Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	Result
		BLE 1M Mode		
Low	2402	0.67	> 500	PASS
Middle	2440	0.67	> 500	PASS
High	2480	0.66	> 500	PASS
		BLE 2M Mode		
Low	2402	1.17	> 500	PASS
Middle	2440	1.17	> 500	PASS
High	2480	1.17	> 500	PASS

BLE

Please refer to the following plots

6 dB Emission Bandwidth

Chain 0 B Mode Low Channel

Date: 13.DEC.2024 11:48:31

Middle Channel

Date: 13.DEC.2024 11:56:37

Date: 13.DEC.2024 12:00:50

G Mode

Date: 13.DEC.2024 13:21:21

Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Mode Auto FFT 1Pk View	Spect	rum												
Att 35 dB SWT 56.9 µs VBW 300 kHz Mode Auto FFT •••••••••••••••••••••••••••••	Ref L	evel :	20.00	dBm O	offset 1	11.00 dB	e RBW	' 100 k⊦	łz					
	🗕 Att		3	5 dB S	WT	56.9 µs	e vbw	' 300 kH	lz Mo	ode Auto A	FFT			
10 dBm M1[1] -4.38 dBm 0 dBm 2.4288400 GHz 0 dBm M2 0 dBm M2 -10 dBm M2 -20 dBm -0 -30 dBm -0 -30 dBm -0 -30 dBm -0 -20 dBm -0 -20 dBm -0 -30 dBm -0 -30 dBm -0 -0 dBm -0 -0 dBm -0 -0 dBm -0 -10 dBm -0 -20 dBm -0 <td>😑 1Pk Vi</td> <td>iew</td> <td></td>	😑 1Pk Vi	iew												
10 dBm M2 M2[1] 1.51 dBm 0 dBm D1 -4.490 dBm M2 M2[1] 1.51 dBm -10 dBm D1 -4.490 dBm M2 M2[1] 1.51 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm -10 dBm -10 dBm M1 1 1 2.42884 GHz -4.38 dBm -10 dBm -10 dBm M1 1 1 0.28 dB -10 dBm -10 dBm -10 dBm M1 1 2.438239 GHz 1.51 dBm -10 dBm -10 dBm										M1[1]				-4.38 dBm
M2 M2[1] 1.51 dBm 0 dBm 01 -4.490 dBm 0	10 dBm									_			2.42	88400 GHz
0 dBm D1 -4.490 dB	10 0.0.								M2	M2[1]			0.40	1.51 dBm
D1 -4.490 dBm Automation Automation Automation -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -60 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -40 dBm -40 dBm -40 dB	0 dBm-						0.0		a la la la la				Z.43	82390 GHZ
-10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -100 pts Span 40.0 MHz -100 pts Span 40.0 MHz -10.28 dB -101 pts Span 40.0 MHz -10.28 dB -101 pts Span 40.0 MHz -10.28 dB -101 pts Span 40.0 MHz -10.28 dB -101 pts -101		D	1 -4.4	90 dBm-		policy fraid	montario	100000		manufallula	hardling -			
-20 dBm -30 dBm +40 dBm +40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -101 pts Span 40.0 MHz Span 40.0 MHz Span 40.0 MHz -2.438239 GHz -0.28 dB -0.28 dB	-10 dBn	n			(<u> </u>						
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70					{_{-}} }									
-30 dBm +10 dBm +10 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBr				1						7			
-50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -	20 404				and the second s							M.		
40 dBm 100 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm	-50 051	"		Mallin								North Contraction		
-50 dBm -60 dBm -70	-40 dBn	man	Jur 14	J) VI			_						WWW WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
-50 dBm -60 dBm -70	Vindowi													" www.www.www.www.
-60 dBm -60 dBm -60 dBm -70 dBm <t< td=""><td>-50 dBr</td><td>∩———</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-50 dBr	∩———					_							
-60 dBm -70 dBm Image: CF 2.437 GHz 1001 pts Span 40.0 MHz -70 dBm CF 2.437 GHz 1001 pts Span 40.0 MHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm -0.28 dB														
Type Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm -0.28 dB	-60 dBn	n												
CF 2.437 GHz 1001 pts Span 40.0 MHz Marker Yve Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm	-70 dBr													
CF 2.437 GHz 1001 pts Span 40.0 MHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm	-70 001	"												
Type Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm	05.0.4							1001						10.0.111
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.42884 GHz -4.38 dBm	UF 2.4	37 GH	IZ					1001	pts				span	40.0 MHZ
Mi 1 2.42884 GHz -4.38 dBm Punction Punction Result M1 1 2.42884 GHz -4.38 dBm 1	Tuno	Dof	T #0		/	. 1	ν.	, alua	1 г	unotion	1	Fue	tion Docult	. 1
D1 M1 1 16.32 M4 -0.28 B M2 1 2.438239 GHz 1.51 dBm 3.12.2024	M1	Rei	1		2.428	\$ 84 GHz	T-V -	4.38 dBr	n F	unction		Fun	JUON RESUL	
M2 1 2.438239 GHz 1.51 dBm 13.12.2024	D1	M1	1		16.3	32 MHz		-0.28 d	в					
Measuring 13.12.2024	M2		1		2.4382	39 GHz		1.51 dBr	n					
										Measuring.			4,44	13.12.2024

Date: 13.DEC.2024 13:23:43

High Channel

Date: 13.DEC.2024 13:26:07

N20 Mode Low Channel

Date: 13.DEC.2024 13:30:42

Middle Channel

Spect	rum										
Ref Li Att	evel :	20.00 c 35	Bm Offset : dB SWT	11.00 dB 56.9 μs	● RBW : ● VBW :	100 kHz 300 kHz	Mode	Auto FF	т		,
😑 1Pk Vi	e₩										
							M	1[1]			-4.94 dBm
10 d0m										2.42	88400 GHz
TO UBIII						M	12 M	2[1]			1.19 dBm
0 dBm							·			2.43	82390 GHz
o ubm		1 4 0 1		the Anto	manulm	while phil	mulad	Malatul	p1		
10 dBm		1 -4.01	Man Ma	Manu		Ψ			COLORED		
-10 080											
20 dBm			1								
-20 UBH	'		J.						- L.		
20 dBm			Contra						W.		
-30 UBI			Mart						1004		
40 dBm		.msw	www.							Mula	
- TO UP!	Youdow										all holyon
50 dBm											
-JU UBI	·										
co do e											
-00 ubii											
70 d0m											
-70 UBI	·										
CF 2.4	37 GH	lz				1001 pt:	s			Span	40.0 MHz
Marker											
Type	Ref	Trc	X-value	e	Y-va	ue	Func	tion	Fun	ction Result	
M1		1	2.428	84 GHz	-4.9	94 dBm					
D1	M1	1	16.0	58 MHz	-0).21 dB					
M2		1	2.4382	39 GHz	1.3	19 dBm					
							Mea	suring		4/6	13.12.2024

Date: 13.DEC.2024 13:33:24

Spectrur	n									
Ref Leve	1 20.00	dBm Off	set 11.00 dB	e RBW	100 kHz	:				
🛛 Att	з	5 dB SW	T 56.9 μs	s 👄 VBW	' 300 kHz	Mode	Auto FFT			
⊖1Pk View										
						M	1[1]			-3.33 dBm
10 dBm-									2.45	544400 GHz
TO UDIII						M2 M3	2[1]			1.01 dBm
0 dBm			M1		_	Y			2.46	532390 GHz
o dom	-n1 -4 0		T. Aug	Malahala	shalled by by	whenhall	malping	D1		
-10 dBm	01 1.		Mulhan and	·	<u> </u>		- MA400	- may		
								11		
-20 dBm								<u> </u>		
		,	1					N.		
-30 dBm		- Contract						we		
		Mar						L A	when	
-40 dBm	port to Aler	SI**							- William	Alla han in
										- would work
-50 dBm—										
co lo										
-60 dBm										
70 dBm-										
-70 ubiii-										
CF 2.462 (GHz				1001 p	ts			Span	1 40.0 MHz
Marker										
Type Re	ef Trc	X-	value	Y-v	alue	Funct	tion	Fund	ction Result	t
M1	1	2	2.45444 GHz	-	3.33 dBm					
D1 N M2	11 1	· · · ·	16.08 MHz		-1.89 dB					
1712		2.	403239 GH2		1.01 UBM					40.40.0004
						Mea			4/4	13:12:2024

