



# Radio Test Report Sound Devices LLC A20-SuperNexus

28303

47 CFR Part 15.247 Effective Date 1st October 2023 DTS, Digital Transmission System Test Date: 2nd April 2024 to 8th April 2024 Report Number: 04-14508-4-24 Issue 01

The testing was carried out by Kiwa Ltd t/a Kiwa Electrical Compliance, an independent test house, at their test facility located at:

*Kiwa Electrical Compliance* Arnolds Court Arnolds Farm Lane Mountnessing Essex CM13 1UT U.K.

www.kiwa.com

Telephone: +44 (0) 1277 352219 Email: uk.rnenquiries@kiwa.com

This laboratory is accredited in accordance with the recognised International Standard ISO/IEC 17025. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF communiqué dated April 2017).

This report is not to be reproduced by any means except in full and in any case not without the written approval of Kiwa Electrical Compliance.



# Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT

# Certificate of Test 14508-4

The equipment noted below has been fully tested by Kiwa Electrical Compliance and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

| Equipment:                                                                                  | A20-SuperNexus                                                                                                              |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Model Number:                                                                               | 28303                                                                                                                       |
| Unique Serial Number:                                                                       | VZ0023254011                                                                                                                |
| Applicant:<br>Proposed FCC ID<br>Full measurement results are<br>detailed in Report Number: | Sound Devices LLC<br>E7556 State Road 23 and 33<br>Reedsburg<br>Wisconsin<br>53959<br>2AKLX-28303<br>04-14508-4-24 Issue 01 |
| Test Standards:                                                                             | 47 CFR Part 15.247 Effective Date 1st October 2023<br>DTS, Digital Transmission System                                      |

#### NOTE:

This report covers Bluetooth operation only.

Certain tests were not performed based upon applicant's declarations. Certain other requirements are subject to applicant's declaration only and have not been tested/verified. For details refer to section 3 of this report.

#### DEVIATIONS:

No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date of Test:

2nd April 2024 to 8th April 2024

Test Engineer: Jack Chilvers Jette

Approved By: Radio Approvals Manager

Customer Representative:



# 1 Contents

|    | Contractor                                                            | 0  |
|----|-----------------------------------------------------------------------|----|
| 1  | Contents                                                              |    |
| 2  |                                                                       |    |
|    | 2.1 Equipment specification                                           |    |
|    | 2.2 Configurations for testing                                        | 5  |
|    | 2.3 Functional description                                            | 6  |
|    | 2.4 Modes of operation                                                |    |
| :  | 2.5 Emissions configuration                                           |    |
| 3  | Summary of test results                                               |    |
| 4  |                                                                       |    |
|    | 4.1 Relevant standards                                                |    |
|    | 4.1 Deviations                                                        |    |
| 5  | Tests, methods and results                                            |    |
| -  |                                                                       |    |
|    | 5.1 AC power line conducted emissions                                 |    |
|    | 5.2 Radiated emissions 9 - 150 kHz.                                   | 15 |
|    | 5.3 Radiated emissions 150 kHz - 30 MHz                               | 17 |
| 4  | 5.4 Radiated emissions 30 MHz -1 GHz                                  |    |
| 4  | 5.5 Radiated emissions above 1 GHz                                    | 21 |
| 4  | 5.6 Effective radiated power field strength                           |    |
| 4  | 5.7 Band Edge Compliance                                              |    |
| 1  | 5.8 Occupied bandwidth                                                |    |
| 4  | 5.9 Maximum Average conducted output power                            | 29 |
| 1  | 5.10 Maximum Peak conducted output power                              | 30 |
| 4  | 5.11 Maximum Power Spectral Density                                   |    |
| 1  | 5.12 Antenna power conducted emissions                                |    |
| 1  | 5.13 Duty cycle                                                       |    |
| 1  | 5.14 FHSS carrier frequency separation                                |    |
|    | 5.15 Average time of occupancy                                        |    |
|    | 5.16 Number of Hop Channels                                           |    |
| 6  | Plots/Graphical results                                               |    |
| -  | 6.1 AC power line conducted emissions.                                |    |
|    | <ul> <li>6.2 Radiated emissions 9 - 150 kHz.</li> </ul>               |    |
|    | 0.2 Reliated emissions 9 - 100 kHz                                    |    |
|    | 6.3 Radiated emissions 150 kHz - 30 MHz                               |    |
|    | 6.4 Radiated emissions 30 MHz -1 GHz                                  |    |
|    | 6.5 Radiated emissions above 1 GHz                                    |    |
|    | 6.6 Effective radiated power field strength                           | 54 |
|    | 6.7 Band Edge Compliance                                              | 56 |
|    | 6.8 Occupied bandwidth                                                |    |
|    | 6.9 Maximum Peak conducted output power                               | 64 |
|    | 6.10 Maximum Power Spectral Density                                   | 70 |
|    | 6.11 Duty cycle                                                       |    |
| 7  |                                                                       | 79 |
|    | 7.1 Explanation of Table of Signals Measured                          | 79 |
|    | 7.2 Explanation of limit line calculations for radiated measurements  | 79 |
| 8  | Photographs                                                           | 81 |
| -  | 8.1 EUT Front View                                                    |    |
|    | 8.2 EUT Reverse Angle                                                 |    |
|    | 8.3 EUT Left side View                                                |    |
|    | 8.4 EUT Right side View                                               |    |
|    | 8.5 EUT Antenna                                                       |    |
|    | 8.6 EUT Display & Controls                                            |    |
|    |                                                                       |    |
|    | <ul> <li>8.7 EUT Internal photos</li> <li>8.8 EUT ID Label</li> </ul> |    |
|    |                                                                       |    |
|    | 8.9 AC power line conducted emissions.                                |    |
|    | 8.10 Radiated emissions 150 kHz - 30 MHz                              |    |
|    | 8.11 Radiated emissions 30 MHz -1 GHz                                 |    |
|    | 8.12 Radiated emissions above 1 GHz                                   |    |
|    | 8.13 Radiated emission diagrams                                       |    |
|    | 8.14 AC powerline conducted emission diagram                          |    |
| 9  | Test equipment calibration list                                       |    |
| 10 | 0 Auxiliary and peripheral equipment                                  | 99 |
|    | 10.1 Customer supplied equipment                                      |    |
|    | 10.2 Kiwa Electrical Compliance supplied equipment                    |    |
| 11 |                                                                       |    |
|    | 11.1 Modifications before test                                        |    |
|    | 11.2 Modifications during test                                        |    |
| 12 | 5                                                                     |    |
| 13 |                                                                       |    |
| 13 | 3 Abbreviations and units                                             |    |

# 2 Equipment under test (EUT)

# 2.1 Equipment specification

| Applicant                 | Sound Devices LLC                                                                |               |  |  |  |
|---------------------------|----------------------------------------------------------------------------------|---------------|--|--|--|
| Applicant                 | E7556 State Road 23 and 33                                                       |               |  |  |  |
|                           | Reedsburg                                                                        |               |  |  |  |
|                           | Wisconsin                                                                        |               |  |  |  |
|                           | 53959                                                                            |               |  |  |  |
|                           |                                                                                  |               |  |  |  |
| Manufacturer of EUT       | Sound Devices LLC                                                                |               |  |  |  |
| Full Name of EUT          | A20-SuperNexus                                                                   |               |  |  |  |
| Model Number of EUT       | 28303                                                                            |               |  |  |  |
| Serial Number of EUT      | VZ0023254011                                                                     |               |  |  |  |
| Date Received             | 2 <sup>nd</sup> April 2024                                                       |               |  |  |  |
| Date of Test:             | 2nd April 2024 to 8th April 2024                                                 |               |  |  |  |
| Purpose of Test           | To demonstrate design compliance to the relevant rules of Chapter 47 of the Code |               |  |  |  |
| Fulpose of Test           | of Federal Regulations.                                                          |               |  |  |  |
| Date Report Issued        | 17th July 2024                                                                   |               |  |  |  |
|                           |                                                                                  |               |  |  |  |
| Main Function             | Multi-Channel Wireless Microph                                                   | one Receiver  |  |  |  |
| Information Specification | Height                                                                           | 42 mm         |  |  |  |
|                           | Width                                                                            | 446 mm        |  |  |  |
|                           | Depth                                                                            | 310 mm        |  |  |  |
|                           | Weight 4 kg                                                                      |               |  |  |  |
|                           |                                                                                  | DC: 10-18 VDC |  |  |  |
|                           | Voltage                                                                          | AC: 230 VAC   |  |  |  |
|                           | Current                                                                          | DC: 5A        |  |  |  |
|                           | Current AC: 5A                                                                   |               |  |  |  |

# 2.2 Configurations for testing

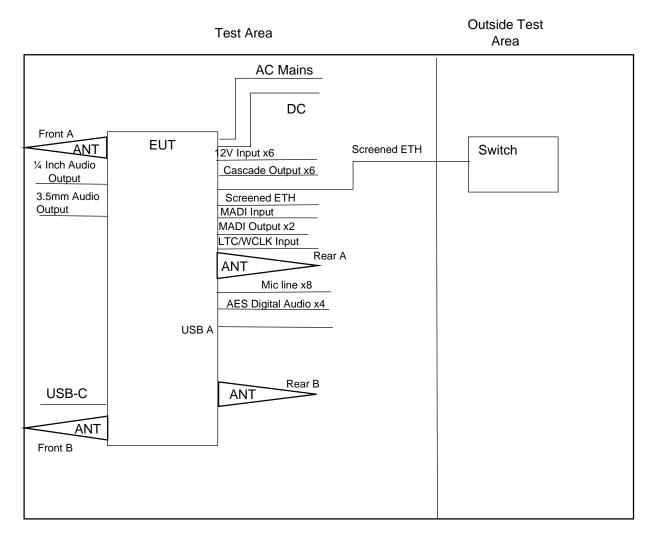
| General Parameters                 |                                            |
|------------------------------------|--------------------------------------------|
| EUT Normal use position            | Rack Mounted                               |
| Choice of model(s) for type tests  | Engineering production sample              |
| Antenna details                    | External                                   |
| Antenna port                       | External                                   |
| Baseband Data port (yes/no)?       | no                                         |
| Highest Signal generated in EUT    | 2480 MHz                                   |
| Lowest Signal generated in EUT     | 2402 MHz                                   |
| Hardware Version (HVIN)            | 28303                                      |
| Software Version                   | Not Applicable                             |
| Firmware Version (FVIN)            | v0.01                                      |
| Type of Equipment                  | Multi-Channel Wireless Microphone Receiver |
| Technology Type                    | BLE                                        |
| Geo-location (yes/no)              | no                                         |
| TX Parameters                      |                                            |
| Alignment range – transmitter      | 2400 – 2483.5 MHz                          |
| EUT Declared Modulation Parameters | GFSK                                       |
| EUT Declared Power level           | +6dBm                                      |
| EUT Declared Signal Bandwidths     | 1Mbs                                       |
| EUT Declared Channel Spacing's     | 2MHz                                       |
| EUT Declared Duty Cycle            | 10-15%                                     |
| Unmodulated carrier available?     | no                                         |
| Declared frequency stability       | <50kHz                                     |
| RX Parameters                      |                                            |
| Alignment range – receiver         | 2400 – 2483.5 MHz                          |
| EUT Declared RX Signal Bandwidth   | 1Mbs                                       |
| Receiver Signal Level (RSL)        | -96dBm                                     |
| Method of Monitoring Receiver BER  | RX test with Companion TX                  |
| FCC Parameters                     |                                            |
| FCC Transmitter Class              | DTS, Digital Transmission System           |

# 2.3 Functional description

The A20-SuperNexus is a professional 32-channel digital wireless microphone receiver Intended for PSME (Professional Programme Making and Special Events) applications.

It is compatible with A10-TX, A20-MINI, and A20-TX wireless microphone transmitters from Sound Devices. It has a very wide tuning range of 169-1525 MHz for accessing new wireless microphone spectrum allocations in Europe, Asia, Japan, United States and Canada.

The receiver is intended for 19-inch rack mounting, and measures 1.75 inches (1U) in height. It includes Dante and Ethernet interfaces; USB-C, USB-A; x32 AES outputs; x32 Mic/Line analogue inputs; x3 MADI interfaces; x3 BNC diversity antenna inputs with 12V antenna powering and support for Smart antennas; antenna cascade outputs for looping through to other receivers; long-range proprietary 2.4 GHz wireless back-link


("NexLink") and Bluetooth LE for remote control of microphone transmitters; ¼-inch and 3.5 mm headphone jacks; OLED touchscreens and a built-in web server for setup, control, and monitoring via phone, tablet, or computer.

The receiver is powered from 10-18V DC, or 100-240V AC mains, it will also support PoE+ Powered peripherals from Sound Devices.

# 2.4 Modes of operation

| Mode Reference | Description                                                      | Used for testing |
|----------------|------------------------------------------------------------------|------------------|
| Mode 1         | Constant Transmit BLE Channel 0 (2402MHz) Antenna Port: Front A  | Yes              |
| Mode 2         | Constant Transmit BLE Channel 19 (2440MHz) Antenna Port: Front A | Yes              |
| Mode 3         | Constant Transmit BLE Channel 39 (2480MHz) Antenna Port: Front A | Yes              |
| Mode 4         | Constant Transmit BLE Channel 0 (2402MHz) Antenna Port: Front B  | Yes              |
| Mode 5         | Constant Transmit BLE Channel 19 (2440MHz) Antenna Port: Front B | Yes              |
| Mode 6         | Constant Transmit BLE Channel 39 (2480MHz) Antenna Port: Front B | Yes              |
| Mode 7         | Constant Transmit BLE Channel 0 (2402MHz) Antenna Port: Rear A   | Yes              |
| Mode 8         | Constant Transmit BLE Channel 19 (2440MHz) Antenna Port: Rear A  | Yes              |
| Mode 9         | Constant Transmit BLE Channel 39 (2480MHz) Antenna Port: Rear A  | Yes              |
| Mode 10        | Constant Transmit BLE Channel 0 (2402MHz) Antenna Port: Rear B   | Yes              |
| Mode 11        | Constant Transmit BLE Channel 19 (2440MHz) Antenna Port: Rear B  | Yes              |
| Mode 12        | Constant Transmit BLE Channel 39 (2480MHz) Antenna Port: Rear B  | Yes              |

# 2.5 Emissions configuration



The EUT is primarily be powered from 120VAC 60Hz via the customers supplied mains lead but it also has a back-up power option via a 5 pin DC port at 12VDC.

The +12V Inputs were terminated with a 60 Ohm DC loads, the Cascade Outputs were terminated with 50 Ohm RF loads, the USB was unterminated, One Ethernet was terminated into a switch, the MADI inputs' and outputs were terminated with 75 Ohm loads, the LTC/WCLK Input was terminated with 75 Ohm load, the AES ports were terminated with 110 Ohm loads, the Mic/Line Analogue Audio ports were terminated with 600 Ohm loads, the 3.5 mm audio output was terminated with an 100 Ohm load and the 1/4 Inch audio output was terminated with a 100 Ohm load.

For AC conducted emissions the EUT was tested powered from a 1 meter mains lead to test the AC port. To Test the DC port it was powered via a typical off the shelf AC/DC adaptor, this can be found in section 10.2 of this report.

For conducted tests the external antenna SMA ports were used. The unit was configured with engineering menus in software to allow permanent transmit modes of device on the top, middle and bottom channels as stated within section 2.4 of this report. The Transmit modes were set using the engineering mode provided within the unit. The transmit mode was repeatedly transmitting with approximately 50% duty cycle. The power settings for each channel were as stated below:-

Low Channel (2402 MHz) = Power Setting:8 (Declared Maximum) Mid Channel (2440 MHz) only = Power Setting:8 (Declared Maximum) High Channel (2480 MHz) only = Power Setting:8 (Declared Maximum)

File Name: Sound Devices LLC.14508-4 Issue 01 QMF21J - Issue 05 - KEC Issue 04; 47 CFR Part 15C 2023 Unless stated all results are using the worst-case AC powered configuration/set-up.

