# TOSHIBA

 TOSHIBA CORPORATION
 DIGITAL MEDIA NETWORK COMPANY

 OME COMPLEX
 2-9, SUEHIRO-CHO, OME, TOKYO 198-8710, JAPAN

 PHONE: +81(428)34-1050
 FAX: +81(428)30-7911

Date : April 3, 2003 Issued in : Tokyo, Japan

#### **REPORT OF MEASUREMENT OF DIGITAL DEVICE**

| 1. Manufacturer          | <ul> <li>: Toshiba Corporation <ul> <li>Digital Media Network company, Ome Operations - Digital Media Equipment</li> <li>2-9, Suehiro-cho, Ome-shi, Tokyo 198-8710 Japan <ul> <li>and/or</li> </ul> </li> <li>Toshiba America Information Systems, Inc., Irvine Works</li> <li>9740 Irvine Boulevard, Irvine, CA 92618-1697 USA <ul> <li>and/or</li> </ul> </li> <li>Toshiba Europe GmbH, Regensburg Operations Center</li> <li>Leibnitzstrasse 2, D-93055, Regensburg, Germany <ul> <li>and/or</li> </ul> </li> <li>Toshiba Computer Systems (Shanghai) Co., Ltd.</li> <li>No.33 Bldg., 351 Jinzang Road, Pudong New Area, Shanghai, China <ul> <li>and/or</li> </ul> </li> </ul></li></ul> |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <ul> <li>Toshiba Information Equipment (Hangzhou) Co., Ltd.</li> <li>M12-19-1 Hangzhou Export Processing Zone of Zhejiang, Hanzhong,</li> <li>The People's Republic of China<br/>and/or</li> <li>Toshiba Information Equipment (Philippines), Inc.</li> <li>103 East Main Avenue Extention, Special Export Processing Zone,</li> <li>Laguna Technopark, Binan, Lagna, The Philippines</li> </ul>                                                                                                                                                                                                                                                                                             |
| 2. Description on device | : Personal Computer<br>a) Category<br>b) Trade name<br>c) Model No.<br>d) Power supply<br>: Class B digital device<br>: TOSHIBA<br>: PS201U<br>: 15 Vdc, 3 A (supplied by AC Adaptor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3. Date of measurement   | : March 24, 2003 (completed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. Regulation applied    | : FCC rules and regulations Part 15 Subpart B<br>Canada ICES-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5. Measurement procedure | : ANSI C63.4-1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6. Measurement place     | : Anechoic Chamber No. 2 and 3 of Ome Operations, Toshiba Corporation.<br>(NVLAP Lab Code: 200107-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7. Measurement results   | <ul> <li>The results obtained from the measuring of the above-mentioned device are as shown in the attached sheets.</li> <li>Test results in this test report are applicable to the sample tested.</li> <li>Test results in this test report are traceable to the National/ International Standards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| I HEREBY CERTIFY THAT    | : The data shown in this report was made in accordance with the procedures given in ANSI C63.4-1992 and the energy emitted by the device was found to be within the applicable limits. This report was made in accordance with NVLAP requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Document No.: OFA-H3630

2/

NVLAP LAB CODE 200107-0

K. Takenaka, Specialist Quality Assurance Group Technology & Quality Management Div. Identify NVLAP Signatory

"The report must not be used by the client to claim product endorsement by NVLAP or any agency of U.S. Government."

The report shall not be reproduced except in full, without the written approval of the laboratory.

# **TABLE OF CONTENTS**

| [Title]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [Page]                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1. MEASUREMENT CONDITION AND CONFIGURATION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                            |
| 2. COMMENT ON THE MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                            |
| [MEASUREMENT RESULTS]<br>Conduction measurement                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                           |
| Radiation measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                           |
| [MEASUREMENT SET-UP]                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                                           |
| [MEASUREMENT INSTRUMENTATION USED]<br>Conduction Measurement<br>Radiation Measurement                                                                                                                                                                                                                                                                                                                                                                                           | 21<br>22                                     |
| <ul> <li>[APPENDIX]</li> <li>A - System factor (for conduction measurement) : 150 kHz - 30 MHz</li> <li>B - System loss (for radiation measurement) : 30 MHz - 40 GHz</li> <li>C - Antenna factor (for tunable dipole antenna) : 30 MHz - 1 GHz</li> <li>D - Antenna factor (for broadband antenna) : 30 MHz - 40 GHz</li> <li>F - System Block Diagram</li> <li>G - Label Information</li> <li>H - Details of units</li> <li>I - Photographs of components or units</li> </ul> | 24<br>25<br>26<br>29<br>31<br>32<br>33<br>37 |

Total page: 45

# **1. MEASUREMENT CONDITION AND CONFIGURATION OF EUT**

The Personal Computer (EUT) with the memory module was measured as a system consisting of the Equipment Under Test (EUT) and a Docking connector, an External Monitor, two USB port, and a LAN jack attached to operating Class B certified peripherals as indicated in the 9/18/86 clarification of rules for measuring computing devices (Public Notice) and a PC Card, a SD card slots, a Microphone, a Headphone, a Modem jacks attached to appropriate operating peripherals or cables.

During the measuring, all available modes, all cabling and peripheral layouts were arranged to achieve the "WORST" case emissions in accordance with FCC recommended notebook computer system measurement configuration. The measurement data presented is representative of the system measurement.

#### 1.1. The Equipment Under Test (EUT) information

The measurement data in this report was taken under the following EUT.

| [Product]         | [Manufacturer]      | [Model No.] |
|-------------------|---------------------|-------------|
| Personal Computer | Toshiba Corporation | PP201U      |

Notes:

The EUT was operated with an Universal AC Adaptor supplied by Toshiba Corporation. A non-shielded DC output cable assembled with the Universal AC Adaptor. A non-shielded AC power cable is provided with the EUT.

Please refer to the Table 1 for EUT measurement configurations

#### - Table 1, EUT configurations -

| Data No.          | А                             |
|-------------------|-------------------------------|
| Model No.         | PP201U                        |
| (Serial No.)      | (CS#1)                        |
| Type of Equipment | Pre-Production                |
| CPU module        | Pentium III 866 MHz           |
| 1.8 inch HDD      | 40GB: Toshiba Corp. (HDD1524) |
| AC Adaptor        | PA3241U-1ACA                  |

Notes:

Details of alternative units refer to the Table 2.

### **1.2. Product information**

#### (Model Designation of Personal Computer)

| · · · · · · · · · · · · · · · · · · · |   |                                                                   |
|---------------------------------------|---|-------------------------------------------------------------------|
| Model Name                            | : | Portege 2000 and 2010 series                                      |
| Model No.                             | : | PP200* and PP201* (*: suffix = U, E, L, Q, C, Z, A, K, T, J or N) |
| - CPU                                 | : | Pentium III- 866 MHz, 800MHz, 750MHz or Celeron- 650MHz           |
| - Memory                              | : | 128MB or 256MB                                                    |
| - HDD                                 | : | 20GB, 30GB or 40GB                                                |

## (Unit information which constitutes Personal Computer)

This Personal computer consists of the following units.

| - |                                                     |     |
|---|-----------------------------------------------------|-----|
| * | System Board                                        | x 1 |
| * | Sound Board                                         | x 1 |
| * | Sound I/F flexible board                            | x 1 |
| * | Mini-PCI I/F Board                                  | x 1 |
| * | Touch Pad module                                    | x 1 |
| * | In Touch Button                                     | x 1 |
| * | LED flexible board                                  | x 1 |
| * | PC card I/F flexible board                          | x 1 |
| * | 12.1 inch Color LCD (Toshiba Corp., Type LTM12C328) | x 1 |
| * | FL Inverter                                         | x 1 |
| * | LCD cable                                           | x 1 |
| * | RTC Battery                                         | x 1 |
| * | Speaker                                             | x 1 |
| * | CPU Fan                                             | x 1 |
| * | 1.8 inch HDD: #                                     | x 1 |
| * | HDD I/F flexible board                              | x 1 |
| * | Keyboard unit                                       | x 1 |
| * | Main Battery Pack (Model No. PA3154U)               | x 1 |
| * | Modem module (Model No. 1456VQL4)                   | x 1 |
| * | Modem & LAN Connector cable                         | x 1 |
| * | RX Antenna                                          | x 1 |
| * | TX/ RX Antenna                                      | x 1 |
| * | Wireless LAN module Kit (Model No. PA3231U)         | x 1 |
| * | Universal AC Adaptor: #                             | x 1 |
|   | -                                                   |     |

Notes:

#: This unit has alternative units. Information of alternative units refers to the Table 2.

#### Table 2

#### - Alternative Units -

| Units                     | Description, Manufacture or Distributor (Model No.) |                                  |                                  |  |
|---------------------------|-----------------------------------------------------|----------------------------------|----------------------------------|--|
| CPU (on the system board) | Pentium III- 800 MHz                                | Pentium III- 750 MHz             | Celeron- 650 MHz                 |  |
|                           | Pentium III- 866 MHz                                |                                  |                                  |  |
| 1.8 inch HDD              | 20GB: Toshiba Corp.<br>(HDD1364)                    | 30GB: Toshiba Corp.<br>(HDD1384) | 40GB: Toshiba Corp.<br>(HDD1524) |  |
| AC Adaptor                | PA3153U-1ACA                                        | PA3241U-1ACA                     |                                  |  |

#### (Details of units)

Generated frequencies and radio suppression components of all units refer to the Appendix G. Photographs of all units refer to the Appendix H.

#### (System Block Diagram)

Please refer to the Appendix E

#### (Label Information)

Please refer to the Appendix F

#### **1.3.** The measurement was carried out with the following equipment connected:

| - Table 5, Co   | onnecting peripherals -       |                                |                               |           |
|-----------------|-------------------------------|--------------------------------|-------------------------------|-----------|
| Equipment No.   | Kind of Equipment             | Manufacturer or<br>Distributor | Model No.<br>(Serial No.)     | FCC ID    |
| 1               | High Capacity Battery<br>Pack | Toshiba Corp.                  | PA3155U<br>(PCC#1)            | N/A       |
| 2               | External Monitor              | EIZO                           | FlexScanL371<br>(61996041-JA) | FCC DoC   |
| 3* <sup>1</sup> | External CD-RW Drive          | PLEXTOR                        | PXW2410TV<br>(503880045940)   | FCC DoC   |
| 4               | FDD Kit                       | Toshiba Corp.                  | PA3109U<br>(1240000651)       | FCC DoC   |
| 5               | Keyboard                      | Logitech                       | Y-BE22<br>(MCT14906958)       | FCC DoC   |
| 6               | Headphone                     | Toshiba Corp.                  | HR-SP1-W<br>(PCC#1)           | N/A       |
| 7               | Microphone                    | Foster Electric                | M336E01T1711<br>(PCC#1)       | N/A       |
| 8               | Line Emulator                 | Toshiba Corp.                  | TLE101-II<br>(408549)         | N/A       |
| 9* <sup>2</sup> | Personal Computer             | Toshiba Corp.                  | PT820U<br>(CS-#1)             | FCC DoC   |
| 10              | PC Card HDD                   | Calluna                        | CT260T2<br>(PCC#1)            | N/A       |
| 11              | SD Bluetooth                  | Toshiba Corp.                  | SD-BT2<br>(0232TC0500A)       | CJ6MSDB01 |
| 12              | Memory Kit (256MB)            | Toshiba Corp.                  | PA3158U<br>(PCC#1)            | N/A       |

- Table 3, Connecting peripherals -

Notes:

\*<sup>1</sup> The external CD-RW Drive was operated with an AC Adaptor (Model No. SQ36W12P-03) supplied by PLEXTOR.

