FCC TEST REPORT No. 14/386

| FCC TEST REPORT No. 14/386 | 2014      |
|----------------------------|-----------|
| for 47 CFR Part 90         | April, 24 |

Model name:

# Product description FCC ID Applicant Manufacturer

#### **ALLEGRO REPEATER**

The Water Meter NTA2WREP1 Telematics Wireless Ltd., Israel Telematics Wireless Ltd., Israel

The results in this report apply only to the samples tested. Reproduction or copying of this report or its any part may only be made with the prior written approval of PE TC "Omega"

PUBLIC ENTERPRISE TESTING CENTER "OMEGA" 29 Vakulenchuk str., Sevastopol, 99053, Crimea, Ukraine, P.O.B.-37 phone: +380 692 53 70 72 fax: +380 692 46 96 79 e-mail: stcomega@stc-omega.biz



# Table of contents

| 1 EQUIPMENT UNDER TEST                                                     | 3  |
|----------------------------------------------------------------------------|----|
| 1.1 BASIC DESCRIPTION                                                      | 3  |
| <b>1.2 TECHNICAL CHARACTERISTICS DECLARED BY MANUFACTURER</b>              | 3  |
| <u>1.3 Рното</u>                                                           | 4  |
| 2 GENERAL INFORMATION ABOUT TESTS                                          | 6  |
| 2.1 TEST PROGRAM AND RESULTS OF THE TESTS                                  | 6  |
| 2.2 TEST CONDITIONS AND TEST MODES                                         | 6  |
| 2.3 TEST EQUIPMENT USED                                                    | 7  |
| 2.4 MEASUREMENT UNCERTAINTY                                                |    |
| 2.5 PHOTO OF TEST SITE                                                     | 8  |
| 3 REPORT OF MEASUREMENTS AND EXAMINATIONS                                  | 10 |
| 3.1 EMISSION MASK                                                          |    |
| <b>3.2 CONDUCTED SPURIOUS EMISSIONS</b>                                    |    |
| 3.3 RADIATED SPURIOUS EMISSIONS                                            | 16 |
| 3.4 TRANSIENT STABILITY                                                    |    |
| 3.5 FREQUENCY STABILITY VS POWER SUPPLY                                    |    |
| <b>3.6 FREQUENCY STABILITY VS TEMPERATURE</b>                              |    |
| 3.7 CONDITIONS FOR INTENTIONAL RADIATORS TO COMPLY WITH PERIODIC OPERATION |    |
| <b>3.8</b> FIELD STRENGTH OF EMISSIONS                                     |    |
| <b>3.9.</b> THE BANDWIDTH OF THE EMISSION                                  |    |
| 3.10 OPERATING FREQUENCIES                                                 |    |
|                                                                            |    |

# **1 EQUIPMENT UNDER TEST**

#### 1.1 Basic description

| Equipment Category | Transceiver                                                   |
|--------------------|---------------------------------------------------------------|
| Model name         | ALLEGRO REPEATER                                              |
| Destination        | a compact RF Receiver/Transmitter unit for the<br>Water Meter |
| Configuration      | stand-alone device                                            |
| Serial numbers     | n/a                                                           |

# 1.2 Technical characteristics declared by manufacturer

#### **Transmit Narrow Channel, complies Part 90**

| Parameter                              | Value          |  |
|----------------------------------------|----------------|--|
| Transmit frequency band                | 450-470MHz     |  |
| Channel Separation                     | 6.25kHz        |  |
| Modulation                             | 4GFSK          |  |
| Max Frequency deviation                | ±1.2kHz        |  |
| Max Data rate                          | 4.8kbps        |  |
| Frequency stability (including initial | <0.5 ppm       |  |
| stability, temperature)                |                |  |
| Peak output power                      | 35.2dBm        |  |
| Antenna                                | Internal, 1dBi |  |
| Harmonics                              | < -62dBc       |  |

#### **Transmit Narrow Channel, complies Part 15.231**

| Parameter                              | Value          |
|----------------------------------------|----------------|
| Transmit frequency band                | 450-470MHz     |
| Channel Separation                     | 6.25kHz        |
| Modulation                             | 4GFSK          |
| Max Frequency deviation                | ±1.2kHz        |
| Max Data rate                          | 6kbps          |
| Frequency stability (including initial | <0.5 ppm       |
| stability, temperature)                |                |
| Peak output power                      | -17dBm         |
| Antenna                                | Internal, 1dBi |
| Harmonics                              | < -62dBc       |

#### Receiver

| Parameter              | Value                                |
|------------------------|--------------------------------------|
| Receive frequency      | Programmable in the range 450-470MHz |
| Sensitivity (BER 1E-3) | -120 dBm                             |
| Modulation             | 4GFSK                                |
| Frequency deviation    | 1.2kHz                               |

## 1.3 Photos

Figure 1.3.1 External photo



Figure 1.3.2 External photo



# **Figure 1.3.3 Internal photo**



#### **2 GENERAL INFORMATION ABOUT TESTS**

#### Result Number FCC rule **Description of test** (Pass, Fail, N/A) of test Pass **Emission Mask** 1 90.210(e) **Conducted Spurious Emissions** Pass 2 90.210(e) **Radiated Spurious Emissions** Pass 3 90.210(e) 90.214 **Transient Frequency Stability** Pass 4 5 90.213 Frequency Stability with temperature Pass 90.213 Frequency Stability with supply voltage Pass 6 Conditions for intentional radiators to 7 15.231a Pass comply with periodic operation Field strength of emissions Pass 8 15.231b The bandwidth of the emission Pass 9 15.231c

Checked by:

Leading engineer

#### 2.1 Test program and results of the tests

Tested by:

tests No. 1,2,4-6: Laboratory engineer

-Boris Trifonov

tests No. 3: Laboratory engineer

Decquel

Vladimir Osaulko

#### 2.2 Test conditions and test modes

Operating Temperature: -30 °C to + 85 °C Storage Temperature: -40 °C to +85 °C Humidity: Up to 95%

Normal power source: - Unom = 110 VAC

#### **Extreme temperature:**

- minimum temperature Tmin = minus 30 °C;

- maximum temperature Tmax =  $+85 \,^{\circ}$ C.

#### **Extreme power source:**

- minimum voltage Umin: 99 VAC

- maximum voltage Umax : 121 VAC

#### The frequencies for the testing

| Channel, No. | Frequency, MHz |
|--------------|----------------|
| Low          | 450            |
| Mid          | 460            |
| High         | 470            |

High Fjodor Shubin

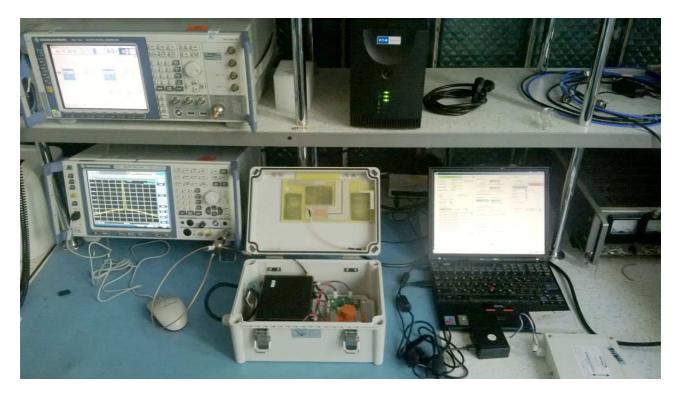
#### 2.3 Test equipment used

| 1.EMI Test receiver/spectrum analyzerR&S ESU-262.Spectrum analyzerR&S FSV403.Radiocommunication service monitorR&S CMS-54 | 100260<br>105763<br>100033 |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                                           |                            |
| 3 Radiocommunication service monitor R&S CMS-54                                                                           | 100022                     |
| 5. Readocommunication betwee monitor Read Civily 51                                                                       | 100033                     |
| 4. Vector Signal Generator SMBV100A                                                                                       | 100216                     |
| 5. Signal Generator SMB100A                                                                                               | 100217                     |
| 6. Oscilloscope TDS3052B                                                                                                  | 100038                     |
| 7.Frequency meter43-64                                                                                                    | 100056                     |
| 8. Dual directional coupler 778D-012                                                                                      | 101895                     |
| 9.AttenuatorAgilent 8496B                                                                                                 | 100103                     |
| 10.Attenuator6N25W                                                                                                        | 100196                     |
| 11. Attenuator PE7014-10                                                                                                  | 101692                     |
| 12.DetectorAgilent 8471E                                                                                                  | 100104                     |
| 13.Climatic chamberKPK-400V                                                                                               | 015                        |
| 14.Antenna (30 – 1000) MHzSchwarzbeck<br>UBAA 9114                                                                        | 9111-214                   |
| 15.Antenna (30 – 1000) MHzSchwarzbeck<br>VULB9163                                                                         | 9163244                    |
| 16.         HP11966 model           3115         3115                                                                     | 9903-5701                  |
| 17.         Antenna (1000 - 6000) MHz         ETS-Lindgren 3117                                                           | 100200                     |
| 18.         Antenna (1000 - 6000) MHz         ETS-Lindgren 3117                                                           | 100201                     |
| 19.Digital multimeterFLUKE 189                                                                                            | 89750179                   |
| 20.Preamplifier (0.1-18) GHzAgilent 87405cM                                                                               | AY47010400                 |
| 21.PsychrometerВИТ-2                                                                                                      | B931                       |
| 22. Shielded Semi-Anechoic Chamber "DON"                                                                                  | 1                          |

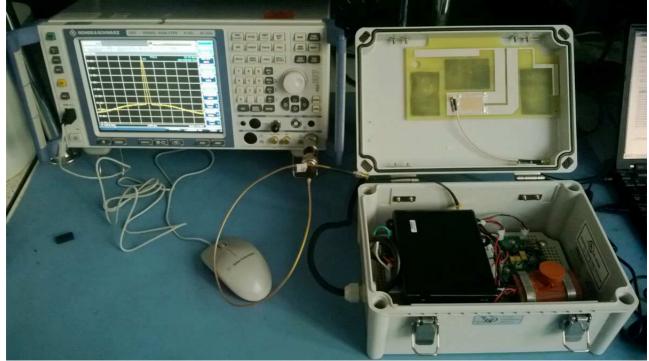
All listed above test equipment is calibrated and certified in accordance with established procedure. The equipment has certificates currently in force.

