MPE Calculations Systems operating under the provision of 47 CFR 1.1307(b)(1) shall be operated in a manor that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines. The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b). The MPE calculation for this exposure is shown below. ### **Using the Antennas with highest output power:** # The peak radiated output power (EIRP) is calculated as follows: | Antenna | Frequency
(GHz) | Power input to the antenna (P) (dBm) | Power gain of the antenna (G) (dBi) | EIRP
(P+G)
(dBm) | EIRP
Log ^{-1(dBm/10)}
(mW) | |--------------|--------------------|--------------------------------------|-------------------------------------|------------------------|---| | Ethertronics | 2.4 | 25.02 | 3.00 | 28.02 | 633.87 | EIRP = P + G Where P = Power input to the antenna (mW). G = Power gain of the antenna (dBi) ### The numeric gain (G) of the antenna with a gain specified in dB is determined by: | Antenna | Frequency
(GHz) | Antenna Gain
(G)
(dBi) | Numeric Antenna Gain
Log ^{-1(dBm/10)}
(dB) | |--------------|--------------------|------------------------------|---| | Ethertronics | 2.4 | 3.00 | 2.00 | $G = Log^{-1}$ (dB antenna gain/10) #### Power density at the specific separation: | Antenna | Frequency
(GHz) | Power input to
the antenna
(P)
(mW) | Numeric Power Gain of the Antenna (G) (dB) | Maximum Power Spectral Density S=PG/(4R ² π) (mW/cm ²) | Maximum Power Spectral Density Limit (mW/cm²) | |--------------|--------------------|--|--|---|---| | Ethertronics | 2.4 | 317.69 | 2.00 | 0.126 | 1.00 | $S = PG/(4R^2\pi)$ Where S = Maximum power density (mW/cm²) P = Power input to the antenna (mW). G = Numeric power gain of the antenna R = Distance to the center of the radiation of the antenna (20cm = limit for MPE) The maximum permissible exposure (MPE) for the general population is 1mW/cm². The power density at 20cm does not exceed the 1mW/cm² limit. Therefore, the exposure condition is compliant with FCC rules.