\*<sup>2</sup> The Personal Computer was operated with an AC Adaptor (Model No. PA3048U-1ACA) supplied by Toshiba Corporation.

## 1.4. Information of installed or connected peripherals

|                                                            | Connected peripherals | Interface of              | able informati | on        |
|------------------------------------------------------------|-----------------------|---------------------------|----------------|-----------|
| Connector name of EUT.                                     | (Equipment No.*1)     | Cable type                | Connector      | Length    |
| Connector name of EOT.                                     | Data                  |                           | type           | [m]       |
|                                                            | Data                  | Sup                       | oly method     |           |
| Docking connector                                          | 1                     | N/A                       | Metallic       | Direct    |
|                                                            | 1                     | N/A                       |                |           |
| External Monitor $*^2$                                     | 2                     | Shielded                  | Metallic       | 1.7       |
|                                                            | 2                     | Provided with Extern      | nal Monitor    |           |
| USB port $1 *^2$                                           | 3                     | Shielded                  | Metallic       | 1.0       |
|                                                            | 5                     | General USB cable         | 1              |           |
| USB port $2 *^2$                                           | 4                     | Shielded                  | Metallic       | 1.7       |
|                                                            | т                     | Assembled with US         | B Mouse        |           |
| Headphone                                                  | 5                     | Non-shielded              | N/A            | 1.5       |
| Treadphone                                                 |                       | Assembled with Headphone  |                |           |
| Microphone                                                 | 6                     | Shielded                  | N/A            | 2.0       |
| Microphone                                                 |                       | Assembled with Microphone |                |           |
| Madam                                                      | 7                     | Non-shielded              | Plastic        | 2.0       |
| Modelli                                                    | /                     | General Modular cable     |                |           |
| (BI11 port of Line Emulator)                               | 0                     | Non-shielded              | Plastic        | 2.0       |
| (KJ11 port of Line Emulator)                               | 0                     | General Modular cable     |                |           |
| $\mathbf{I} \mathbf{A} \mathbf{N} \mathbf{I} \mathbf{*}^2$ | 0                     | Non-shielded              | Plastic        | 2.0       |
| LAN                                                        | 9                     | General LAN cable         |                |           |
| BC aard alat                                               | 10                    | N/A                       | N/A            | Installed |
| r C card slot                                              |                       | N/A                       |                |           |
| SD aard slat                                               | 11                    | N/A                       | N/A            | Installed |
| SD card slot                                               |                       | N/A                       |                |           |
| Momory Slot                                                | 12                    | N/A                       | N/A            | Installed |
| Wennory Slot                                               | 12                    | N/A                       |                |           |

| - Table 4. | Connecting | information | for peri | pherals and | interface cables - |
|------------|------------|-------------|----------|-------------|--------------------|
|            | Conneeeing | ,           | p        |             |                    |

Notes:

 $*^1$  The Equipment numbers refers to the Table 3.

\*<sup>2</sup> when the connected to the Slime Port Replicator (Equipment No. 1- Table 2), this port cannot be used physically. Therefore, peripherals were not connected to this port, in the measurement data.

#### **1.5. Operating conditions**

#### (CPU clock speeds)

The EUT has two kinds of processing speed, however the CPU clock speed is not changed, only 650 MHz, 750 MHz, 800 MHz or 866 MHz. And also input clock speed is not changed only 133 MHz. The users can choose the processing speed by keyboard operation. Therefore, the following conditions were checked to maximize emission.

(1) Processing speed: Low mode

(2) Processing speed: High mode

The measurement data in our report represents emissions at High mode and 133MHz input clock (worst case).

#### (Display modes and Video modes)

This EUT supports many video modes. The users can choose the video mode by keyboard operation. Therefore, the following conditions were checked to maximize emission. Our report represents measurement data taken during the worst case EUT operations.

- SXGA video mode, 1024 X 768 (non-interlaced, maximum resolution)

#### (Operating programs)

#### - Table 5, Operation items -

| Item                       | Operation                                     |
|----------------------------|-----------------------------------------------|
| LCD                        | display "H" (on full screen)                  |
| External Monitor           | display "H" (on full screen)                  |
| FDD                        | write and read data                           |
| HDD                        | write and read data                           |
| HDD (PC Card)              | write and read data                           |
| External CD-RW             | write and read data                           |
| LAN                        | send and receive data (100MBPS transfer rate) |
| Modem                      | send and receive data (56 KBPS transfer rate) |
| Bluetooth and Wireless LAN | Transmitting test                             |

Notes:

These operations are performed repeatedly by program in order.

#### (Operating environment)

Power Supply

| - EUT         | : 120 Vac, 60 Hz |
|---------------|------------------|
| - Peripherals | : 120 Vac, 60 Hz |

#### (Measurement set-up)

Please refer to page 21 and 22

- Sketches : Figure 1 and 2
- Photographs : Figure 3 and 4

## 2. COMMENT ON THE MEASUREMENT

#### 2.1. Measurement methodology

Both conduction and radiation measurement are performed in accordance with the procedures in ANSI 63.4-1992.

#### 2.2. Deviation from standard

None

#### 2.3. Measurement procedure

During the evaluation measurement, all available modes, all cabling and peripheral layouts were arranged to achieve the "WORST" case emissions.

The pre-measurement and final measurement were performed under the conditions (mode of operation and configuration) of EUT determined by evaluation measurement.

At least six highest emissions relative to the limits were recorded at the final measurement.

#### (Conduction measurement)

The investigated frequency range was 450 kHz to 30 MHz.

The pre-measurement was performed by peak detector function to determine the emission characteristics of the EUT. Based on the measurement results of the pre-measurement, the one EUT configuration, cable or wire configuration, and mode of operation that produces the emission that has the highest amplitude relative to the limit is selected for the final measurement by quasi-peak detector function.

The signal out port of the LISN (Model No. KNW341C) for peripherals was terminated with a 50-ohms termination.

#### (Radiation measurement)

The investigated frequency range was 30 MHz to 25 GHz.

The radiation measurement was performed at the measurement distance of 3 meter.

The pre-measurement was performed by peak detector function to determine the emission characteristics of the EUT. Based on the measurement results of the pre-measurement, the one EUT configuration, cable or wire configuration, and mode of operation that produces the emission that has the highest amplitude relative to the limit is selected for the final measurement by peak, quasi-peak and average detector functions.

#### 2.4. Measurement place

Both conduction and radiation measurement was performed in the Anechoic Chamber as follows.

- Conduction Measurement : Anechoic Chamber No. 2
- Radiation Measurement : Anechoic Chamber No. 2 and 3

#### 2.5. Ambient condition

The ambient conditions at the time the measurement was conducted were as follows:

- Temperature / Relative humidity: Please sees [Measurement Results] in this report.

#### 2.6. Uncertainty

Derived from ISO Guide to the Determination of Uncertainties with a Coverage Factor K=2.

- Conduction measurement : +/- 2 dB
- Radiation measurement : +/- 4 dB

#### 2.7. Reference page of measurement results

- (Conduction measurement)
- Final measurement: refer to page 11Pre-measurement: refer to page 12 and 13

#### (Radiation measurement)

- Final measurement: refer to page 14
- Pre-measurement: refer to page 15 to 18

#### 2.9. Minimum margin to the limits

#### - Table 6, Minimum margin for Conduction Measurement

| Data | Ranking | Margin (dB) | Frequency (MHz) | Line | Detector | Operating frequency |
|------|---------|-------------|-----------------|------|----------|---------------------|
|      | 1       | 10.0        | 0.15088         | L2   | QP       | Un-known            |
| А    | 2       | 10.3        | 0.1505          | L1   | QP       | Un-known            |
|      | 3       | 14.1        | 0.15088         | L2   | AV       | Un-known            |
|      | 4       | 19.6        | 4.09531         | L2   | QP       | Un-known            |
|      | 5       | 19.8        | 4.09589         | L1   | QP       | Un-known            |
|      | 6       | 20.7        | 6.14362         | L1   | QP       | Un-known            |
|      | 6       | 20.7        | 6.14296         | L2   | QP       | Un-known            |

#### - Table 7, Minimum margin for Radiation Measurement

| Data | Ranking | Margin (dB) | Frequency (MHz) | Polarization | Detector | Operating frequency |
|------|---------|-------------|-----------------|--------------|----------|---------------------|
|      | 1       | 2.0         | 260.117         | Horizontal   | QP       | Un-known            |
| Α    | 2       | 4.1         | 7215.231        | Vertical     | PK       | Un-known            |
|      | 3       | 6.0         | 266.096         | Horizontal   | QP       | Un-known            |
|      | 3       | 6.0         | 794.503         | Vertical     | QP       | Un-known            |
|      | 5       | 6.1         | 799.498         | Vertical     | QP       | Un-known            |
|      | 6       | 6.3         | 260.117         | Horizontal   | QP       | Un-known            |

#### 2.10. Sample of calculation

#### (Conduction Measurement)

The emission level on page 11 to 13 in the measurement data includes the following system factor.

#### - Final measurement and Pre-measurement

\* System Factor (includes the LISN factor and system loss)
 : Appendix A
 150 kHz - 30 MHz

#### - Example

Sample of calculation at 0.1505 MHz (L1/QP): <u>Receiver reading</u> + <u>System Factor</u> = <u>Emission level</u> 55.3 + 0.4 = 55.7 [dBuV] ##: Refer to page 11.

#### (Radiation measurement)

The emission level on page 14 to 18 in the measurement data includes the following system factors.

#### - Final measurement

| * | System loss (includes the ca | able loss and/ or selector loss and / or Amplifier) | : Appendix B |
|---|------------------------------|-----------------------------------------------------|--------------|
|   | 30 MHz - 40 GHz              |                                                     |              |
| * | Antenna factor for:          |                                                     |              |
|   | - Tunable dipole antenna     |                                                     | : Appendix C |
|   | 30 MHz - 500 MHz (E          | Dipole Antenna: KBA-511A)                           |              |
|   | 500 MHz - 1 GHz (D           | Dipole Antenna: KBA-611)                            |              |
|   | - Broadband antenna          |                                                     | : Appendix D |
|   | 1 GHz - 18 GHz (E            | Double Ridged Waveguide Horn Antenna: 3115)         |              |
|   | 18 GHz -26.5 GHz (S          | Standard Gain Horn Antenna: 3160-9)                 |              |
|   | 26.5 GHz - 40 GHz (S         | Standard Gain Horn Antenna: 3160-10)                |              |
|   |                              |                                                     |              |

#### - Example

Sample of calculation at 45.708MHz (Horizontal): <u>Receiver reading</u> <u>System loss + Antenna factor</u> <u>Emission level</u> 23.6 + 3.2 = 26.8 [dBuV/m] ##

##: Refer to page 15.