#### Ancillary equipment

| N⁰ | Name        | Model                     |
|----|-------------|---------------------------|
| 1. | Transceiver | Telematics Wireless RTU_S |
| 2. | Notebook    | IBM ThinkPad              |
| 3. | RF Trigger  | -                         |


#### 2.4 Measurement uncertainty

| Parameter          | Maximum uncertainty      |
|--------------------|--------------------------|
| Radiated emission  | ± 4.7 dB                 |
| Conducted emission | ± 2.7 dB                 |
| Frequency          | $\pm 1.5 \times 10^{-7}$ |
| Temperature        | ±1 °C                    |
| Humidity           | ± 2 %                    |
| Voltage supply AC  | ± 2 %                    |


This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

### 2.5 Photo of test site

Figure 2.6.1




# Figure 2.6.2



# Figure 2.6.3



# Figure 2.6.4



# **3 REPORT OF MEASUREMENTS AND EXAMINATIONS**

#### 3.1 Emission mask

#### 3.1.1 Test requirements 90.210(e)

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

| Frequency band<br>(MHz)      | Mask for equipment with Audio low pass<br>filter | Mask for equipment without audio low pass filter |
|------------------------------|--------------------------------------------------|--------------------------------------------------|
| Below 25 <sup>1</sup>        | A or B                                           | A or C                                           |
| 25-50                        | В                                                | С                                                |
| 72-76                        | В                                                | c                                                |
| 150-174 <sup>2</sup>         | B, D, or E                                       | C, D, or E                                       |
| 150 Paging-only              | В                                                | C                                                |
| 220-222                      | F                                                | F                                                |
| 421-512 <sup>2</sup>         | B, D, or E                                       | C, D, or E                                       |
| 450 Paging-only              | В                                                | G                                                |
| 806-809/851-854              | В                                                | Н                                                |
| 809-824/854-869 <sup>3</sup> | В                                                | G                                                |
| 896-901/935-940              | I                                                | J                                                |
| 902-928                      | к                                                | к                                                |
| 929-930                      | В                                                | G                                                |
| 4940-4990 MHz                | L or M                                           | L or M.                                          |
| 5850-5925 <sup>4</sup>       |                                                  |                                                  |
| All other bands              | В                                                | C                                                |

#### Table 3.1.1 Limit Emissions Mask

 $^2$  Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

(e) Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

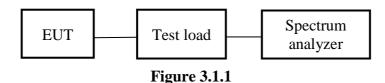
(1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0 : Zero dB.

(2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd - 3 kHz) or  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two to three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emissions mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (m) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, then an alternate procedure may be used provided prior Commission approval is obtained.

#### 3.1.2 Test procedure

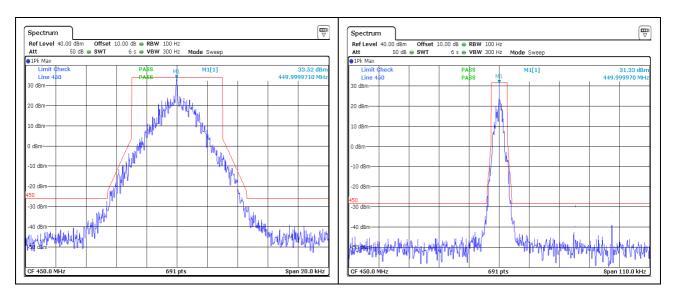

1) The transmitter output was connected to the test load and then to the spectrum analyzer.

2) The transmitter was set up to the normal operational mode with maximum output power.

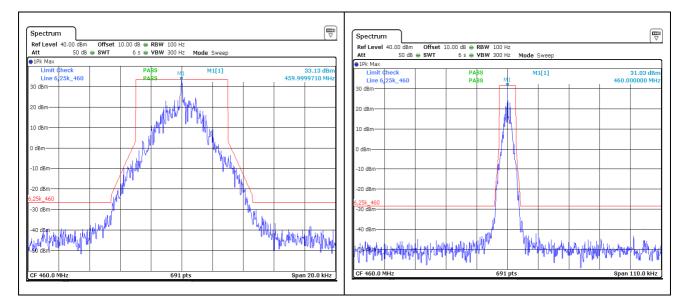
3) Spectrum analyzer was set to the measurement mode of Spectrum Emission Mask (SEM) with the following settings:

- Centre frequency set to the center frequency of the channel
- The Relative Mask setting was chosen
- RBW=100 Hz, VBW=300 Hz, Video Detector = Peak, Trace = MAX HOLD.

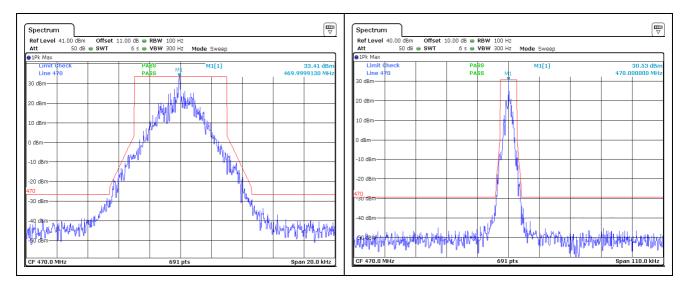
#### 3.1.3 Test setup layout




#### 3.1.4 Test result


Temperature: +18 °C

Relative humidity: 60 %


#### 3.1.5 Plots Emissions Mask test result at low frequency



#### 3.1.6 Plots Emissions Mask test result at mid frequency



#### 3.1.7 Plots Emissions Mask test result at high frequency



#### 3.2 Conducted Spurious Emissions

#### 3.2.1 Test requirements 90.210 (e)

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

#### Table 3.1.2 Limits

| Frequency band<br>(MHz)      | Mask for equipment with Audio low pass<br>filter | Mask for equipment without audio low pass filter |
|------------------------------|--------------------------------------------------|--------------------------------------------------|
| Below 25 <sup>1</sup>        | A or B                                           | A or C                                           |
| 25-50                        | В                                                | С                                                |
| 72-76                        | В                                                | C                                                |
| 150-174 <sup>2</sup>         | B, D, or E                                       | C, D, or E                                       |
| 150 Paging-only              | В                                                | С                                                |
| 220-222                      | F                                                | F                                                |
| 421-512 <sup>2</sup>         | B, D, or E                                       | C, D, or E                                       |
| 450 Paging-only              | В                                                | G                                                |
| 806-809/851-854              | В                                                | Н                                                |
| 809-824/854-869 <sup>3</sup> | В                                                | G                                                |
| 896-901/935-940              | I                                                | J                                                |
| 902-928                      | к                                                | ĸ                                                |
| 929-930                      | В                                                | G                                                |
| 4940-4990 MHz                | L or M                                           | L or M.                                          |
| 5850-5925 <sup>4</sup>       |                                                  |                                                  |
| All other bands              | В                                                | С                                                |

<sup>2</sup> Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

(e) Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

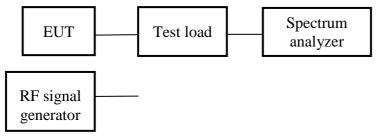
(1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.

(2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd - 3 kHz) or  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two to three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emissions mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (m) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, then an alternate procedure may be used provided prior Commission approval is obtained.

#### 3.2.2 Test procedure


The procedure used was ANSI/TIA-603-D:2010. Substitution RF signal generator was used.

1) The transmitter was connected to the spectrum analyzer using the test load.

2) The transmitter was set up to the normal operational mode with maximum output power rating.

3) The spurious emissions were observed in the band of 30 MHz - 10000 MHz excluding the central frequency of transmitter  $\pm 53$  kHz using following spectrum analyzer settings: RBW= 10 kHz, VBW = 30 kHz, Video Detector = Peak, Trace = Max Hold.

#### 3.2.3 Test setup layout



#### 3.2.4 Test result

Temperature: +18 °C

Relative humidity: 50 %

| Frequency,<br>MHz | Output Power<br>(dBm) | Gen. Output<br>(dBm) | Difference,<br>dBc | Limit,<br>dBc | Result<br>(Pass, Fail, N/A) |
|-------------------|-----------------------|----------------------|--------------------|---------------|-----------------------------|
| 450               | 34.23                 | -                    | -                  | -             | -                           |
| 450,099           | - 28.91               | - 28.85              | 63.08              | 60            | Pass                        |
| 450.208           | - 32.27               | - 32.16              | 66.50              | 60            | Pass                        |
| 450.443           | - 41.19               | - 41.12              | 75.35              | 60            | Pass                        |
| 460               | 33.67                 | -                    | -                  | -             | -                           |
| 460.101           | - 30.41               | - 30.32              | 63.99              | 60            | Pass                        |
| 460.149           | - 30.71               | - 30.63              | 64.30              | 60            | Pass                        |
| 460.              | - 41.93               | - 41.81              | 75.48              | 60            | Pass                        |
| 470               | 32.96                 | -                    | -                  | -             | -                           |
| 470.093           | - 30.71               | - 30.65              | 63.61              | 60            | Pass                        |
| 470.197           | - 33.12               | - 33.05              | 66.01              | 60            | Pass                        |
| 470.301           | - 37.75               | - 37.64              | 70.60              | 60            | Pass                        |

| Frequency,<br>MHz | Output<br>Power, dBm | Gen. Output,<br>dBm | Difference,<br>dBc | Limit,<br>dBc | Result<br>(Pass, Fail,<br>N/A) |
|-------------------|----------------------|---------------------|--------------------|---------------|--------------------------------|
| 450               | 34.23                | -                   | -                  | -             | -                              |
| 900               | - 37.82              | - 37.58             | 71.81              | 60            | Pass                           |
| 1350              | - 37.05              | - 36.75             | 70.98              | 60            | Pass                           |
| 1800              | - 77.65              | - 77.54             | 111.77             | 60            | Pass                           |
| 2250              | - 77.21              | - 77.12             | 111.35             | 60            | Pass                           |
| 2700              | - 58.43              | - 57.84             | 92.07              | 60            | Pass                           |
| 3150              | -                    | -                   | -                  | 60            | Pass                           |
| 3600              | -                    | -                   | -                  | 60            | Pass                           |
| 4050              | -                    | -                   | -                  | 60            | Pass                           |
| 4500              | -                    | _                   | -                  | 60            | Pass                           |