# 2.5.1 Signal leads

| Port Name                     | Cable Type               | Connected |
|-------------------------------|--------------------------|-----------|
| AC Mains                      | 3 Core                   | Yes       |
| DC                            | 2 Core                   | Yes       |
| Antenna Front A               | SMA Coax                 | Yes       |
| Antenna Front B               | SMA Coax                 | Yes       |
| Antenna Rear A                | SMA Coax                 | Yes       |
| Antenna Rear B                | SMA Coax                 | Yes       |
| A1+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| A2+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| A3+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| B1+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| B2+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| B3+12V Input                  | BNC 50 Ohm Coax          | Yes       |
| A1 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| A2 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| A3 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| B1 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| B2 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| B3 Cascade Output             | BNC 50 Ohm Coax          | Yes       |
| Eth 1 POE Output              | Screened                 | Yes       |
| Eth 2                         | Screened                 | Yes       |
| Optical 1                     | Fibre                    | No        |
| Optical 2                     | Fibre                    | No        |
| MADI Input                    | BNC 75 Ohm Coax          | Yes       |
| MADI Output 1                 | BNC 75 Ohm Coax          | Yes       |
| MADI Output 2                 | BNC 75 Ohm Coax          | Yes       |
| LTC/WCLK Input                | BNC 75 Ohm Coax          | Yes       |
| AES 1-8 Digital Audio         | Eth                      | Yes       |
| AES 9-16 Digital Audio        | Eth                      | Yes       |
| AES 17-24 Digital Audio       | Eth                      | Yes       |
| AES 25-32 Digital Audio       | Eth                      | Yes       |
| Mic/Line 1-4 Analogue Audio   | Eth                      | Yes       |
| Mic/Line 5-8 Analogue Audio   | Eth                      | Yes       |
| Mic/Line 9-12 Analogue Audio  | Eth                      | Yes       |
| Mic/Line 13-16 Analogue Audio | Eth                      | Yes       |
| Mic/Line 17-20 Analogue Audio | Eth                      | Yes       |
| Mic/Line 21-24 Analogue Audio | Eth                      | Yes       |
| Mic/Line 25-28 Analogue Audio | Eth                      | Yes       |
| Mic/Line 29-32 Analogue Audio | Eth                      | Yes       |
| 3.5 mm audio output           | Audio Lead               | Yes       |
| ¼ Inch audio output           | Audio Lead               | Yes       |
| USB-A                         | USB                      | Yes       |
| USB-C                         | JSB Yes                  |           |
| USB-A                         | For Engineering use only | No        |

# **3** Summary of test results

The A20-SuperNexus was tested for compliance to the following standard(s):

# 47 CFR Part 15.247 Effective Date 1st October 2023 DTS, Digital Transmission System

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Title                                        | References                                      | Results                     |
|----------------------------------------------|-------------------------------------------------|-----------------------------|
| Transmitter Tests                            |                                                 |                             |
| 1. AC power line conducted emissions         | 47 CFR Part 15C Part 15.207                     | PASSED                      |
| 2. Radiated emissions 9 - 150 kHz            | 47 CFR Part 15C Part 15.209                     | PASSED                      |
| 3. Radiated emissions 150 kHz - 30 MHz       | 47 CFR Part 15C Part 15.209                     | PASSED                      |
| 4. Radiated emissions 30 MHz -1 GHz          | 47 CFR Part 15C Part 15.247(d) & 15.209         | PASSED                      |
| 5. Radiated emissions above 1 GHz            | 47 CFR Part 15C Part 15.247(d) & 15.209         | PASSED                      |
| 6. Effective radiated power field strength   | 47 CFR Part 15C Part 15.247(d)                  | PASSED                      |
| 7. Band Edge Compliance                      | 47 CFR Part 15C Part 15.215 & 15.247(d)         | PASSED                      |
| 8. Occupied bandwidth                        | 47 CFR Part 15C Part 15.247(a)(2)/15.215        | PASSED                      |
| 9. Maximum Average conducted output<br>power | 47 CFR Part 15C Part 15.247(b3)                 | NOT APPLICABLE <sup>1</sup> |
| 10. Maximum Peak conducted output power      | 47 CFR Part 15C Part 15.247(b)(3)               | PASSED                      |
| 11. Maximum Power Spectral Density           | 47 CFR Part 15C Part 15.247(e)                  | PASSED                      |
| 12. Antenna power conducted emissions        | 47 CFR Part 15C Part 15.247(d)                  | NOT APPLICABLE <sup>3</sup> |
| 13. Duty cycle                               | 47 CFR Part 15C Part 15.35(c)                   | PERFORMED <sup>4</sup>      |
| 14. FHSS carrier frequency separation        | 47 CFR Part 15C Part 15.247(a1)                 | NOT APPLICABLE <sup>2</sup> |
| 15. Average time of occupancy                | 47 CFR Part 15C Part 15.247(a)(1)(i)/(ii)/(iii) | NOT APPLICABLE <sup>2</sup> |
| 16. Number of Hop Channels                   | 47 CFR Part 15C Part 15.247(a)(1)(i)/(ii)/(iii) | NOT APPLICABLE <sup>2</sup> |

<sup>1</sup> Peak Conducted RF Power measured; therefore this test is not required.

<sup>2</sup> EUT does not employ FHSS technology.

<sup>3</sup> The EUT was tested for radiated emissions with its dedicated antennae in position.

<sup>4</sup> No limits apply included for reference only

<sup>5</sup> Spectrum investigated up to a frequency of 25GHz based on 10 times the highest channel/ signal generated in equipment of 2480MHz.

<sup>6</sup> Spectrum investigated below 30MHz started at a frequency of 9 kHz as no lowest frequency was declared.

# 4 **Specifications**

The tests were performed and operated in accordance with Kiwa Electrical Compliance procedures and the relevant standards listed below.

# 4.1 Relevant standards

| Ref.  | Standard Number          | Version | Description                                                                                                                                                                                                                                                                                      |
|-------|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1.1 | 47 CFR Part 15C          | 2023    | Federal Communications Commission PART 15 – RADIO<br>FREQUENCY DEVICES                                                                                                                                                                                                                           |
| 4.1.2 | ANSI C63.10              | 2013    | American National Standard of Procedures for Compliance<br>Testing of Unlicensed Wireless Devices                                                                                                                                                                                                |
| 4.1.3 | ANSI C63.4               | 2014    | American National Standard for Methods of Measurement of                                                                                                                                                                                                                                         |
|       |                          |         | Radio-Noise Emissions from Low-Voltage Electrical and<br>Electronic Equipment in the Range of 9 kHz to 40 GHz                                                                                                                                                                                    |
| 4.1.4 | KDB 558074 D01<br>v05r02 | 2019    | Federal Communications Commission Office of Engineering and<br>Technology Laboratory Division; guidance for compliance<br>measurements on digital transmission system, frequency hopping<br>spread spectrum system, and hybrid system devices operating<br>under section 15.247 of the FCC rules |

# 4.2 **Deviations**

No deviations were applied.

# 5 Tests, methods and results

# 5.1 AC power line conducted emissions

# 5.1.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.2 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

# 5.1.2 Configuration of EUT

The EUT was placed on a wooden table 0.8m above the ground plane and connected to a LISN via a 1m mains cable.

Details of the Peripheral and Ancillary Equipment connected for this test are listed in section 10.

During the initial scan, no discernible difference was noted in emissions between RF channel setting or antenna port selection, therefore full tests were performed using mode 8 in both AC powered configuration and DC powered using off-the-shelf supply configuration.

# 5.1.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection.

At least 6 signals within 20dB and/or all signals within 10dB of the limit were investigated.

Tests were performed in Test Site F.

#### 5.1.4 Test equipment

E150, E035, ZSW1, E624, E411

See Section 9 for more details

#### 5.1.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

Mains powered

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Mid channel     | 2440 MHz                         |

| Plot refs                                     |
|-----------------------------------------------|
| 14508-4 Cond 1 AC Live 150k-30M Average       |
| 14508-4 Cond 1 AC Live 150k-30M Quasi-Peak    |
| 14508-4 Cond 1 AC Neutral 150k-30M Average    |
| 14508-4 Cond 1 AC Neutral 150k-30M Quasi-Peak |

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim (dB) | AV Amp<br>(dBuV) | AV -Lim (dB) |
|------------|------------|--------------------|------------------|--------------|------------------|--------------|
| 1          | 0.239      | 43.8               | 41.7             | -20.4        | 30.7             | -21.4        |
| 2          | 0.241      | 44.1               | 42.1             | -20.0        | 32.0             | -20.1        |
| 3          | 0.275      | 48.7               | 47.9             | -13.1        | 38.3             | -12.7        |
| 4          | 0.366      | 42.4               | 40.9             | -17.7        | 30.5             | -18.1        |
| 5          | 0.447      | 47.7               | 45.9             | -11.0        | 36.1             | -10.8        |
| 6          | 0.615      | 44.0               | 40.2             | -15.8        | 28.0             | -18.0        |
| 7          | 0.784      | 36.3               | 34.1             | -21.9        | 22.4             | -23.6        |
| 8          | 0.812      | 35.7               | 33.8             | -22.2        | 21.1             | -24.9        |
| 9          | 0.978      | 31.9               | 29.0             | -27.0        | 17.0             | -29.0        |
| 10         | 1.204      | 27.6               | 24.8             | -31.2        | 12.9             | -33.1        |
| 11         | 1.305      | 25.0               | 22.3             | -33.7        | 10.4             | -35.6        |
| 12         | 7.680      | 28.8               | 28.2             | -31.8        | 27.7             | -22.3        |
| 13         | 13.824     | 30.1               | 29.6             | -30.4        | 29.1             | -20.9        |

# Table of signals measured for Cond 1 AC Live 150k-30M

# Table of signals measured for Cond 1 AC Neutral 150k-30M

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim (dB) | AV Amp<br>(dBuV) | AV -Lim (dB) |
|------------|------------|--------------------|------------------|--------------|------------------|--------------|
| 1          | 0.232      | 43.4               | 41.0             | -21.4        | 28.8             | -23.6        |
| 2          | 0.239      | 43.4               | 41.4             | -20.7        | 30.6             | -21.5        |
| 3          | 0.275      | 49.3               | 48.4             | -12.6        | 39.2             | -11.8        |
| 4          | 0.364      | 41.2               | 39.9             | -18.7        | 30.7             | -17.9        |
| 5          | 0.365      | 41.7               | 40.0             | -18.6        | 30.2             | -18.4        |
| 6          | 0.453      | 47.7               | 46.7             | -10.1        | 36.1             | -10.7        |
| 7          | 0.458      | 49.0               | 47.0             | -9.7         | 36.8             | -9.9         |
| 8          | 0.612      | 43.1               | 40.0             | -16.0        | 28.8             | -17.2        |
| 9          | 0.613      | 44.2               | 40.0             | -16.0        | 28.5             | -17.5        |
| 10         | 0.677      | 32.1               | 28.6             | -27.4        | 15.9             | -30.1        |
| 11         | 0.811      | 37.8               | 34.0             | -22.0        | 20.8             | -25.2        |
| 12         | 1.005      | 32.7               | 29.2             | -26.8        | 17.2             | -28.8        |
| 13         | 1.204      | 28.3               | 25.2             | -30.8        | 13.5             | -32.5        |
| 14         | 1.355      | 25.2               | 21.5             | -34.5        | 9.7              | -36.3        |
| 15         | 7.680      | 28.9               | 28.1             | -31.9        | 27.7             | -22.3        |
| 16         | 13.824     | 30.0               | 29.5             | -30.5        | 29.0             | -21.0        |

# DC Powered

| Band            | 2400-2483.5 MHz          |
|-----------------|--------------------------|
|                 | 8 dBm set internal (Port |
| Power Level     | Rear A)                  |
| Channel Spacing | 2 MHz                    |
| Mod Scheme      | OFDM                     |
| Mid channel     | 2440 MHz                 |

| Plot refs                                     |
|-----------------------------------------------|
| 14508-6 Cond 2 AC Live 150k-30M Average       |
| 14508-6 Cond 2 AC Live 150k-30M Quasi-Peak    |
| 14508-6 Cond 2 AC Neutral 150k-30M Average    |
| 14508-6 Cond 2 AC Neutral 150k-30M Quasi-Peak |

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim<br>(dB) | AV Amp<br>(dBuV) | AV -Lim<br>(dB) |
|------------|------------|--------------------|------------------|-----------------|------------------|-----------------|
| 1          | 0.169      | 46.4               | 39.3             | -25.7           | 15.6             | -39.4           |
| 2          | 0.175      | 45.6               | 38.7             | -26.0           | 15.0             | -39.7           |
| 3          | 0.190      | 44.7               | 37.6             | -26.4           | 14.1             | -39.9           |
| 4          | 0.298      | 42.1               | 35.2             | -25.1           | 12.8             | -37.5           |
| 5          | 0.354      | 40.2               | 33.7             | -25.2           | 12.0             | -36.9           |
| 6          | 0.641      | 41.8               | 34.9             | -21.1           | 9.3              | -36.7           |

# Table of signals measured for Cond 1 DC Positive 150k-30M

# Table of signals measured for Cond 1 DC Negative 150k-30M

|            | U U        |                    |                  | U U          |                  |              |
|------------|------------|--------------------|------------------|--------------|------------------|--------------|
| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim (dB) | AV Amp<br>(dBuV) | AV -Lim (dB) |
| 1          | 0.173      | 46.5               | 39.5             | -25.3        | 15.3             | -39.5        |
| 2          | 0.197      | 44.9               | 38.0             | -25.7        | 14.0             | -39.7        |
| 3          | 0.337      | 42.8               | 36.9             | -22.4        | 14.2             | -35.1        |
| 4          | 0.617      | 41.5               | 34.6             | -21.4        | 10.1             | -35.9        |
| 5          | 0.698      | 38.5               | 31.5             | -24.5        | 8.4              | -37.6        |
| 6          | 0.738      | 35.5               | 28.6             | -27.4        | 7.3              | -38.7        |

No discernible difference was noted in emissions between channels (exploratory measurements); therefore, the final measurements are presented for TX mid channel mode only for antenna A rear settings.

# LIMITS:

15.207: as given in the above tables / drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: UE70 9kHz to 150kHz ±3.76dB, UE71 150kHz to 30MHz ±3.4dB

# 5.2 Radiated emissions 9 - 150 kHz

#### 5.2.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

# 5.2.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was tested with it's antennas in vertical and horizontal positions.

No discernible difference was noted in emissions between channels, therefore the EUT was operated in Mode 8 for tests.

#### 5.2.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

#### 5.2.4 Test equipment

TMS81, ZSW1, E624, E411

See Section 9 for more details

#### 5.2.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Mid channel     | 2440 MHz                         |

| Plot refs                    |  |
|------------------------------|--|
| 14508-4 Rad 2 9k-150kHz Para |  |
| 14508-4 Rad 2 9k-150kHz Perp |  |

No discernible difference was noted in emissions between channels (exploratory measurements); therefore, the final measurements are presented for TX mid channel mode only for antenna A rear setting.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

# LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $9kHz - 30MHz \pm 3.9dB$ 

# 5.3 Radiated emissions 150 kHz - 30 MHz

#### 5.3.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]
ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]
47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

# 5.3.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was tested with it's antennas in vertical and horizontal positions.

No discernible difference was noted in emissions between channels, therefore the EUT was operated in Mode 8 for tests.

#### 5.3.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

#### 5.3.4 Test equipment

TMS81, ZSW1, E624, E411

See Section 9 for more details

#### 5.3.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Mid channel     | 2440 MHz                         |

| Plot refs                     |  |
|-------------------------------|--|
| 14508-4 Rad 2 150k-30MHz Para |  |
| 14508-4 Rad 2 150k-30MHz Perp |  |

No discernible difference was noted in emissions between channels (exploratory measurements); therefore, the final measurements are presented for TX mid channel mode only for antenna A rear setting.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

# ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

# LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector. 15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20dB from the level of the fundamental and meet the general limits of 15.209. The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $9kHz - 30MHz \pm 3.9dB$ 

# 5.4 Radiated emissions 30 MHz -1 GHz

# 5.4.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.5 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

# 5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was tested with its antennas in vertical and horizontal positions.

No discernible difference was noted in emissions between channel settings or antenna port settings. The EUT was operated in Mode 8 for full tests.

# 5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made on a site listed with the FCC. The equipment was rotated 360 degrees and the antenna scanned 1 - 4 metres in both horizontal and vertical polarisations to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

# 5.4.4 Test equipment

LPE364, E743, NSA-M, ZSW1, E624, E411

See Section 9 for more details

#### 5.4.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Mid channel     | 2440 MHz                         |

| Plot refs              |
|------------------------|
| 4508-4 Rad 2 VHF Horiz |
| 4508-4 Rad 2 VHF Vert  |
| 4508-4 Rad 2 UHF Horiz |
| 4508-4 Rad 2 UHF Vert  |

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV/m) | QP Amp (dBuV/m) | QP -Lim (dB) |
|------------|------------|----------------------|-----------------|--------------|
| 1          | 99.999     | 28.0                 | 25.1            | -18.4        |
| 2          | 124.999    | 32.9                 | 29.9            | -13.6        |
| 3          | 141.329    | 29.5                 | 23.4            | -20.1        |
| 4          | 150.857    | 31.7                 | 24.5            | -19.0        |
| 5          | 199.999    | 32.4                 | 30.8            | -12.7        |
| 6          | 266.665    | 34.6                 | 32.1            | -13.9        |
| 7          | 300.790    | 34.5                 | 31.6            | -14.4        |
| 8          | 324.206    | 34.8                 | 31.8            | -14.2        |
| 9          | 500.002    | 44.2                 | 42.7            | -3.3         |
| 10         | 625.007    | 39.9                 | 36.5            | -9.5         |
| 11         | 651.488    | 36.0                 | 30.0            | -16.0        |
| 12         | 750.003    | 39.1                 | 35.8            | -10.2        |

# Table of signals measured for 2440 MHz Horizontal Sig List

# Table of signals measured for 2440 MHz Vertical Sig List

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV/m) | QP Amp (dBuV/m) | QP -Lim (dB) |
|------------|------------|----------------------|-----------------|--------------|
| 1          | 50.726     | 27.0                 | 21.7            | -18.3        |
| 2          | 73.728     | 26.8                 | 24.6            | -15.4        |
| 3          | 99.999     | 31.6                 | 29.1            | -14.4        |
| 4          | 124.999    | 32.8                 | 30.0            | -13.5        |
| 5          | 141.206    | 37.4                 | 32.1            | -11.4        |
| 6          | 199.999    | 30.3                 | 28.4            | -15.1        |
| 7          | 266.658    | 29.7                 | 24.7            | -21.3        |
| 8          | 500.004    | 37.2                 | 34.0            | -12.0        |
| 9          | 625.003    | 39.1                 | 35.7            | -10.3        |

No discernible difference was noted in emissions between channels (exploratory measurements); therefore, the final measurements are presented for TX mid channel mode only for rear antenna A setting.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

# LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $30MHz - 1000MHz \pm 6.1dB$ 

# 5.5 Radiated emissions above 1 GHz

#### 5.5.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.6 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report]

# 5.5.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was tested with the antennas in vertical and horizontal positions.