#### - Pre-measurement

| * | System loss (includes the  | cable loss and/or selector loss and/or Amplifier) | : Appendix B |
|---|----------------------------|---------------------------------------------------|--------------|
|   | 30 MHz - 40 GHz            |                                                   |              |
| * | Antenna factor for broadba | : Appendix D                                      |              |
|   | 30 MHz - 1 GHz (           | (BILOG Antenna: CBL6111A)                         |              |
|   | 1 GHz - 18 GHz (           | (Double Ridged Waveguide Horn Antenna: 3115)      |              |
|   |                            |                                                   |              |

18 GHz - 26.5 GHz (Standard Gain Horn Antenna: 3160-9)

26.5 GHz - 40 GHz (Standard Gain Horn Antenna: 3160-10)

#### - Example

| Sample of calculation at 45.925 MHz (Horizontal): |   |                              |   |                   |  |  |  |  |  |
|---------------------------------------------------|---|------------------------------|---|-------------------|--|--|--|--|--|
| Receiver reading                                  |   | System loss + Antenna factor |   | Emission level    |  |  |  |  |  |
| 20.1                                              | + | 13.7                         | = | 33.8 [dBuV/m] ### |  |  |  |  |  |

###: Refer to page 16.

Document No.: OFA-H3630 Toshiba Corp., Ome Operations

#### **Conduction Measurement Results**

|   | ****                                                                                 | <***********                                                                                                                   | *******                                                                                                    | *******                                                 | *******<br><                                                 | * OME Open<br><conducted< th=""><th>rations *<br/>Emission&gt;&gt;</th><th>*<b>********</b>***************************</th><th>&lt;***********</th><th>*********</th><th>*****</th></conducted<> | rations *<br>Emission>>          | * <b>********</b> ***************************                                                                                                           | <***********                                                                                                                                           | *********                                                            | *****                        |
|---|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|
|   | Stan<br>Mode<br>Mode<br>Seri<br>Oper<br>ACPc<br>Temp<br>Rema<br>Rema<br>Rema<br>Fina | ndard<br>91 Name<br>91 No.<br>aal No.<br>ator<br>wer<br>0, Humid<br>rk1<br>rk2<br>ark3<br>************************************ | : C. I. S.<br>PORTEC<br>: PP201U<br>: CS#1<br>: M. Wa tz<br>: 120Vac<br>: 23.7de<br>:<br>:<br>:<br>******* | P.R. Pub.<br>E 2010<br>anabe<br>e / 60Hz<br>eg. / 48.0% | 22 Class<br>******                                           | B                                                                                                                                                                                                | ****                             | *****                                                                                                                                                   | ******                                                                                                                                                 | 20 March,<br>C-Gua                                                   | 2003 21:58<br>m WLAN.dat     |
| # | No. $\frac{1}{2}$ $\frac{1}{3}$ $\frac{4}{5}$ $6$                                    | L1 Phase<br>Frequency<br>[MHz]<br>0.1505<br>0.2875<br>2.04876<br>4.09589<br>6.14362<br>14.680                                  | -<br>Reading<br>QP<br>[dB (μ V)]<br>55.3<br>37.9<br>33.8<br>35.6<br>38.5<br>37.1                           | Reading<br>AV<br>[dB(µV)]                               | c. f<br>[dB]<br>0. 4<br>0. 3<br>0. 5<br>0. 6<br>0. 8<br>1. 3 | $\begin{array}{c} \text{Result} \\ \text{QP} \\ [\text{dB} ( \ \mu \ V) ] \\ \hline 55. \ 7 \\ 38. \ 2 \\ 34. \ 3 \\ 36. \ 2 \\ 39. \ 3 \\ 38. \ 4 \end{array}$                                  | Result<br>AV<br>[dB(µV)]         | $ \begin{array}{c} \text{Limit} \\ \text{QP} \\ [\text{dB} (\mu \text{V})] \\ \hline 66.0 \\ 60.6 \\ 56.0 \\ 56.0 \\ 56.0 \\ 60.0 \\ 60.0 \end{array} $ | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB} (\mu \text{ V})] \\ \hline 56.0 \\ 50.6 \\ 46.0 \\ 46.0 \\ 46.0 \\ 50.0 \\ 50.0 \end{array}$ | Margin<br>QP<br>[dB]<br>10.3<br>22.4<br>21.7<br>19.8<br>20.7<br>21.6 | Margin<br>AV<br>[dB]         |
|   | <br>No.<br>1<br>2<br>3<br>4<br>5<br>6                                                | L2 Phase<br>Frequency<br>[MHz]<br>0.15088<br>0.2875<br>2.0495<br>4.09531<br>6.14296<br>14.680                                  | -<br>Reading<br>QP<br>[dB(μ V)]<br>55.6<br>37.6<br>33.7<br>35.8<br>38.5<br>37.4                            | Reading<br>AV<br>[dB(µV)]<br>41.5                       | c.f<br>[dB]<br>0.4<br>0.3<br>0.5<br>0.6<br>0.8<br>1.3        | Result<br>QP<br>[dB(µV)]<br>56.0<br>37.9<br>34.2<br>36.4<br>39.3<br>38.7                                                                                                                         | Result<br>AV<br>[dB(µV)]<br>41.9 | Limit<br>QP<br>[dB(µV)]<br>66.0<br>60.6<br>56.0<br>56.0<br>56.0<br>60.0<br>60.0                                                                         | Limit<br>AV<br>[dB(µV)]<br>56.0<br>50.6<br>46.0<br>46.0<br>46.0<br>50.0<br>50.0                                                                        | Margin<br>QP<br>[dB]<br>10.0<br>22.7<br>21.8<br>19.6<br>20.7<br>21.3 | Margin<br>AV<br>[dB]<br>14.1 |