Date: 13.DEC.2024 13:36:02

N40 Mode

Low Channel

Spect	rum									
Ref Lo	evel :	20.00 0	dBm Offset 1	L1.00 dB	👄 RBW 100 k	Hz				(
🗕 Att		35	dB SWT	94.8 µs	👄 VBW 300 k	Hz Mo	de Auto FF	Τ		
😑 1Pk Vi	ew									
							M1[1]		2.40	-7.35 dBm 44000 GHz
10 dBm·							M2[1]			-1.33 dBm
0 -10					M2				2.41	94430 GHz
U aBM—	D	1 -7.33		. L. Kishislar	Le fyle het whether here	portulate	didy April 1			
-10 dBm	ידרי		- pour	0000010 * 1***				ar - Hulland		
-20 dBm					1	r				
-30 dBm	<u>ا</u> _ر									
-40 dBm	۱ <u> </u>		- All and a second					1 yerre	1 Martin Walder	Margarian Below to the
	monte	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w y							
-SU dBm	–ר									
-60 dBm	-									
-70 dBm	η									
CF 2.4	22 GH	Iz		I	1001	pts			Span	80.0 MHz
Marker										
Type	Ref	Trc	X-value	.	Y-value	Fu	inction	Fund	ction Result	:
M1		1	2.40	44 GHz	-7.35 dB	m				
D1	M1	1	35.1	12 MHz	2.21 0	1B				
M2		1	2.4194	43 GHz	-1.33 dB	m				
							1easuring		4/4	13.12.2024

Date: 13.DEC.2024 13:40:08

Spect	rum													
Ref L	evel	20.00	dBm O	ffset 1	11.00 dB	● RBV	/ 100 k	Hz						
🛛 Att		35	dB S'	ΨT	94.8 µs	🕳 УВУ	/ 300 k	Hz	Mode	Auto FF	т			
😑 1Pk Vi	iew													
									M	1[1]				-7.15 dBm
10 dBm													2.4	194000 GHz
10 0.011									M	2[1]			0.4	-1.16 dBm
0 dBm-						_	M2						2.4	344430 GHZ
				M1	L C C DA	Maple	hillipping	workle	chi Anders	Ant. Lat		1		
-10 dBn	n – U	1 -7.10	SU dBm-	kiely	and the state of t			1		an and a low of a	(Maynella	4		
				- (y				}		
-20 dBn	n					-								
				1								1		
-30 dBn	n—			1								<u>\</u>		
			لمعمد الدرامي	h								Lun-		
-40 dBn	n hunder	والمحسلان	ndutt sort of										A Contraction Colorality	Mary mary and the
E0 dBa	_													
-30 UBI														
60 dBa														
-00 001	"													
-70 dBn	n													
								L .						
<u>CF 2.4</u>	37 GF	IZ					1001	. pts					Spai	n 80.0 MHZ
Marker	n-6	1 7						- 1	F			F		
Type	Ret	1	X	-value 2.41		Y-1	value	m	Func	tion		Fun	ction Resul	IT
D1	M1	1		35.1	12 MHz		2.22	dB						
M2		1		2.4344	43 GHz	-	1.16 dE	m						
								- 1	Mos				4.975	13.12.2024
													-	

Date: 13.DEC.2024 13:44:11

High Channel

Date: 13.DEC.2024 13:47:45

AX20 Mode Low Channel

Spect	rum												
Ref L	evel	30.00	dBm Off	set 1	.1.00 dB 👄	RBW	100 kHz						
Att		35	5 dB SW	л	56.9 µs 👄	VBW	300 kHz	Mode	Auto FFT				
⊖1Pk Vi	ew												
								M	1[1]				-5.19 dBm
20 dBm									0141			2.40	130000 GHz
								IM	2[1]			9.4	1.15 dBm
10 dBm												2.4.	
							M2						
0 dBm-				MI		1. May	Male A	Walterst	h				
		1 -4.8	50 dBm	MAN	May Junion	dollos - s			Man Can	hour			
-10 dBr	∩— -					-							+
				1									
-20 dBm	א—ר			 						-			+
-30 dBr											1		1
40. ID											howner	hM.	
-40 գթո	amer	mun	when										allow and have
E0 d0m													
-JU UBII													
-60 dBr	-												
00 001	·												
CF 2.4	12 GF	lz					<u>1001 p</u>	ts				Spar	1 40.0 MHz
Marker													
Туре	Ref	Trc	X-	value		Y-V	alue	Func	tion		Fund	ction Resul	t
M1	MI	1		2.40	JB GHZ	-5	0.12 db						
M2	INIT	1	2	.41073		1	.15 dBm						
	_	1	2	2012				<u></u>		-			12 12 2024
		Л						Mea					13:52:04

Date: 13.DEC.2024 13:52:04

Middle Channel

Spectrum									
Ref Level 🔅 Att	20.00 dB 35 (om Offset 11.00 dB SWT 56.9)dB 👄 RBW 9µs 👄 VBW	100 kHz 300 kHz	Mode /	Auto FFT			
∋1Pk View									
					M1	[1]			-3.93 dBm
10 dBm								2.42	89600 GH:
TO UBIII				M2	M2	[1]			1.31 dBn
0 dBm		MI		Ţ				2.43	57210 GH
U UBIII	1 4 600		Macharal	ununpen	munul	Marine . M.	D1		
10 d0m	1 -4.090	Willing Manager	N.			. Weiter	hang		
-10 uBill									
00 d0m									
-20 ubiii							\		
20 d0m							ખ.		
-30 UBIII		W					* W	a.	
40 d0m	marken	**					, v	WWWWWW	
								• UV	will war
50 dBm									
-JU UBIII									
60 dBm									
-00 ubiii									
70 dBm									
-70 ubiii									
CF 2.437 GH	z			1001 pt	s			Span	40.0 MHz
Marker									
Type Ref	Trc	X-value	Y-v	alue	Functi	on	Func	tion Result	
M1	1	2.42896 G	Hz -	3.93 dBm					
D1 M1	1	16.8 M	Hz	-0.68 dB					
M2	1	2.435721 G	Hz	1.31 dBm					
					Meas	uring		420	3.12.2024

Date: 13.DEC.2024 13:54:50

Date: 13.DEC.2024 13:58:03

AX40 Mode

Low Channel

Spect	rum									
Ref L	evel	ے 20.00	dBm Offs	set 11.00 dB	BRBW 100 k	Hz Hz Mode	Auto EET			
IPk Vi	ew		- up - Un	. onop.	• 1 0 11 000 k	ne moue	Adtorn			
10 dBm	_					м м	1[1] 2[1]		2.40	-7.16 dBm)44000 GHz -1.06 dBm
0 dBm—				M1 .	M2	and hat a s		D1	2.41	194430 GHz
-10 dBm	ם	1 -7.0	60 dBm	- Tulphakelad	wal hours	an a game and	Jame her freehe	the g		
-20 dBm	<u>ו</u> רי									
-30 dBm	י ין -ר		+					+		
-40 dBn	n	unnuhe	month					- Consel	4 Automatic	munoutrynor
-50 dBm	<u>ו</u> רי									
-60 dBn										
-70 dBn	י									
CF 2.4	 22 G⊦	łz			1001	L pts	I		Spar	 1 80.0 MHz
Marker										
Туре	Ref	Trc	X-1	/alue	Y-value	Func	tion	Fun	ction Result	t Í
M1		1		2.4044 GHz	-7.16 dE)m				
D1 M2	M1	1	2.4	35.12 MHz 419443 GHz	2.19 -1.06 dE	dB Sm				
)[Mea	suring		14/4	13.12.2024

Date: 13.DEC.2024 14:02:37

Spect	rum													
Ref Lo	evel	20.00	dBm Off	set 1	.1.00 dB (e RB	W 100 k	Hz						
👄 Att		3	5 dB SW	/T	94.8 µs (e ve	W 300 k	Hz	Mode	Auto FF	Τ			
😑 1Pk Vi	ew													
									M	1[1]				-7.31 dBm
10 dBm.													2.43	L94000 GHz
TO UBIII									M	2[1]				-1.10 dBm
0 dBm—							M2			1			2.43	344430 GHz
				M1		1.1.	When have	not	Julian	LACE 1	D1			
-10 dBm	ηD	1 -7.1	00 dBm	pola	ad Jan a ware		× •			for the second s	marga	ι		
				1				ľ				l –		
-20 dBm	η					_								
				1								1		
-30 dBm	ר−י					_						}		
			الد برا	(A		
-40 dBm	morte	Abrichte	and the second									- Warden Ma	Marchan	holder a sugar
	. I.													anne later
-50 dBm														
-60 dBm	ד ו													
70 dBm														
-70 UBI														
CF 2.4	37 G⊢	lz					100	1 pts					Spar	n 80.0 MHz
Marker														
Туре	Ref	Trc	X-	value		Y	-value		Func	tion		Fund	tion Resul	t
M1		1		2.419	94 GHz		-7.31 di	3m						
D1 M2	M1	1		35.1	12 MHZ		2.21	ae lm						
			2	.43444	+3 GHZ		-1.10 ut	5111						40.40.0004
		Л							Mea				4/4	1811212024