The EUT was operated in Mode 7, Mode 8 and Mode 9 for tests.

#### 5.5.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the whole of the EUT was contained within the main beam. The EUT was rotated through 360 degrees to record the worst-case emissions. A measurement distance of 3m was used between the test range 1 - 6GHz, 1.2m was used in the test range 6 - 18GHz and 0.3m was used in the test range 18 - 25GHz.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M & B.

### 5.5.4 Test equipment

E136, E411, E624, E856, E904, TMS78, TMS79, TMS82, VSWR-B, VSWR-M, ZSW1

See Section 9 for more details

#### 5.5.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Setup | Table |      |
|-------|-------|------|
| Rand  |       | 2400 |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |

| Spurious<br>Frequency<br>(MHz) | Measured Peak<br>Level (dBµV/m) | Difference to Peak<br>Limit (dB) | Measured<br>Average<br>Level<br>(dBµV/m) | Difference to<br>Average Limit<br>(dB) | EU.        | Antenna<br>Polarisation |
|--------------------------------|---------------------------------|----------------------------------|------------------------------------------|----------------------------------------|------------|-------------------------|
| 2500                           | 46.6                            | -27.4                            | 40.9                                     | -13.1                                  | Normal use | Horizontal              |
| 16120                          | 45.9                            | -28.1                            | 39.8                                     | -14.2                                  | Normal use | Vertical                |

# Setup Table

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | g 2 MHz                          |
| Mod Scheme      | OFDM                             |
| Mid channel     | 2440 MHz                         |

# ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

| Spurious<br>Frequency<br>(MHz) | Measured Peak<br>Level (dBµV/m) | Difference to Peak<br>Limit (dB) | Measured<br>Average<br>Level<br>(dBµV/m) | Difference to<br>Average Limit<br>(dB) |            | Antenna<br>Polarisation |
|--------------------------------|---------------------------------|----------------------------------|------------------------------------------|----------------------------------------|------------|-------------------------|
| 2500                           | 46.6                            | -27.4                            | 40.9                                     | -13.1                                  | Normal use | Horizontal              |
| 16120                          | 45.9                            | -28.1                            | 39.8                                     | -14.2                                  | Normal use | Vertical                |

| Plots                             |
|-----------------------------------|
| 14508-4 Rad 1 1-2GHz Horiz        |
| 14508-4 Rad 1 1-2GHz Vert         |
| 14508-4 Rad 1 2-5GHz Horiz        |
| 14508-4 Rad 1 2-5GHz Vert         |
| 14508-4 Rad 1 5-6GHz Horiz        |
| 14508-4 Rad 1 5-6GHz Vert         |
| 14508-4 Rad 2 6upto10GHz Horiz    |
| 14508-4 Rad 2 6upto10GHz Vert     |
| 14508-4 Rad 2 10upto12_5GHz Horiz |
| 14508-4 Rad 2 10upto12_5GHz Vert  |
| 14508-4 Rad 1 12-15GHz Horiz      |
| 14508-4 Rad 1 12-15GHz Vert       |
| 14508-4 Rad 1 15-18GHz Horiz      |
| 14508-4 Rad 1 15-18GHz Vert       |
| 14508-4 Rad 1 18-22GHz Horiz      |
| 14508-4 Rad 1 18-22GHz Vert       |
| 14508-4 Rad 1 22-25GHz Horiz      |
| 14508-4 Rad 1 22-25GHz Vert       |

# Setup Table

| Band            | 2400-2483.5 MHz               |
|-----------------|-------------------------------|
|                 | 8 dBm set internal (Port Rear |
| Power Level     | A)                            |
| Channel Spacing | 2 MHz                         |
| Mod Scheme      | OFDM                          |
| High channel    | 2480 MHz                      |

| Spurious<br>Frequency (MHz) | Measured Peak<br>Level (dBµV/m) | Difference to<br>Peak Limit (dB) |      | Difference to<br>Average Limit<br>(dB) | EUT<br>Polarisation | Antenna<br>Polarisation |
|-----------------------------|---------------------------------|----------------------------------|------|----------------------------------------|---------------------|-------------------------|
| 2500                        | 46.6                            | -27.4                            | 40.9 | -13.1                                  | Normal use          | Horizontal              |
| 16120                       | 45.9                            | -28.1                            | 39.8 | -14.2                                  | Normal use          | Vertical                |

Note: Whilst Low, Mid and High channels were tested for both Bluetooth antenna ports (A & B, front and rear), plots are for illustrative purposes only and only Middle channel, Bluetooth Antenna A rear plots are shown in this report to minimise report size as no difference could be seen.

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

# LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

File Name: Sound Devices LLC.14508-4 Issue 01 QMF21J - Issue 05 - KEC Issue 04; 47 CFR Part 15C 2023 The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 1 - 18 GHz ±3.5dB, 18 - 25 GHz ±3.9dB

# 5.6 Effective radiated power field strength

# 5.6.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.247(d) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 6.5/6.6 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.247(d) & 15.209(a) [Reference 4.1.1 of this report]

# 5.6.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was tested with the antennas in vertical and horizontal positions. Final measurements were taken at 3m. The EUT was operated in Mode 7, Mode 8 and Mode 9.

# 5.6.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment used' section. The power stated is Peak field strength. Field strength was maximised before plots were taken. Tests were performed in test site M.

20°C

50%

102kPa

# 5.6.4 Test equipment

E136, TMS82, VSWR-M, ZSW1, E624, E411

See Section 9 for more details

# 5.6.5 Test results

Temperature of test environment Humidity of test environment Pressure of test environment

| Band            | 2400-2483.5 MHz             |
|-----------------|-----------------------------|
| Power Level     | 8 dBm set internal (Rear A) |
| Channel Spacing | 2 MHz                       |
| Mod Scheme      | OFDM                        |
| Low channel     | 2402 MHz                    |
| Mid channel     | 2440 MHz                    |
| High channel    | 2480 MHz                    |

|                      | Low channel        | Mid channel        | High channel       |
|----------------------|--------------------|--------------------|--------------------|
| Peak Level (dBµV/m)  | 98.06              | 97.75              | 99.14              |
|                      | Vert, 2402 MHz,    | Vert, 2440 MHz,    | Vert, 2480 MHz,    |
| Plot reference       | EUT ant Vert, Rear | EUT ant Vert, Rear | EUT ant Vert, Rear |
|                      | A                  | А                  | А                  |
| Antenna Polarisation | Horiz              | Horiz              | Horiz              |
| EUT Polarisation     | Flat               | Flat               | Flat               |

Note: only the antenna port providing maximum peak conducted power (see section 5.10 within this report) was used for the ERP field strength test.

Analyser plots can be found in Section 6 of this report.

#### LIMITS:

The maximum output power in all cases is 30dBm/ 1watt.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm$  3.9 dB

# 5.7 Band Edge Compliance

# 5.7.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.215 & 15.247(d) [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.10 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.209(a) & 15.247(d) [Reference 4.1.1 of this report]

# 5.7.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres.

The EUT was operated in Mode 7 and Mode 9 for this test.

# 5.7.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The emission from the EUT was maximised before taking the plots. Maximised Peak emissions at the restricted and authorised band edges were measured, Peak results complied with average limits therefore, Average measurements were not required.

Tests were performed using Test Site A.

# 5.7.4 Test equipment

E136, TMS82, VSWR-M, ZSW1, E624, E411

See Section 9 for more details

#### 5.7.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | g <mark>2 MHz</mark>             |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |
| Mid channel     | 2440 MHz                         |
| High channel    | 2480 MHz                         |

| Restricted Band Edges                         | Low channel                    | High channel                          |
|-----------------------------------------------|--------------------------------|---------------------------------------|
| Restricted Peak Level measured (dBuV/m)       | 39.45                          | 46.88                                 |
|                                               | Restricted Band Edge BLE       | Restricted Band Edge BLE Channel 39   |
|                                               | Channel 0 (2402 MHz) Flat      | (2480 MHz) Flat Position, Rear A an,t |
| Restricted band edge Peak Plot                | Position, Rear A ant, Peak Det | Peak Det                              |
| Restricted Average Level<br>measured (dBuV/m) | Peak complies to average       | Peak complies to average              |

| Authorised Band Edges                     | Low channel                                        | High channel                                      |
|-------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Authorised Band Edge (dBc) value measured | 51.99                                              | 61.94                                             |
|                                           | Authorised Band Edge BLE                           | Authorised Band Edge BLE Channel 39               |
| Authorised Band Edge Plot                 | Channel 0 (2402 MHz) Flatt<br>Position, Rear A ant | (2480 MHz) Flat Position, Rear A an,t<br>Peak Det |

Note: Only worst-case highest-powered port with antenna in place was tested for band edge compliance. Analyser plots for the Band Edge Compliance can be found in Section 6 of this report. These show the 20/30dBc requirement of 15.247(d) are met at the band edges of 2400 and 2483.5 MHz, Restricted band edge plots are also shown in section 6.

The tables list the field strengths observed in the adjacent restricted bands, which are required to meet the tighter 15.209 limits.

# LIMITS:

AV = 54dBuV/m at restricted band edges PK = 74dBuV/m at restricted band edges 20dBc authorised band edges

The restricted band edges closest to the EUT frequency of 2400-2483.5MHz are 2390 & 2483.5MHz.

Further wider span plots have been taken to show the fact that there are no spurious emissions above the restricted limits of 15.209.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm$  3.9 dB

# 5.8 Occupied bandwidth

### 5.8.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.247(a)(2) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 6.9 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.247(a)(2) [Reference 4.1.1 of this report]

# 5.8.2 Configuration of EUT

The EUT was measured on a bench using a spectrum analyser connected to the external RF port. The EUT was operated in Modes 1-12 for this test.

# 5.8.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. A 100kHz RBW, 3x VBW, auto sweep time and max hold settings were used for the 6dB bandwidth.

Tests were performed using Test Site A.

#### 5.8.4 Test equipment

E755, P240

See Section 9 for more details

#### 5.8.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band            | 2400-2483.5 MHz                   |
|-----------------|-----------------------------------|
| Power Level     | 8 dBm set internal (Port Front A) |
| Channel Spacing | 2 MHz                             |
| Mod Scheme      | OFDM                              |
| Low channel     | 2402 MHz                          |
| Mid channel     | 2440 MHz                          |
| High channel    | 2480 MHz                          |

|                                | Low channel           | Mid channel           | High channel          |
|--------------------------------|-----------------------|-----------------------|-----------------------|
| 6 dB Bandwidth Result (kHz)    | 819.85                | 855.6                 | 849.2                 |
| Plot for 6 dB Bandwidth Result | 6dB OBW BLE Low       | 6dB OBW BLE Low       | 6dB OBW BLE High      |
| (MHz)                          | Channel (2402MHz) Ant | Channel (2440MHz) Ant | Channel (2480MHz) Ant |
|                                | Front A               | Front A               | Front A               |
| Operating frequency (MHz)      | 2402                  | 2440                  | 2480                  |
| 6 dB FLOW Worst case (MHz)     | 2401.590075           | 2439.5722             | 2479.5754             |
| 6 dB FHIGH Worst case (MHz)    | 2402.409925           | 2440.4278             | 2480.4246             |

| 2400-2483.5 MHz                   |
|-----------------------------------|
| 8 dBm set internal (Port Front B) |
| 2 MHz                             |
| OFDM                              |
| 2402 MHz                          |
| 2440 MHz                          |
| 2480 MHz                          |
|                                   |

|                             | Low channel | Mid channel | High channel |
|-----------------------------|-------------|-------------|--------------|
| 6 dB Bandwidth Result (kHz) | 815.45      | 856.5       | 841.8        |

| Plot for 6 dB Bandwidth Result | 6dB OBW BLE Low       | 6dB OBW BLE Low       | 6dB OBW BLE High      |
|--------------------------------|-----------------------|-----------------------|-----------------------|
| (MHz)                          | Channel (2402MHz) Ant | Channel (2440MHz) Ant | Channel (2480MHz) Ant |
|                                | Front B               | Front B               | Front B               |
| Operating frequency (MHz)      | 2402                  | 2440                  | 2480                  |
| 6 dB FLOW Worst case (MHz)     | 2401.592275           | 2439.57175            | 2479.5791             |
| 6 dB FHIGH Worst case (MHz)    | 2402.407725           | 2440.42825            | 2480.4209             |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |
| Mid channel     | 2440 MHz                         |
| High channel    | 2480 MHz                         |

|                                | Low channel           | Mid channel           | High channel      |
|--------------------------------|-----------------------|-----------------------|-------------------|
| 6 dB Bandwidth Result (kHz)    | 850.95                | 890.2                 | 884.9             |
| Plot for 6 dB Bandwidth Result | 6dB OBW BLE Low       | 6dB OBW BLE Low       | 6dB OBW BLE High  |
| (MHz)                          | Channel (2402MHz) Ant | Channel (2440MHz) Ant | Channel (2480MHz) |
|                                | Rear A                | Rear A                | Ant Rear A        |
| Operating frequency (MHz)      | 2402                  | 2440                  | 2480              |
| 6 dB FLOW Worst case (MHz)     | 2401.574525           | 2439.5549             | 2479.55755        |
| 6 dB FHIGH Worst case (MHz)    | 2402.425475           | 2440.4451             | 2480.44245        |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear B) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |
| Mid channel     | 2440 MHz                         |
| High channel    | 2480 MHz                         |

|                                      | Low channel           | Mid channel       | High channel      |
|--------------------------------------|-----------------------|-------------------|-------------------|
| 6 dB Bandwidth Result (kHz)          | 849.45                | 892.35            | 880.75            |
|                                      | 6dB OBW BLE Low       | 6dB OBW BLE Low   | 6dB OBW BLE High  |
| Plot for 6 dB Bandwidth Result (MHz) | Channel (2402MHz) Ant | Channel (2440MHz) | Channel (2480MHz) |
|                                      | Rear B                | Ant Rear B        | Ant Rear B        |
| Operating frequency (MHz)            | 2402                  | 2440              | 2480              |
| 6 dB FLOW Worst case (MHz)           | 2401.575275           | 2439.553825       | 2479.559625       |
| 6 dB FHIGH Worst case (MHz)          | 2402.424725           | 2440.446175       | 2480.440375       |

Analyser plots for the 26dB bandwidth can be found in Section 6 of this report.

# LIMITS:

15.247(a)(2) The minimum 6dB bandwidth shall be at least 500kHz.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: <± 1.9 %

# 5.9 Maximum Average conducted output power

NOT APPLICABLE: Peak Conducted RF Power measured therefore this test is not required

# 5.10 Maximum Peak conducted output power

#### 5.10.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.247(b)(3) [Reference 4.1.1 of this report] ANSI C63.10 Clause [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.247(b)(3) [Reference 4.1.1 of this report]

# 5.10.2 Configuration of EUT

The EUT was measured on a bench using a spectrum analyser connected to the external RF port. The EUT was set to each mode and test signal in turn (see section 2.4) and highest power levels recorded. The EUT was operated in Modes 1-12 for this test.

# 5.10.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below. Peak stated reading is maximum power observed using a spectrum analyser RBW > 6dB BW of the EUT.

Measurements were made on a test bench in site A.