Spectrum Selection

|                                                                                | Frequency                                                                                                                                                                              | Reading                                                                                                                                                                               | c.f                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin                                                                                                                               | Margin                                                                                                                           | Remark |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                | ,                                                                                                                                                                                      | 0                                                                                                                                                                                     |                                                                                                                              | PK                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QP                                                                                                                                   | AV                                                                                                                               |        |
|                                                                                | [MHz]                                                                                                                                                                                  | $[dB(\mu V)]$                                                                                                                                                                         | [dB]                                                                                                                         | [dB(µV)]                                                                                                                                                                                                                                                                                                                                  | $[dB(\mu V)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[dB(\mu V)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [dB]                                                                                                                                 | [dB]                                                                                                                             |        |
| 1                                                                              | 0.28475                                                                                                                                                                                | 41.9                                                                                                                                                                                  | 0.3                                                                                                                          | 42.2                                                                                                                                                                                                                                                                                                                                      | 60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.5                                                                                                                                 | 8.5                                                                                                                              |        |
| 2                                                                              | 0.30138                                                                                                                                                                                | 40.2                                                                                                                                                                                  | 0.3                                                                                                                          | 40.5                                                                                                                                                                                                                                                                                                                                      | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.7                                                                                                                                 | 9.7                                                                                                                              |        |
| 3                                                                              | 2.045                                                                                                                                                                                  | 33.9                                                                                                                                                                                  | 0.5                                                                                                                          | 34.4                                                                                                                                                                                                                                                                                                                                      | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.6                                                                                                                                 | 11.6                                                                                                                             |        |
| 4                                                                              | 4. 1075                                                                                                                                                                                | 37.0                                                                                                                                                                                  | 0.6                                                                                                                          | 37.6                                                                                                                                                                                                                                                                                                                                      | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.4                                                                                                                                 | 8.4                                                                                                                              |        |
| 5                                                                              | 6.155<br>C 0795                                                                                                                                                                        | 39.8                                                                                                                                                                                  | 0.8                                                                                                                          | 40.6                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.4                                                                                                                                 | 9.4                                                                                                                              |        |
| 67                                                                             | 6.9725                                                                                                                                                                                 | 39.4                                                                                                                                                                                  | 0.8                                                                                                                          | 40.2                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.8                                                                                                                                 | 9.8                                                                                                                              |        |
| (                                                                              | 6.995<br>7.990                                                                                                                                                                         | 39.9                                                                                                                                                                                  | 0.8                                                                                                                          | 40.7                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.3                                                                                                                                 | 9.3                                                                                                                              |        |
| 0                                                                              | 12 055                                                                                                                                                                                 | 37.4<br>30.1                                                                                                                                                                          | 0.0                                                                                                                          | 30. Z                                                                                                                                                                                                                                                                                                                                     | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{21.0}{10.7}$                                                                                                                  | 11.0                                                                                                                             |        |
| 10                                                                             | 12.000                                                                                                                                                                                 | 39.1                                                                                                                                                                                  | 1.2<br>1.2                                                                                                                   | 40.5                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.7                                                                                                                                 | 9.7                                                                                                                              |        |
| 11                                                                             | 12.0025<br>12.12375                                                                                                                                                                    | 37 1                                                                                                                                                                                  | 1.2<br>1.2                                                                                                                   | 38 3                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.4                                                                                                                                 | 117                                                                                                                              |        |
| 12                                                                             | 14 255                                                                                                                                                                                 | 42 7                                                                                                                                                                                  | 1.2                                                                                                                          | 44 0                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0                                                                                                                                 | 6.0                                                                                                                              |        |
| 13                                                                             | 14, 73625                                                                                                                                                                              | 43.0                                                                                                                                                                                  | 1.3                                                                                                                          | 44.3                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.7                                                                                                                                 | 5.7                                                                                                                              |        |
| 14                                                                             | 15, 9325                                                                                                                                                                               | 40.6                                                                                                                                                                                  | 1.4                                                                                                                          | 42.0                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.0                                                                                                                                 | 8.0                                                                                                                              |        |
| 15                                                                             | 16.44125                                                                                                                                                                               | 38.3                                                                                                                                                                                  | 1.4                                                                                                                          | 39.7                                                                                                                                                                                                                                                                                                                                      | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.3                                                                                                                                 | 10.3                                                                                                                             |        |
|                                                                                | L2 Phase                                                                                                                                                                               | _                                                                                                                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                  |        |
|                                                                                | LL I HGOC                                                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                  |        |
| No.                                                                            | Frequency                                                                                                                                                                              | Reading                                                                                                                                                                               | c.f                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin                                                                                                                               | Margin                                                                                                                           | Remark |
| No.                                                                            | Frequency                                                                                                                                                                              | Reading                                                                                                                                                                               | c.f                                                                                                                          | Result<br>PK                                                                                                                                                                                                                                                                                                                              | Limit<br>QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit<br>AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin<br>_QP                                                                                                                        | Margin<br>_AV                                                                                                                    | Remark |
| No.                                                                            | Frequency [MHz]                                                                                                                                                                        | Reading [dB(µV)]                                                                                                                                                                      | c.f<br>[dB]                                                                                                                  | Result<br>PK<br>[dB(µV)]                                                                                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>AV<br>[dB(µV)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Margin<br>QP<br>[dB]                                                                                                                 | Margin<br>AV<br>[dB]                                                                                                             | Remark |
| No.                                                                            | Frequency<br>[MHz]<br>0.2725                                                                                                                                                           | Reading<br>[dB(μV)]<br>37.8                                                                                                                                                           | c.f<br>[dB]<br>0.3                                                                                                           | Result<br>PK<br>[dB(μV)]<br>38.1                                                                                                                                                                                                                                                                                                          | Limit<br>QP<br>[dB(µV)]<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit<br>AV<br>[dB(µV)]<br>51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Margin<br>QP<br>[dB]<br>22.9                                                                                                         | Margin<br>AV<br>[dB]<br>12.9                                                                                                     | Remark |
| No.                                                                            | Frequency<br>[MHz]<br>0.2725<br>0.28213                                                                                                                                                | Reading<br>[dB(μV)]<br>37.8<br>38.7                                                                                                                                                   | c.f<br>[dB]<br>0.3<br>0.3                                                                                                    | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0                                                                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>AV<br>[dB(µV)]<br>51.0<br>50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Margin<br>QP<br>[dB]<br>22.9<br>21.9                                                                                                 | Margin<br>AV<br>[dB]<br>12.9<br>11.9                                                                                             | Remark |
| No.                                                                            | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263                                                                                                                                     | Reading<br>[dB(μV)]<br>37.8<br>38.7<br>41.5                                                                                                                                           | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 3                                                                                         | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>27.7                                                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8<br>60.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit<br>AV<br>[dB(µV)]<br>51.0<br>50.8<br>50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7                                                                                         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7                                                                                      | Remark |
| No.<br>1<br>2<br>3<br>4                                                        | Image: Frequency           [MHz]           0.2725           0.28213           0.29263           2.045                                                                                  | Reading<br>[dB(μV)]<br>37.8<br>38.7<br>41.5<br>35.2                                                                                                                                   | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 3<br>0. 5                                                                                 | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7                                                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8<br>60.4<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>AV<br>[dB(µV)]<br>51.0<br>50.8<br>50.4<br>46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3                                                                                 | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3                                                                              | Remark |
| No.<br>1<br>2<br>3<br>4<br>5                                                   | Frequency           [MHz]           0. 2725           0. 28213           0. 29263           2. 045           3. 6725           4. 1075                                                 | Reading<br>[dB(µV)]<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>26.0                                                                                                                   | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6                                                                                 | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>27.5                                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit<br>AV<br>$[dB(\mu V)]$<br>51.0<br>50.8<br>50.4<br>46.0<br>46.0<br>46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9                                                                         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5                                                               | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                         | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263<br>2.045<br>3.6725<br>4.1075<br>4.425                                                                                               | Reading<br>[dB(µV)]<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6                                                                                                           | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 7                                                                 | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.2                                                                                                                                                                                                                                                          | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0<br>56.0<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit<br>AV<br>$[dB(\mu V)]$<br>51.0<br>50.8<br>50.4<br>46.0<br>46.0<br>46.0<br>46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7                                                         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7                                                       | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | Frequency<br>[MHz]<br>0. 2725<br>0. 28213<br>0. 29263<br>2. 045<br>3. 6725<br>4. 1075<br>4. 4825<br>4. 5425                                                                            | Reading<br>[dB( µ V)]<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6<br>32.5                                                                                                 | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 7<br>0. 7                                                         | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.3<br>33.2                                                                                                                                                                                                                                                  | Limit<br>QP<br>[dB(µV)]<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\mu \text{ V})] \\ 51.0 \\ 50.8 \\ 50.4 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\$ | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8                                                 | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8                                               | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                               | Frequency<br>[MHz]<br>0. 2725<br>0. 28213<br>0. 29263<br>2. 045<br>3. 6725<br>4. 1075<br>4. 4825<br>4. 5425<br>4. 685                                                                  | Reading<br>[dB( $\mu$ V)]<br>37. 8<br>38. 7<br>41. 5<br>35. 2<br>31. 5<br>36. 9<br>31. 6<br>32. 5<br>31. 5                                                                            | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 7<br>0. 7                                                         | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.3<br>33.2<br>32.2                                                                                                                                                                                                                                          | Limit<br>QP<br>$[dB(\mu V)]$<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\mu \text{V})] \\ 51.0 \\ 50.8 \\ 50.4 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ $ | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8                                         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8                                               | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                         | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263<br>2.045<br>3.6725<br>4.1075<br>4.4825<br>4.5425<br>4.685<br>4.8875                                                                 | Reading<br>[dB( µ V)]<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6<br>32.5<br>31.5<br>33.6                                                                                 | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 6<br>0. 7<br>0. 7<br>0. 7<br>0. 7                                 | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.3<br>33.2<br>32.2<br>34.3                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\mu \text{V})] \\ 51.0 \\ 50.8 \\ 50.4 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ 40.0 \\ $ | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8<br>23.8<br>21.7                         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8<br>13.8<br>11.7                               | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                   | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263<br>2.045<br>3.6725<br>4.1075<br>4.4825<br>4.5425<br>4.5425<br>4.685<br>5.315                                                        | Reading<br>[dB(µV)]<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6<br>32.5<br>31.5<br>33.6<br>35.4                                                                           | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 7<br>0. 7<br>0. 7<br>0. 7<br>0. 7                                 | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.3<br>33.2<br>32.2<br>34.3<br>36.1                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\mu \text{V})] \\ 51.0 \\ 50.8 \\ 50.4 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 50.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8<br>23.8<br>21.7<br>22.9                 | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8<br>13.8<br>11.7<br>13.9                       | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12             | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263<br>2.045<br>3.6725<br>4.1075<br>4.4825<br>4.5425<br>4.5425<br>4.685<br>4.8875<br>5.315<br>6.155                                     | Reading<br>$[dB(\mu V)]$<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6<br>32.5<br>31.5<br>33.6<br>35.4<br>40.7                                                              | c.f<br>[dB]<br>0.3<br>0.3<br>0.5<br>0.6<br>0.6<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.8                                     | Result<br>PK<br>[dB(µV)]<br>38.1<br>39.0<br>41.8<br>35.7<br>32.1<br>37.5<br>32.3<br>33.2<br>32.2<br>32.2<br>34.3<br>36.1<br>41.5                                                                                                                                                                                                          | Limit<br>QP<br>$[dB(\mu V)]$<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\mu\text{V})] \\ 51.0 \\ 50.8 \\ 50.4 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 50.0 \\ 50.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8<br>21.7<br>23.9<br>18.6                 | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8<br>13.8<br>11.7<br>13.9<br>8.6                | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13       | Frequency<br>[MHz]<br>0.2725<br>0.28213<br>0.29263<br>2.045<br>3.6725<br>4.1075<br>4.4825<br>4.5425<br>4.5425<br>4.685<br>4.8875<br>5.315<br>6.155<br>7.1975                           | Reading<br>$[dB(\mu V)]$<br>37.8<br>38.7<br>41.5<br>35.2<br>31.5<br>36.9<br>31.6<br>32.5<br>31.6<br>32.5<br>31.5<br>33.6<br>35.4<br>40.7<br>38.9                                      | c.f<br>[dB]<br>0.3<br>0.5<br>0.6<br>0.6<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.8<br>0.8                                     | $\begin{array}{c} \mbox{Result} \\ \mbox{PK} \\ \mbox{[dB (} \mu \mbox{V) ]} \\ \mbox{38. 1} \\ \mbox{39. 0} \\ \mbox{41. 8} \\ \mbox{35. 7} \\ \mbox{32. 1} \\ \mbox{37. 5} \\ \mbox{32. 2} \\ \mbox{32. 2} \\ \mbox{32. 2} \\ \mbox{32. 2} \\ \mbox{34. 3} \\ \mbox{36. 1} \\ \mbox{41. 5} \\ \mbox{39. 7} \end{array}$                 | Limit<br>QP<br>$[dB(\mu V)]$<br>61.0<br>60.8<br>60.4<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\ \mu \ \text{V})] \\ 51. \ 0 \\ 50. \ 8 \\ 50. \ 4 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 50. \ 0 \\ 50. \ 0 \\ 50. \ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8<br>21.7<br>23.9<br>18.6<br>20.3         | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8<br>13.8<br>11.7<br>13.9<br>8.6<br>10.3        | Remark |
| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | Frequency<br>[MHz]<br>0. 2725<br>0. 28213<br>0. 29263<br>2. 045<br>3. 6725<br>4. 1075<br>4. 4825<br>4. 5425<br>4. 5425<br>4. 685<br>4. 8875<br>5. 315<br>6. 155<br>7. 1975<br>14. 6125 | Reading<br>$\begin{bmatrix} dB (\mu V) \\ 37.8 \\ 38.7 \\ 41.5 \\ 35.2 \\ 31.5 \\ 36.9 \\ 31.6 \\ 32.5 \\ 31.6 \\ 32.5 \\ 31.5 \\ 33.6 \\ 35.4 \\ 40.7 \\ 38.9 \\ 42.4 \end{bmatrix}$ | c. f<br>[dB]<br>0. 3<br>0. 3<br>0. 5<br>0. 6<br>0. 6<br>0. 6<br>0. 7<br>0. 7<br>0. 7<br>0. 7<br>0. 7<br>0. 8<br>0. 8<br>1. 3 | $\begin{array}{c} \mbox{Result} \\ \mbox{PK} \\ \mbox{[dB (} \mu \mbox{V) ]} \\ \mbox{38. 1} \\ \mbox{39. 0} \\ \mbox{41. 8} \\ \mbox{35. 7} \\ \mbox{32. 1} \\ \mbox{37. 5} \\ \mbox{32. 2} \\ \mbox{33. 2} \\ \mbox{32. 2} \\ \mbox{32. 2} \\ \mbox{34. 3} \\ \mbox{36. 1} \\ \mbox{41. 5} \\ \mbox{39. 7} \\ \mbox{43. 7} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{Limit} \\ \text{AV} \\ [\text{dB}(\ \mu \ \text{V})] \\ 51. \ 0 \\ 50. \ 8 \\ 50. \ 8 \\ 50. \ 4 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ 50. \ 0 \\ 50. \ 0 \\ 50. \ 0 \\ 50. \ 0 \\ 50. \ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Margin<br>QP<br>[dB]<br>22.9<br>21.9<br>18.7<br>20.3<br>23.9<br>18.5<br>23.7<br>22.8<br>23.8<br>21.7<br>23.9<br>18.6<br>20.3<br>16.3 | Margin<br>AV<br>[dB]<br>12.9<br>11.9<br>8.7<br>10.3<br>13.9<br>8.5<br>13.7<br>12.8<br>13.8<br>11.7<br>13.9<br>8.6<br>10.3<br>6.3 | Remark |