Date: 13.DEC.2024 14:09:42

High Channel

Date: 13.DEC.2024 14:12:43

Chain 1 B Mode Low Channel

Date: 13.DEC.2024 14:39:58

Middle Channel

Date: 13.DEC.2024 14:34:30

Date: 13.DEC.2024 14:36:23

G Mode

Date: 13.DEC.2024 14:44:29

Date: 13.DEC.2024 14:53:47

High Channel

Date: 13.DEC.2024 14:57:52

N20 Mode Low Channel

Date: 13.DEC.2024 15:55:04

Date: 13.DEC.2024 15:52:50

Date: 13.DEC.2024 15:59:19

N40 Mode

Low Channel

Date: 13.DEC.2024 16:04:53

Spect	rum																₽
Ref L	evel	20.00	dBm O	ffset 1	.1.00 dB	e R	BW 100	<h< th=""><th>Iz</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th><u> </u></th></h<>	Iz								<u> </u>
🔵 Att		3	5 dB S	wт	94.8 µs	• V	' BW 300 l	<h< th=""><th>z Mode</th><th>Auto Fl</th><th>FΤ</th><th></th><th></th><th></th><th></th><th></th><th></th></h<>	z Mode	Auto Fl	FΤ						
🔵 1Pk Vi	e₩																
								Τ	M	1[1]						-5.89 (:IBm
10 dBm															2.41	94000	GHz
10 0.011							M2		M	2[1]					0.40	0.37 (1Bm
0 dBm–				M1		-	Tet.	+				101		<u> </u>	2.43	19030	GHZ
	— D	1 -5.6	30 dBm	Jur	and the state of the second	ushiqil	addfladhidhidhi	Щ	produbly Applied	Marcahal	Aller	LA.					
-10 dBm	י ין -י			1000				₩			- • • (II)	~ 1					
								ľ					l				
-20 dBm	+-י							t					1				
				/									1				
-30 dBn				/									Ľ				
-40 dBm		. است	And Mart										w why	Month	44		
aroundan	1000000	offe floor and													(TUNNY	Hornolus	denne
-50 dBm	η							+									
-60 dBm	י—⊢					_		+									-
-70 dBm	-+-					+		+									
CF 2.4	37 ĠF	łz					100	1	pts						Span	80.0 M	Hz
Marker																	
Туре	Ref	Trc	x	-value	.		Y-value		Funct	ion			Fund	tion R	esult	:	
M1		1		2.41	94 GHz		-5.89 d	Bn	n								
D1	M1	1		35.3	L2 MHz		2.43	df	B								
M2				2.4319	up GHZ		U.37 Q	BN			_				_		_
		Л							Mea					4/4		1991 1992 (1993) 1997 - 1997 (1993)	

Date: 13.DEC.2024 16:11:13

High Channel

Date: 13.DEC.2024 16:14:17

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 116 of 303

AX20 Mode Low Channel

Date: 13.DEC.2024 16:18:36

Middle Channel

Date: 13.DEC.2024 16:23:43

Date: 13.DEC.2024 16:34:46

AX40 Mode

Low Channel

Date: 13.DEC.2024 16:45:52

Spect	rum											
Ref Lo	evel	30.00	dBm Offset	11.00 dB	RBW 100) kHz						
Att		35	5dB SWT	94.8 µs	VBW 300) kHz	Mode	Auto FFT				
😑 1Pk Vi	e₩											
							M	1[1]				-5.52 dBm
20 dBm-								0[1]			2.41	182000 GHz
							INI.	2[1]			2 45	0.86 aBM 19650 CHz
10 dBm·						_			1		2.10	
					M2							
0 dBm—			MI		web probability	orthy portal	herhenhadgad	Burnets Later	. D1			
10 40-		01 -5.1	40 dBm	Million and a second				a second from the	all the sea			
-10 aBH												
-20 dBm												
20 000	.								1			
-30 dBm	۱ <u> </u>					_						
		in term	No meaned							Waters.	Maria I	
-40 dBm	meth	AP MARKER	Thur have							0.0.4	and have and the second the	A Marine Comment
FO JD-												
-50 авт	1											
-60 dBm												
00 450	.											
05.0.4		1-			10	01 st					Poor	00.0 MU
Mankan	57 GF	12			10	or pe	`				əhai	
Type	Ref		X-valu	e l	Y-value	- I	Func	tion		Fund	tion Result	+ 1
M1		1	2.4	182 GHz	-5.52	dBm	1 4110			- and		
D1	M1	1	37	.28 MHz	0.4	5 dB						
M2		1	2.431	965 GHz	0.86	dBm						
][Mela	suring			4/6	13.12.2024

Date: 13.DEC.2024 16:49:17

High Channel

Date: 13.DEC.2024 16:53:28

Chain 2 B Mode Low Channel

Date: 16.DEC.2024 08:38:32

Middle Channel

Date: 16.DEC.2024 08:41:51

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 120 of 303

Date: 16.DEC.2024 08:44:25

G Mode

Date: 16.DEC.2024 08:47:06

Spect	rum									
Ref L	evel	20.00 0	dBm Offset	11.00 dB (BRBW 100	Hz				
🗕 Att		35	dB SWT	56.9 µs (VBW 300	Hz 🗗	Hode Auto FF	Т		
😑 1Pk Vi	iew									
							M1[1]			-4.51 dBm
10 dBm									2.42	92400 GHz
TO UBIII						M2	M2[1]			1.61 dBm
0 dBm-						T			2.43	82390 GHz
	—b	1 -4.39	90 dBm	- Jour have	and have been all and	permit	Winderling almost and			
-10 dBn	n			4 m		Ψ		-		
				//						
-20 dBn	n							- h.		
								"hwy		
-30 dBn	n		- And	-	-			- who		
		ante	marin						Month	
-40 dBp) ,opd	W ALD				-			- WWW	Muman.
										1.000000
-50 dBn	n									
co do-	_									
-60 авп	n									
-70 dBo										
-70 abri										
CF 2.4	37 G⊦	Iz			100	1 pts			Span	40.0 MHz
Marker										
Туре	Ref	Trc	X-valı	ie	Y-value		Function	Fun	ction Result	
M1	644	1	2.42	924 GHz	-4.51 d	3m HD				
M2	IMIT	1	2 439	094 MHZ	1 61 d	ub Rm				
			2.430		1.01 u					16 12 2024
L		Л							1/1	08:49:59 //

Date: 16.DEC.2024 08:50:00

High Channel

Date: 16.DEC.2024 08:52:32

N20 Mode Low Channel

Date: 16.DEC.2024 08:57:57

Middle Channel

Spectru	m								
Ref Levo Att	el 30.00 35	dBm Offset 11.00 5 dB SWT 56.9	dB = RBW 1 μs = VBW 3	.00 kHz 100 kHz	Mode	Auto FFT			
●1Pk View									
20 dBm					M	L[1]		2.42	-3.01 dBm 88400 GHz
					MD	2[1]		2.43	2.57 dBm 57210 GHz
10 dBm—			P	12					
0 dBm	-D1 -3.4	30 dBm	Intellater Burnhah	Total preside	mentrul	uterture and the second	1		
-10 dBm—									
-20 dBm—		- All					No.		
-30 dBm—	in the Max	who was					- WWW	Margarda .	
-AQ dBrilly	MM -	·						***UA4	Alwhalewer
-50 dBm—									
-60 dBm—									
CF 2.437	GHz			1001 pts				Span	40.0 MHz
Marker									
Type R	ef Trc	X-value	Y-val	ue	Funct	ion	Func	tion Result	
M1	1	2.42884 G	Hz -3.0	1 dBm					
D1 M2	M1 1 1	16.32 M 2.435721 G	Hz -0 Hz 2.5	.67 dB 57 dBm					
)(Mea	suring		4,44	6.12.2024