#### Table 3.2.2 Conducted Spurious Emissions (Frequency 450 MHz)

#### Table 3.2.3 Conducted Spurious Emissions (Frequency 460 MHz)

| Frequency,<br>MHz | Output<br>Power, dBm | Gen. Output<br>dBm | Difference,<br>dBc | Limit,<br>dBc | Result<br>(Pass, Fail, N/A) |
|-------------------|----------------------|--------------------|--------------------|---------------|-----------------------------|
| 460               | 33.67                | -                  | -                  | -             | -                           |
| 920               | - 44.43              | - 44.17            | 77.84              | 60            | Pass                        |
| 1380              | - 38.97              | - 38.62            | 72.29              | 60            | Pass                        |
| 1840              | - 76.32              | - 76.24            | 109.91             | 60            | Pass                        |
| 2300              | -                    | -                  | -                  | 60            | Pass                        |
| 2760              | - 65.81              | - 64.81            | 98.48              | 60            | Pass                        |
| 3220              | -                    | -                  | -                  | 60            | Pass                        |
| 3680              | -                    | -                  | -                  | 60            | Pass                        |
| 4140              | -                    | -                  | -                  | 60            | Pass                        |
| 4600              | _                    | _                  | -                  | 60            | Pass                        |

| Frequency,<br>MHz | Output Power,<br>dBm | Gen. Output<br>(dBm) | Difference,<br>dBc | Limit,<br>dBc | Result<br>(Pass, Fail, N/A) |
|-------------------|----------------------|----------------------|--------------------|---------------|-----------------------------|
| 470               | 32.96                | -                    | -                  | -             | -                           |
| 940               | - 40.03              | - 39.76              | 72.72              | 60            | Pass                        |
| 1410              | -                    | -                    | -                  | 60            | Pass                        |
| 1880              | - 77.55              | - 77.43              | 110.39             | 60            | Pass                        |
| 2350              | - 73.79              | - 73.68              | 106.64             | 60            | Pass                        |
| 2820              | - 77.30              | - 77.19              | 110.15             | 60            | Pass                        |
| 3290              | -                    | -                    | -                  | 60            | Pass                        |
| 3760              | -                    | -                    | -                  | 60            | Pass                        |
| 4230              | -                    | -                    | -                  | 60            | Pass                        |
| 4700              | -                    | _                    | -                  | 60            | Pass                        |

### 3.3 Radiated Spurious Emissions

#### 3.3.1 Test requirements 90.210 (e)

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

#### Table 3.3.1

| Frequency band<br>(MHz)      | Mask for equipment with Audio low pass filter | Mask for equipment without audio low pass filter |
|------------------------------|-----------------------------------------------|--------------------------------------------------|
| Below 25 <sup>1</sup>        | A or B                                        | A or C                                           |
| 25-50                        | В                                             | С                                                |
| 72-76                        | В                                             | С                                                |
| 150-174 <sup>2</sup>         | B, D, or E                                    | C, D, or E                                       |
| 150 Paging-only              | В                                             | С                                                |
| 220-222                      | F                                             | F                                                |
| 421-512 <sup>2</sup>         | B, D, or E                                    | C, D, or E                                       |
| 450 Paging-only              | В                                             | G                                                |
| 806-809/851-854              | В                                             | н                                                |
| 809-824/854-869 <sup>3</sup> | В                                             | G                                                |
| 896-901/935-940              | 1                                             | J                                                |
| 902-928                      | к                                             | к                                                |
| 929-930                      | В                                             | G                                                |
| 4940-4990 MHz                | L or M                                        | L or M.                                          |
| 5850-5925 <sup>4</sup>       |                                               |                                                  |
| All other bands              | В                                             | C                                                |

<sup>2</sup> Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

(e) Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.

(2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd - 3 kHz) or  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least  $55 + 10 \log (P)$  or 65 dB, whichever is the lesser attenuation.

(4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two to three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emissions mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient

number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (m) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, then an alternate procedure may be used provided prior Commission approval is obtained.

#### 3.3.2 Test procedure

The transmitter was set up to the normal operational mode with maximum output power.

1) Radiated spurious emissions were measured using substitution method for radiated measurements in the anechoic shielded chamber with metal floor in the band of 30 MHz - 1000 MHz and in fully anechoic chamber in the band of 1000 MHz - 10000 MHz. The transmitter was set to the normal operational mode with the maximum output power rating.

2) EUT was placed on the non-conductive surface at the height of 0.8 m above the floor.

3) Measurement antenna was placed at the distance of 3m away from the EUT with vertical polarization.

4) The spurious emissions were observed in the band of 30 MHz - 10000 MHz excluding the central frequency of transmitter  $\pm 10$  kHz using following spectrum analyzer settings: RBW= 10 kHz, VBW = 300 kHz (range 30 MHz - 1000 MHz) and RBW= 1 MHz, VBW = 3 MHz (range 1000 MHz - 10000 MHz), Video Detector = Peak, Trace = Max Hold.

5) The EUT was rotated around it's axis to obtain maximum result on the spectrum analyzer.

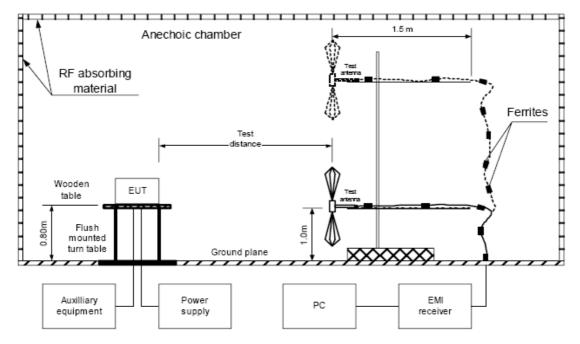
6) The height of measurement antenna was changed from 1m to 4m in 10 cm steps to obtain maximum result on the spectrum analyzer in the chamber with metal floor. In the fully anechoic chamber the height of antenna remained unchanged.

7) Measurement was repeated for horizontal polarization of measurement antenna.

8) Maximum reading of P<sub>Gen. Output</sub> was noted from substitutional generator.

9) Then the EUT was substituted by substitution antenna with it's phase center placed in the middle of the EUT position and the polarization obtained on the step of 8).

10) The Peak output power of each spurious component found was calculated using equation:


$$ERP = P_{Gen. Output} + Ga - L$$
, where

P<sub>Gen. Output</sub> - power obtained on step 8), dBm

Ga - gain of substitution antenna on frequency of interest, dBi

L - attenuation in the substitution cable on the frequency of interest, dB

#### 3.3.3 Test setup layout



#### 3.3.4 Test result

Temperature: +18 °C

Relative humidity: 65 %

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss,<br>dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|---------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 470    |                        |                     |                      |                      | 32.96                          |                         |               |                                     |
| 940    | -30.30                 | 3.10                | -7.29                | -9.44                | -42.84                         | 75.80                   | 60            | Pass                                |
| 1410   | -44.00                 | 3.90                | 4.80                 | 2.65                 | -45.25                         | 78.21                   | 60            | Pass                                |
| 1880   | -48.00                 | 5.40                | 5.00                 | 2.85                 | -50.55                         | 83.51                   | 60            | Pass                                |
| 2350   | -50.50                 | 5.80                | 5.50                 | 3.35                 | -52.95                         | 85.91                   | 60            | Pass                                |
| 2820   | -47.20                 | 7.10                | 6.50                 | 4.35                 | -49.95                         | 82.91                   | 60            | Pass                                |
| 3290   | -46.20                 | 7.50                | 7.20                 | 5.05                 | -48.65                         | 81.61                   | 60            | Pass                                |
| 3760   | -49.50                 | 8.00                | 7.66                 | 5.51                 | -51.99                         | 84.95                   | 60            | Pass                                |
| 4230   | -54.00                 | 8.20                | 7.62                 | 5.47                 | -56.73                         | 89.69                   | 60            | Pass                                |
| 4700   | -62.00                 | 8.70                | 7.70                 | 5.55                 | -65.15                         | 98.11                   | 60            | Pass                                |

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss, dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 460    |                        |                  |                      |                      | 33.67                          |                         |               |                                     |
| 920    | -28.00                 | 3.10             | -7.12                | -9.27                | -40.37                         | 74.04                   | 60            | Pass                                |
| 1380   | -45.50                 | 3.90             | 4.60                 | 2.45                 | -46.95                         | 80.62                   | 60            | Pass                                |
| 1840   | -51.20                 | 5.40             | 5.00                 | 2.85                 | -53.75                         | 87.42                   | 60            | Pass                                |
| 2300   | -49.00                 | 5.80             | 5.40                 | 3.25                 | -51.55                         | 85.22                   | 60            | Pass                                |
| 2760   | -50.50                 | 7.10             | 6.40                 | 4.25                 | -53.35                         | 87.02                   | 60            | Pass                                |
| 3220   | -49.50                 | 7.50             | 7.12                 | 4.97                 | -52.03                         | 85.70                   | 60            | Pass                                |
| 3680   | -52.10                 | 8.00             | 7.60                 | 5.45                 | -54.65                         | 88.32                   | 60            | Pass                                |
| 4140   | -53.00                 | 8.20             | 7.70                 | 5.55                 | -55.65                         | 89.32                   | 60            | Pass                                |
| 4600   | -55.00                 | 8.60             | 7.50                 | 5.35                 | -58.25                         | 91.92                   | 60            | Pass                                |