# 5.10.4 Test equipment

E755, P240

See Section 9 for more details

# 5.10.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band         | 2400-2483.5 MHz                   |
|--------------|-----------------------------------|
| Power Level  | 8 dBm set internal (Port Front A) |
| Channel      |                                   |
| Spacing      | 2 MHz                             |
| Mod Scheme   | OFDM                              |
| Low channel  | 2402 MHz                          |
| Mid channel  | 2440 MHz                          |
| High channel | 2480 MHz                          |

| Nominal voltage result (dBm) | 2.51             | 3.10             | 2.83             |
|------------------------------|------------------|------------------|------------------|
| Single port Plot reference   | PWR Front A 2402 | PWR Front A 2440 | PWR Front A 2480 |
|                              | MHz              | MHz              | MHz              |
| 85% of voltage result (dBm)  | 2.51             | 3.10             | 2.83             |
| 115% voltage result (dBm)    | 2.51             | 3.10             | 2.83             |
| Limit in dBm                 | 30.00            | 30.00            | 30.00            |
| Maximum result (dBm)         | 2.51             | 3.10             | 2.83             |
| Margin to Limit (dB)         | -27.49           | -26.90           | -27.17           |
| Result in (W)                | 0.002            | 0.002            | 0.002            |

| Band         | 2400-2483.5 MHz                   |
|--------------|-----------------------------------|
| Power Level  | 8 dBm set internal (Port Front B) |
| Channel      |                                   |
| Spacing      | 2 MHz                             |
| Mod Scheme   | OFDM                              |
| Low channel  | 2402 MHz                          |
| Mid channel  | 2440 MHz                          |
| High channel | 2480 MHz                          |

| Nominal voltage result (dBm) | 2.55 | 3.08 | 2.75 |
|------------------------------|------|------|------|
|                              |      |      |      |

# ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

| Single port Plot reference  | PWR Front B 2402 | PWR Front B 2440 | PWR Front B 2480 |
|-----------------------------|------------------|------------------|------------------|
|                             | MHz              | MHz              | MHz              |
| 85% of voltage result (dBm) | 2.55             | 3.08             | 2.75             |
| 115% voltage result (dBm)   | 2.55             | 3.08             | 2.75             |
| Limit in dBm                | 30.00            | 30.00            | 30.00            |
| Maximum result (dBm)        | 2.55             | 3.08             | 2.75             |
| Margin to Limit (dB)        | -27.45           | -26.92           | -27.25           |
| Result in (W)               | 0.002            | 0.002            | 0.002            |

| Band         | 2400-2483.5 MHz                  |
|--------------|----------------------------------|
| Power Level  | 8 dBm set internal (Port Rear A) |
| Channel      |                                  |
| Spacing      | 2 MHz                            |
| Mod Scheme   | OFDM                             |
| Low channel  | 2402 MHz                         |
| Mid channel  | 2440 MHz                         |
| High channel | 2480 MHz                         |

| Nominal voltage result (dBm) | 2.95            | 3.8             | 3.36            |
|------------------------------|-----------------|-----------------|-----------------|
| Single port Plot reference   | PWR Rear A 2402 | PWR Rear A 2440 | PWR Rear A 2480 |
|                              | MHz             | MHz             | MHz             |
| 85% of voltage result (dBm)  | 2.95            | 3.75            | 3.36            |
| 115% voltage result (dBm)    | 2.95            | 3.75            | 3.36            |
| Limit in dBm                 | 30.00           | 30.00           | 30.00           |
| Maximum result (dBm)         | 2.95            | 3.75            | 3.36            |
| Margin to Limit (dB)         | -27.05          | -26.25          | -26.64          |
| Result in (W)                | 0.002           | 0.002           | 0.002           |

| Band         | 2400-2483.5 MHz                  |
|--------------|----------------------------------|
| Power Level  | 8 dBm set internal (Port Rear B) |
| Channel      |                                  |
| Spacing      | 2 MHz                            |
| Mod Scheme   | OFDM                             |
| Low channel  | 2402 MHz                         |
| Mid channel  | 2440 MHz                         |
| High channel | 2480 MHz                         |

| Nominal voltage result (dBm) | 2.95            | 3.75            | 3.35            |
|------------------------------|-----------------|-----------------|-----------------|
| Single port Plot reference   | PWR Rear B 2402 | PWR Rear B 2440 | PWR Rear B 2480 |
|                              | MHz             | MHz             | MHz             |
| 85% of voltage result (dBm)  | 2.95            | 3.80            | 3.35            |
| 115% voltage result (dBm)    | 2.95            | 3.80            | 3.35            |
| Limit in dBm                 | 30.00           | 30.00           | 30.00           |
| Maximum result (dBm)         | 2.95            | 3.80            | 3.35            |
| Margin to Limit (dB)         | -27.05          | -26.20          | -26.65          |
| Result in (W)                | 0.002           | 0.002           | 0.002           |

# LIMITS:

15.247(b)(3)

For systems using digital modulation in the 902-928, 2400-2483.5 or 5725-5850 MHz bands 1 Watt.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 1.0 \text{ dB}$ 

#### 5.11 **Maximum Power Spectral Density**

#### 5.11.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(e) [Reference 4.1.1 of this report] Test Method: ANSI C63.10 Clause 10.10 [Reference 4.1.2 of this report] Limits: 47 CFR Part 15C Part 15.247(e) [Reference 4.1.1 of this report]

#### 5.11.2 **Configuration of EUT**

The EUT was configured as for the Average conducted power test. The EUT was operated in Modes 1-12 for this test.

#### **Test procedure** 5.11.3

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The emission from the EUT was maximised before taking any plots. Measurements & plots were taken with the span set to 1.5 times the measured DTS bandwidth for each modulation scheme setting.

Tests were performed using Test Site A.

#### **Test equipment** 5.11.4 E755, P240

See Section 9 for more details

#### 5.11.5 **Test results**

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band            | 2400-2483.5 MHz                   |
|-----------------|-----------------------------------|
| Power Level     | 8 dBm set internal (Port Front A) |
| Channel Spacing | 2 MHz                             |
| Mod Scheme      | OFDM                              |
| Low channel     | 2402 MHz                          |
| Mid channel     | 2440 MHz                          |
| High channel    | 2480 MHz                          |

|                                                 | Low channel | Mid channel | High channel |
|-------------------------------------------------|-------------|-------------|--------------|
| RF Ant port 1 Measured PSD conducted (dBm/3kHz) | -13.04      | -12.75      | -12.80       |
| PSD Limit (dBm/3kHz)                            | 8           | 8           | 8            |
| RF Ant port 1 Margin (dB)                       | -21.04      | -20.75      | -20.80       |
|                                                 | PSD Front A | PSD Front A | PSD Front A  |
| RF Ant port 1 PSD Plot reference                | 2402 MHz    | 2440 MHz    | 2480 MHz     |

| Band            | 2400-2483.5 MHz                   |
|-----------------|-----------------------------------|
| Power Level     | 8 dBm set internal (Port Front B) |
| Channel Spacing | 2 MHz                             |
| Mod Scheme      | OFDM                              |
| Low channel     | 2402 MHz                          |
| Mid channel     | 2440 MHz                          |
| High channel    | 2480 MHz                          |

|                                                 | Low channel | Mid channel | High channel |
|-------------------------------------------------|-------------|-------------|--------------|
| RF Ant port 1 Measured PSD conducted (dBm/3kHz) | -13.20      | -12.68      | -12.90       |
| PSD Limit (dBm/3kHz)                            | 8           | 8           | 8            |
| RF Ant port 1 Margin (dB)                       | -21.20      | -20.68      | -20.90       |
|                                                 | PSD Front B | PSD Front B | PSD Front B  |
| RF Ant port 1 PSD Plot reference                | 2402 MHz    | 2440 MHz    | 2480 MHz     |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear A) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |
| Mid channel     | 2440 MHz                         |
| High channel    | 2480 MHz                         |

|                                                 | Low channel | Mid channel | High channel |
|-------------------------------------------------|-------------|-------------|--------------|
| RF Ant port 1 Measured PSD conducted (dBm/3kHz) | -12.83      | -11.89      | -12.29       |
| PSD Limit (dBm/3kHz)                            | 8           | 8           | 8            |
| RF Ant port 1 Margin (dB)                       | -20.83      | -19.89      | -20.29       |
|                                                 | PSD Rear A  | PSD Rear A  | PSD Rear A   |
| RF Ant port 1 PSD Plot reference                | 2402 MHz    | 2440 MHz    | 2480 MHz     |

| Band            | 2400-2483.5 MHz                  |
|-----------------|----------------------------------|
| Power Level     | 8 dBm set internal (Port Rear B) |
| Channel Spacing | 2 MHz                            |
| Mod Scheme      | OFDM                             |
| Low channel     | 2402 MHz                         |
| Mid channel     | 2440 MHz                         |
| High channel    | 2480 MHz                         |

|                                                 | Low channel | Mid channel | High channel |
|-------------------------------------------------|-------------|-------------|--------------|
| RF Ant port 1 Measured PSD conducted (dBm/3kHz) | -12.76      | -11.86      | -12.21       |
| PSD Limit (dBm/3kHz)                            | 8           | 8           | 8            |
| RF Ant port 1 Margin (dB)                       | -20.76      | -19.86      | -20.21       |
|                                                 | PSD Rear B  | PSD Rear B  | PSD Rear B   |
| RF Ant port 1 PSD Plot reference                | 2402 MHz    | 2440 MHz    | 2480 MHz     |

Any Analyser plots can be found in Section 6 of this report.

# LIMITS:

15.247(e) +8dBm/3kHz.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 2$  dB

# 5.12 Antenna power conducted emissions

NOT APPLICABLE: The EUT was tested for radiated emissions with its dedicated antenna in position.

# 5.13 Duty cycle

# 5.13.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.35(c) [Reference 4.1.1 of this report] ANSI C63.10 Clause 7.5 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.35c [Reference 4.1.1 of this report]

# 5.13.2 Configuration of EUT

The EUT was measured on a bench using a spectrum analyser connected to the external RF port. The EUT was operated in Mode 7, Mode 8 and Mode 9 for tests.

# 5.13.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The centre frequency of the analyser was set to that of the transmitter, and the span set to zero. The sweep time was adjusted so that either the pulse width or the periodic operation could be observed. Measurements were performed test in site A.

# 5.13.4 Test equipment

E755, P240

See Section 9 for more details

# 5.13.5 Test results

Temperature of test environment Humidity of test environment Pressure of test environment 20°C 50% 102kPa

| Band            | 2400-2483.5 MHz               |  |  |
|-----------------|-------------------------------|--|--|
|                 | 8 dBm set internal (Port Rear |  |  |
| Power Level     | A)                            |  |  |
| Channel Spacing | 2 MHz                         |  |  |
| Mod Scheme      | OFDM                          |  |  |
| Low channel     | 2402 MHz                      |  |  |
| Mid channel     | 2440 MHz                      |  |  |
| High channel    | 2480 MHz                      |  |  |

|                              | Low channel      | Mid channel      | High channel    |
|------------------------------|------------------|------------------|-----------------|
| TX on time (mS)              | 0.6026667        | 0.6026667        | 0.6026667       |
| TX on Plot filename          |                  |                  | On Time High    |
|                              | On Time Low Chan | On Time Mid Chan | Chan            |
| TX repetition time (S)       | 0.00125          | 0.00125          | 0.00125         |
| TX repetition Plot filename  | Cycle Time Low   | Cycle Time Mid   | Cycle Time High |
|                              | Chan             | Chan             | Chan            |
| Calculated TX Duty cycle (%) | 48.213336        | 48.213336        | 48.213336       |

Analyser plots for the duty cycle can be found in Section 6 of this report.

# LIMITS:

No limits apply. These results have been included for reference only.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: PXA,  $\pm 0.026$  % (UR71B)

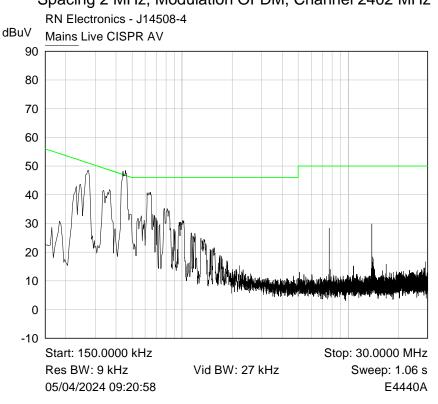
# 5.14 **FHSS carrier frequency separation**

NOT APPLICABLE: EUT does not employ FHSS technology.

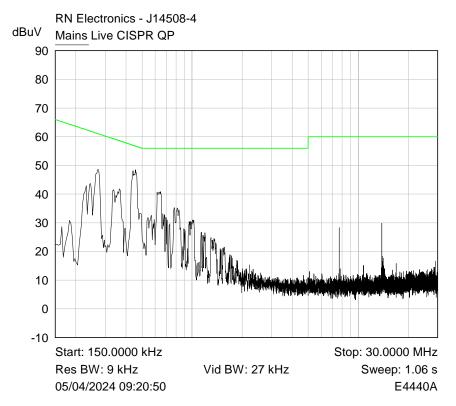
# 5.15 Average time of occupancy

NOT APPLICABLE: EUT does not employ FHSS technology.

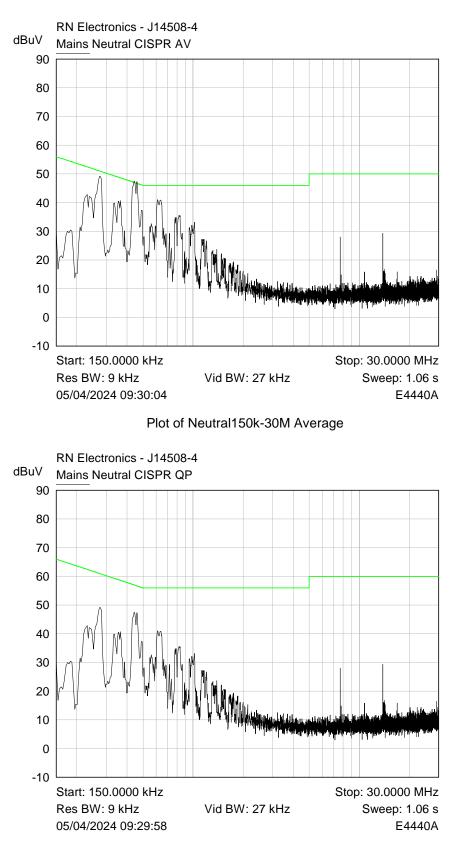
# 5.16 Number of Hop Channels

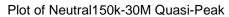

NOT APPLICABLE: EUT does not employ FHSS technology.