Document No.: OFA-H3630 Toshiba Corp., Ome Operations



Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 13 of 45

#### **Radiation Measurement Results**

| ****                                                                               | ******                                                                                                                   | ******                                                                                                       | *********                                                                                | ***** OME (<br>< <radiat< th=""><th>)perations *<br/>ted Emission&gt;</th><th>**************************************</th></radiat<> | )perations *<br>ted Emission>                                                                                                                                                            | **************************************                           |             |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|
| Stan<br>Mode<br>Seri:<br>Oper:<br>AC Ma<br>Temp<br>Rema:<br>Rema:<br>Rema:<br>Fina | dard<br>1 Name<br>1 No.<br>al No.<br>ator<br>ains<br>, Humid<br>rk1<br>rk2<br>rk3<br>*********************************** | : FCC Pa<br>: PORTEC<br>: PP201U<br>: CS#1<br>: M. Wata<br>: AC 120<br>: 22.8 c<br>:<br>:<br>:<br>********** | art 15B Cla<br>GE 2010<br>J<br>Wac / 60 H<br>deg. / 48.(                                 | ass B (3m)<br>Hz<br>%<br>*********                                                                                                  | ****                                                                                                                                                                                     | *****                                                            | ****        |
| 1<br>No.<br>1<br>2<br>3<br>4<br>5<br>6                                             | Horizontal<br>Frequency<br>[MHz]<br>45.708<br>195.084<br>243.863<br>260.117<br>266.096<br>799.498                        | Polarizatio<br>Reading<br>[dB(µV)]<br>23.6<br>18.8<br>18.3<br>23.5<br>19.2<br>2.8                            | on (QP)<br>c. f<br>[dB(1/m)]<br><u>3. 2</u><br>17. 6<br>19. 9<br>20. 5<br>20. 8<br>34. 5 | Result<br>[dB(µV/m)]<br>26.8<br>36.4<br>38.2<br>44.0<br>40.0<br>37.3                                                                | $\begin{array}{c} \text{Limit} \\ [\text{dB} (\ \mu \ \text{V/m})] \\ \hline 40. \ 0 \\ \hline 43. \ 5 \\ 46. \ 0 \\ 46. \ 0 \\ 46. \ 0 \\ \hline 46. \ 0 \\ \hline 46. \ 0 \end{array}$ | Margin<br>[dB]<br><u>13.2</u><br>7.1<br>7.8<br>2.0<br>6.0<br>8.7 | Remark<br>- |
| No.<br>1<br>2<br>3<br>4<br>5<br>6                                                  | Vertical Po<br>Frequency<br>[MHz]<br>33.613<br>45.708<br>260.117<br>632.000<br>794.503<br>799.498                        | larization<br>Reading<br>[dB(µV)]<br>23.2<br>25.8<br>19.2<br>3.6<br>5.6<br>5.4                               | (QP)<br>c. f<br>[dB(1/m)]<br>0. 5<br>3. 2<br>20. 5<br>30. 7<br>34. 4<br>34. 5            | Result<br>[dB(µV/m)]<br>23.7<br>29.0<br>39.7<br>34.3<br>40.0<br>39.9                                                                | Limit<br>[dB(µV/m)]<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0                                                                                                              | Margin<br>[dB]<br>16.3<br>11.0<br>6.3<br>11.7<br>6.0<br>6.1      | Remark      |

##

Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 14 of 45

|   | *****                                                                                                    | *****                                                                                                                                                                                                                                                    | ******                                                                                                                                                                             | *********                                                                                                                                                                                                                                                       | ****** OME (<br>< <radia< th=""><th>Operations &gt;<br/>ted Emission</th><th>********<br/>&gt;&gt;</th><th>******</th><th>**************************************</th><th></th></radia<>                                                                       | Operations ><br>ted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ********<br>>>                                                                                                          | ****** | ************************************** |  |
|---|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|--|
|   | Standar<br>Model N<br>Serial<br>Operato<br>AC Main<br>Temp, H<br>Remark1<br>Remark2<br>Remark3<br>****** | d<br>Jame<br>Jo.<br>No.<br>rr<br>Is<br>Jumid<br>************************************                                                                                                                                                                     | : FCC Pa<br>: PORTEC<br>: PP201U<br>: CS#1<br>: M. Wata<br>: AC 120<br>: 22.8 c<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                   | art 15B Cla<br>GE 2010<br>J<br>DVac / 60 H<br>deg. / 48.(                                                                                                                                                                                                       | ass B (3m)<br>Iz<br>%                                                                                                                                                                                                                                         | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                   | ****** | ******                                 |  |
|   | Hor<br>No. Fr                                                                                            | izontal H<br>equency                                                                                                                                                                                                                                     | Polarizatio<br>Reading                                                                                                                                                             | on<br>c.f                                                                                                                                                                                                                                                       | Result<br>PK                                                                                                                                                                                                                                                  | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Margin                                                                                                                  | Remark |                                        |  |
| ŧ | $     \begin{array}{r}             1 \\             2 \\           $                                     | [MHz]<br>45.925<br>66.575<br>152.000<br>195.500<br>241.000<br>261.000<br>261.000<br>261.000<br>374.500<br>399.000<br>431.500<br>799.000<br>860.500<br>926.500                                                                                            | $\begin{bmatrix} dB(\mu V) \\ 20.1 \\ 22.3 \\ 17.1 \\ 18.1 \\ 16.6 \\ 17.6 \\ 22.1 \\ 16.8 \\ 18.3 \\ 19.3 \\ 18.3 \\ 19.3 \\ 18.3 \\ 14.1 \\ 11.4 \\ 9.1 \\ 6.1 \\ \end{bmatrix}$ | $\begin{bmatrix} dB(1/m) \\ 13.7 \\ 10.3 \\ 17.8 \\ 19.6 \\ 21.9 \\ 22.1 \\ 23.5 \\ 19.6 \\ 19.7 \\ 20.1 \\ 24.3 \\ 28.1 \\ 30.0 \\ 31.6 \end{bmatrix}$                                                                                                         | $\begin{bmatrix} dR & (\mu & V/m) \end{bmatrix} \\ \underline{33.8} \\ 32.6 \\ 34.9 \\ 37.7 \\ 38.5 \\ 39.7 \\ 45.2 \\ 40.3 \\ 37.9 \\ 39.0 \\ 38.4 \\ 38.4 \\ 38.4 \\ 39.5 \\ 39.1 \\ 37.7 \end{bmatrix}$                                                    | $\begin{bmatrix} dB (\mu V/m) \\ 40. 0 \\ 40. 0 \\ 43. 5 \\ 43. 5 \\ 43. 5 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ 46. 0$                                                                                                                                                                                                                                                                                                                                                                                                                          | [dB]<br>6.3<br>7.4<br>8.6<br>5.8<br>7.5<br>6.3<br>0.8<br>5.7<br>8.1<br>7.0<br>7.6<br>7.6<br>7.7<br>6.5<br>6.9<br>8.3    |        |                                        |  |
|   | Ver<br>No. Fr<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15           | Itical Poi         requency         [MHz]         45.925         195.500         261.000         543.000         559.500         563.000         588.000         603.500         633.500         646.000         665.500         794.500         927.250 | larization<br>Reading<br>$[dB(\mu V)]$<br>21.5<br>15.5<br>17.3<br>15.1<br>16.0<br>15.3<br>16.2<br>15.2<br>15.8<br>13.0<br>15.8<br>13.0<br>12.4<br>13.4<br>6.5                      | $\begin{array}{c}\\ \text{c. f} \\ \begin{bmatrix} dB \left( 1/m \right) \end{bmatrix} \\ 13. 7 \\ 19. 6 \\ 23. 1 \\ 22. 9 \\ 23. 0 \\ 23. 1 \\ 23. 1 \\ 23. 1 \\ 23. 1 \\ 23. 4 \\ 23. 7 \\ 24. 3 \\ 24. 5 \\ 24. 9 \\ 25. 7 \\ 28. 0 \\ 31. 6 \\ \end{array}$ | $\begin{array}{c} \text{Result} \\ \text{PK} \\ \left[ \text{dB} \left( \begin{array}{c} \mu \text{ V/m} \right) \right] \\ 35.2 \\ 35.1 \\ 40.4 \\ 38.0 \\ 39.0 \\ 38.4 \\ 39.3 \\ 38.6 \\ 39.5 \\ 37.3 \\ 40.3 \\ 37.9 \\ 38.1 \\ 41.4 \\ 38.1 \end{array}$ | Limit<br>$[dB(\mu V/m)]$<br>40.0<br>43.5<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>4 | Margin<br>[dB]<br>4.8<br>8.4<br>5.6<br>8.0<br>7.0<br>7.6<br>6.7<br>7.4<br>6.5<br>8.7<br>5.7<br>8.1<br>7.9<br>4.6<br>7.9 | Remark |                                        |  |



Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 16 of 45

24 March, 2003 12:17  $\langle\langle Radiated Emission \rangle\rangle$ Guam SDBT. dat : FCC Part 15B Class B (3m) : PORTEGE 2010 : PP201U Standard Model Name Model No. : #1 Serial No. : M. Watanabe Operator ÷ 120Vac/60Hz AC Power Temp, Humid : 22.7deg./ 37% Remark1 Remark2 Remark3 Final Result --- Horizontal Polarization (AV)--- $\begin{array}{ccc} \text{Reading} & \text{c.f} & \text{Result} & \text{Limit} \\ \left[ \text{dB} \left( \mu \text{ V} \right) \right] & \left[ \text{dB} \left( 1/\text{m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V/m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V/m} \right) \right] \end{array}$ c.f Limit Margin Remark No. Frequency [MHz] [dB] 1 1260.120 56.4-25.3 31.1 74.0 42.92 7215.231 39.6 -8.9 30.7 74.0 43.33 9636.643 36.2 -6.0 30.2 74.0 43.8--- Horizontal Polarization (PK)--- $\begin{array}{ccc} \text{Reading} & \text{c.f} & \text{Result} & \text{Limit} \\ \left[ \text{dB} \left( \mu \text{ V} \right) \right] & \left[ \text{dB} \left( 1/\text{m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V/m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V/m} \right) \right] \end{array}$ Result No. Frequency Margin Remark [MHz] [dB]1260. 120 73.9 25.4 1 -25.3 48.6 74.0 2 7215.23174.0-8.9 65.174.0 8.9 3 9636.643 51.5-6.045.574.0 28.5--- Vertical Polarization (AV)--- $\begin{array}{ccc} \text{Reading} & \text{c. f} & \text{Result} & \text{Limit} \\ \left[ \text{dB} \left( \mu \text{ V} \right) \right] & \left[ \text{dB} \left( 1/\text{m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V}/\text{m} \right) \right] & \left[ \text{dB} \left( \mu \text{ V}/\text{m} \right) \right] \end{array}$ No. Frequency Margin Remark [MHz]  $[d\bar{B}]$ 1 1260.12059.5 -25.3 34.2 74.0 39.8 -25.2 1326.3222 56.3 31.174.0 42.93 -15.3 47.5 4874.44941.826.574.0 4 7215.231 41.3-8.9 32.474.0 41.65 9636.643 41.3 -6.0 35.3 74.0 38.7 --- Vertical Polarization (PK)---No. Frequency Reading c. f Result Limit  $[MHz] [dB(\mu V)] [dB(1/m)] [dB(\mu V/m)] [dB(\mu V/m)]$ Margin Remark [dB] 22.3 1260.120 1 77.0 -25.3 51.774.0 2 1326.322 71.1 -25.245.974.028.1 3 4874.449 59.9 -15.3 44.6 74.0 29.44 7215.231 78.8-8.9 69.9 74.0 4.1 5 9636.643 68.1-6.0 62.1 74.0 11.9

| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********                                                                                                                        | *********                                                                                                     | ****** OME (<br>< <radiat< th=""><th>Dperations *<br/>ted Emission&gt;</th><th>********<br/>&gt;&gt;</th><th>**************************************</th></radiat<>                                        | Dperations *<br>ted Emission>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ********<br>>>                                                                                     | ************************************** |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|
| ndard<br>91 Name<br>91 No.<br>92 No.<br>92 No.<br>92 No.<br>92 No.<br>92 No.<br>93 No.<br>94 | : FCC Pa<br>: PORTEC<br>: PP201U<br>: #1<br>: M. Watz<br>: 120Vac<br>: 22.7de<br>:<br>:<br>:<br>******************************* | art 15B Cla<br>EE 2010<br>J<br>anabe<br>c/60Hz<br>eg./ 37%                                                    | ass B (3m)<br>**********                                                                                                                                                                                  | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ******                                                                                             | Guam SDD1. dat                         |
| Horizontal<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Polarizatio<br>Reading                                                                                                          | on<br>c.f                                                                                                     | Result                                                                                                                                                                                                    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Margin                                                                                             | Remark                                 |
| [MHz]<br>1258.517<br>2474.950<br>7224.449<br>7264.529<br>7334.669<br>7364.730<br>7404.810<br>17535.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} dB (\mu V) \\ 85.5 \\ 100.5 \\ 79.0 \\ 78.5 \\ 72.4 \\ 74.9 \\ 68.0 \\ 59.6 \end{bmatrix}$                     | [dB(1/m)]<br>-25.3<br>-19.6<br>-8.9<br>-8.7<br>-8.4<br>-8.3<br>-8.3<br>1.7                                    | $ \begin{array}{c} PK \\ \left[ dB \left( \begin{array}{c} \mu \ V/m \right) \right] \\ 60. \ 2 \\ 80. \ 9 \\ \hline 70. \ 1 \\ 69. \ 8 \\ 64. \ 0 \\ 66. \ 6 \\ 59. \ 7 \\ 61. \ 3 \end{array} \right. $ | $ \begin{bmatrix} dB (\mu V/m) \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [dB]<br>13.8<br>-6.9<br>3.9<br>4.2<br>10.0<br>7.4<br>14.3<br>12.7                                  | _                                      |
| Vertical Po<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | larization<br>Reading                                                                                                           | <br>c. f                                                                                                      | Result                                                                                                                                                                                                    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Margin                                                                                             | Remark                                 |
| [MHz]<br>1258.517<br>1320.641<br>2474.950<br>4843.687<br>7204.409<br>7304.609<br>7384.770<br>7414.830<br>9629.258<br>9689.378<br>9729.459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [dB( $\mu$ V) ]<br>89.2<br>83.0<br>100.5<br>77.7<br>85.0<br>85.3<br>76.8<br>76.6<br>66.5<br>70.0<br>67.8<br>60.2                | [dB(1/m)]<br>-25.3<br>-25.2<br>-19.6<br>-15.4<br>-9.0<br>-8.5<br>-8.3<br>-8.3<br>-6.0<br>-6.0<br>-6.0<br>-6.0 | $ \begin{smallmatrix} PK \\ [dB(\mu V/m)] \\ 63.9 \\ 57.8 \\ 80.9 \\ \hline 62.3 \\ 76.0 \\ 76.8 \\ 68.5 \\ 68.3 \\ 60.5 \\ 64.0 \\ 61.8 \\ 62.0 \\ \hline \end{array} $                                  | $\begin{bmatrix} dB (\mu V/m) \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\ 74.0 \\$ | [dB]<br>10.1<br>16.2<br>-6.9<br>11.7<br>-2.0<br>-2.8<br>5.5<br>5.7<br>13.5<br>10.0<br>12.2<br>12.0 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>************************************</pre>                                                                                 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                          | $\begin{array}{rllllllllllllllllllllllllllllllllllll$                                                                                                                                                     | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *************************************                                                              | *************************************  |

\*: This frequency is operation frequency of the Wireless module.

Document No.: OFA-H3630 Toshiba Corp., Ome Operations



Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 19 of 45

## MEASUREMENT SET-UP (Sketches)



Figure 1, Side View



Figure 2, Top view

Document No.: OFA-H3630 Toshiba Corp., Ome Operations

# <section-header>

Figure 3, Front View



Figure 4, Rear View

Document No.: OFA-H3630 Toshiba Corp., Ome Operations

# MEASUREMENT INSTRUMENTATION USED

| (Conduction | M | leasurement) |
|-------------|---|--------------|
|-------------|---|--------------|

|   | Instrument                                                                                      | Manufacturer                                                                                                      | Model No.           | Serial No.               |
|---|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|
| * | EMI Receiver<br>- Receiver RF Section                                                           | Hewlett Packard - Japan, Ltd                                                                                      | 8546A<br>85462A     | 3549A00285<br>3549A00285 |
|   | - RF Filter Section<br>Frequency range<br>Detector function<br>IF bandwidth<br>Calibration date | <ul> <li>9 k - 6.5 GHz</li> <li>CISPR Quasi Peak, Peak and Average</li> <li>9 kHz</li> <li>May of 2002</li> </ul> | 85460A              | 3548A00254               |
| * | Line Inpeadance<br>Stabilization Network (LISN)<br>(50uH / 50ohm), (for EUT)                    | Kyoritsu Electrical Works, Ltd.                                                                                   | KNW-407             | 8-794-14                 |
|   | Calibration date                                                                                | : September of 2002                                                                                               |                     |                          |
| * | Line Inpeadance<br>Stabilization Network (LISN)<br>(50uH / 50ohm), (for peripherals)            | Kyoritsu Electrical Works, Ltd.                                                                                   | KNW-341C            | 8-853-3                  |
|   | Calibration date                                                                                | : September of 2002                                                                                               |                     |                          |
| * | System Loss<br>- Coaxial Cable<br>Frequency range<br>Calibration date                           | Toshiba Corp., Ome Operations<br>FUJIKURA<br>: 150 k - 30 MHz<br>: December of 2002                               | TOAC02-001<br>30-2W | N/A<br>C004              |

All measurement instruments used for performing these tests were calibrated in accordance with manufacturer recommendations. All calibrations were current when the tests were performed and all instruments are calibrated at least once a year.

These measurement instruments used for the final measuremet and pre-measurement in the Anechoic Chamber No. 2.

# MEASUREMENT INSTRUMENTATION USED

(Radiation Measurement)

|   | Instrument                                                               | Manufacturer                                                                                                      | Model No.                            | Serial No.                             |
|---|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|
| • | EMI Receiver<br>- Receiver RF Section<br>- RF Filter Section             | Hewlett Packard - Japan, Ltd                                                                                      | 8546A<br>85462A<br>85460A            | 3549A00285<br>3549A00285<br>3548A00254 |
|   | Frequency range<br>Detector function<br>IF bandwidth<br>Calibration date | <ul> <li>9 k - 6.5 GHz</li> <li>CISPR Quasi Peak, Peak and Average</li> <li>9 kHz</li> <li>May of 2002</li> </ul> |                                      |                                        |
| * | Dipole antenna<br>Tuning range<br>Calibration date                       | Kyoritsu Electrical Works, Ltd.<br>: 25 - 500MHz<br>: July of 2002                                                | KBA-511A                             | 0-201-6                                |
| * | Dipole antenna<br>Tuning range<br>Calibration date                       | Kyoritsu Electrical Works, Ltd.<br>: 500 - 1000MHz<br>: July of 2002                                              | KBA-611                              | 0-215-1                                |
| • | Biconical antenna: #<br>Tuning Range<br>Calibration date                 | CHASE<br>: 30 - 300 MHz<br>: July of 2002                                                                         | 11966C                               | 3110                                   |
| * | Log periodic antenna: #<br>Tuning Range<br>Calibration date              | CHASE<br>: 200 - 1000 MHz<br>: September of 2002                                                                  | 3146                                 | 1592                                   |
| * | System Loss<br>- Coaxial cable (2 cables)                                | Tohsiba Corp., Ome Operations<br>SUHNER                                                                           | TOAC02-002<br>S 04272 B<br>S 04272 B | N/A<br>C005<br>C006                    |
|   | Frequency range<br>Calibration date                                      | : 30 M - 2 GHz<br>: December of 2002                                                                              |                                      |                                        |

All measurement instruments used for performing these tests were calibrated in accordance with manufacturer recommendations. All calibrations were current when the tests were performed and all instruments are calibrated at least once a year.

These measurement instruments used for the final measurements.

(#: This measurement instruments used only for the pre-measurements.)

| ٠ | Anechoic Chamber No. 2 | TI | DK Corp.       | N/A | N/A |
|---|------------------------|----|----------------|-----|-----|
|   | (NSA measurement)      |    |                |     |     |
|   | Calibration date       | :  | August of 2001 |     |     |

The Anechoic Chamber is calibrated (NSA measurement) at least once three years, for Registration of Measurement Facility to the the FCC or VCCI.

# MEASUREMENT INSTRUMENTATION USED

#### (Radiation Measurement: above 1 GHz)

|   | Instrument                                                                                    | Manufacturer                                                                                                | Model No.                                                        | Serial No.                                  |
|---|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| • | EMI Tset Receiver<br>Frequency range<br>Detector function<br>IF bandwidth<br>Calibration date | ROHDE&SCHWARZ<br>: 20 Hz - 40 GHz<br>: CISPR Quasi Peak, Peak and Average<br>: 9 kHz<br>: September of 2002 | ESIB40                                                           | 100127                                      |
| • | Double Redged Waveguide Horn Antenna<br>Tuning Range<br>Calibration date                      | EMCO<br>: 1 - 18 GHz<br>: August of 2002                                                                    | 3115                                                             | 4949                                        |
| * | Standard Gain Horn Antenna<br>Tuning Range                                                    | EMCO<br>: 18 - 26.5 GHz                                                                                     | 3160-9                                                           | 9910-1185                                   |
| • | Standard Gain Horn Antenna<br>Tuning Range<br>Tuning Range                                    | EMCO<br>: 26.5 - 40 GHz<br>: 26.5 - 40 GHz                                                                  | 3160-10                                                          | 1153                                        |
| * | System Loss<br>- Coaxial cable (5 cables)                                                     | Tohsiba Corp., Ome Operations<br>SUHNER                                                                     | TOAC03-003<br>SF102<br>SF102<br>SF102<br>SF102<br>SF102<br>SF102 | N/A<br>C028<br>C030<br>C031<br>C032<br>C033 |
|   | - Microwave System Amlifer                                                                    | Agilent Technologies                                                                                        | 83051A<br>83051A                                                 | 3950M00213<br>MY39500304                    |
|   | Calibration date                                                                              | : December of 2002                                                                                          |                                                                  |                                             |
| • | System Loss<br>- Coaxial cable (5 cables)                                                     | Tohsiba Corp., Ome Operations<br>SUHNER                                                                     | TOAC03-003<br>SF102<br>SF102<br>SF102<br>SF102<br>SF102<br>SF102 | N/A<br>C029<br>C030<br>C031<br>C032<br>C033 |
|   | - Microwave System Amlifer                                                                    | Agilent Technologies                                                                                        | 83051A<br>83051A                                                 | 3950M00213<br>MY39500304                    |
|   | Frequency range<br>Calibration date                                                           | : 18 - 40GHz<br>: December of 2002                                                                          |                                                                  |                                             |

All measurement instruments used for performing these tests were calibrated in accordance with manufacturer recommendations. All calibrations were current when the tests were performed and all instruments are calibrated at least once a year. These measurement instruments used for the final measurements.

| ٠ | Anechoic Chamber No. 3                | Т | DK Corp.      | N/A | N/A |
|---|---------------------------------------|---|---------------|-----|-----|
|   | (NSA measurement)<br>Calibration date | ; | April of 2002 |     |     |

The Anechoic Chamber is calibrated (NSA measurement) at least once three years, for Registration of Measurement Facility to the FCC or VCCI.