Table 3.2.5 Radiated Spurious Emissions (Frequency 460 MHz, vertical polarization):

Table 3.2.6 Radiated Spurious Emissions (Frequency 450 MHz, vertical polarization):

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss, dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 450    |                        |                  |                      |                      | 34.23                          |                         |               |                                     |
| 900    | -28.00                 | 3.10             | -6.90                | -9.05                | -40.15                         | 74.38                   | 60            | Pass                                |
| 1350   | -50.30                 | 3.90             | 4.50                 | 2.35                 | -51.85                         | 86.08                   | 60            | Pass                                |
| 1800   | -47.00                 | 5.40             | 5.50                 | 3.35                 | -49.05                         | 83.28                   | 60            | Pass                                |
| 2250   | -48.50                 | 5.80             | 5.40                 | 3.25                 | -51.05                         | 85.28                   | 60            | Pass                                |
| 2700   | -45.00                 | 7.10             | 6.24                 | 4.09                 | -48.01                         | 82.24                   | 60            | Pass                                |
| 3150   | -44.00                 | 7.50             | 7.10                 | 4.95                 | -46.55                         | 80.78                   | 60            | Pass                                |
| 3600   | -45.50                 | 8.00             | 7.50                 | 5.35                 | -48.15                         | 82.38                   | 60            | Pass                                |
| 4050   | -52.00                 | 8.20             | 7.90                 | 5.75                 | -54.45                         | 88.68                   | 60            | Pass                                |
| 4500   | -54.00                 | 8.60             | 7.30                 | 5.15                 | -57.45                         | 91.68                   | 60            | Pass                                |

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss, dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 470    |                        |                  |                      |                      | 32.96                          |                         |               |                                     |
| 940    | -35.00                 | 3.10             | -7.29                | -9.44                | -47.54                         | 80.50                   | 60            | Pass                                |
| 1410   | -56.50                 | 3.90             | 4.80                 | 2.65                 | -57.75                         | 90.71                   | 60            | Pass                                |
| 1880   | -52.50                 | 5.40             | 5.00                 | 2.85                 | -55.05                         | 88.01                   | 60            | Pass                                |
| 2350   | -49.20                 | 5.80             | 5.50                 | 3.35                 | -51.65                         | 84.61                   | 60            | Pass                                |
| 2820   | -50.00                 | 7.10             | 6.50                 | 4.35                 | -52.75                         | 85.71                   | 60            | Pass                                |
| 3290   | -49.00                 | 7.50             | 7.20                 | 5.05                 | -51.45                         | 84.41                   | 60            | Pass                                |
| 3760   | -53.00                 | 8.00             | 7.66                 | 5.51                 | -55.49                         | 88.45                   | 60            | Pass                                |
| 4230   | -48.00                 | 8.20             | 7.62                 | 5.47                 | -50.73                         | 83.69                   | 60            | Pass                                |
| 4700   | -52.50                 | 8.70             | 7.70                 | 5.55                 | -55.65                         | 88.61                   | 60            | Pass                                |

Table 3.2.7 Radiated Spurious Emissions (Frequency 470 MHz, horizontal polarization):

Table 3.2.8 Radiated Spurious Emissions (Frequency 460 MHz, horizontal polarization):

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss, dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 460    |                        |                  |                      |                      | 33.67                          |                         |               |                                     |
| 920    | -35.30                 | 3.10             | -7.12                | -9.27                | -47.67                         | 81.34                   | 60            | Pass                                |
| 1380   | -57.40                 | 3.90             | 4.60                 | 2.45                 | -58.85                         | 92.52                   | 60            | Pass                                |
| 1840   | -53.20                 | 5.40             | 5.00                 | 2.85                 | -55.75                         | 89.42                   | 60            | Pass                                |
| 2300   | -48.50                 | 5.80             | 5.40                 | 3.25                 | -51.05                         | 84.72                   | 60            | Pass                                |
| 2760   | -51.40                 | 7.10             | 6.40                 | 4.25                 | -54.25                         | 87.92                   | 60            | Pass                                |
| 3220   | -50.20                 | 7.50             | 7.12                 | 4.97                 | -52.73                         | 86.40                   | 60            | Pass                                |
| 3680   | -53.30                 | 8.00             | 7.60                 | 5.45                 | -55.85                         | 89.52                   | 60            | Pass                                |
| 4140   | -50.20                 | 8.20             | 7.70                 | 5.55                 | -52.85                         | 86.52                   | 60            | Pass                                |
| 4600   | -50.50                 | 8.60             | 7.50                 | 5.35                 | -53.75                         | 87.42                   | 60            | Pass                                |

| F, MHz | Gen.<br>Output,<br>dBm | Coax<br>Loss,<br>dB | Ant.<br>Gain,<br>dBi | Ant.<br>Gain,<br>dBd | Dipole<br>Eq.<br>Power,<br>dBm | Diffe-<br>rence,<br>dBc | Limit,<br>dBc | Test result<br>(Pass, Fail,<br>N/A) |
|--------|------------------------|---------------------|----------------------|----------------------|--------------------------------|-------------------------|---------------|-------------------------------------|
| 450    |                        |                     |                      |                      | 34.23                          |                         |               |                                     |
| 900    | -34.00                 | 3.10                | -6.90                | -9.05                | -46.15                         | 80.38                   | 60            | Pass                                |
| 1350   | -58.50                 | 3.90                | 4.50                 | 2.35                 | -60.05                         | 94.28                   | 60            | Pass                                |
| 1800   | -53.50                 | 5.40                | 5.50                 | 3.35                 | -55.55                         | 89.78                   | 60            | Pass                                |
| 2250   | -51.20                 | 5.80                | 5.40                 | 3.25                 | -53.75                         | 87.98                   | 60            | Pass                                |
| 2700   | -50.50                 | 7.10                | 6.24                 | 4.09                 | -53.51                         | 87.74                   | 60            | Pass                                |
| 3150   | -48.50                 | 7.50                | 7.10                 | 4.95                 | -51.05                         | 85.38                   | 60            | Pass                                |
| 3600   | -49.50                 | 8.00                | 7.50                 | 5.35                 | -52.15                         | 86.38                   | 60            | Pass                                |
| 4050   | -48.60                 | 8.20                | 7.90                 | 5.75                 | -51.05                         | 85.28                   | 60            | Pass                                |
| 4500   | -47.00                 | 8.60                | 7.30                 | 5.15                 | -50.45                         | 84.68                   | 60            | Pass                                |

| Table 3.2.9 Radiated Spuri | ious Emissions (Frequen | cv 450 MHz, horizonta | polarization): |
|----------------------------|-------------------------|-----------------------|----------------|
| Tuble claip Tuanatea Spar  |                         |                       | polarization   |

### 3.4 Transient stability

#### 3.4.1 Test requirements 90.214

Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

#### Table 3.4.1 Limit Transient Frequency Behavior

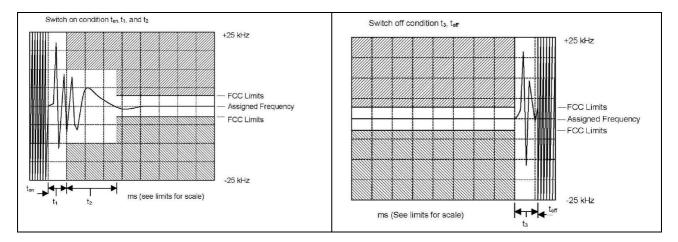
|                               | Maximum                                                                   | All equipment                   |                |  |
|-------------------------------|---------------------------------------------------------------------------|---------------------------------|----------------|--|
| Time intervals <sup>1,2</sup> | frequency           Time intervals <sup>1,2</sup> difference <sup>3</sup> |                                 | 421 to 512 MHz |  |
| Transient Frequ               | ency Behavior for Equipm                                                  | ent Designed to Operate on 25 I | kHz Channels   |  |
| t <sub>1</sub> 4              | ±25.0 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |
| t <sub>2</sub>                | ±12.5 kHz                                                                 | 20.0 ms                         | 25.0 ms        |  |
| t <sub>3</sub> 4              | ±25.0 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |
| Transient Freque              | ncy Behavior for Equipme                                                  | nt Designed to Operate on 12.5  | kHz Channels   |  |
| t <sub>1</sub> 4              | ±12.5 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |
| t <sub>2</sub>                | ±6.25 kHz                                                                 | 20.0 ms                         | 25.0 ms        |  |
| t <sub>3</sub> 4              | ±12.5 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |
| Transient Freque              | ncy Behavior for Equipme                                                  | nt Designed to Operate on 6.25  | kHz Channels   |  |
| t <sub>1</sub> 4              | ±6.25 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |
| t <sub>2</sub>                | ±3.125 kHz                                                                | 20.0 ms                         | 25.0 ms        |  |
| t <sub>3</sub> 4              | ±6.25 kHz                                                                 | 5.0 ms                          | 10.0 ms        |  |

 $^{1}$  t<sub>on</sub> is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

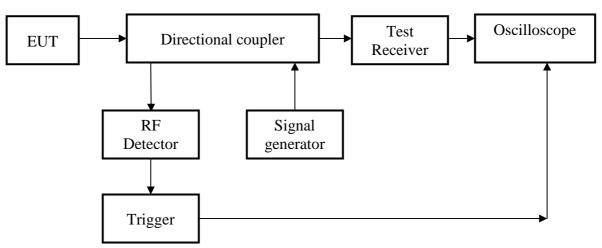
- $t_1$  is the time period immediately following  $t_{on}$ .
- $t_2$  is the time period immediately following  $t_1$ .
- $t_3$  is the time period from the instant when the transmitter is turned off until  $t_{off}$ .
- $t_{off}$  is the instant when the 1 kHz test signal starts to rise.