Date: 16.DEC.2024 09:00:33

Date: 16.DEC.2024 09:04:10

N40 Mode

Low Channel

Spect	rum									
Ref L	evel	20.00	dBm Offset	11.00 dB	👄 RBW 100 k	Ηz				
Att		3.	5 dB SWT	94.8 µs	🔵 VBW 300 k	Hz Mode	Auto Ff	= T		
⊖1Pk Vi	iew									
						M	1[1]			-6.73 dBm
10 dBm						M	1110		2.40	-0.62 dBm
					M2	1¥	2[1]		24	-0.62 UBM 195220 CHz
0 dBm-			M1				1	D1	1	
	h	1 -6.6	20 dBm	1 July Land	urby haladwhidding	perhibilitation	لعامسما	ALL A		
-10 dBn	n — [-	- 0.0		10.00						+
					- · · · ·	,				
-20 dBn	n		+ +				-			+
								1		
-30 dBn	n									
10 - 10 -	_							W.m.	di na	
-40 aBn	n Aurstaller	minul	Mar all a lar						New Contraction	the hashanders
EO dea										
-JU UBI										
-60 dBn										
-00 401	"									
-70 dBn	n									
05.0.4					1001				0	
GF 2.4	ZZ GF	12			1001	prs			spar	180.0 MHZ
Marker	D-f	[¥	_ 1	V	1 5		E	ation Doord	• 1
Type M1	Ket	1	2 40	8 44 CH7	-6 73 dB	Func		Fun	cuon Resul	<u> </u>
D1	M1	1	35.	12 MHz	2.21 0	IB				
M2		1	2.4195	22 GHz	-0.62 dB	m				
_	-	1				1 Mar	scuring		1444	16.12.2024
		Л							and the second s	

Date: 16.DEC.2024 09:09:45

Spect	rum												
Ref L	evel	20.00	dBm C)ffset 1	L1.00 dB 🌘	RBW	100 k	Hz					
🗕 Att		3	5 dB S	WT	94.8 µs 🌘	VBW	300 k	Hz	Mode	Auto FFT			
😑 1Pk Vi	iew												
									M	1[1]			-6.67 dBm
10 d0m												2.41	94000 GHz
TO UBIII									M	2[1]			-0.58 dBm
0 dBm-							M2				-	2.43	45220 GHz
o abiii				M1	L. C. L.	Julit	Moun	pendu	holadia	lan in i	D1		
-10 dBn		1 -6.5	80 dBm-	hing.	http://www.	rosale in the				CIRCUMPAND CONTRACT	www.		
20 0.01	.						1	Į			1 1		
-20 dBn	n——					_							
				J.							N		
-30 dBn	n										<u> </u>		
			يابيا	J.							- V.		
-40 dBn		the work	pulled at 1000			_					V(N	when you and the second	d
william	งกละ [" Brow Double wanter to
-50 dBn	n					-							
-60 dBn	∩———					-							
-70 dBn	n												
CF 2.4	37 GH	lz			1		1001	pts				Span	80.0 MHz
Marker													
Type	Ref	Trc)	K-value	e	Y-v	alue	1	Func	tion	Fun	ction Result	: 1
M1		1		2.41	94 GHz	-6	5.67 dB	m					
D1	M1	1		35.3	12 MHz		2.26 (зB					
M2		1		2.4345	22 GHz	-().58 dB	m					
									Mea	suring		120	16.12.2024
<u> </u>								·)					

Date: 16.DEC.2024 09:12:38

High Channel

Date: 16.DEC.2024 09:16:56

AX20 Mode Low Channel

Date: 16.DEC.2024 09:20:37

Middle Channel

Spectrur	n									
Ref Leve Att	I 30.00 d 35	Bm Offset 1 dB SWT	1.00 dB (56.9 μs (RBW 100 VBW 300 	Hz Hz Mo	de Auto Fi	FT			
⊖1Pk View										
						M1[1]			2.42	-4.04 dBm 84800 GH:
20 dBm						M2[1]			2 43	2.08 dBn 82390 GH
10 dBm					M2				2110	02050 011
0 dBm	01 202	0 dPm	1 Annah	www.hou	man	marken	M. 101			
-10 dBm—	DI -3,92		provide		<i>v</i>	,				
-20 dBm								4		
-30 dBm		WWW .						M.		
-40.dBm-4	pynnetherit	N _{Ma} r							Whide you are	and the set
-50 dBm										inter cape
-60 dBm										
CF 2.437 (ĠHz			100	1 pts				Span	40.0 MHz
Marker										
Type Re	f Trc	X-value		Y-value	FL	inction		Func	tion Result	
M1		2.4284	H8 GHZ	-4.04 dl	3m HD					
M2	11 1	2.43823	8 MHZ 89 GHZ	2.08 di	ив Зт					
						feasuring			4/4	6.12.2024

Date: 16.DEC.2024 09:44:42

Date: 16.DEC.2024 09:52:34

AX40 Mode

Low Channel

Spect	rum									
Ref L	evel :	ے 20.00 d 35	Bm Offset dB SWT	11.00 dB 94.8 us	 RBW 100 ki VBW 300 ki 	Hz Hz Mode	Auto FET			
●1Pk Vi	ew			p-		- noue	Hatorri			
10 dBm						M	1[1]		2.40	-6.48 dBm 136800 GHz
10 00					MO	M	2[1]		2 41	-0.90 dBm
0 dBm—			M1	L. Kartanbarlith	and private the	panulaphanaph	Manhadacast	D1	2.11	
-10 dBm	י די	1 -6.90		Malawanden				unicej.		
-20 dBm	-									
-30 dBr	<u>ا</u> -۱									
-40 dBm	ր		Mr. Harrist					hilled	worth and the shifter	attlemention
-50 dBr)									
-60 dBn	<u>ا</u>									
-70 dBn	<u>ا</u>									
CF 2.4	 22 GH	Iz			1001	pts			Span	80.0 MHz
Marker										
Туре	Ref	Trc	X-valu	e	Y-value	Func	tion	Fun	ction Result	:
M1		1	2.403	68 GHz	-6.48 dB	m				
D1 M2	M1	1	2.4195	88 MHZ 22 GHz	-U.17 d -0.90 dB	n n				
][Mea	suring		4,44	16.12.2024

Date: 16.DEC.2024 10:04:38

Spect	rum												
Ref L	evel	20.00	dBm	Offset 1	11.00 dB (■ RBW	100 kH	Z					
🛛 Att		3	5 dB 🔅	SWT	94.8 µs (● VBW	300 kH	z Mode	Auto FFT				
🔵 1Pk Vi	ew												
								M	1[1]				-6.62 dBr
10 dBm						_			0141			2.41	L86800 GH
								M2	2[1]			2 44	-0.31 dBi 107560 CH
0 dBm-	_			M1			(Lala a	with the last the				2.7	107300 01
	c)1 -6.3	10 dBm	- The second	and a state of the	mahanaa	rundudh	annanda.Akullahallit	Alterative	D1			
-10 dBm	י					-							
				- [1			
-20 dBm													
oo dow				1									
-30 UBI													
-40 dBm		Jun mar	manh	կդով							youth	Austing	
stanualin	upp	- 0 U										1	munud
-50 dBm	∩— -					_							
-60 dBm	<u>ו</u> רי					-							
-70 dBm						-							
CF 2.4	37 GH	Ηz					1001	pts				Spar	1 80.0 MHz
Marker													
Туре	Ref	Trc		X-value	.	Y-v	alue	Func	tion		Fund	tion Result	t
M1		1		2.418	68 GHz	-6	5.62 dBn	1					
D1 M2	M1	. 1		36.8		-(U.78 dB	3					
		1		2.7407.	30 GHZ	-(J. JI UBI			_			15 10 000 1
		Л						Mea	suring			4/4	16.12.2024

Date: 16.DEC.2024 10:10:46

High Channel

Date: 16.DEC.2024 10:14:11

Chain 3 B Mode Low Channel

Date: 16.DEC.2024 10:27:19

Middle Channel

Date: 16.DEC.2024 10:30:11

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 129 of 303

Date: 16.DEC.2024 10:32:51

G Mode

Date: 16.DEC.2024 10:39:00

Bay	y Area Com	pliance	Laboratories	Corp.	(New Tai	pei Laborator	y)
_				_			_

Date: 16.DEC.2024 10:41:18

High Channel

Date: 16.DEC.2024 10:43:09

N20 Mode

Low Channel

Date: 16.DEC.2024 10:45:45

Middle Channel

Spect	rum										
Ref Li Att	evel	20.00 di 35	Bm Offset : dB SWT	l1.00 dB 👄 56.9 μs 👄	RBW 100 VBW 300	<hz <hz< th=""><th>Mode</th><th>Auto FFT</th><th></th><th></th><th></th></hz<></hz 	Mode	Auto FFT			
🔵 1Pk Vi	iew										
							M	1[1]			-4.92 dBm
10 d0m										2.42	288400 GH:
то авт						M2	M	2[1]			1.41 dBn
o						T				2.43	382390 GH:
u asm-	_		M	L barrelas	Maraharela	والعلقان	molul	where \mathbf{P}^1			
		1 -4.59	Jabu 📈	10 Wayne Martin		V		1 martin and	94y		
-10 dBm	n										
									$ \lambda $		
-20 dBr	∩———								4		
									1 N		
-30 dBr	n		- 200						- ma		
		a set of	مر میں اور						~0	m.	
-40 dBn	and	War	-							WWW	m.
											mound
-50 dBm	n										
-60 dBm	n										
00 001	"										
-70 dBm											
-70 001											
CF 2.4	37 GH	Iz			100	1 pts				Spar	140.0 MHz
Marker											
Type	Ref	Trc	X-value	.	Y-value	1	Func	tion	Fund	tion Result	t
M1		1	2.428	84 GHz	-4.92 d	Bm					
D1	M1	1	15.1	72 MHz	1.20	dB					
M2		1	2.4382	39 GHz	1.41 d	Bm					
)	Maria			4.362	16.12.2024
		11						suring			