# 6 Plots/Graphical results

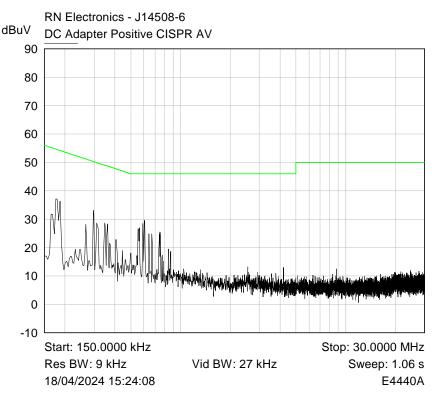

# 6.1 AC power line conducted emissions

Mains Power

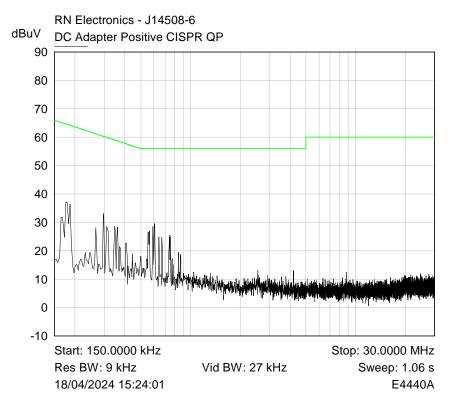

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz



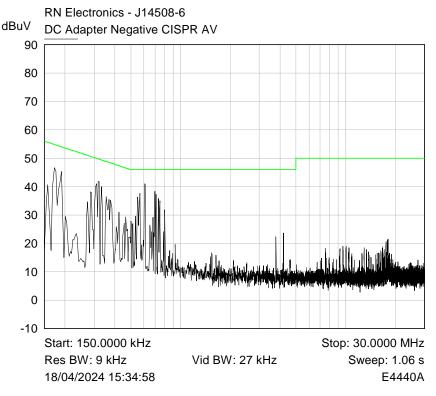

#### Plot of Live150k-30M Average



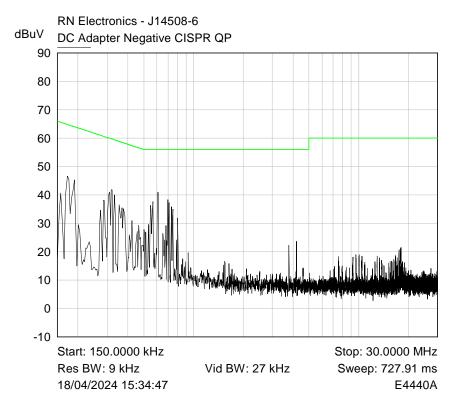

Plot of Live150k-30M Quasi-Peak







# DC Power port from off-the-shelf PSU RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

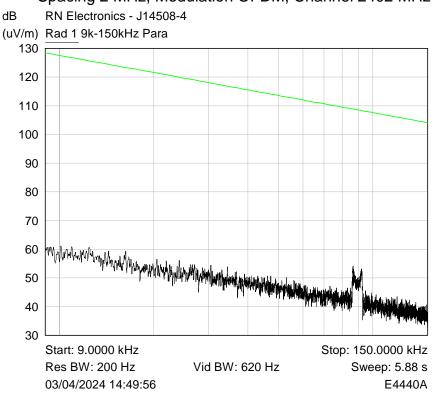



Plot of DC Positive 150k-30M Average

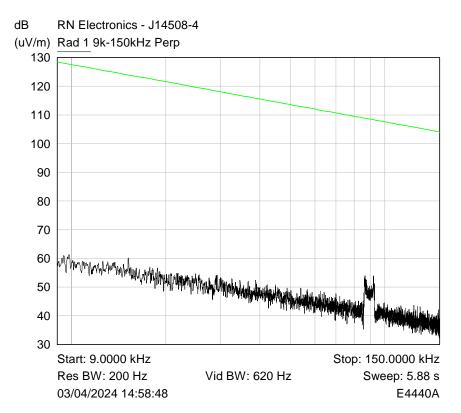







Plot of DC Negative 150k-30M Average




Plot of DC Negative 150k-30M Quasi-Peak

# 6.2 Radiated emissions 9 - 150 kHz

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

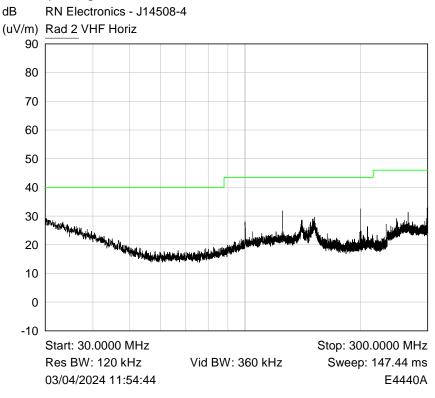



Plot of 9k-150kHz Parallel

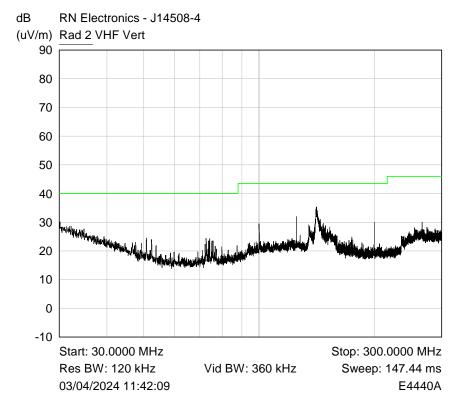


Plot of 9k-150kHz Perpendicular

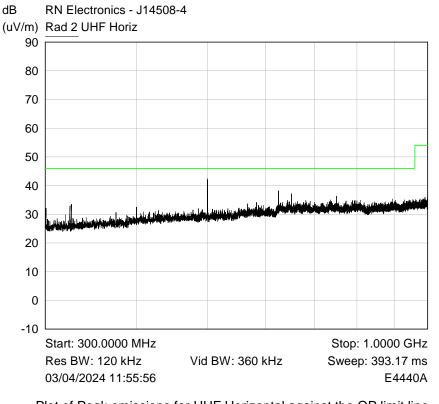
# 6.3 Radiated emissions 150 kHz - 30 MHz

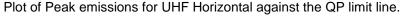

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

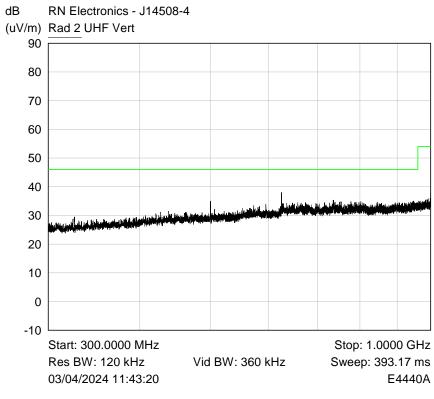





# 6.4 Radiated emissions 30 MHz -1 GHz


RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

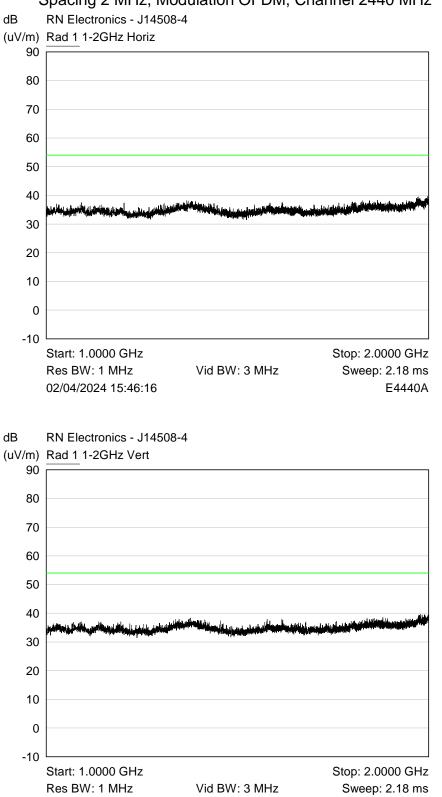




Plot of Peak emissions for VHF Horizontal against the QP limit line.



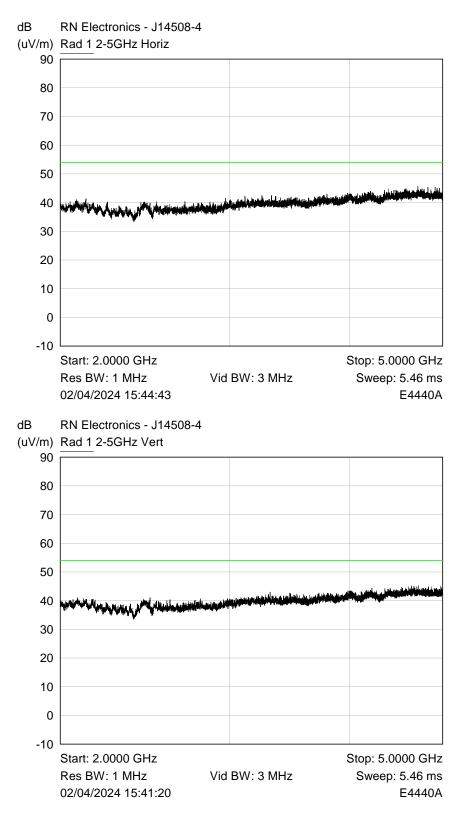
Plot of Peak emissions for VHF Vertical against the QP limit line.

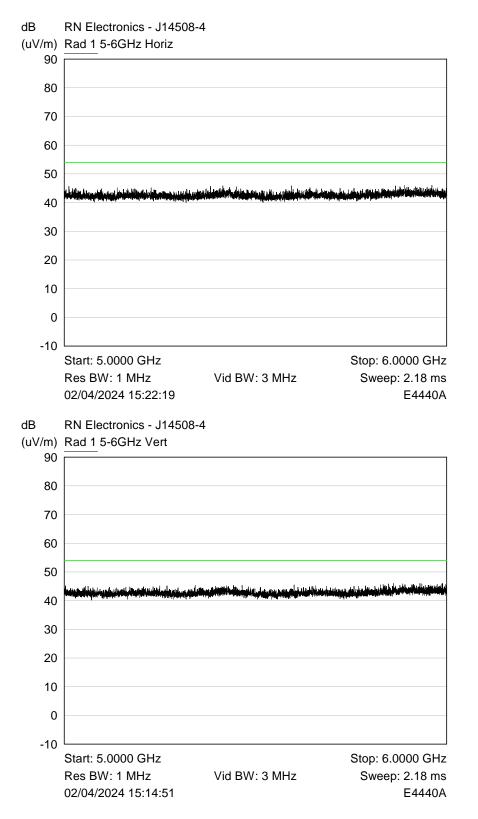


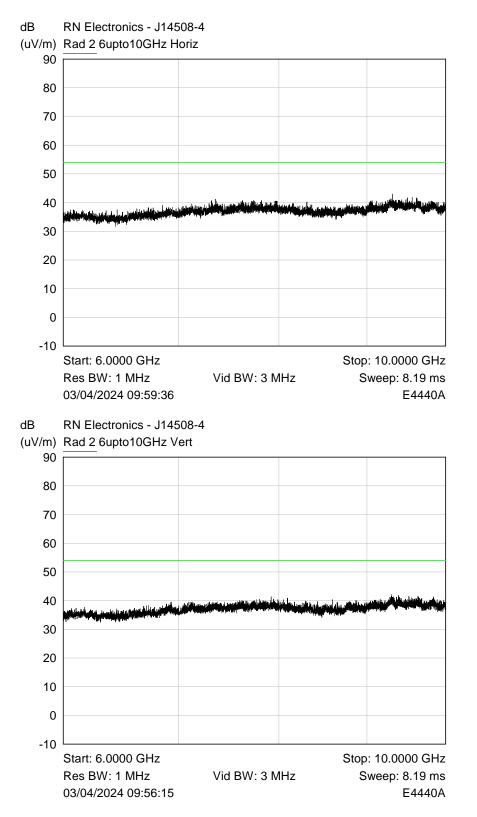


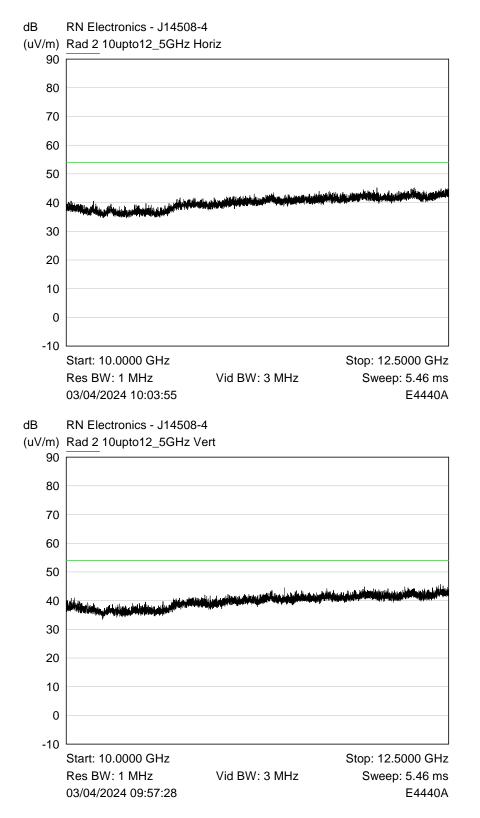


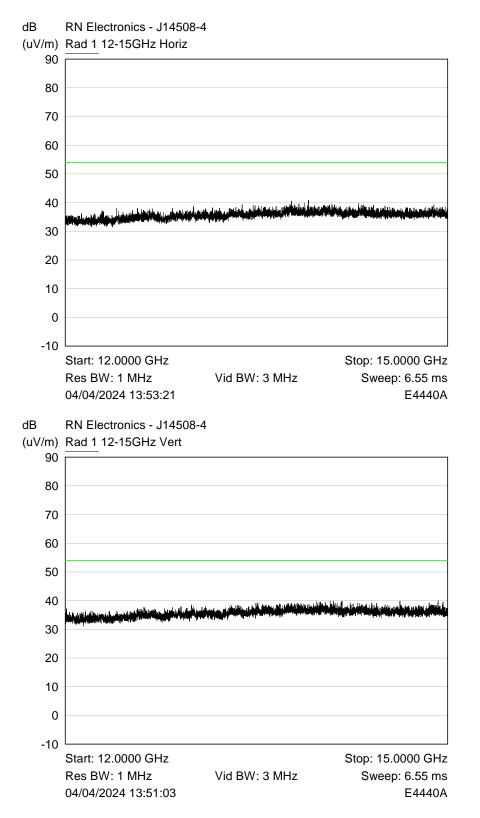

Plot of Peak emissions for UHF Vertical against the QP limit line.

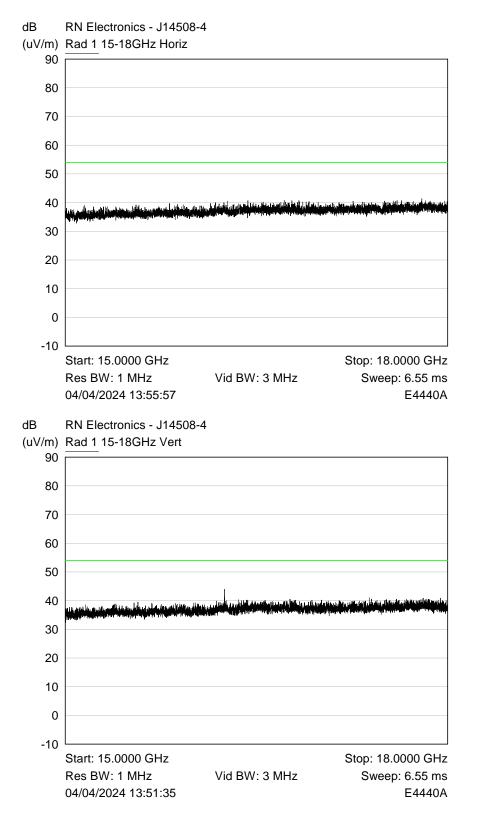

# 6.5 Radiated emissions above 1 GHz

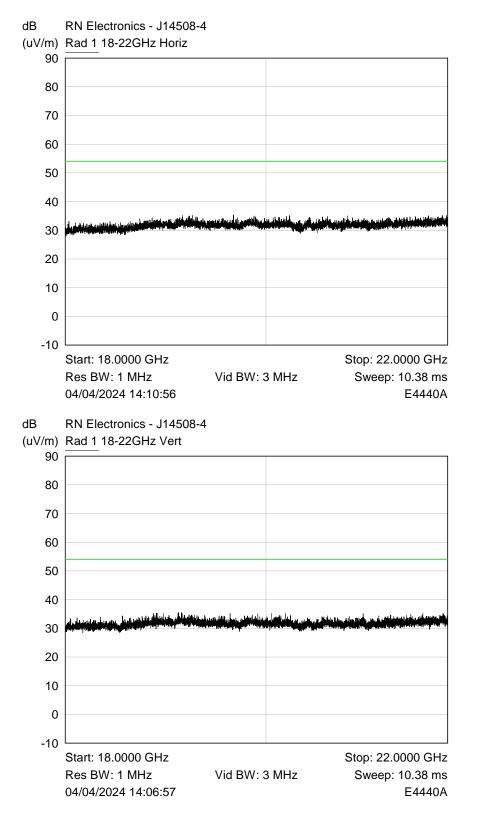

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

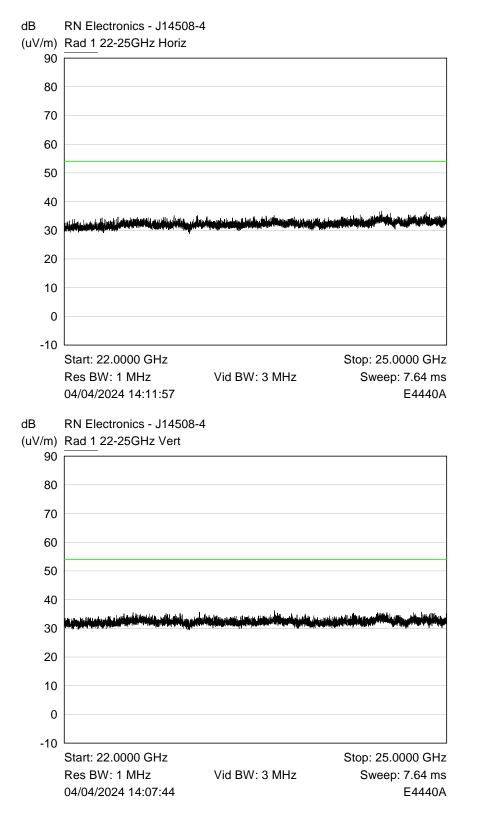




02/04/2024 15:35:37


E4440A

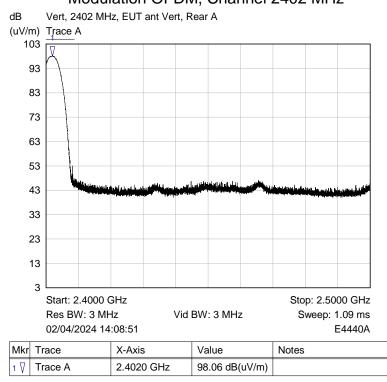


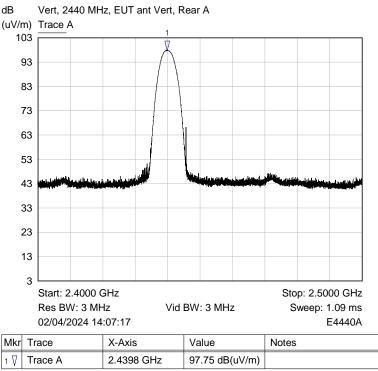




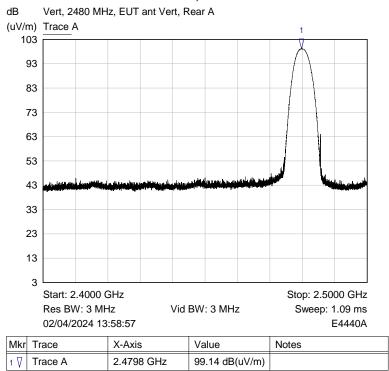






## 6.6 Effective radiated power field strength

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal, Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