Document No.: OFA-H3630 Toshiba Corp., Ome Operations



for Anechoic Chamber No.2

LISN: Model KNW-407



Document No.: OFA-H3630 Toshiba Corp., Ome Operations

# SYSTEM LOSS (Radiation measurement) 30MHz - 1GHz

for Anechoic Chamber No. 2

| Frequency | System    | Frequency | System    |
|-----------|-----------|-----------|-----------|
| [MHz]     | Loss [dB] | [MHz]     | Loss [dB] |
| 30        | 0.9       | 225       | 2.9       |
| 40        | 1.1       | 250       | 3.1       |
| 50        | 1.1       | 275       | 3.4       |
| 60        | 1.4       | 300       | 3.6       |
| 70        | 1.5       | 350       | 4.0       |
| 80        | 1.6       | 400       | 4.2       |
| 90        | 1.7       | 450       | 4.5       |
| 100       | 1.8       | 500       | 4.8       |
| 110       | 1.9       | 550       | 5.0       |
| 120       | 2.0       | 600       | 5.3       |
| 130       | 2.1       | 650       | 5.9       |
| 140       | 2.2       | 700       | 6.1       |
| 150       | 2.3       | 750       | 6.4       |
| 160       | 2.4       | 800       | 6.5       |
| 170       | 2.4       | 850       | 6.8       |
| 180       | 2.6       | 900       | 7.3       |
| 190       | 2.6       | 950       | 7.4       |
| 200       | 2.7       | 1000      | 7.7       |

# SYSTEM LOSS (Radiation measurement) 18GHz - 40GHz

| Frequency | System    | Frequency | System    | Frequency | System    |
|-----------|-----------|-----------|-----------|-----------|-----------|
| [MHz]     | Loss [dB] | [MHz]     | Loss [dB] | [MHz]     | Loss [dB] |
| 18000     | -38.3     | 25500     | -37.2     | 33000     | -35.7     |
| 18250     | -38.1     | 25750     | -37.5     | 33250     | -35.8     |
| 18500     | -37.6     | 26000     | -37.7     | 33500     | -35.6     |
| 18750     | -38.0     | 26250     | -37.3     | 33750     | -35.8     |
| 19000     | -37.5     | 26500     | -36.7     | 34000     | -35.7     |
| 19250     | -37.1     | 26750     | -36.8     | 34250     | -36.0     |
| 19500     | -37.5     | 27000     | -36.5     | 34500     | -35.9     |
| 19750     | -36.0     | 27250     | -36.6     | 34750     | -36.0     |
| 20000     | -37.8     | 27500     | -36.6     | 35000     | -36.1     |
| 20250     | -36.1     | 27750     | -37.0     | 35250     | -35.6     |
| 20500     | -37.0     | 28000     | -37.4     | 35500     | -35.6     |
| 20750     | -37.7     | 28250     | -37.2     | 35750     | -35.7     |
| 21000     | -37.0     | 28500     | -37.2     | 36000     | -36.2     |
| 21250     | -37.3     | 28750     | -37.3     | 36250     | -35.8     |
| 21500     | -36.5     | 29000     | -36.9     | 36500     | -36.3     |
| 21750     | -36.7     | 29250     | -37.2     | 36750     | -36.0     |
| 22000     | -36.1     | 29500     | -36.6     | 37000     | -36.0     |
| 22250     | -36.4     | 29750     | -36.7     | 37250     | -35.9     |
| 22500     | -36.3     | 30000     | -36.6     | 37500     | -36.1     |
| 22750     | -36.2     | 30250     | -36.4     | 37750     | -35.7     |
| 23000     | -36.8     | 30500     | -36.5     | 38000     | -35.7     |
| 23250     | -36.4     | 30750     | -36.5     | 38250     | -35.3     |
| 23500     | -36.3     | 31000     | -36.2     | 38500     | -35.1     |
| 23750     | -36.5     | 31250     | -36.4     | 38750     | -35.2     |
| 24000     | -36.2     | 31500     | -36.3     | 39000     | -34.8     |
| 24250     | -36.4     | 31750     | -35.9     | 39250     | -34.7     |
| 24500     | -37.0     | 32000     | -36.1     | 39500     | -34.9     |
| 24750     | -36.7     | 32250     | -36.2     | 39750     | -34.9     |
| 25000     | -37.1     | 32500     | -36.1     | 40000     | -34.8     |
| 25050     | .26.0     | 22750     | -36.0     | 40000     | -54.0     |





# ANTENNA FACTOR

# (Broadband Antenna)

for Anechoic Chamber No. 2

#### BICONICAL ANTENNA: MODEL 11966C

| Serial No.: 3110<br>Calibration date: July of 2002 |                       |                    |                       |  |  |
|----------------------------------------------------|-----------------------|--------------------|-----------------------|--|--|
| Frequency<br>[MHz]                                 | Antenna<br>Factor[dB] | Frequency<br>[MHz] | Antenna<br>Factor[dB] |  |  |
| 30                                                 | 16.2                  | 140                | 14.9                  |  |  |
| 40                                                 | 14.4                  | 150                | 15.4                  |  |  |
| 50                                                 | 11.4                  | 160                | 15.6                  |  |  |
| 60                                                 | 9.4                   | 170                | 15.9                  |  |  |
| 70                                                 | 8.8                   | 180                | 16.2                  |  |  |
| 80                                                 | 9.0                   | 190                | 16.6                  |  |  |
| 90                                                 | 10.0                  | 200                | 17.2                  |  |  |
| 100                                                | 11.9                  | 225                | 18.2                  |  |  |
| 110                                                | 12.2                  | 250                | 19.3                  |  |  |
| 120                                                | 13.2                  | 275                | 20.7                  |  |  |
| 130                                                | 14.1                  | 300                | 22.0                  |  |  |

#### LOG PERIODIC ANTENNA: MODEL

Serial No.: 1592

| Frequency<br>[MHz] | Antenna<br>Factor[dB] | Frequency<br>[MHz] | Antenna<br>Factor[dB] |
|--------------------|-----------------------|--------------------|-----------------------|
| 300                | 13.8                  | 700                | 20.8                  |
| 350                | 15.2                  | 750                | 21.4                  |
| 400                | 15.6                  | 800                | 21.6                  |
| 450                | 16.0                  | 850                | 22.8                  |
| 500                | 17.6                  | 900                | 24.0                  |
| 550                | 18.0                  | 950                | 24.4                  |
| 600                | 18.4                  | 1000               | 25.4                  |
| 650                | 19.2                  |                    |                       |

# ANTENNA FACTOR

# (Broadband Antenna)

for Anechoic Chamber No.3

## DOUBLE RIDGED WAVEGUIDE HORN ANTENNA: MODEL 3115

Serial No.: 4949

| Frequency | Antenna    | Frequency | Antenna    |
|-----------|------------|-----------|------------|
| [MHz]     | Factor[dB] | [MHz]     | Factor[dB] |
| 1000      | 24.3       | 10000     | 38.9       |
| 1500      | 25.5       | 10500     | 38.6       |
| 2000      | 27.6       | 11000     | 38.6       |
| 2500      | 28.7       | 11500     | 39.4       |
| 3000      | 30.7       | 12000     | 39.2       |
| 3500      | 31.8       | 12500     | 39.1       |
| 4000      | 33.0       | 13000     | 40.8       |
| 4500      | 32.9       | 13500     | 41.2       |
| 5000      | 34.0       | 14000     | 41.5       |
| 5500      | 34.8       | 14500     | 41.0       |
| 6000      | 35.1       | 15000     | 39.0       |
| 6500      | 35.3       | 15500     | 38.0       |
| 7000      | 36.4       | 16000     | 38.3       |
| 7500      | 37.5       | 16500     | 39.6       |
| 8000      | 37.5       | 17000     | 41.9       |
| 8500      | 38.2       | 17500     | 44.7       |
| 9000      | 38.5       | 18000     | 45.3       |
| 9500      | 38.7       |           |            |

| Serial | No.: | 991 | 10-1 | 185 |  |
|--------|------|-----|------|-----|--|
|        |      |     |      |     |  |

| Frequency | Antenna    | Frequency | Antenna    |  |
|-----------|------------|-----------|------------|--|
| <br>[MHz] | Factor[dB] | [MHz]     | Factor[dB] |  |
| 18000     | 40.2       | 22500     | 40.4       |  |
| 18500     | 40.2       | 23000     | 40.4       |  |
| 19000     | 40.2       | 23500     | 40.4       |  |
| 19500     | 40.3       | 24000     | 40.4       |  |
| 20000     | 40.3       | 24500     | 40.4       |  |
| 20500     | 40.3       | 25000     | 40.4       |  |
| 21000     | 40.3       | 25500     | 40.5       |  |
| 21500     | 40.3       | 26000     | 40.5       |  |
| 22000     | 40.3       | 26500     | 40.5       |  |

#### STANDARD GAIN HORN ANTENNA: MODEL 3160-10

Serial No.: 1153

| Frequency | Antenna    | Frequency | Antenna    |
|-----------|------------|-----------|------------|
| [MHz]     | Factor[dB] | [MHz]     | Factor[dB] |
| 26500     | 43.4       | 34000     | 43.6       |
| 27000     | 43.4       | 35000     | 43.6       |
| 28000     | 43.4       | 36000     | 43.6       |
| 29000     | 43.5       | 37000     | 43.7       |
| 30000     | 43.5       | 38000     | 43.7       |
| 31000     | 43.5       | 39000     | 43.7       |
| 32000     | 43.5       | 40000     | 43.8       |
| 33000     | 43.6       |           |            |

Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 30 of 45

# [Appendix E]

# SYSTEM BLOCK DIAGRAM Portege 2000/ 2010 series (Model PP200\* and PP201\*)



Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 31 of 45

# **LABEL INFORMATION**

| TOSHIBA<br>PORTEGE 2000<br>MODEL NO.PP200U                                                                                                                                                                                                                                                                                                                                                        |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| DC 15V<br>3.0A                                                                                                                                                                                                                                                                                                                                                                                    |       |
| SERIAL NO.                                                                                                                                                                                                                                                                                                                                                                                        |       |
| TOBHIBA CORPORATION<br>MADE IN JAPAN                                                                                                                                                                                                                                                                                                                                                              |       |
| Tested To Comply<br>With FCC Standards           FOR HOME OR OFFICE USE           This product is covered by one or more of the following U.S Patents 4,864,523;<br>4,980,678;4,990,902;4990,904;5,090,913;5,140,183;5,151,992;5,222,231;<br>5,239,495;5,276,890;5,280,589;5,294,013;5,336,491:5,335,141;4,371,923;<br>4,471,385;4,672,457;;4,686,662;4,825,364;4,829,419;4,896,260;and 4,942,516 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Rating                                                                                                                                                                                                                                                                                                                                                                                            | Label |