Date: 16.DEC.2024 10:48:28

Spect	rum										
Ref Lo	evel	20.00	dBm Offset :	11.00 dB 👄	RBW 100 k	Hz					
Att		35	dB SWT	56.9 µs 👄	VBW 300 k	Hz	Mode	Auto FFT			
⊖1Pk Vi	ew										
							M	l[1]			-5.18 dBm
10 dBm										2.4	538400 GHz
20 90						M2	M	2[1]			1.21 dBm
0 dBm—			W			Ţ			+	2.40	632390 GHz
	— D	1 -4.79	90 dBm	<u>f hundradoo</u>	alburahardury	- Partici	when	with we have the)]		
-10 dBm	η		<u> </u>		, · · · ·	/			T1		
									1.1		
-20 dBm	∩								+ \		
			المعنى						No.		
-30 dBm			a dearboard and a						The the second s		
			went						v.	Maria	
-40 dBm	manter	www								V WWW	Murray
FO 10											
-20 aBM	דרי										
60 d0m											
-00 UBII											
-70 dBm	<u> </u>										
, o dbii											
						L .					
CF 2.40	62 GF	IZ			1001	. pts				Spar	1 40.0 MHz
Marker	- (_		
fype	Ref	Trc	X-value	9	Y-value		Funct	ion	Fund	ction Resul	t
	M1	1	2.453	84 GHZ 14 MH2	-5.18 08	HB.					
M2	INIT.	1	2.4632	39 GHz	1.21 dB	m					
			2.1002	00 0.12	1,61 06					-1-1/2	16 12 2024
		Л								1000	

Date: 16.DEC.2024 10:51:42

N40 Mode

Low Channel

Spectru	ım								
Ref Lev	el 20.00	dBm Offset 1	11.00 dB 🔵	RBW 100 k	Ηz				
🗕 Att	3	5 dB SWT	94.8 µs 👄	VBW 300 k	Hz Mi	ode Auto FFT			
●1Pk Viev	V								
10 dBm-						M1[1]		2.40	-7.60 dBm 144000 GHz
TO UDIT						M2[1]			-1.94 dBm
0 dBm—				M2			1	2.41	.69650 GHz
10 d0m	D1 -7.9	40 dBm 🔣	-hola lutwood	Laborholturbatury	pruholul	wheel wheeler have been been been been been been been be			
-10 ubiii—					ļ				
-20 dBm—				,			+		
-30 dBm—		+					<u> </u>		
-40 dBm—	n.w.lbstamisski	nor all and the					- Wing	will would will be well	mmunt have
-50 dBm—									
-60 dBm—									
-70 dBm—									
CE 2.422	GHz			1001	nts				80.0 MHz
Marker				1001	F2			opun	
	ef Trc	X-value	•	Y-value	I F	unction	Fund	tion Result	: I
M1	1	2.40	44 GHz	-7.60 dB	m				
D1	M1 1	35.:	12 MHz	1.82 0	IB				
M2	1	2.4169	65 GHz	-1.94 dB	m				
						Measuring		4/4	16.12.2024

Date: 16.DEC.2024 10:54:15

Spect	rum										
Ref L	evel	20.00	dBm Offs	et 11.0	00 dB 👄	RBW 100 k	Hz				
🗕 Att		35	dB SW1	- 94	8 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
😑 1Pk Vi	e₩										
							М	1[1]			-7.51 dBm
10 dBm										2.41	94000 GHz
10 0.0.11							м	2[1]		0.40	-1.84 dBm
0 dBm-						M2		I	I	2.43	19000 GHZ
		1 70	10 dBm	M1	1. Automatic	habelestation	probabilities	Annabart of	D1		
-10 dBm	ידי	1 -7.0		Participation	1. 2014			- · • •	and a		
							1				
-20 aBr	ד_י								1,		
20 dbm			1	·							
-30 UBI			J						× .		
-40 dBm)_ _	1	upun						Withen	wellow .	
monorth	No Alter	APALITINO	· · · ·							a sugar	word all and a stand and
-50 dBrr	η										
-60 dBm	ו										
-70 dBn	ι 										
CF 2.4	37 Ġ⊢	łz				1001	pts			Span	80.0 MHz
Marker											
Туре	Ref	Trc	X-v	alue		Y-value	Func	tion	Fund	tion Result	
M1		1		2.4194	GHz	-7.51 dB	m				
D1	M1	1		35.12	MHz	1.83 (1B				
			2.4	131302	GHZ	-1.84 aB	m				
		Л					Mea	suring		4/4	6.12.2024

Date: 16.DEC.2024 10:59:06

High Channel

Date: 16.DEC.2024 11:02:43

AX20 Mode Low Channel

Date: 16.DEC.2024 11:07:12

Middle Channel

Spect	rum											
Ref Li Att	evel :	20.00 dB 35 i	3m Offset 1 dB SWT	l1.00 dB 👄 56.9 μs 👄	RBW VBW	100 kH 300 kH	z z	Mode	Auto FFT			
🔵 1Pk Vi	e₩											
								М	1[1]		2.4	-4.33 dBm
10 dBm						N	M2[1]			1.66 dBm 2.4382390 GHz		
0 dBm-			5.6.2									
о цыпі–	D	1 -4.340) dBm	all though	Aprila	wer	~10Kg	muu	and being of a con	L D1		
-10 dBm	η		+ f						~	\rightarrow		
00 ID												
-20 aBn	ן ו									. h.		
-30 dBm	n—									- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h .	
in In		and	J.Maro								"Hundeller	
-4U 98a	2004 pro											Mr. C. C. Walter
-50 dBm	n											
-60 dBm	– ר											
-70 dBm	1—											
CF 2.4	37 ĠH	z				1001	pts				Spa	n 40.0 MHz
Marker												
Туре	Ref	Trc	X-value		Y-value		Function		Fu	nction Resu	t l	
M1		1	2.4282 GHz		-4.33 dBm		٦ T					
D1	M1	1 17.8		.8 MHz	0.04 (3					
M2		1	2.4382	39 GHz	1	.66 dBm	1					
								Mea	suring		1.490	16.12.2024

Date: 16.DEC.2024 11:12:53

Date: 16.DEC.2024 11:14:54

AX40 Mode

Low Channel

Spect	rum											
Ref Lo	evel :	ل 20.00 ر	dBm Offset	11.00 dB 🤅	• RBW 100 k	Hz						
🗕 Att		35	dB SWT	94.8 µs (• VBW 300 k	Hz Mode	e Auto FF	т				
😑 1Pk Vi	e₩											
						r	M1[1]		2.41	-7.12 dBm		
10 dBm·	_						M2[1]		-1 21 dBm			
					M2				2.4194430 GHz			
0 dBm—			M1	1. J. J. Withour	al underback of all	monthelinghalu	Malpelipelipeli	6. Lund P ¹				
-10 dBm	ישייי	1 -7.23		Receiver 1				Contraction of the local data				
-20 dBm	-											
-30 dBm	<u>ا</u> -۲											
-40 dBm	<u>ا</u> ـــــ	last selection of	1. weath And				-	Une	ant providence	Munduan		
-50 dBm	י ריין											
-60 dBm	<u>ا</u> ر											
-70 dBm	<u>ا</u> -۲											
CE 2 4	22 GH	17			1001	nts			Snar	0.80.0 MHz		
Marker					1001				opu			
Tyne	ne Ref Trc		X-value	•	Y-value	Eunction		Fu	Function Result			
M1	1.01	1	2,403	- 68 GHz	-7.12 dB	m		14		-		
D1	M1	1	36.72 MHz		-0.25 (зв						
M2	M2 1		2.4194	2.419443 GHz		Im						
][Me	asuring	-	0.449	16.12.2024		