<sup>2</sup> During the time from the end of  $t_2$  to the beginning of  $t_3$ , the frequency difference must not exceed the limits specified in § 90.213.

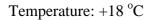
<sup>3</sup> Difference between the actual transmitter frequency and the assigned transmitter frequency.


<sup>4</sup> If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

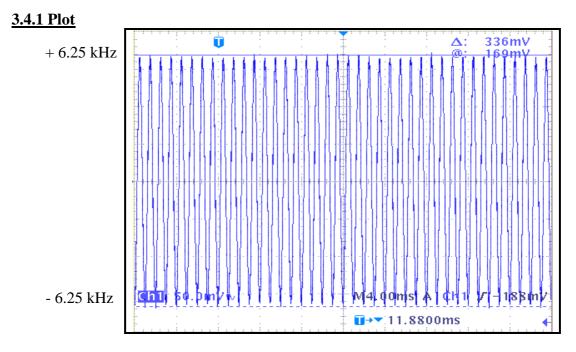
#### 3.4.2 Test procedure


1) The transmitter was connected to the universal radio tester CMS54.

2) The transmitter was set up to the normal operational mode with maximum output power.


3) The transient behavior of transmitter was observed in the moment of keying (TX-off to TX-on) and unkeying (TX-on to TX-off) using the special option of the CMS54 radio tester.



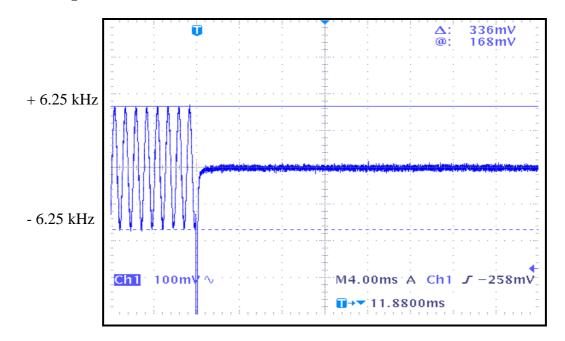

#### 3.4.3 Test setup layout



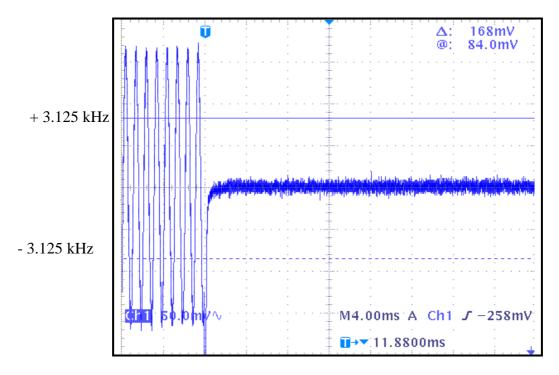
#### 3.4.4 Test result



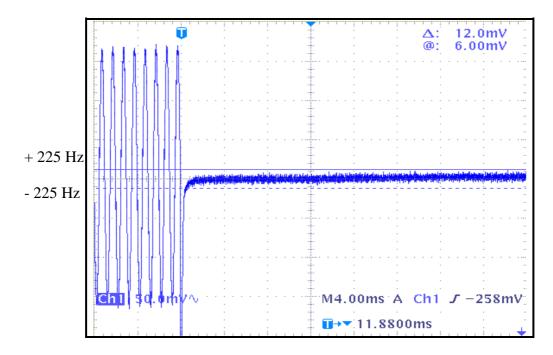
Relative humidity: 50 %



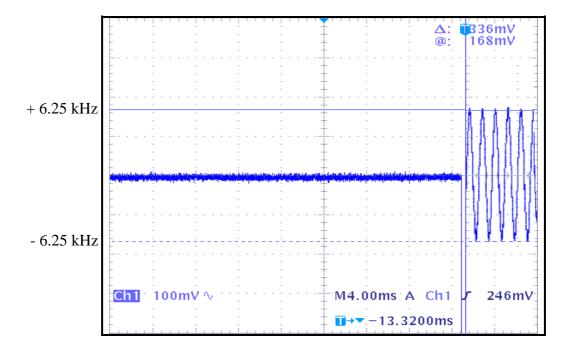

```
<u>+</u> 6.25 kHz = 336 mV


<u>+</u> 3.125 kHz = 168 mV

<u>+</u> 225 Hz (<u>+</u>0.5 ppm) = 12 mV
```


### <u>3.4.2 Plot: t<sub>1</sub> time period</u>




# 3.4.3 Plot: t<sub>2</sub> time period



## <u>3.4.4 Plot: t<sub>2</sub> - t<sub>3</sub> time period</u>



#### 3.4.5 Plot: t<sub>3</sub> time period



#### 3.5 Frequency stability vs power supply

#### 3.5.1 Test requirements 90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have minimum frequency stability as specified in the following table.

#### Table 3.5.1 Limits

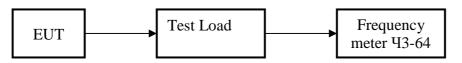
|                          |                         | Mobile stations           |                              |  |  |
|--------------------------|-------------------------|---------------------------|------------------------------|--|--|
| Frequency range (MHz)    | Fixed and base stations | Over 2 watts output power | 2 watts or less output power |  |  |
| Below 25                 | <sup>1,2,3</sup> 100    | 100                       | 200                          |  |  |
| 25-50                    | 20                      | 20                        | 50                           |  |  |
| 72-76                    | 5                       |                           | 50                           |  |  |
| 150-174                  | 5,11 5                  | <sup>6</sup> 5            | <sup>4,6</sup> 50            |  |  |
| 216-220                  | 1.0                     |                           | 1.0                          |  |  |
| 220-222 <sup>12</sup>    | 0.1                     | 1.5                       | 1.5                          |  |  |
| 421-512                  | <sup>7,11,14</sup> 2.5  | <sup>8</sup> 5            | <sup>8</sup> 5               |  |  |
| 806-809                  | <sup>14</sup> 1.0       | 1.5                       | 1.5                          |  |  |
| 809-824                  | <sup>14</sup> 1.5       | 2.5                       | 2.5                          |  |  |
| 851-854                  | 1.0                     | 1.5                       | 1.5                          |  |  |
| 854-869                  | 1.5                     | 2.5                       | 2.5                          |  |  |
| 896-901                  | <sup>14</sup> 0.1       | 1.5                       | 1.5                          |  |  |
| 902-928                  | 2.5                     | 2.5                       |                              |  |  |
| 902-928 <sup>13</sup>    | 2.5                     | 2.5                       | 2.5                          |  |  |
| 929-930                  | 1.5                     |                           |                              |  |  |
| 935-940                  | 0.1                     | 1.5                       | 1.5                          |  |  |
| 1427-1435                | <sup>9</sup> 300        | 300                       | 300                          |  |  |
| Above 2450 <sup>10</sup> |                         |                           |                              |  |  |

<sup>7</sup> In the 421-512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.

<sup>8</sup> In the 421-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.

b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

#### 3.5.2 Test procedure


1) The transmitter was set up to the normal operational mode with maximum output power with no modulation signal applied.

2) The transmitter was connected to the frequency meter 43-64.

3) Frequency counter of the radio tester was used for measuring the frequency.

4) The supply voltage was changed to observe the frequency stability across the power supply voltage range.

#### 3.5.3 Test setup layout



#### 3.5.4 Test result

Temperature: +18 °C

Relative humidity: 50 %

| Power Supply<br>voltage, V | Frequency<br>(MHz) | Deviation<br>(Hz) | Deviation<br>(ppm) | Limit, ppm | Result<br>(Pass, Fail,<br>N/A) |
|----------------------------|--------------------|-------------------|--------------------|------------|--------------------------------|
| 121                        | 449.999892         | - 108             | - 0.24             | 0.5        | Pass                           |
| 118                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 116                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 114                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 112                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 110                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 108                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 106                        | 449. 999892        | - 108             | -0.24              | 0.5        | Pass                           |
| 104                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 102                        | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |
| 99                         | 449. 999892        | - 108             | - 0.24             | 0.5        | Pass                           |

Reference frequency = 450.000000 MHz

#### 3.6 Frequency stability vs temperature

#### 3.6.1 Test requirements 90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

#### Table 3.6.1 Limits

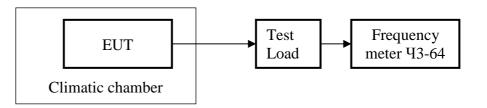
|                          |                        | Mobile stations           |                              |  |
|--------------------------|------------------------|---------------------------|------------------------------|--|
| Frequency range (MHz)    |                        | Over 2 watts output power | 2 watts or less output power |  |
| Below 25                 | <sup>1,2,3</sup> 100   | 100                       | 200                          |  |
| 25-50                    | 20                     | 20                        | 50                           |  |
| 72-76                    | 5                      |                           | 50                           |  |
| 150-174                  | <sup>5,11</sup> 5      | <sup>6</sup> 5            | <sup>4,6</sup> 50            |  |
| 216-220                  | 1.0                    |                           | 1.0                          |  |
| 220-222 <sup>12</sup>    | 0.1                    | 1.5                       | 1.5                          |  |
| 421-512                  | <sup>7,11,14</sup> 2.5 | <sup>8</sup> 5            | <sup>8</sup> 5               |  |
| 806-809                  | <sup>14</sup> 1.0      | 1.5                       | 1.5                          |  |
| 809-824                  | <sup>14</sup> 1.5      | 2.5                       | 2.5                          |  |
| 851-854                  | 1.0                    |                           | 1.5                          |  |
| 854-869                  | 1.5                    |                           | 2.5                          |  |
| 896-901                  | <sup>14</sup> 0.1      | 1.5                       | 1.5                          |  |
| 902-928                  | 2.5                    | 2.5                       | 2.5                          |  |
| 902-928 <sup>13</sup>    | 2.5                    | 2.5                       | 2.5                          |  |
| 929-930                  | 1.5                    |                           |                              |  |
| 935-940                  | 0.1                    | 1.5                       | 1.5                          |  |
| 1427-1435                | <sup>9</sup> 300       | 300                       | 300                          |  |
| Above 2450 <sup>10</sup> |                        |                           |                              |  |

 $^{7}$  In the 421-512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.