# **BOTTOM VIEW**

Document No.: OFA-H3630 Toshiba Corp., Ome Operations Page 32 of 45

# **DETAILES OF UNITS**

|                            | Frequencies  | Radio interference                  |
|----------------------------|--------------|-------------------------------------|
| Designation / Kind of unit | generated by | suppression                         |
|                            | this unit    | components used                     |
| System Board               | 32.768 kHz   | EMI filters:                        |
|                            | 450 kHz      | FL9, 11, 13                         |
|                            | 4 MHz        | Murata Manufacturing Co., Ltd.      |
|                            | 8 MHz        | Type NMF51R20P207                   |
|                            | 14.31818 MHz | Rated 25 V, 200 mA                  |
|                            | 24.576 MHz   | FL835, 836, 846, 907                |
|                            | 25 MHz       | Taiyo Yuden Co., Ltd.               |
|                            | 33.3 MHz     | Type FBMJ3216HS800-T                |
|                            | 48 MHz       | Rated 4 A, 80 ohm                   |
|                            | 66 MHz       | FL15, 16                            |
|                            | 133 MHz      | Taiyo Yuden Co., Ltd.               |
|                            |              | Type BK1608HW470-T                  |
|                            |              | Rated 100 mA, 47 ohm                |
|                            |              | L800                                |
|                            |              | TDK Corp.                           |
|                            |              | Type ACM0908-801-2P-TLE01           |
|                            |              | Rated 800 ohm at 100 MHz, 4 A       |
|                            |              | Inductors:                          |
|                            |              | FL19                                |
|                            |              | Taiyo Yuden Co., Ltd.               |
|                            |              | Type BK1608HW101-T                  |
|                            |              | Rated 100 mA, 100 ohm               |
|                            |              |                                     |
|                            |              | TDK Corp.                           |
|                            |              | Type NL4532321-4R7J                 |
|                            |              | Rated 4.7 uH                        |
|                            |              | L7,8                                |
|                            |              | IDK Corp.                           |
|                            |              | Type NL4532321-1RUM $D \neq 14.7$ H |
|                            |              | Kated 4. / UH                       |
|                            |              |                                     |
|                            |              | Turne ACM4522 801 2D T001           |
|                            |              | Deted 200 above at 100 MHz 4.4      |
|                            |              | Kated 800 01111, at 100 MHZ, 4 A    |
|                            |              | L 845, 908<br>Tokin Com             |
|                            |              | Turne DI EC0725D 2D2D               |
|                            |              | Poted 4 A = 2.2  µH                 |
|                            |              | Каюц 4 А, 5.5 ин<br>I 900           |
|                            |              | L 070<br>Tokin Com                  |
|                            |              | Type PI EC0735D $100A$              |
|                            |              | Rated 2 A 10 uH                     |
| СРИ                        | 650 MHz or   | none                                |
|                            | 750 MHz or   |                                     |
|                            | 800 MHz or   |                                     |
|                            | 866 MHz      |                                     |

Page 33 of 45

|                                         | Frequencies      | Radio interference                                        |
|-----------------------------------------|------------------|-----------------------------------------------------------|
| Designation / Kind of unit              | geneRated by     | suppression                                               |
|                                         | this unit        | components used                                           |
| Sound Board                             |                  |                                                           |
|                                         | none             | EMI filters (beads):                                      |
|                                         |                  | FL998, 999                                                |
|                                         |                  | TDK Corp.                                                 |
|                                         |                  | Type ACM4552-701-5P-1<br>Poted 700 ohm at 100MHz 20V 0.2A |
| Sound I/E floyible board                | nono             |                                                           |
| Mini-PCI I/F board                      | none             | none                                                      |
| Touch Dad module                        | none             | none                                                      |
|                                         | lione            | none                                                      |
| In Touch Button                         | none             | none                                                      |
| LED flexible board                      | none             | none                                                      |
| PC Card I/F flexible board              | none             | none                                                      |
| 12.1 inch Color LCD                     |                  |                                                           |
| - Toshiba Corp., Type LTM12C328         | 500 kHz          | EMI filter:                                               |
|                                         |                  | FLIOU<br>Semilteres Metal Indextrial                      |
|                                         |                  | Sumitomo Metal Industrial                                 |
|                                         |                  | Pated 25V 2A 2200 pE                                      |
| FI Inverter                             | 70 1/17          | none                                                      |
| (Nagano Japan Radio Type NID- 7099)     | 70 KHZ           | lione                                                     |
| LCD cable                               | none             | none                                                      |
| PTC Battary                             | none             | none                                                      |
| Speelcon                                | none             | none                                                      |
| Speaker<br>CDL E                        | lione            | lione                                                     |
|                                         | none             | none                                                      |
| (20GP) Tashiha Corp                     | 20 MHz           | nono                                                      |
| - (200B) Toshiba Corp.,<br>Type HDD1364 | 20 MHz<br>40 MHz | lione                                                     |
| - (30GB) Toshiha Corp                   | 20 MHz           | none                                                      |
| Type HDD1384                            | 40 MHz           | lione                                                     |
| - (40GB) Toshiba Corp.,                 | 20 MHz           | none                                                      |
| Type HDD1524                            | 40 MHz           |                                                           |
| HDD I/F flexible board                  | none             | none                                                      |
| Keyboard unit                           | none             | none                                                      |
| Main Battery Pack                       | none             | none                                                      |
| Modem module                            | 24.576 MHz       | Chip coils:                                               |
| (Model No. 1456VQL4)                    |                  | FB1- 4                                                    |
|                                         |                  | Murata Manufacturing Co., Ltd.                            |
|                                         |                  | Type BLM31A601SPT                                         |
|                                         |                  | Rated 600ohm at 100 MHz, 200mA                            |

|                             | Frequencies  | Radio interference                 |
|-----------------------------|--------------|------------------------------------|
| Designation / Kind of unit  | geneRated by | suppression                        |
|                             | this unit    | components used                    |
| Modem & LAN connector cable | none         | <u>Ferrite core:</u>               |
|                             |              | Kitagawa                           |
|                             |              | Type BE-4-10-2                     |
| RX Antenna                  | none         | none                               |
| TX/RX Antenna               | none         | none                               |
| Wireless LAN module         | none         | none                               |
| For Modular cable           | none         | <u>Ferrite core:</u>               |
|                             |              | Kitagawa                           |
|                             |              | Type RFC-10                        |
| Universal AC Adaptor        |              |                                    |
| -Model PA3153U-1ACA         | 60 kHz       | <u>Capacitors:</u>                 |
|                             |              | CY1                                |
|                             |              | Matsushita Electric Ind. Co., Ltd. |
|                             |              | Type DE0910E102M-KX                |
|                             |              | Rated 1000 pF                      |
|                             |              | or                                 |
|                             |              | TDK Corp.                          |
|                             |              | Type CD85-E2GA102MYNS              |
|                             |              | Rated 1000 pF                      |
|                             |              | CX1                                |
|                             |              | ISKRA                              |
|                             |              | Type KNB1560                       |
|                             |              | Rated 0.33 uF                      |
|                             |              | or                                 |
|                             |              | ARCOTRONICS                        |
|                             |              | Type R46                           |
|                             |              | Rated 0.33 uF                      |
|                             |              | or                                 |
|                             |              | BC Components                      |
|                             |              | Type 222233820334                  |
|                             |              | Rated 0.33 uF                      |
|                             |              | <u>Choke coils:</u>                |
|                             |              | FL1                                |
|                             |              | DELTA                              |
|                             |              | Type CR-10-NB31                    |
|                             |              | Rated 600 uH, at 40kHz, 1V         |
|                             |              | FL51                               |
|                             |              | DELTA                              |
|                             |              | Type CR-10-NB20                    |
|                             |              | Rated 110 uH, at 40kHz, 1V         |
|                             |              | Line filter:                       |
|                             |              | FLZ                                |
|                             |              |                                    |
|                             |              | Type LFZ2004H09A                   |
|                             |              | Rated 5.6 mH, at 40kHz, 1V         |

|                                          | Frequencies  | Radio interference    |
|------------------------------------------|--------------|-----------------------|
| Designation / Kind of unit               | geneRated by | suppression           |
|                                          | this unit    | components used       |
| Model PA3241U-1ACA, Toshiba Corp. 130kHz |              | Choke coils:          |
|                                          | -            | L1                    |
|                                          |              | Tokin Corp.           |
|                                          |              | Type 4476P04968       |
|                                          |              | Rated 1A, 10mH        |
|                                          |              | L2                    |
|                                          |              | Tokin Corp.           |
|                                          |              | Type SBCS-0806-3R0    |
|                                          |              | Rated 3A              |
|                                          |              | L3                    |
|                                          |              | Tokin Corp.           |
|                                          |              | Type 4476P04965A      |
|                                          |              | Rated 1A, 10mH        |
|                                          |              | EMI Filters (Beads):  |
|                                          |              | FB1                   |
|                                          |              | Taiyo Yuden Co., Ltd. |
|                                          |              | Type CP22RA030010020M |
|                                          |              | Rated 2A              |
|                                          |              | FB2                   |
|                                          |              | Taiyo Yuden Co., Ltd. |
|                                          |              | Type FBR06HA121NA     |
|                                          |              | Rated 6A              |

# PHOTOGRAPHS OF COMPONENTS OR UNITS

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 37 of 45



[Front View]



[Rear View]





[Front]





[Front]

[Back]

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 38 of 45



[Front]



[Back]



Touch pad module



[Front]

[Back]

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations

#### In Touch Button



[Front]









## PC card I/F flexible board



[Front]



Document No.: OFA-H3630 Toshiba Corporation, Ome Operations

#### 12.1 inch Color LCD Toshiba Corp., Type LTM12C328



[Front]

[Back]

FL Inverter Nagano Japan Radio, Type NJD-7099



[Front]

LCD cable







Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 41 of 45

CPU Fan



[Front]



1.8 inch HDD (20GB) Toshiba Corp., Type HDD1364



1.8 inch HDD (30 GB)

[Front]

[Back]



[Back]

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations

Page 42 of 45

#### 1.8 inch HDD (40 GB) Toshiba Corp., Type HDD1524



[Front]







[Front]







[Front]

[Back]

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 43 of 45

# Main Battery Pack



[Front]

[Back]





[Front]





Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 44 of 45

Wireless LAN module Model No. PA3231U



[Front]



[Back]

Universal AC Adaptor Model PA3153U-1ACA



[Front]

[Back]

Universal AC Adaptor Model PA3241U-1ACA



[Front]



[Back]

Document No.: OFA-H3630 Toshiba Corporation, Ome Operations Page 45 of 45