Date: 16.DEC.2024 11:19:16
Spect	rum										
Ref Lo	evel :	20.00	dBm	Offset 3	11.00 dB 🥃	RBW 100 k	Hz				
🗕 Att		3	5 dB	SWT	94.8 µs 🥃	VBW 300 k	Hz Mode	Auto FFT			
😑 1Pk Vi	ew										
							M	1[1]			-7.44 dBm
10 dBm										2.4	189200 GHz
							M	2[1]		2.4	-1.19 dBm
0 dBm—						IMI2				2.4	343220 GH2
			00.49	M1	Ind with the	R Hold and they	presidential	Marshallouch	. P.1		
-10 dBm	שרי	1 -7.1	90 UBI	111 2000	00.00	-			W S.		
-20 dBm	ו—ר										
				ľ					1		
-30 aBm											
-40 dBm		- Mara	No. C	1 Marcal					herry	mar date un	
mountan	winder	AN THE IN	- -								well and second by rate
-50 dBm	η <u> </u>										
-60 dBm											
-70 dBm	-+-					+					
CF 2.4	37 GH	łz			I	100:	L pts			Spai	n 80.0 MHz
Marker											
Type	Ref	Trc		X-value	e	Y-value	Func	tion	F	unction Resul	t l
M1		1		2.418	92 GHz	-7.44 dB	3m				
D1	M1	1		36.3	32 MHz	0.17	dB				
M2				2,4345	22 GHZ	-1.19 dł	sm				
		Л					Mea	suring		1	16.12.2024

Middle Channel

Date: 16.DEC.2024 11:26:30

High Channel

Date: 16.DEC.2024 11:29:30

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 137 of 303

BLE 1M Mode Low Channel

Spect	rum										
Ref L	evel	20.00	dBm Offset	11.00 dB 👄	RBW	100 kHz					
Att		30	D dB SWT	18.9 µs 👄	VBW	300 kHz	Mode	Auto FFT			
⊖1Pk Vi	ew				_						
							M	1[1]			-5.79 dBm
10 dBm										2.401	67000 GHz
10 0.0						M2	M	2[1]		0.404	0.51 dBm
0 dBm-						X			-1	2.401	97000 GHZ
	n	1 -5 4					~~ `	Q1			
-10 dBn	n	-1 -3/H	SO GDIII								
-20 dBn	η								\rightarrow		
-30 dBn	η			_							
	-+										
-40 dBn	n										
-50 dBn	י—⊢										
-60 dBn											
-70 dBn	<u>ו</u> רי										
CF 2.4	02 GH	łz				1001 pt	5			Spa	n 3.0 MHz
Marker											
Type	Ref	Trc	X-val	ue I	Y-v	alue	Eunc	tion	Fun	ction Result	1
M1		1	2.40	167 GHz	-9	5.79 dBm					
D1	M1	1	6	69.0 kHz		-0.07 dB					
M2		1	2.40	197 GHz	0).51 dBm					
)[Mea	surina	for some state	1.00	7.01.2025
		л									

Date: 17.JAN.2025 13:10:09

Middle Channel

Spect	rum										
Ref Lo Att	evel :	 20.00 م 30	dBm Offset I dB SWT	11.00 dB 18.9 μs	 RBW VBW 	100 kHz 300 kHz	Mode	Auto FFT			
●1Pk Vi	ew										
10 - 10							М	1[1]		2.439	-5.93 dBm 67000 GHz
TO OBM-						M2	M	2[1]		2.439	0.40 dBm 97000 GHz
u asm—	_				MI		\sim	Q1			
-10 dBm		1 -5.60						A			
-20 dBm	-		-	\swarrow					\sim		
-30 dBm			_		_						
-40 dBm					_						
-50 dBm					_						
-60 dBm	-										
-70 dBm	-										
CF 2.4	4 GHz					1001 p	ts			Spa	n 3.0 MHz
Marker		- 1					1 -				
Type	Ref	Trc	X-valu		Y-V	alue	Func	tion	Fun	ction Result	
D1	M1	1	2,43	6.0 kHz	-;	-0.05 dB					
M2		1	2.439	997 GHz	(0.00 dBm					
)[Mea	suring		4/4	17.01.2025

Date: 17.JAN.2025 13:12:45

Spectr	um									
Ref Le Att	vel 3	20.00 dB 30 (m Offset dB SWT	11.00 dB (18.9 µs (RBW 100 kH VBW 300 kH 	lz Iz Mo	de Auto Fi	FΤ		
●1Pk Vie	W									
10 dBm-					M		M1[1] M2[1]		-6 2.47967 (.01 dBm 000 GHz .37 dBm
0 dBm—			-	1	11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01	_	2.47997	'UUU GHZ
-10 dBm	D	1 -5.630	I dBm		•		-	_		
-20 dBm	_			<u> </u>				\rightarrow		
-30 dBm	_									
-40 dBm	+									
-50 dBm	+									
-60 dBm	+									
-70 dBm	+									
CF 2.48	GHz				1001	pts			Span :	3.0 MHz
Marker										
Type	Ref	Trc	X-valu	9	Y-value	Fu	nction	Fund	ction Result	
D1	M1	1	2.479	07 GHZ 3 N kHz	-0.01 GBI	B				
M2		1	2.479	97 GHz	0.37 dBi	n				
							leasuring		17.0	1.2025

High Channel

Date: 17.JAN.2025 13:14:08

BLE 2M Mode

Low Channel

Date: 17.JAN.2025 13:16:38

Middle Channel

Date: 17.JAN.2025 13:18:12

High Channel

Date: 17.JAN.2025 13:19:41

10 FCC §15.247(b)(3) – Maximum Output Power

10.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

10.2 Test Procedure

According to ANSI C63.10-2013, section 11.9.1.3

According to ANSI C63.10-2013, section 11.9.2.3.1

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

10.3 Test Results

Conducted Output Power

WIFI

Channel	Frequency (MHz)		Conducte	ed Peak Outj (dBm)	out Power		Limit				
	(141112)	Chain 0	Chain 1	Chain 2	Chain 3	Total					
			802.11b	Mode							
Low	2412	20.94	22.97	21.61	20.76	27.68	30				
Mid	2437	20.87	23.07	21.81	21.18	27.84	30				
High	2462	21.06	22.61	21.54	20.90	27.60	30				
802.11g Mode											
Low	2412	23.46	24.25	22.98	22.77	29.42	30				
Mid	2437	22.55	23.99	22.92	22.51	29.06	30				
High	2462	22.11	23.82	22.87	22.16	28.82	30				
			802.11n HT	20 Mode							
Low	2412	22.26	23.68	22.74	22.53	28.86	30				
Mid	2437	22.48	24.01	22.39	21.68	28.75	30				
High	2462	21.79	23.75	22.40	21.93	28.56	30				
			802.11n HT	40 Mode							
Low	2422	21.93	23.36	21.83	21.80	28.30	30				
Mid	2437	21.58	23.98	21.62	21.43	28.31	30				
High	2452	21.31	23.63	21.76	20.85	28.04	30				
			802.11ax HI	E20 Mode							
Low	2412	21.92	24.34	23.37	22.27	29.10	30				
Mid	2437	22.63	24.50	22.49	22.44	29.13	30				
High	2462	21.38	23.58	22.84	21.49	28.44	30				
	802.11ax HE40 Mode										
Low	2422	22.23	24.83	22.64	22.41	29.19	30				
Mid	2437	22.32	23.64	22.27	21.42	28.51	30				
High	2452	22.37	24.17	22.74	21.92	28.91	30				

Bay .	Area Compliance	Laboratorie		No.: RXZ241119045RF01						
Channel	Frequency	(Conducted .	Average O (dBm)	utput Powe	er	Duty Factor	Total Maximum Conducted Average Output Power With	Limit	
	(MHz)	Chain 0	Chain 1	1 Chain 2 Chain 3 T		Total	(dB)	Duty Factor (dBm)	(dBm)	
				802.116	o Mode					
Low	2412	18.17	19.74	18.91	18.26	24.84	0.04	24.88	30	
Mid	2437	18.19	19.92	19.09	18.73	25.05	0.04	25.09	30	
High	2462	18.41	19.47	18.78	18.33	24.79	0.04	24.83	30	
				802.11g	g Mode					
Low	2412	13.30	15.12	13.41	12.53	19.72	0.27	19.99	30	
Mid	2437	12.52	14.48	13.06	12.37	19.21	0.27	19.48	30	
High	2462	12.35	14.06	12.89	12.16	18.95	0.27	19.22	30	
	802.11n HT20 Mode									
Low	2412	12.39	14.70	13.10	12.25	19.25	0.27	19.52	30	
Mid	2437	12.42	14.58	13.00	12.29	19.19	0.27	19.46	30	
High	2462	11.93	14.18	12.81	12.22	18.90	0.27	19.17	30	
		_		802.11n H	T40 Mode		_			
Low	2422	12.24	14.45	12.48	11.70	18.87	0.41	19.28	30	
Mid	2437	12.04	14.25	12.35	11.63	18.71	0.41	19.12	30	
High	2452	12.11	14.06	12.33	11.57	18.64	0.41	19.05	30	
				802.11ax H	E20 Mode					
Low	2412	11.96	14.13	12.51	11.75	18.71	0.36	19.07	30	
Mid	2437	11.85	14.26	12.54	11.92	18.78	0.36	19.14	30	
High	2462	11.58	13.85	12.38	11.64	18.48	0.36	18.84	30	
	802.11ax HE40 Mode									
Low	2422	12.45	14.29	12.65	12.62	19.09	0.46	19.55	30	
Mid	2437	12.42	14.23	12.61	12.53	19.04	0.46	19.50	30	
High	2452	12.21	14.12	12.58	12.46	18.93	0.46	19.39	30	

Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)	Result
		BLE 1M Mode		
Low	2402	1.11	29.92	PASS
Middle	2440	1.01	29.92	PASS
High	2480	0.92	29.92	PASS
		BLE 2M Mode		
Low	2402	1.09	29.92	PASS
Middle	2440	1.04	29.92	PASS
High	2480	0.91	29.92	PASS

BLE

802.11ax partial RU

Mode	Frequency (MHz)	Tones	RU Index		Conducted Peak Output Power (dBm)						
			Index	Chain 0	Chain 1	Chain 2	Chain 3	Total	(ubiii)		
		26	0	18.29	19.62	18.90	18.53	24.89	30		
		26	8	18.25	19.31	18.92	19.49	25.04	30		
		52	37	21.22	21.38	20.18	20.90	26.96	30		
	2412	52	40	19.58	20.40	19.50	19.95	25.89	30		
		106	53	20.10	21.47	21.40	21.38	27.14	30		
		106	54	21.09	22.46	20.44	20.80	27.29	30		
		242	61	21.92	24.34	23.37	22.27	29.10	30		
		26	0	19.24	18.31	18.74	18.00	24.62	30		
		26	8	19.23	17.92	18.40	18.30	24.51	30		
		52	37	20.60	18.86	19.03	19.28	25.52	30		
802.11ax 20	2437	52	40	21.25	19.81	20.87	20.55	26.67	30		
		106	53	22.38	20.22	21.30	21.43	27.42	30		
		106	54	21.84	21.64	20.72	22.38	27.71	30		
		242	61	22.63	24.50	22.49	22.44	29.13	30		
		26	0	18.34	18.23	16.69	17.79	23.83	30		
		26	8	17.81	17.74	16.44	17.60	23.45	30		
		52	37	20.63	19.72	18.30	19.97	25.76	30		
	2462	52	40	19.29	19.18	17.72	19.78	25.08	30		
		106	53	21.31	21.50	19.80	20.93	26.95	30		
		106	54	21.21	21.30	20.31	21.34	27.08	30		
		242	61	21.38	23.58	22.84	21.49	28.44	30		

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) No.: RXZ241119045RF01

Mode	Frequency (MHz)	Tones	RU Index		Conducted Peak Output Power (dBm)						
			muex	Chain 0	Chain 1	Chain 2	Chain 3	Total	(ubiii)		
		26	0	18.09	19.51	19.83	19.10	25.20	30		
		26	17	17.81	20.11	19.51	20.02	25.47	30		
		52	37	19.79	20.70	20.49	19.30	26.13	30		
		52	44	18.21	19.96	19.92	19.46	25.46	30		
	2422	106	53	20.06	21.90	22.10	21.27	27.42	30		
		106	56	20.71	21.23	21.78	20.97	27.21	30		
		242	61	21.47	22.63	21.92	22.00	28.05	30		
		242	62	21.03	22.20	22.31	21.48	27.81	30		
		484	65	22.23	24.83	22.64	22.41	29.19	30		
		26	0	17.33	17.74	16.72	17.25	23.30	30		
		26	17	17.58	18.33	17.83	17.22	23.78	30		
		52	37	19.15	19.17	19.97	19.76	25.55	30		
		52	44	18.88	19.68	19.39	19.06	25.28	30		
802.11ax 40	2437	106	53	20.77	20.20	20.22	19.61	26.24	30		
		106	56	20.15	20.12	19.65	19.59	25.91	30		
		242	61	21.46	21.68	21.20	20.61	27.28	30		
		242	62	20.90	21.38	21.01	20.84	27.06	30		
		484	65	22.32	23.64	22.27	21.42	28.51	30		
		26	0	18.86	17.81	17.17	17.76	23.96	30		
		26	17	18.72	18.03	18.21	19.04	24.54	30		
		52	37	19.67	19.65	17.81	18.87	25.08	30		
		52	44	18.65	18.91	18.44	18.95	24.76	30		
	2452	106	53	19.62	19.98	19.96	20.66	26.09	30		
		106	56	20.87	20.29	20.07	20.70	26.51	30		
		242	61	21.91	22.72	21.70	21.65	28.04	30		
		242	62	21.44	22.15	20.89	21.61	27.57	30		
		484	65	22.37	24.17	22.74	21.92	28.91	30		

11 FCC §15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

11.1 Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 Test Procedure

According to ANSI C63.10-2013 Section 11.11

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.
- 3. Set the VBW \geq [3 × RBW].
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

11.3 **Test Results**

WIFI

Channel	Frequency	De	elta Peak to I (dl	Band Emissi Bc)	on	Limit	Result				
	(MITZ)	Chain 0	Chain 1	Chain 2	Chain 3	(ивс)					
			B m	node							
Low	2412	50.97	51.44	51.46	51.65	≥ 20	PASS				
High	2462	51.48	51.93	51.34	51.25	≥ 20	PASS				
			Gm	node							
Low	2412	43.38	43.20	41.16	43.84	≥ 20	PASS				
High	2462	43.04	44.27	43.42	42.63	≥ 20	PASS				
	N20 mode										
Low	2412	42.95	44.37	43.04	43.41	≥ 20	PASS				
High	2462	42.66	44.28	44.03	42.63	≥ 20	PASS				
			N40 1	mode							
Low	2422	40.07	41.04	40.63	39.20	≥ 20	PASS				
High	2452	40.56	41.88	40.59	39.90	≥ 20	PASS				
			AX20	mode							
Low	2412	42.76	44.82	43.92	42.11	≥ 20	PASS				
High	2462	42.92	44.52	44.30	42.37	≥ 20	PASS				
	AX40 mode										
Low	2422	40.13	42.66	41.52	41.38	≥20	PASS				
High	2452	40.97	42.12	41.79	39.71	≥ 20	PASS				

BLE

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result
		BLE 1M Mode		
Low	2402	38.21	≥20	PASS
High	2480	44.52	≥20	PASS
		BLE 2M Mode		
Low	2402	32.91	≥20	PASS
High	2480	44.82	≥20	PASS