<sup>8</sup> In the 421-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.

b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

#### 3.6.2 Test procedure


1) The transmitter was set up to the normal operational mode with maximum output power with no modulation signal applied.

2) The transmitter was connected to the Frequency meter 43-64.

3) Frequency counter of the radio tester was used for measuring the frequency.

4) The transmitter was placed in the temperature chamber to observe the frequency stability across the temperature range.

#### 3.6.3 Test setup layout



#### 3.6.4 Test result

Temperature: +18 °C

Relative humidity: 50 %

| Temperature<br>(°C) | Frequency<br>(MHz) | Deviation<br>(Hz) | Deviation<br>(ppm) | Limit, ppm | Result<br>(Pass, Fail,<br>N/A) |
|---------------------|--------------------|-------------------|--------------------|------------|--------------------------------|
| +85                 | 449.999913         | - 87              | - 0.19             | 0.5        | Pass                           |
| +80                 | 449.999910         | - 90              | - 0.20             | 0.5        | Pass                           |
| +70                 | 449.999899         | - 101             | - 0.22             | 0.5        | Pass                           |
| +60                 | 449.999879         | - 121             | - 0.27             | 0.5        | Pass                           |
| +50                 | 449.999879         | - 121             | - 0.27             | 0.5        | Pass                           |
| +40                 | 449.999862         | - 136             | - 0.30             | 0.5        | Pass                           |
| +30                 | 449.999891         | - 109             | - 0.24             | 0.5        | Pass                           |
| +20                 | 449.999892         | - 108             | - 0.24             | 0.5        | Pass                           |
| +10                 | 449.999871         | - 129             | - 0.29             | 0.5        | Pass                           |
| 0                   | 449.999819         | - 181             | - 0.40             | 0.5        | Pass                           |
| -10                 | 449.999801         | - 199             | - 0.44             | 0.5        | Pass                           |
| -20                 | 449.999814         | - 186             | - 0.41             | 0.5        | Pass                           |
| -30                 | 449.999848         | - 152             | - 0.34             | 0.5        | Pass                           |
| -40                 | No<br>Transmission | -                 | -                  | -          | -                              |
| +20                 | 449.999894         | - 106             | - 0.24             | 0.5        | Pass                           |

Reference frequency = 450.000000 MHz

#### 3.7 Conditions for intentional radiators to comply with periodic operation

#### 3.7.1 Test requirements Section 15.231a

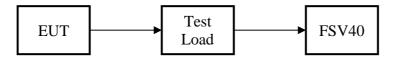
(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.


(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

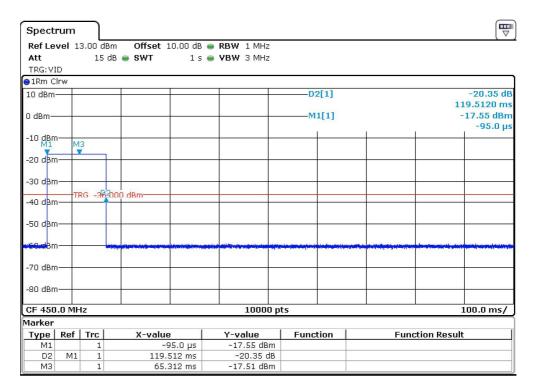
#### 3.7.2 Test procedure

1) The transmitter was set up to the normal operational mode with maximum output power with no modulation signal applied.

2) The transmitter was connected to the FSV40.

#### 3.7.3 Test setup layout




#### 3.7.4 Test result

Temperature: +18 °C

Relative humidity: 50 %

#### **Plot Transmit duration**

The device does not support manual initiation of wireless transmission. The automatically initiated transmission does not exceed 2 seconds in duration



Transmit duration 119.512 ms Verdict Pass

#### 3.8 Field strength of emissions

| Frequency of emission<br>(MHz) | Field strength<br>(microvolts/meter) | Field Strength<br>(dBµV/m) |
|--------------------------------|--------------------------------------|----------------------------|
| 30-88                          | 100                                  | 40                         |
| 88-216                         | 150                                  | 43.5                       |
| 216-960                        | 200                                  | 46                         |
| Above 960                      | 500                                  | 54                         |

#### 3.8.1 Test requirements § 15.109 Class B

#### 3.8.2 Test requirements § 15.231 (b)

| Fundamental frequency | Field strength o | f fundamental | Field strength of spurious emissions |               |  |
|-----------------------|------------------|---------------|--------------------------------------|---------------|--|
| (MHz)                 | (µV/m)           | (dBµV/m)      | (µV/m)                               | (dBµV/m)      |  |
| 40.66-40.70           | 2,250            | 67            | 225                                  | 47            |  |
| 70-130                | 1,250            | 61.9          | 125                                  | 41.9          |  |
| 130-174               | 1,250 to 3,750*  | 61.9 to 71.5* | 125 to 375*                          | 41.9 to 51.5* |  |
| 174-260               | 3,750            | 71.5          | 375                                  | 51.5          |  |
| 260-470               | 3,750 to 12,500* | 71.5 to 81.9* | 375 to 1,250*                        | 51.5 to 61.9* |  |
| Above 470             | 12,500           | 81.9          | 1,250                                | 61.9          |  |

#### **3.8.3 Test procedure (ANSI C63.4)**

The test was performed to measure radiated emissions from the equipment under test enclosure. The measurement was made in the anechoic chamber at measurement distance of 3m in two bands: (30 -1000) MHz, (1000 - 6000) MHz.

1) The equipment under test was set to transmission mode Pout = -17 dBm.

2) In the band of (30 - 1000) MHz the measurement was made in anechoic chamber with metal floor. The turntable was rotated, the antenna height was altered in the range of 1m - 4m, the polarization of biconical antenna was changed from horizontal to vertical in a process of seeking for the maximum result. Settings of the test receiver: RBW = 120 kHz; Video Detector = Positive Peak during prequalification measurement, Quasi-Peak - during final measurement.

3) In the band of (1000 - 6000) MHz the measurement was made in fully anechoic chamber. The height of test antenna was fixed while the turntable was rotated and the polarization of horn test antenna was changed from horizontal to vertical in a process of seeking for the maximum result. Settings of the test receiver: RBW = 1000 kHz; Video Detector = Positive Peak during prequalification measurement, Average - during final measurement.

4) The worst test results (the lowest margins) were recorded and shown in the associated plots.

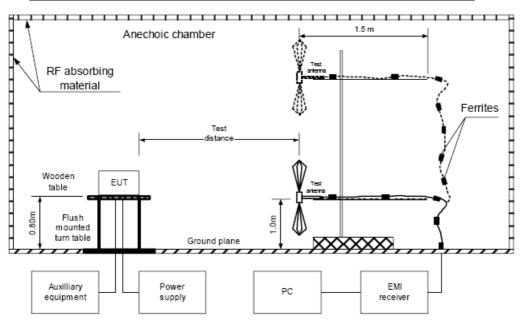



Figure 3.8.1 Test setup layout (above 30 MHz and below 10 GHz)

#### 3.8.4 Test result

Temperature: +18 °C

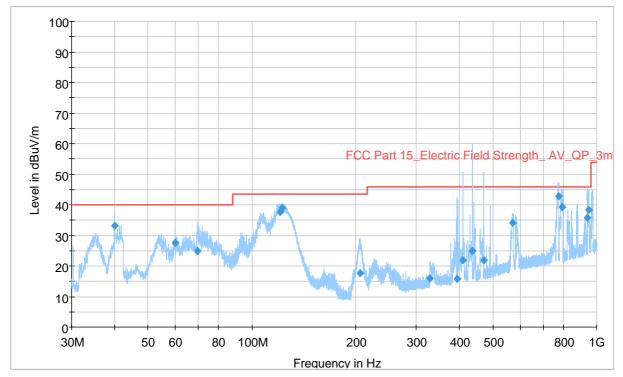
Relative humidity: 68 %

EUT OPERATING MODE: transmission mode Pout = - 17 dBm

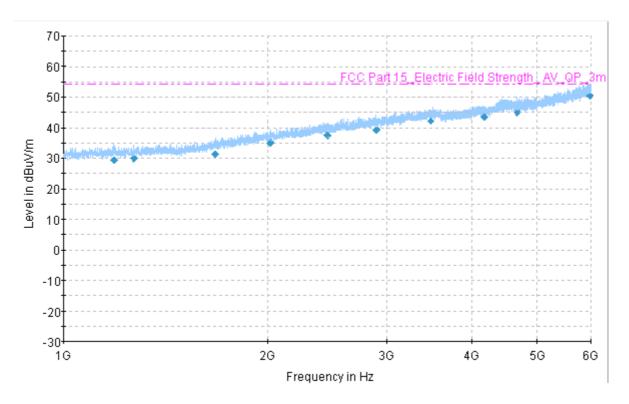
Table 3.8.1 Radiated emission test result (450 MHz)