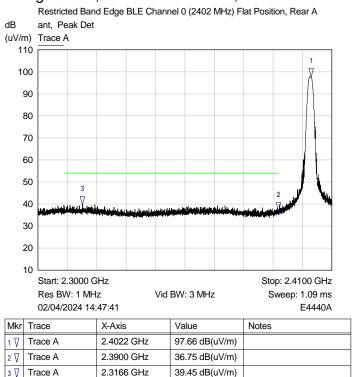



Plot of Horiz polarisation and EUT in Flat position

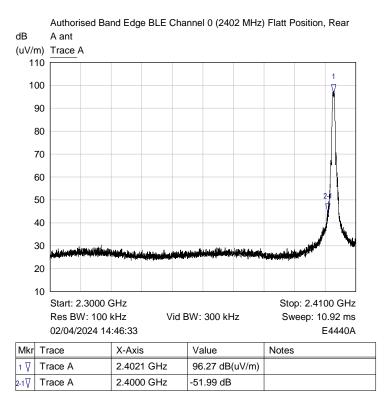
## RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal, Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz



Plot of Horiz polarisation and EUT in Flat position

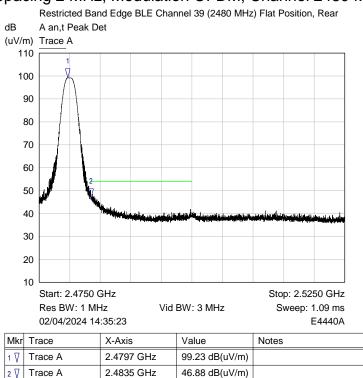

# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal, Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz



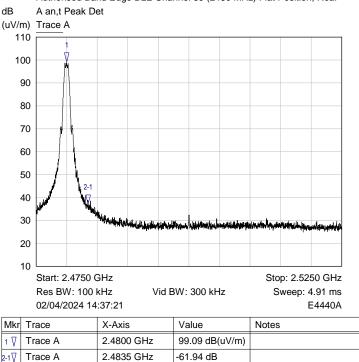

Plot of Horiz polarisation and EUT in Flat position

# 6.7 Band Edge Compliance

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz





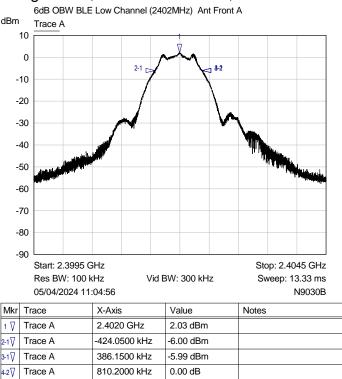




Authorised Band Edge Plot

### RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

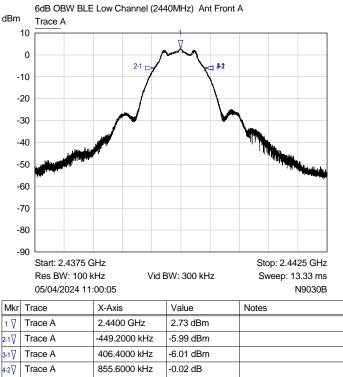


Restricted band edge Peak Plot

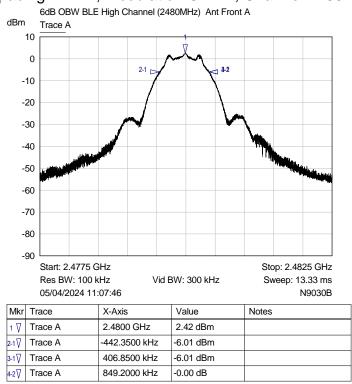


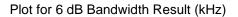

Authorised Band Edge BLE Channel 39 (2480 MHz) Flat Position, Rear

Authorised Band Edge Plot

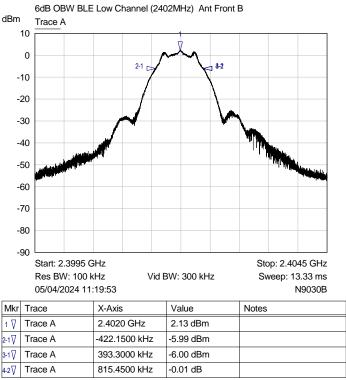

## 6.8 Occupied bandwidth

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

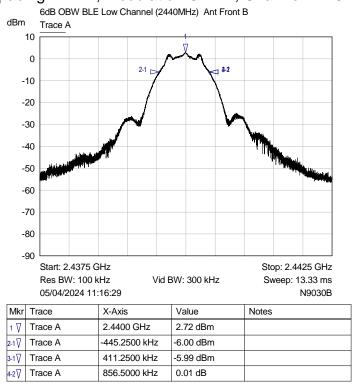


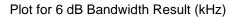


Plot for 6 dB Bandwidth Result (kHz)

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

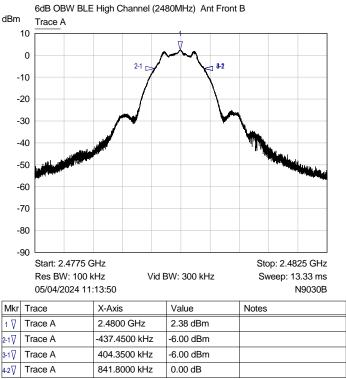



# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

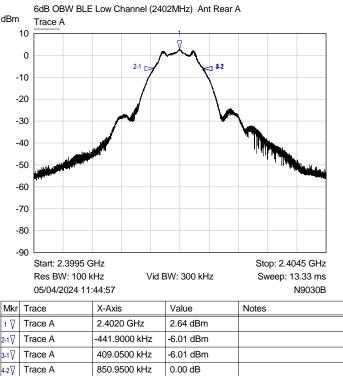


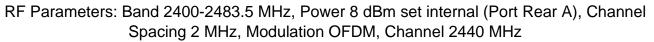

# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

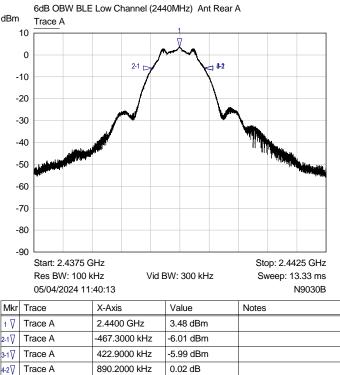



# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

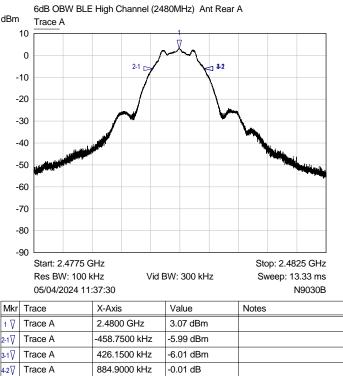




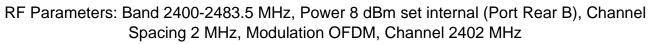


# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

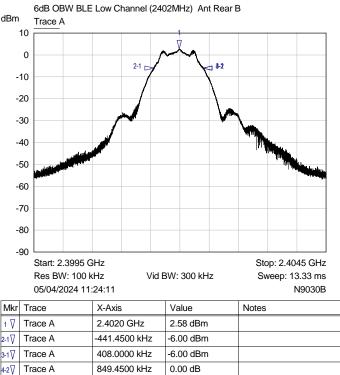



RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

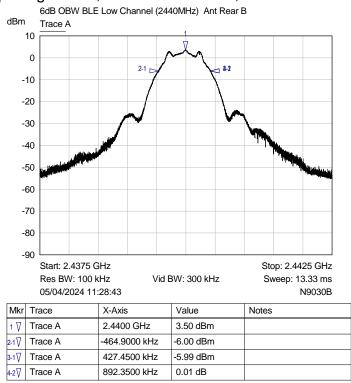


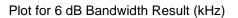

Plot for 6 dB Bandwidth Result (kHz)



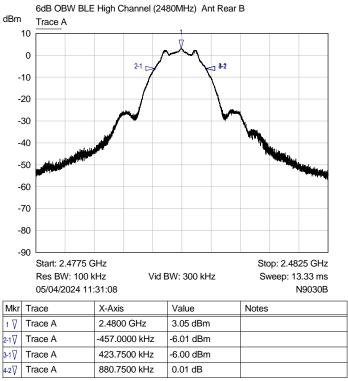




RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz



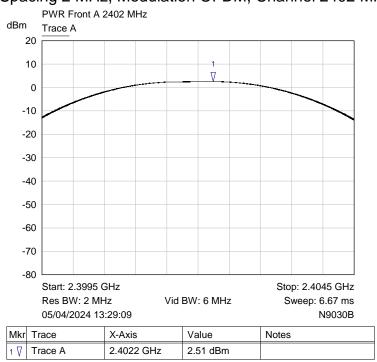


Plot for 6 dB Bandwidth Result (kHz)






# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz



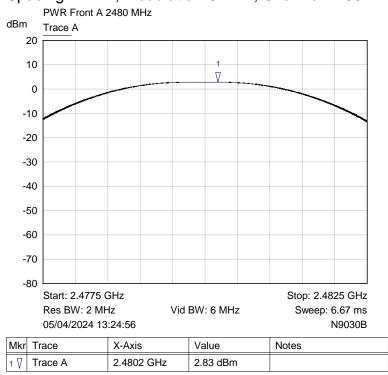



# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz



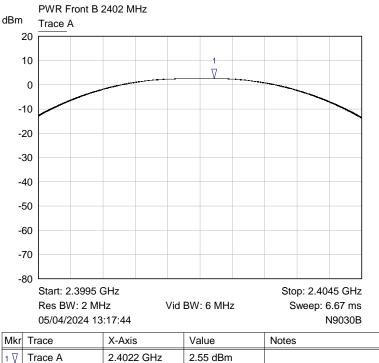
### 6.9 Maximum Peak conducted output power

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

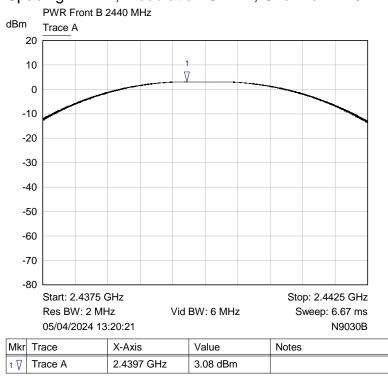





RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

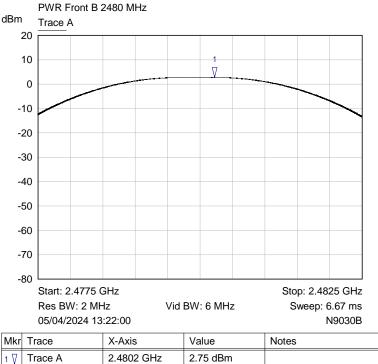

PWR Front A 2440 MHz dBm Trace A 20 10  $\nabla$ 0 -10 -20 -30 -40 -50 -60 -70 -80 Start: 2.4375 GHz Stop: 2.4425 GHz Res BW: 2 MHz Vid BW: 6 MHz Sweep: 6.67 ms 05/04/2024 13:28:17 N9030B Mkr Trace X-Axis Value Notes Trace A 2.4398 GHz 3.10 dBm 1 🛛

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

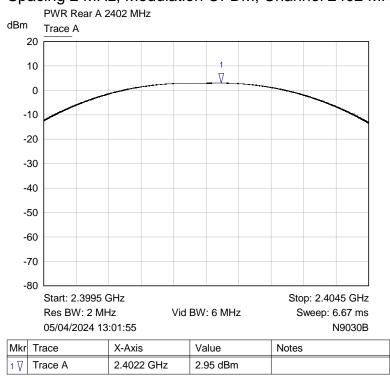





RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

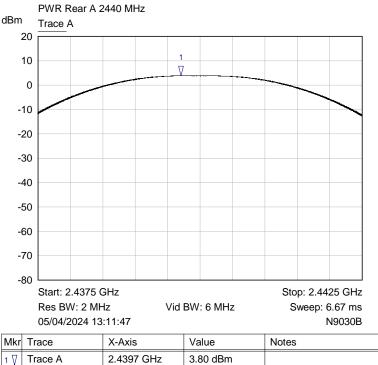



RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

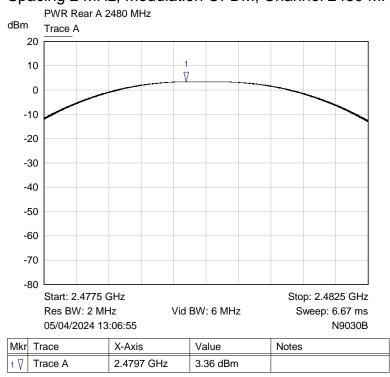





RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

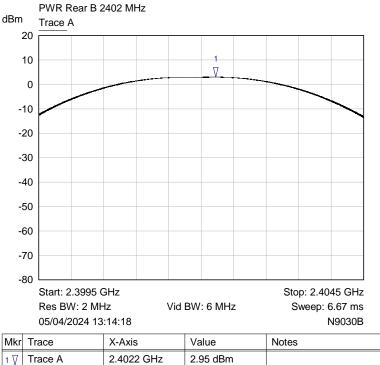



RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

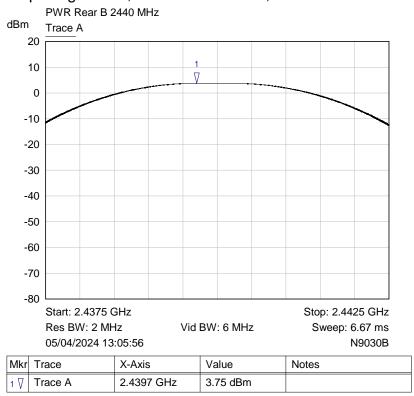





RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

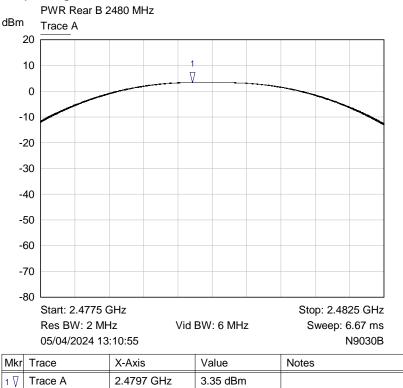



RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz



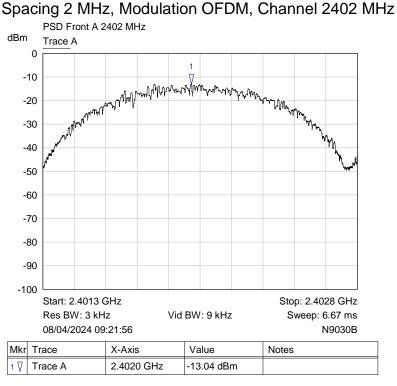



RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz



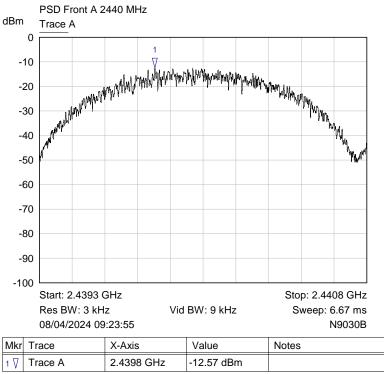

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz




Single port Plot reference

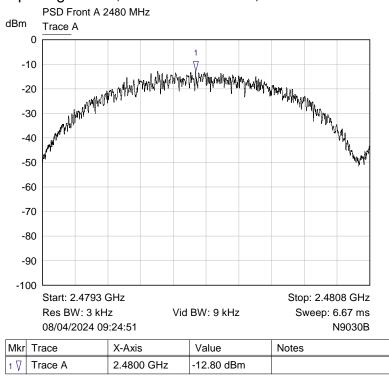
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz

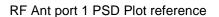



# 6.10 Maximum Power Spectral Density

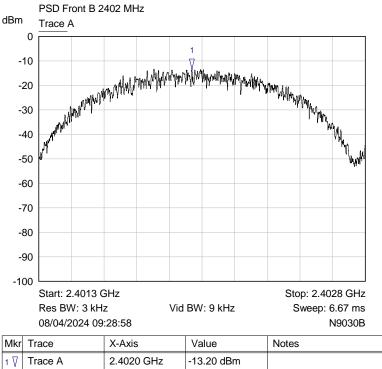
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel




RF Ant port 1 PSD Plot reference

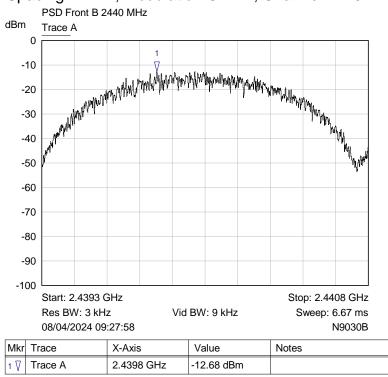

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz

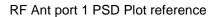



RF Ant port 1 PSD Plot reference

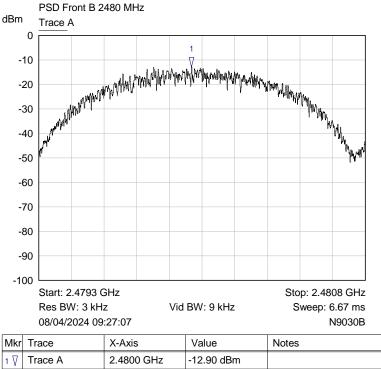
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz





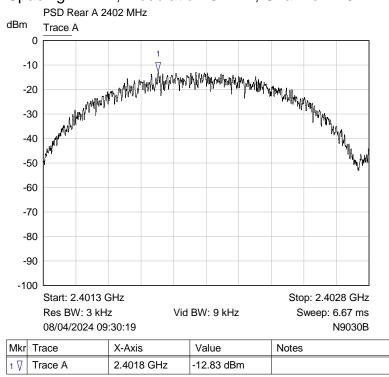


RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz




RF Ant port 1 PSD Plot reference

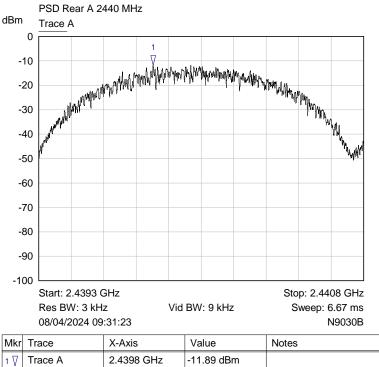
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz





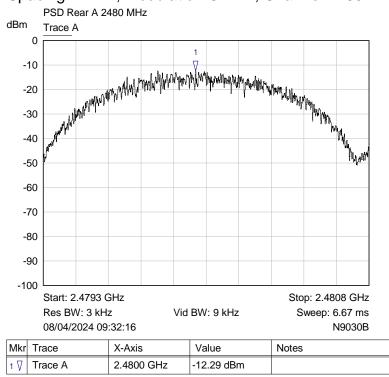

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Front B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz




RF Ant port 1 PSD Plot reference

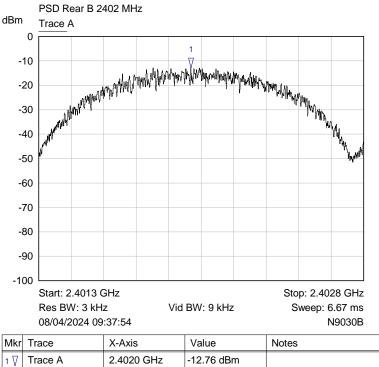
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz





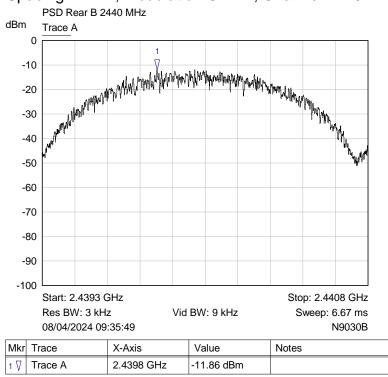

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz




RF Ant port 1 PSD Plot reference

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz






RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2402 MHz

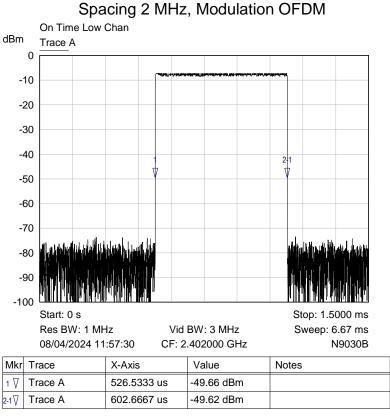


RF Ant port 1 PSD Plot reference

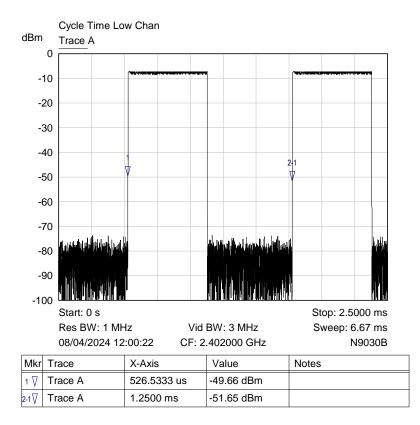
RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2440 MHz





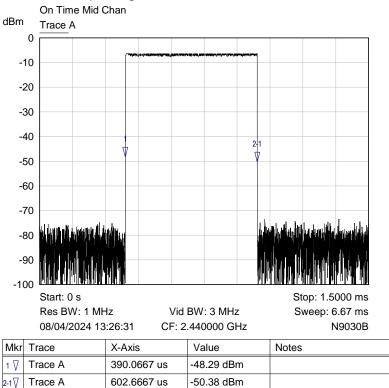

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear B), Channel Spacing 2 MHz, Modulation OFDM, Channel 2480 MHz




RF Ant port 1 PSD Plot reference

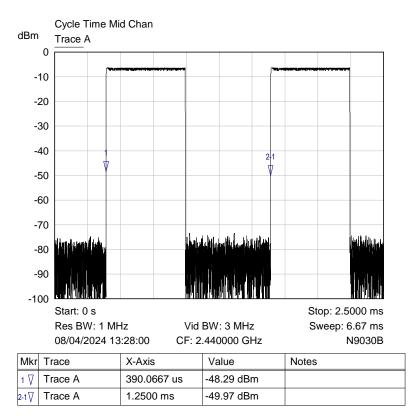
#### 6.11 Duty cycle

RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel



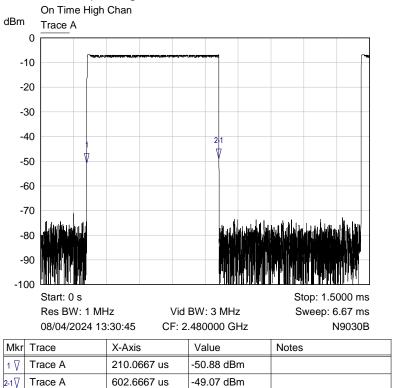


TX on time (ms)

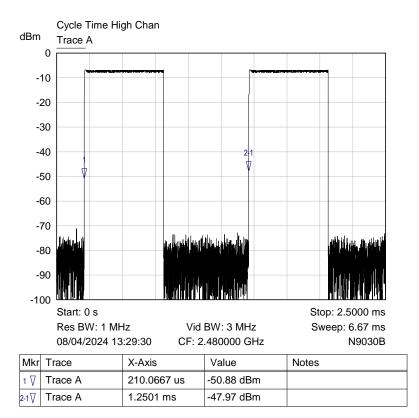



TX repetition time (S)

# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM






TX repetition time (S)

# RF Parameters: Band 2400-2483.5 MHz, Power 8 dBm set internal (Port Rear A), Channel Spacing 2 MHz, Modulation OFDM



TX on time (ms)



TX repetition time (S)

# 7 Explanatory Notes

#### 7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | Pk – Lim 1<br>(dB) | QP Amp<br>(dBuV) | QP - Lim1<br>(dB) | Av Amp<br>(dBuV) | Av - Lim1 (dB) |
|------------|------------|--------------------|--------------------|------------------|-------------------|------------------|----------------|
| 1          | 12345      | 54.9               | -10.5              | 48               | -12.6             | 37.6             | -14.4          |

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

#### 7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in  $\mu$ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu$ V/m referenced to the measuring instrument inputs. Kiwa Electrical Compliance calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

(a) limit of 500  $\mu$ V/m equates to 20.log (500) = 54 dB  $\mu$ V/m.

(b) limit of 300  $\mu$ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB  $\mu$ V/m at 3m

(c) limit of 30  $\mu$ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB $\mu$ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

File Name: Sound Devices LLC.14508-4 Issue 01 QMF21J - Issue 05 - KEC Issue 04; 47 CFR Part 15C 2023 The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

#### Example calculation: - FS = RA + AF + CL.

| Receiver amplitude (RA) | Antenna factor (3m) (AF) | Cable loss (CL) | Field strength result (3m) (FS) |
|-------------------------|--------------------------|-----------------|---------------------------------|
| 20dBuV                  | 25 dB                    | 3 dB            | 48dBuV/m                        |

#### Additional calculation examples per ANSI C63.10 clause 9.4 – 9.6 equations 21, 22, 25 & 26:

Equation 21: E<sub>Linear</sub> = 10<sup>((E</sup>log<sup>-120)/20)</sup>

And therefore equation 21 transposed is:  $E_{Log} = 20xLog(E_{Linear}) + 120$ Where:

 $E_{Linear}$  is the field strength of the emission in V/m

 $E_{\text{Log}}$  is the field strength of the emissions in  $dB\mu V/m$ 

Equation 22: EIRP =  $E_{Meas}$  + 20log(d<sub>Meas</sub>) -104.7

Where:

EIRP is equivalent isotropically radiated power in dBm

 $E_{\text{Meas}}$  is the field strength of the emission at the measurement distance in  $dB\mu V/m$ 

 $d_{\mbox{\scriptsize Meas}}$  is the measurement distance in metres

#### Equation 25: PD = EIRP<sub>Linear</sub> / $4\pi d^2$

And therefore equation 25 transposed is: EIRP<sub>Linear</sub> = PD x  $4\pi d^2$  Where:

PD is the power density at distance specified by the limit, in W/m<sup>2</sup> EIRP<sub>Linear</sub> is the equivalent isotropically radiated power in Watts d is the distance at which the power density limit is specified in metres

Equation 26: PD = E<sup>2</sup><sub>Speclimit</sub> / 377

And therefore equation 26 transposed is:  $E_{Spec \ limit} = \sqrt{(PD \ x \ 377)}$ Where:

PD is the power density at distance specified by the limit, in  $W/m^2$ E<sub>spec limit</sub> is the field strength at the distance specified by the limit in V/m

#### Example:

Radiated spurious emissions limit at 3metres of 90pW/cm<sup>2</sup>.

 $90pW/cm^2 \times 100^2 = 0.9 \ \mu W/m^2 = (EIRP Linear)$ 

Equation 25 transposed:  $0.9 \times 10^{-6} \times 4 \times \pi \times 3^2 = 0.0001017876 \text{ W}$ 

And

Equation 26 transposed:  $E_{\text{Spec limit}} = \sqrt{(0.9 \times 10^{-6} \times 377)} = 0.01842 \text{ V/m.}$ 

And

Equation 21 transposed:  $E_{Log} = 20Log(0.01842) + 120 = 85.3dB\mu V/m @ 3m$ .

# 8 Photographs

# 8.1 EUT Front View





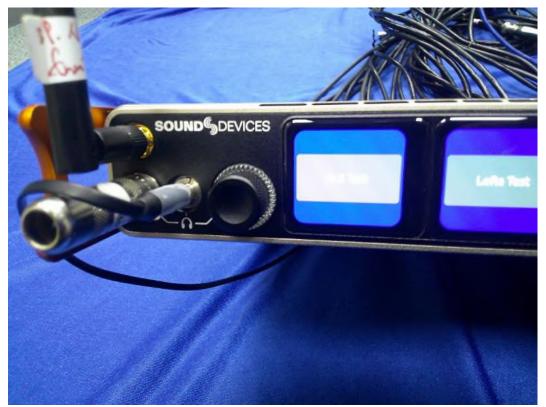
# 8.2 EUT Reverse Angle



## 8.3 EUT Left side View



## 8.4 EUT Right side View




## 8.5 EUT Antenna

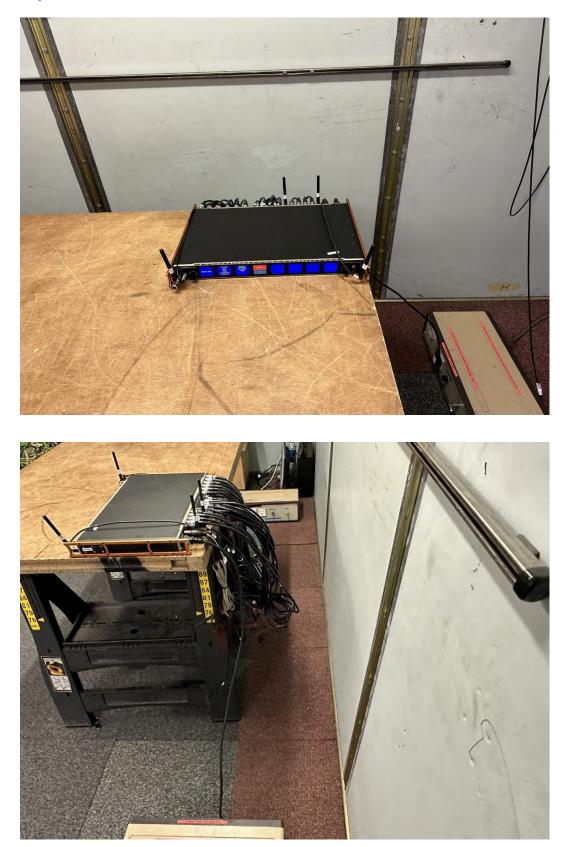


# 8.6 EUT Display & Controls





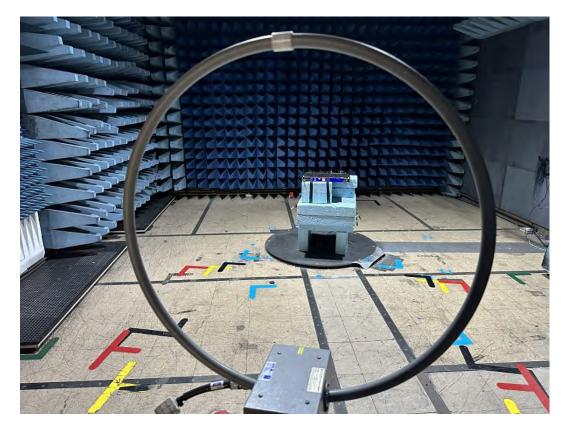


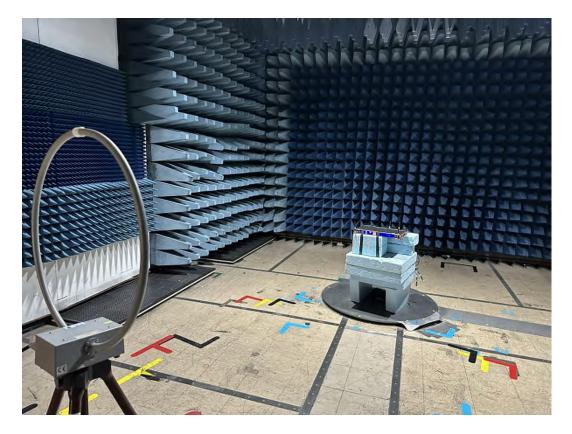

#### 8.7 EUT Internal photos

Due to the complexity of the EUT no internal photographs were taken.

