26	-40.00	8.26	Horizontal			
11070.00	-58.56	11.96	-46.60	-40.00	6.60	Horizontal			
Remark:									

The emission levels of below 1 GHz are lower than the limit 20dB and not show in test report.

Note: During the test, pre-scan all modulation and bandwidth, and found the QPSK modulation and bandwidth of 20MHz is the worst case.

-----End of report-----