| Frequency, MHz | Turn-<br>table<br>position,<br>degrees | Antenna<br>height,<br>cm | Anten<br>na<br>polariz<br>ation | Quasi-Peak<br>Detector<br>Emission,<br>dBµV/m | Average<br>detector<br>emission,<br>dBµV/m | Limit,<br>dBµV/m | Result<br>(Pass, Fail,<br>N/A) |
|----------------|----------------------------------------|--------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|------------------|--------------------------------|
| 40.000000      | 0                                      | 150.0                    | V                               | 33.1                                          | -                                          | 61.0             | Pass                           |
| 60.000000      | 0                                      | 100.0                    | V                               | 27.6                                          | -                                          | 61.0             | Pass                           |
| 69.640000      | 90                                     | 100.0                    | V                               | 25.0                                          | -                                          | 61.0             | Pass                           |
| 120.760000     | 180                                    | 400.0                    | Η                               | 37.6                                          | -                                          | 61.0             | Pass                           |
| 122.400000     | 90                                     | 400.0                    | Η                               | 39.0                                          | -                                          | 61.0             | Pass                           |
| 205.640000     | 0                                      | 300.0                    | Н                               | 17.7                                          | -                                          | 61.0             | Pass                           |
| 328.800000     | 0                                      | 200.0                    | V                               | 15.9                                          | -                                          | 61.0             | Pass                           |
| 394.440000     | 90                                     | 200.0                    | Н                               | 15.7                                          | -                                          | 61.0             | Pass                           |
| 408.360000     | 270                                    | 150.0                    | V                               | 21.8                                          | -                                          | 61.0             | Pass                           |
| 435.320000     | 0                                      | 100.0                    | V                               | 25.1                                          | -                                          | 61.0             | Pass                           |
| 450.000000     | 180                                    | 100.0                    | V                               | 79.5                                          | -                                          | 81.0             | Pass                           |
| 470.120000     | 0                                      | 300.0                    | V                               | 21.9                                          | -                                          | 61.0             | Pass                           |
| 571.280000     | 180                                    | 150.0                    | Н                               | 34.1                                          | -                                          | 61.0             | Pass                           |
| 774.440000     | 0                                      | 400.0                    | Н                               | 42.8                                          | -                                          | 61.0             | Pass                           |
| 792.720000     | 90                                     | 100.0                    | V                               | 39.2                                          | -                                          | 61.0             | Pass                           |
| 941.200000     | 270                                    | 150.0                    | V                               | 35.7                                          | -                                          | 61.0             | Pass                           |
| 947.360000     | 90                                     | 150.0                    | V                               | 38.4                                          | -                                          | 61.0             | Pass                           |
| 1186.800000    | 90                                     | 100.0                    | V                               | -                                             | 29.3                                       | 61.0             | Pass                           |
| 1269.600000    | 180                                    | 100.0                    | V                               | -                                             | 29.8                                       | 61.0             | Pass                           |
| 1673.600000    | 0                                      | 100.0                    | V                               | -                                             | 31.3                                       | 61.0             | Pass                           |
| 2020.400000    | 0                                      | 100.0                    | Н                               | -                                             | 34.9                                       | 61.0             | Pass                           |

| Frequency, MHz | Turn-<br>table<br>position,<br>degrees | Antenna<br>height,<br>cm | Anten<br>na<br>polariz<br>ation | Quasi-Peak<br>Detector<br>Emission,<br>dBµV/m | Average<br>detector<br>emission,<br>dBµV/m | Limit,<br>dBµV/m | Result<br>(Pass, Fail,<br>N/A) |
|----------------|----------------------------------------|--------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|------------------|--------------------------------|
| 2447.200000    | 0                                      | 100.0                    | Η                               | -                                             | 37.2                                       | 61.0             | Pass                           |
| 2894.000000    | 90                                     | 100.0                    | Η                               | -                                             | 39.3                                       | 61.0             | Pass                           |
| 3479.200000    | 270                                    | 100.0                    | Η                               | -                                             | 41.9                                       | 61.0             | Pass                           |
| 4172.800000    | 0                                      | 100.0                    | V                               | -                                             | 43.3                                       | 61.0             | Pass                           |
| 4665.600000    | 90                                     | 100.0                    | V                               | -                                             | 44.7                                       | 61.0             | Pass                           |
| 5966.800000    | 0                                      | 100.0                    | Η                               | -                                             | 50.4                                       | 61.0             | Pass                           |

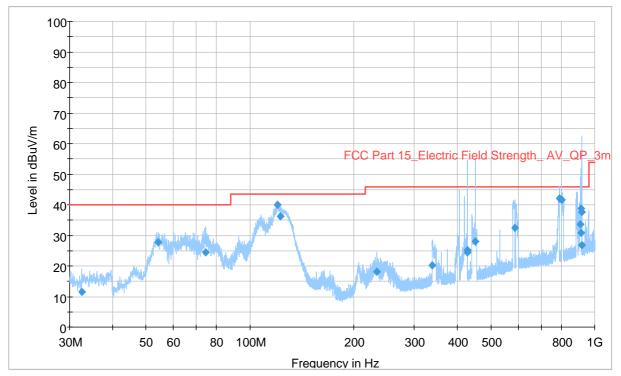

 Table 3.8.2 Radiated emission test result (460 MHz)

| Frequency, MHz | Turn-<br>table<br>position,<br>degrees | Antenna<br>height,<br>cm | Anten<br>na<br>polariz<br>ation | Quasi-Peak<br>Detector<br>Emission,<br>dBµV/m | Average<br>detector<br>emission,<br>dBµV/m | Limit,<br>dBµV/m | Result<br>(Pass, Fail,<br>N/A) |
|----------------|----------------------------------------|--------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|------------------|--------------------------------|
| 32.520000      | 0                                      | 150.0                    | Η                               | 11.6                                          | -                                          | 61.4             | Pass                           |
| 54.200000      | 0                                      | 100.0                    | V                               | 27.8                                          | -                                          | 61.4             | Pass                           |
| 74.520000      | 90                                     | 150.0                    | V                               | 24.4                                          | -                                          | 61.4             | Pass                           |
| 120.280000     | 0                                      | 400.0                    | Н                               | 40.0                                          | -                                          | 61.4             | Pass                           |
| 122.400000     | 180                                    | 400.0                    | Η                               | 36.2                                          | -                                          | 61.4             | Pass                           |
| 233.280000     | 90                                     | 300.0                    | Н                               | 18.2                                          | -                                          | 61.4             | Pass                           |
| 338.240000     | 180                                    | 150.0                    | V                               | 20.3                                          | -                                          | 61.4             | Pass                           |
| 427.880000     | 0                                      | 200.0                    | Η                               | 25.3                                          | -                                          | 61.4             | Pass                           |
| 428.000000     | 0                                      | 250.0                    | Η                               | 24.6                                          | -                                          | 61.4             | Pass                           |
| 450.360000     | 0                                      | 400.0                    | Η                               | 28.0                                          | -                                          | 61.4             | Pass                           |
| 460.000000     | 0                                      | 150.0                    | V                               | 78.7                                          | -                                          | 81.4             | Pass                           |
| 586.880000     | 90                                     | 150.0                    | Η                               | 32.4                                          | -                                          | 61.4             | Pass                           |
| 790.880000     | 0                                      | 250.0                    | Η                               | 42.2                                          | -                                          | 61.4             | Pass                           |
| 802.160000     | 90                                     | 400.0                    | Η                               | 41.7                                          | -                                          | 61.4             | Pass                           |
| 906.960000     | 270                                    | 100.0                    | V                               | 33.6                                          | -                                          | 61.4             | Pass                           |
| 912.960000     | 270                                    | 300.0                    | V                               | 30.8                                          | -                                          | 61.4             | Pass                           |
| 914.240000     | 0                                      | 100.0                    | V                               | 38.9                                          | -                                          | 61.4             | Pass                           |
| 916.680000     | 0                                      | 350.0                    | V                               | 26.8                                          | -                                          | 61.4             | Pass                           |
| 918.040000     | 90                                     | 100.0                    | V                               | 37.6                                          | -                                          | 61.4             | Pass                           |
| 1120.400000    | 0                                      | 100.0                    | V                               | -                                             | 29.1                                       | 61.4             | Pass                           |
| 1364.000000    | 0                                      | 100.0                    | V                               | -                                             | 30.1                                       | 61.4             | Pass                           |
| 1710.000000    | 90                                     | 100.0                    | Н                               | -                                             | 31.8                                       | 61.4             | Pass                           |
| 2000.800000    | 180                                    | 100.0                    | V                               | -                                             | 34.6                                       | 61.4             | Pass                           |
| 2448.800000    | 270                                    | 100.0                    | Η                               | -                                             | 37.1                                       | 61.4             | Pass                           |
| 2915.200000    | 90                                     | 100.0                    | V                               | -                                             | 39.2                                       | 61.4             | Pass                           |
| 3437.600000    | 90                                     | 100.0                    | V                               | -                                             | 41.5                                       | 61.4             | Pass                           |
| 4170.800000    | 0                                      | 100.0                    | V                               | -                                             | 43.2                                       | 61.4             | Pass                           |
| 4903.600000    | 90                                     | 100.0                    | Η                               | -                                             | 45.0                                       | 61.4             | Pass                           |
| 5966.800000    | 0                                      | 100.0                    | V                               | -                                             | 50.4                                       | 61.4             | Pass                           |