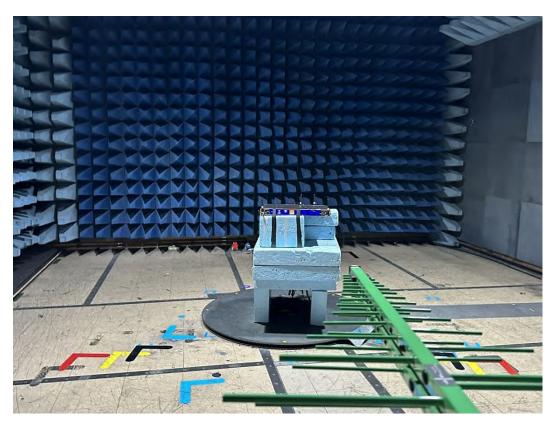
## 8.8 EUT ID Label

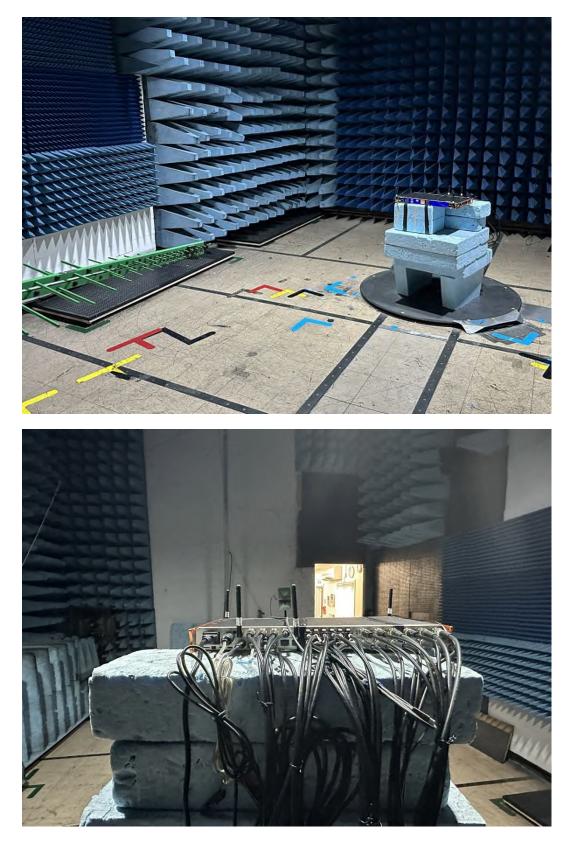



# 8.9 AC power line conducted emissions

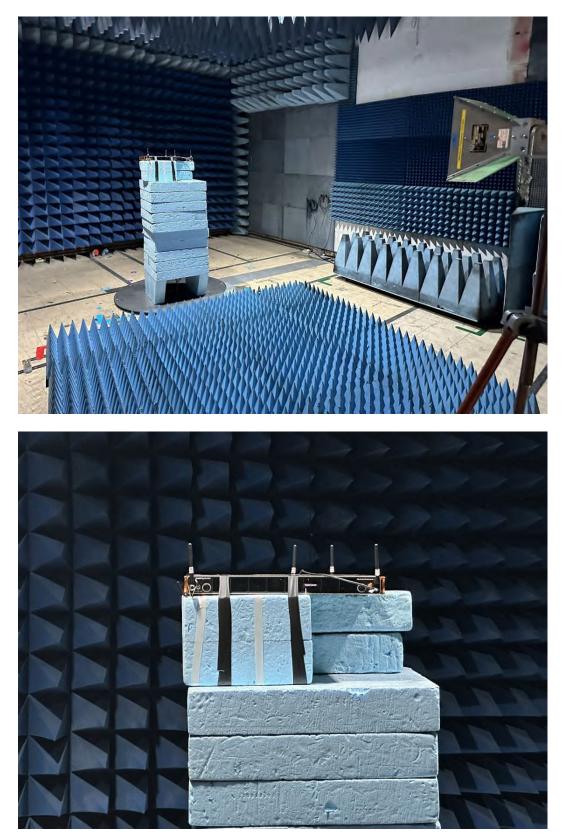


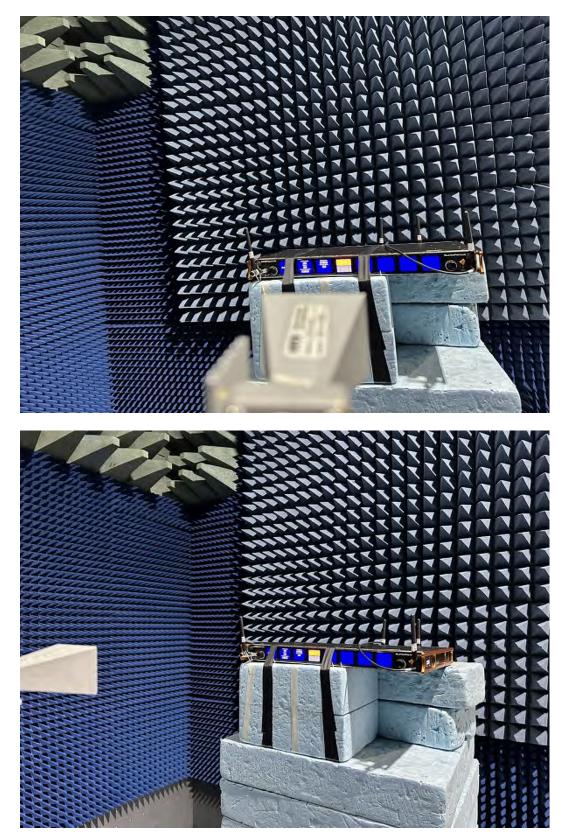




EUT powered via DC port using a bench power supply


# 8.10 Radiated emissions 150 kHz - 30 MHz







## 8.11 Radiated emissions 30 MHz -1 GHz





# 8.12 Radiated emissions above 1 GHz







## 8.13 Radiated emission diagrams

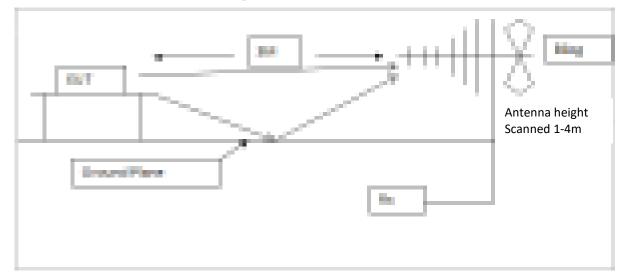
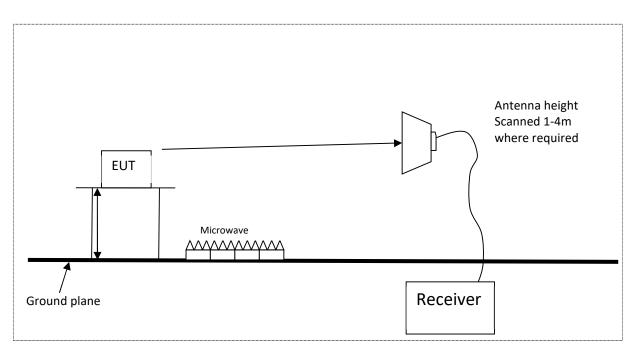




Diagram of the radiated emissions test setup 30 - 1000 MHz



#### Diagram of the radiated emissions test setup above 1GHz

# 8.14 AC powerline conducted emission diagram

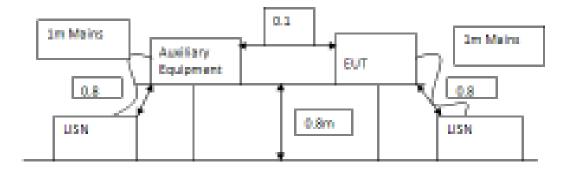



Diagram of the AC conducted emissions test setup

# 9 Test equipment calibration list

The following is a list of the test equipment used by Kiwa Electrical Compliance to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

| RN No. | Model No.  | Description                        | Manufacturer          | Calibration date | Cal period |
|--------|------------|------------------------------------|-----------------------|------------------|------------|
| E035   | 11947A     | Transient Limiter 9kHz - 200MHz    | Hewlett Packard       | 03-Jan-2024      | 12 months  |
| E136   | 3105       | Horn Antenna 1 - 12.5 GHz          | EMCO                  | #02-Apr-2023     | 12 months  |
| E150   | MN2050     | LISN 13A                           | Chase                 | 03-May-2023      | 12 months  |
| E411   | N9039A     | 9 kHz - 1 GHz RF Filter Section    | Agilent Technologies  | 05-Jul-2023      | 12 months  |
| E624   | E4440A     | PSA 3 Hz - 26.5 GHz                | Agilent Technologies  | 06-Jul-2023      | 24 months  |
| E743   | 2017 4/2dB | Attenuator 4/2dB 30-1000MHz        | RN Electronics        | 22-Feb-2024      | 12 months  |
| E755   | N9030B     | PXA Signal Analyser 3 Hz to 50 GHz | Keysight Technologies | 14-Aug-2023      | 12 months  |
| E856   | N9039A     | 9 kHz - 1 GHz RF Filter Section    | Agilent Technologies  | 22-Mar-2024      | 12 months  |
| E904   | 5086-7805  | Pre-Amplifier 1GHz - 26.5GHz       | Hewlett Packard       | 03-May-2023      | 12 months  |
| LPE364 | CBL6112A   | Antenna BiLog 30MHz - 2GHz         | Chase Electronics Ltd | 28-Mar-2022      | 36 months  |
| NSA-M  | NSA - M    | NSA - Site M                       | RN Electronics        | 29-Nov-2021      | 36 months  |
| P240   | 290-10dB   | Attenuator 10dB 18GHz              | Midwest Microwave     | 04-Jul-2023      | 12 months  |
| TMS78  | 3160-08    | Horn Std Gain 12.4 - 18 GHz        | ETS Systems           | 05-Oct-2023      | 12 months  |
| TMS79  | 3160-09    | Horn Std Gain 18 - 26.5 GHz        | ETS Systems           | 23-May-2023      | 12 months  |
| TMS81  | 6502       | Antenna Active Loop                | EMCO                  | 17-Aug-2023      | 24 months  |
| TMS82  | 8449B      | Pre-Amplifier 1GHz - 26.5GHz       | Agilent Technologies  | 08-Jan-2024      | 12 months  |
| VSWR-B | VSWR       | VSWR 1-18GHz                       | RN Electronics        | 09-Feb-2022      | 36 months  |
| VSWR-M | VSWR       | VSWR 1-18GHz                       | RN Electronics        | 24-Nov-2021      | 36 months  |
| ZSW1   | V2.5.2     | Measurement Software Suite         | RN Electronics        | Not Applie       | cable      |

# Equipment was within calibration dates for tests and has been re-calibrated since/during date of tests.

# **10** Auxiliary and peripheral equipment

# **10.1** Customer supplied equipment

| Item No. | Model No. | Description       | Manufacturer      | Serial No.   |
|----------|-----------|-------------------|-------------------|--------------|
| 1        | A20-Mini  | Audio Transmitter | Sound Devices LLC | GE0822350072 |

## **10.2** Kiwa Electrical Compliance supplied equipment

| KEC No. | Model No. | Description          | Manufacturer                 | Serial No  |
|---------|-----------|----------------------|------------------------------|------------|
| E465    | PCR2000LA | AC Power Source 2kVA | Kikusui                      | HJ000995   |
| N450    | EN106TP   | 6 Port Ethernet Hub  | Netgear                      | ENT6006298 |
| P274    | TPS2000   | PSU 15V 10A          | TOPWARD ELECTRIC INSTRUMENTS | 920243     |

## 11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

#### **11.1 Modifications before test**

No modifications were made before test by Kiwa Electrical Compliance.

#### **11.2 Modifications during test**

No modifications were made during test by Kiwa Electrical Compliance.

#### 12 Description of test sites

- Site A Radio Laboratory and Anechoic Chamber
- Site B Semi-Anechoic Chamber and Control Room FCC Registration No. 654321, ISED Registration No. 5612A-4
- Site C Transient Laboratory
- Site D Screened Room (Conducted Immunity)
- Site E Screened Room (Control Room for Site D)
- Site F Screened Room (Conducted Emissions)
- Site G Screened Room (Control Room for Site H)
- Site H 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-2, VCCI Registration No. 4065
- Site J Transient Laboratory
- Site K Screened Room (Control Room for Site M)
- Site M 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-3
- Site N Radio Laboratory
- Site Q Fully-Anechoic Chamber
- Site OATS 3m and 10m Open Area Test Site FCC Registration No. 654321, ISED Registration No. 5612A-1
- Site R Screened Room (Conducted Immunity)
- Site S Safety Laboratory
- Site T Transient Laboratory

CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002 CAB identifier as issued by FCC is UK2015

# **13** Abbreviations and units

|        | _                                                                          | 1             |                                                            |
|--------|----------------------------------------------------------------------------|---------------|------------------------------------------------------------|
| %      | Percent                                                                    | dBµV          | deciBels relative to $1\mu V$                              |
| λ      | Wavelength<br>microAmps per metre                                          | dBµV/m<br>⊲Do | deciBels relative to 1µV/m<br>deciBels relative to Carrier |
| µA/m   | microVolts                                                                 | dBc           |                                                            |
| μV     | microWatts                                                                 | dBd           | deciBels relative to dipole gain                           |
| μW     |                                                                            | dBi           | deciBels relative to isotropic gain                        |
| AC     | Alternating Current                                                        | dBm           | deciBels relative to 1mW                                   |
| ACK    | ACKnowledgement                                                            | dBr           | deciBels relative to a maximum value                       |
| ACP    | Adjacent Channel Power                                                     | dBW           | deciBels relative to 1W                                    |
| AFA    | Adaptive Frequency Agility                                                 | DC            | Direct Current                                             |
| ALSE   | Absorber Lined Screened<br>Enclosure                                       | DFS           | Dynamic Frequency Selection                                |
| AM     | Amplitude Modulation                                                       | DMO           | Dynamic Modulation Order                                   |
| Amb    | Ambient                                                                    | DSSS          | Direct Sequence Spread Spectrum                            |
| ANSI   | American National Standards<br>Institute                                   | DTA           | Digital Transmission Analyser                              |
| ATPC   | Automatic Transmit Power Control                                           | EIRP          | Equivalent Isotropic Radiated Power                        |
| AVG    | Average                                                                    | emf           | electromotive force                                        |
| AWGN   | Additive White Gaussian Noise                                              | ERC           | European Radiocommunications Committee                     |
| BER    | Bit Error Rate                                                             | ERP           | Effective Radiated Power                                   |
| BPSK   | Binary Phase Shift Keying                                                  | ETSI          | European Telecommunications Standards Institute            |
| BT     | BlueTooth                                                                  | EU            | European Union                                             |
| BLE    | BlueTooth Low Energy                                                       | EUT           | Equipment Under Test                                       |
| BW     | Bandwidth                                                                  | FCC           | Federal Communications Commission                          |
| °C     | Degrees Celsius                                                            | FER           | Frame Error Rate                                           |
| C/I    | Carrier / Interferer                                                       | FHSS          | Frequency Hopping Spread Spectrum                          |
| CAC    | Channel Availability Check                                                 | FM            | Frequency Modulation                                       |
| CCA    | Clear Channel Assessment                                                   | FSK           | Frequency Shift Keying                                     |
| CEPT   | European Conference of Postal<br>and Telecommunications<br>Administrations | FSS           | Fixed Satellite Service                                    |
| CFR    | Code of Federal Regulations                                                | g             | Grams                                                      |
| CISPR  | Comité International Spécial des<br>Perturbations Radioélectriques         | s<br>GHz      | GigaHertz                                                  |
| cm     | centimetre                                                                 | GNSS          | Global Navigation Satellite System                         |
| COFDM  | Coherent OFDM                                                              | GPS           | Global Positioning System                                  |
| СОТ    | Channel Occupancy Time                                                     | Hz            | Hertz                                                      |
| CS     | Channel Spacing                                                            | IEEE          | Institute of Electrical and Electronics Engineers          |
| CW     | Continuous Wave                                                            | IF            | Intermediate Frequency                                     |
| DAA    | Detect And Avoid                                                           | ISED          | Innovation Science and Economic Development                |
| dB     | deciBels                                                                   | ΙΤυ           | International Telecommunications Union                     |
| dBµA/m | deciBels relative to 1µA/m                                                 | KDB           | Knowledge DataBase                                         |
|        |                                                                            |               |                                                            |

| MCS<br>MHz<br>mic<br>MIMO<br>min<br>ms<br>mW<br>NA<br>NFC<br>nom<br>nW<br>OATS<br>OBW<br>OCW<br>OFDM<br>OCB<br>ppm<br>PER<br>PK<br>PMR<br>PRBS<br>PRF | MegaHertz<br>Microphone<br>Multiple Input, Multiple Output<br>minimum<br>millimetres<br>milliseconds<br>milliWatts<br>Not Applicable<br>Near Field Communications<br>Nominal<br>nanoWatt<br>Open Area Test Site<br>Occupied Band Width<br>Occupied Channel Width<br>Occupied Channel Width<br>Orthogonal Frequency Division<br>Multiplexing<br>Out Of Band<br>Parts per million<br>Packet Error Rate<br>Peak<br>Private Mobile Radio<br>Pseudo Random Bit Sequence<br>Pulse Repetition Frequency | Ref<br>RF<br>RFC<br>RFID<br>RLAN<br>RMS<br>RNSS<br>RSL<br>RSSI<br>RTP<br>RTPC<br>RX<br>SINAD<br>SRD<br>TX<br>UKAS<br>UKCA<br>UKRER<br>UHF<br>U-NII<br>USB<br>UWB<br>V<br>V/m<br>VBW<br>VHF<br>VSAT | Resolution Band Width<br>Radio Equipment Directive<br>Radio and Telecommunication Terminal Equipment<br>Reference<br>Radio Frequency<br>Remote Frequency Control<br>Radio Frequency IDentification<br>Radio Local Area Network<br>Root Mean Square<br>Radio Navigation Satellite Service<br>Received Signal Level<br>Received Signal Strength Indicator<br>Room Temperature and Pressure<br>Remote Transmit Power Control<br>Receiver<br>Seconds<br>Signal to Noise And Distortion<br>Short Range Device<br>Transmitter<br>United Kingdom Accreditation Service<br>United Kingdom Radio Equipment Regulations<br>Ultra High Frequency<br>Unlicensed National Information Infrastructure<br>Universal Serial Bus<br>Ultra Wide Band<br>Volts<br>Volts per metre<br>Video Band Width<br>Very High Frequency<br>Very Small Aperture Terminal |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PSU                                                                                                                                                   | Power Supply Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

===== END OF TEST REPORT ======