SAR evaluation

FCC ID: 2A8QF-B5306

MPE Calculation Method $E \ (V/m) = (30*P*G)^{-0.5}/d$ Power Density: Pd $(W/m2) = E^2/377$ $E = Electric Field \ (V/m)$ P = Peak RF output Power (W) G = EUT Antenna numeric gain (numeric) $d = Separation \ distance \ between \ radiator \ and \ human \ body \ (m)$ The formula can be changed to $Pd = (30*P*G) \ / \ (377*d^2)$ From the peak EUT RF output power, the minimum mobile separation distance, $d=0.2m, \ as \ well$ as the gain of the used antenna, the RF power density can be obtained.

Calculated WIFI Result and Limit (WORSE CASE IS AS BELOW)

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
2.29	8.55	0.0039	1	Compiles
(3.6dBi)	(9.32dBm)			

Note:

Antenna Gain: 3.6dBi

Antenna Gain (Numeric): 2.29

ERP=9.32+3.6-2.15=10.77 dBm(12mW<3060mW)

Calculated Bluetooth Result and Limit (WORSE CASE IS AS BELOW)

```
eirp = pt x gt = (EXd)^2/30 where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- 10^{((dBuV/m)/20)}/10^6

d = measurement distance in meters (m)---3m

So pt = (EXd)^2/(30 \text{ x gt})

Ant gain =-0.58dBi so Ant numeric gain= 0.875

Field strength =83.19dB\muV/m @3m@2480MHz
```

So Pt= $\{[10^{(83.19/20)}/10^6 \text{ x3}]^2/(30\text{x}0.875)\}\text{x}1000 \text{ mW} = 0.071\text{mW}$

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S) (mW/cm2)	Result
0.875 (-0.58dBi)	0.071 (-11.49dBm)	0.00001	1	Compiles

Note:

Antenna Gain: -0.58dBi

Antenna Gain (Numeric): 0.875

ERP=-11.49+0.875-2.15=-12.765dBm(0.053mW< 3060mW)

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} = 8.55/3060 + 0.071/3060 = 0.0028$$

$$\sum_{j=1}^{b} \frac{ERP_{j}}{ERP_{\text{th},j}}$$
= (12+0.053)/3060 = 0.0039

$$\sum_{k=1}^{c} \frac{Evaluated_k}{Exposure \ Limit_k} = (0.0039+0.00001) \ /1=0.00391$$

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

0.0028+0.0039+0.00391=0.011<1