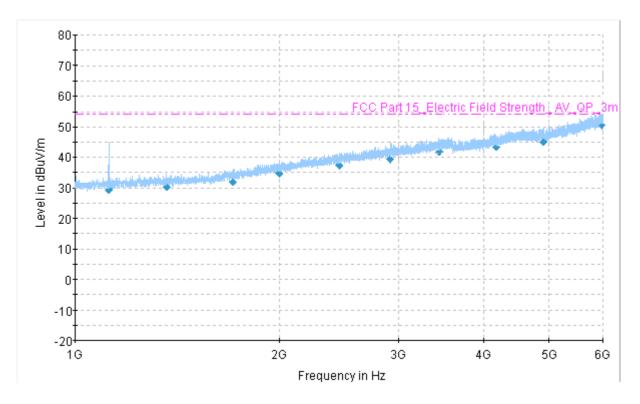

Table 3.8.3 Radiated emission test result (470 MHz)

| Frequency, MHz | Turn-<br>table<br>position,<br>degrees | Antenna<br>height,<br>cm | Anten<br>na<br>polariz<br>ation | Quasi-Peak<br>Detector<br>Emission,<br>dBµV/m | Average<br>detector<br>emission,<br>dBµV/m | Limit,<br>dBµV/m | Result<br>(Pass, Fail,<br>N/A) |
|----------------|----------------------------------------|--------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|------------------|--------------------------------|
| 40.040000      | 0                                      | 300.0                    | V                               | 14.3                                          | -                                          | 61.9             | Pass                           |
| 54.280000      | 90                                     | 100.0                    | V                               | 27.2                                          | -                                          | 61.9             | Pass                           |
| 64.720000      | 90                                     | 100.0                    | V                               | 25.3                                          | -                                          | 61.9             | Pass                           |
| 121.680000     | 0                                      | 250.0                    | Н                               | 39.3                                          | -                                          | 61.9             | Pass                           |
| 122.080000     | 270                                    | 250.0                    | Η                               | 37.1                                          | -                                          | 61.9             | Pass                           |
| 206.680000     | 90                                     | 250.0                    | Η                               | 22.8                                          | -                                          | 61.9             | Pass                           |
| 345.560000     | 90                                     | 150.0                    | V                               | 15.3                                          | -                                          | 61.9             | Pass                           |
| 433.960000     | 180                                    | 150.0                    | Η                               | 18.2                                          | -                                          | 61.9             | Pass                           |
| 435.240000     | 90                                     | 200.0                    | Н                               | 25.0                                          | -                                          | 61.9             | Pass                           |
| 436.920000     | 270                                    | 100.0                    | Η                               | 23.0                                          | -                                          | 61.9             | Pass                           |
| 450.000000     | 0                                      | 400.0                    | Η                               | 41.1                                          | -                                          | 61.9             | Pass                           |
| 470.000000     | 0                                      | 150.0                    | V                               | 78.2                                          | -                                          | 81.9             | Pass                           |
| 458.560000     | 0                                      | 400.0                    | Η                               | 29.0                                          | -                                          | 61.9             | Pass                           |
| 460.280000     | 0                                      | 350.0                    | Η                               | 25.4                                          | -                                          | 61.9             | Pass                           |
| 600.040000     | 180                                    | 250.0                    | Н                               | 37.8                                          | -                                          | 61.9             | Pass                           |
| 892.280000     | 90                                     | 150.0                    | V                               | 21.9                                          | -                                          | 61.9             | Pass                           |
| 921.920000     | 180                                    | 100.0                    | V                               | 33.7                                          | -                                          | 81.9             | Pass                           |
| 943.360000     | 0                                      | 300.0                    | V                               | 33.3                                          | -                                          | 61.9             | Pass                           |
| 1086.800000    | 90                                     | 100.0                    | V                               | -                                             | 28.7                                       | 61.9             | Pass                           |
| 1373.200000    | 180                                    | 100.0                    | Н                               | -                                             | 30.3                                       | 61.9             | Pass                           |
| 1665.200000    | 90                                     | 100.0                    | V                               | -                                             | 31.8                                       | 61.9             | Pass                           |
| 1988.800000    | 180                                    | 100.0                    | V                               | -                                             | 34.5                                       | 61.9             | Pass                           |
| 2350.000000    | 180                                    | 100.0                    | V                               | -                                             | 40.6                                       | 61.9             | Pass                           |
| 2913.200000    | 90                                     | 100.0                    | V                               | -                                             | 39.4                                       | 61.9             | Pass                           |
| 3459.600000    | 270                                    | 100.0                    | Н                               | -                                             | 42.0                                       | 61.9             | Pass                           |
| 4128.000000    | 0                                      | 100.0                    | Н                               | -                                             | 43.0                                       | 61.9             | Pass                           |
| 4824.400000    | 0                                      | 100.0                    | Н                               | -                                             | 44.8                                       | 61.9             | Pass                           |
| 5988.000000    | 90                                     | 100.0                    | V                               | -                                             | 49.9                                       | 61.9             | Pass                           |

#### <u>Plot 3.8.1 Radiated emission measurements in (30 – 1000) MHz range, vertical and horizontal</u> polarization (450 MHz)

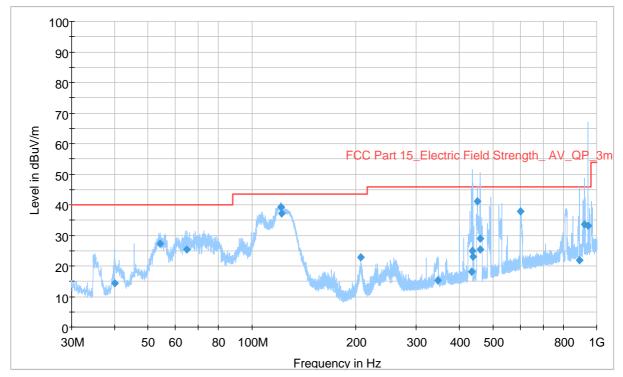



<u>Plot 3.8.2 Radiated emission measurements in (1000 – 6000) MHz range, vertical and horizontal</u> polarization (450 MHz)

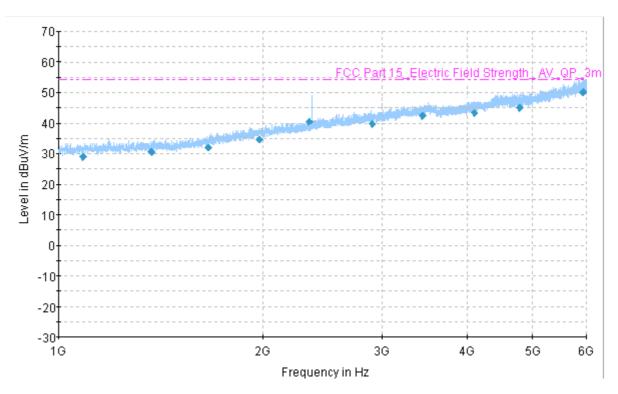



Note: Average values (AV) are below the limit.

#### <u>Plot 3.8.3 Radiated emission measurements in (30 – 1000) MHz range, vertical and horizontal</u> polarization (460 MHz)




# <u>Plot 3.8.4 Radiated emission measurements in (1000 – 6000) MHz range, vertical and horizontal polarization (460 MHz)</u>




Note: Average values (AV) are below the limit.

# <u>Plot 3.8.5 Radiated emission measurements in (30 – 1000) MHz range, vertical and horizontal polarization (470 MHz)</u>



<u>Plot 3.8.6 Radiated emission measurements in (1000 – 6000) MHz range, vertical and horizontal polarization (470 MHz)</u>



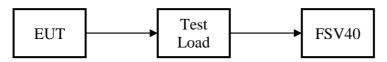
Note: Average values (AV) are below the limit.

#### 3.9. The bandwidth of the emission

#### 3.9.1 Test requirements Section 15.231c

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier

#### . 3.9.2 Test procedure


1) The equipment under test was set to transmission mode Pout = -17 dBm.

2) The transmitter was connected to the FSV40.

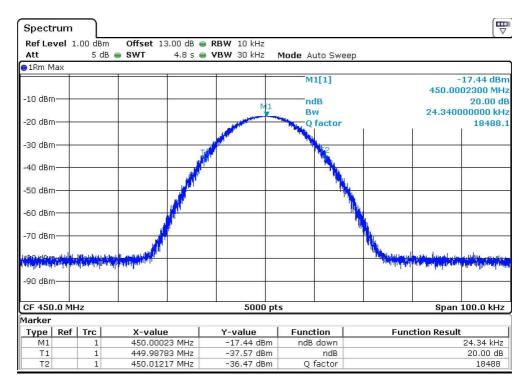
3) Spectrum Analyzer was set to the central frequency of channel investigated with the following settings: RBW = 10 kHz; VBW = 30 kHz; Video Detector = Max Peak; Trace mode = MAX HOLD, Span = 1 MHz.

4) Bandwidth of the emission was measured as a bandwidth of signal at points with power -20 dB below the reference point with maximum power of the spectrum.

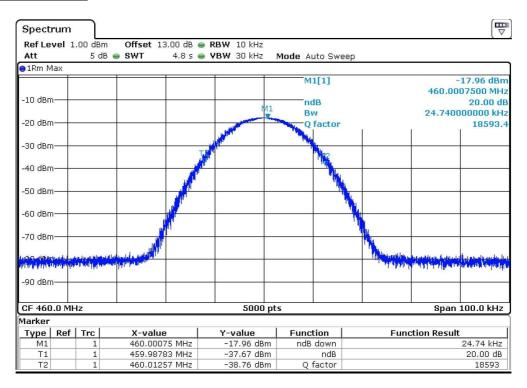
#### 3.9.3 Test setup layout



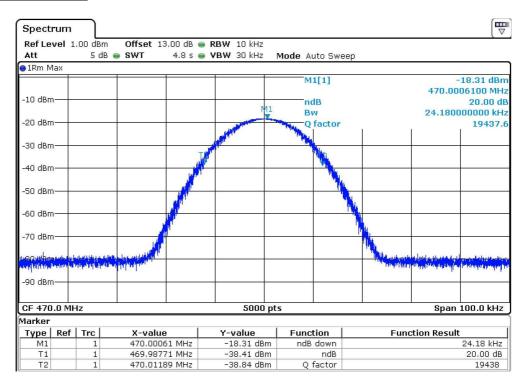
#### 3.9.4 Test result


Temperature: +18 °C

Relative humidity: 50 %


#### Table 3.9.1 The bandwidth of the emission

| Frequency,<br>MHz | Measurement<br>result, kHz | Limit, kHz | Result<br>(Pass, Fail,<br>N/A) |
|-------------------|----------------------------|------------|--------------------------------|
| 450               | 24.34                      | 1125       | Pass                           |
| 460               | 24.74                      | 1150       | Pass                           |
| 470               | 24.18                      | 1175       | Pass                           |


#### 3.9.5 Plot for 450 MHz



#### 3.9.6 Plot for 460 MHz



#### **<u>3.9.7 Plot for 470 MHz</u>**



#### 3.10 Operating Frequencies

Assignment and use of the frequencies in the band 450-470 MHz for fixed operations regulates by paragraph 47 CFR Part 90.261 and authorized in an individual license for the radio.