Please refer to the following plots

Chain 0 B Mode Band Edge, Left Side

Date: 13.DEC.2024 11:48:56

Band Edge, Right Side

Date: 13.DEC.2024 12:01:15

G Mode Band Edge, Left Side

Date: 13.DEC.2024 13:21:46

Band Edge, Right Side

Date: 13.DEC.2024 13:26:32

N20 Mode Band Edge, Left Side

Date: 13.DEC.2024 13:31:08

Band Edge, Right Side

Date: 13.DEC.2024 13:36:27

N40 Mode Band Edge, Left Side

Date: 13.DEC.2024 13:40:33

Date: 13.DEC.2024 13:48:10

AX20 Mode Band Edge, Left Side

Date: 13.DEC.2024 13:52:29

Band Edge, Right Side

Date: 13.DEC.2024 13:58:28

AX40 Mode Band Edge, Left Side

Date: 13.DEC.2024 14:03:02

Band Edge, Right Side

Date: 13.DEC.2024 14:13:08

Chain 1 B Mode Band Edge, Left Side

Date: 13.DEC.2024 14:40:22

Band Edge, Right Side

Date: 13.DEC.2024 14:36:48

G Mode Band Edge, Left Side

Date: 13.DEC.2024 14:44:54

Band Edge, Right Side

Date: 13.DEC.2024 14:58:17

N20 Mode Band Edge, Left Side

Date: 13.DEC.2024 15:55:29

Band Edge, Right Side

Date: 13.DEC.2024 15:59:44

N40 Mode Band Edge, Left Side

Date: 13.DEC.2024 16:05:18

Band Edge, Right Side

Date: 13.DEC.2024 16:14:41

AX20 Mode Band Edge, Left Side

Date: 13.DEC.2024 16:19:01

Band Edge, Right Side

Date: 13.DEC.2024 16:35:11

AX40 Mode Band Edge, Left Side

Date: 13.DEC.2024 16:46:17

Date: 13.DEC.2024 16:53:53

Chain 2 B Mode Band Edge, Left Side

Date: 16.DEC.2024 08:38:57

Band Edge, Right Side

Date: 16.DEC.2024 08:44:50

G Mode Band Edge, Left Side

Date: 16.DEC.2024 08:47:30

Band Edge, Right Side

Date: 16.DEC.2024 08:52:56

N20 Mode Band Edge, Left Side

Date: 16.DEC.2024 08:58:22

Band Edge, Right Side

Date: 16.DEC.2024 09:04:35

N40 Mode Band Edge, Left Side

Date: 16.DEC.2024 09:10:10

Band Edge, Right Side

Date: 16.DEC.2024 09:17:21

AX20 Mode Band Edge, Left Side

Date: 16.DEC.2024 09:21:02

Band Edge, Right Side

Date: 16.DEC.2024 09:52:59

AX40 Mode Band Edge, Left Side

Date: 16.DEC.2024 10:05:03

Date: 16.DEC.2024 10:14:36

Chain 3 B Mode Band Edge, Left Side

Date: 16.DEC.2024 10:27:45

Band Edge, Right Side

Date: 16.DEC.2024 10:33:15

G Mode Band Edge, Left Side

Date: 16.DEC.2024 10:39:25

Band Edge, Right Side

Date: 16.DEC.2024 10:43:34

N20 Mode Band Edge, Left Side

Date: 16.DEC.2024 10:46:10

Band Edge, Right Side

Date: 16.DEC.2024 10:52:07

N40 Mode Band Edge, Left Side

Date: 16.DEC.2024 10:54:40

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 171 of 303

AX20 Mode Band Edge, Left Side

Date: 16.DEC.2024 11:07:37

Band Edge, Right Side

Date: 16.DEC.2024 11:15:19
AX40 Mode Band Edge, Left Side

Date: 16.DEC.2024 11:19:41

Date: 16.DEC.2024 11:29:55

BLE 1M Mode Band Edge, Left Side

Date: 17.JAN.2025 13:10:49

Date: 17.JAN.2025 13:14:48

BLE 2M Mode Band Edge, Left Side

Date: 17.JAN.2025 13:17:18

Band Edge, Right Side

Date: 17.JAN.2025 13:20:21

12 FCC §15.247(e) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

12.2 Test Procedure

According to ANSI C63.10-2013, section 11.10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

12.3 Test Results

Channel	Frequency (MHz)		Limit							
		Chain 0	Chain 1	Chain 2	Chain 3	Total	(ubiii/3 kiiz)			
B mode										
Low	2412	-3.36	-0.87	-2.28	-4.40	3.49	≤4.48			
Mid	2437	-2.13	-1.07	-2.65	-2.91	3.89	≤4.48			
High	2462	-2.74	-0.91	-3.14	-2.73	3.73	\leq 4.48			
G mode										
Low	2412	-11.18	-8.61	-10.95	-11.47	-4.37	≤4.48			
Mid	2437	-11.14	-8.65	-9.55	-11.21	-3.98	≤4.48			
High	2462	-11.22	-8.94	-9.40	-11.58	-4.12	≤4.48			
N20 mode										
Low	2412	-11.27	-8.41	-10.49	-11.40	-4.19	≤4.48			
Mid	2437	-11.68	-8.17	-7.68	-11.84	-3.41	\leq 4.48			
High	2462	-11.12	-7.35	-9.55	-11.38	-3.52	≤4.48			
N40 mode										
Low	2422	-14.91	-13.06	-13.97	-15.22	-8.19	\leq 4.48			
Mid	2437	-15.25	-11.84	-13.68	-13.92	-7.48	≤4.48			
High	2452	-14.74	-13.37	-14.02	-13.93	-7.97	\leq 4.48			
AX20 mode										
Low	2412	-12.47	-10.86	-11.13	-12.50	-5.65	\leq 4.48			
Mid	2437	-12.59	-9.44	-11.91	-11.90	-5.26	\leq 4.48			
High	2462	-12.76	-10.39	-9.99	-12.85	-5.28	\leq 4.48			
AX40 mode										
Low	2422	-15.06	-13.52	-16.06	-15.50	-8.91	≤4.48			
Mid	2437	-15.35	-13.93	-14.78	-15.55	-8.84	≤4.48			
High	2452	-15.60	-13.63	-14.62	-16.07	-8.86	≤4.48			

According to FCC KDB 662911 D01 Multiple Transmitter Output v02r01, For Power spectral density (PSD) measurements on the

devices:

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi.$

Directional gain = 9.52 dBi

The Power density Limits was reduce 3.52 dB.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 177 of 303

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result				
BLE 1M Mode								
Low	2402	-13.99	7.92	PASS				
Middle	2440	-14.01	7.92	PASS				
High	High 2480		7.92	PASS				
BLE 2M Mode								
Low	Low 2402		7.92	PASS				
Middle	le 2440 -18.20		7.92	PASS				
High	2480	-18.13	7.92	PASS				

BLE

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

802.11ax partial RU

Mode	Frequency (MHz)	Tones	RU Index	Power Spectral Density (dBm/3 kHz)					Limit (dBm/3 kHz)
				Chain 0	Chain 1	Chain 2	Chain 3	Total	(UBM/3 KHZ)
		26	0	-16.11	-15.57	-15.61	-16.22	-9.85	≤4.48
		26	8	-16.13	-15.90	-15.59	-15.26	-9.69	≤4.48
		52	37	-13.15	-13.81	-14.31	-13.85	-7.74	≤4.48
	2412	52	40	-14.80	-14.80	-15.00	-14.80	-8.83	≤4.48
		106	53	-14.27	-13.73	-13.10	-13.38	-7.58	≤4.48
		106	54	-13.31	-12.73	-14.06	-13.97	-7.46	≤4.48
802.11ax 20		242	61	-12.47	-10.86	-11.13	-12.50	-5.65	≤4.48
		26	0	-15.96	-15.61	-15.66	-16.32	-9.86	≤4.48
	2437	26	8	-15.97	-16.02	-16.00	-16.05	-9.99	≤4.48
		52	37	-14.62	-15.06	-15.38	-15.04	-9.00	≤4.48
		52	40	-13.95	-14.12	-13.54	-13.79	-7.82	≤4.48
		106	53	-12.83	-13.72	-13.09	-12.90	-7.10	≤4.48
		106	54	-13.38	-12.29	-13.69	-11.96	-6.75	≤4.48
		242	61	-12.59	-9.44	-11.91	-11.90	-5.26	≤4.48
	2462	26	0	-15.81	-15.75	-16.15	-16.56	-10.04	≤4.48
		26	8	-16.34	-16.21	-16.39	-16.75	-10.40	≤4.48
		52	37	-13.52	-14.23	-14.54	-14.35	-8.12	≤4.48
		52	40	-14.85	-14.77	-15.11	-14.55	-8.79	≤4.48
		106	53	-12.83	-12.45	-13.02	-13.39	-6.89	≤4.48
		106	54	-12.91	-12.66	-12.50	-13.00	-6.74	≤4.48
		242	61	-12.76	-10.39	-9.99	-12.85	-5.28	≤4.48

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ241119045RF01

Channel	Frequency (MHz)	Tones	RU Index		Limit				
	× ,			Chain 0	Chain 1	Chain 2	Chain 3	Total	
		26	0	-19.19	-18.85	-18.86	-18.80	-12.90	≤4.48
		26	17	-19.46	-18.25	-19.20	-17.90	-12.63	≤4.48
		52	37	-17.49	-17.64	-18.21	-18.61	-11.94	≤4.48
		52	44	-19.06	-18.38	-18.77	-18.43	-12.63	≤4.48
	2422	106	53	-17.22	-16.46	-16.59	-16.63	-10.69	≤4.48
		106	56	-16.57	-17.11	-16.92	-16.92	-10.85	≤4.48
		242	61	-15.83	-15.71	-16.76	-15.91	-10.01	≤4.48
		242	62	-16.25	-16.16	-16.39	-16.42	-10.28	≤4.48
		484	65	-15.06	-13.52	-16.06	-15.50	-8.91	≤4.48
		26	0	-20.34	-19.84	-20.33	-19.73	-14.03	≤4.48
	2437	26	17	-20.10	-19.22	-19.22	-19.76	-13.54	≤4.48
		52	37	-18.52	-18.40	-17.07	-17.20	-11.73	≤4.48
		52	44	-18.77	-17.89	-17.67	-17.89	-12.01	≤4.48
802.11ax 40		106	53	-16.89	-17.37	-16.84	-17.34	-11.08	≤4.48
		106	56	-17.52	-17.43	-17.39	-17.37	-11.41	≤4.48
		242	61	-16.20	-15.90	-15.84	-16.36	-10.05	≤4.48
		242	62	-16.75	-16.18	-16.05	-16.12	-10.25	≤4.48
		484	65	-15.35	-13.93	-14.78	-15.55	-8.84	≤4.48
	2462	26	0	-19.09	-19.98	-20.17	-20.23	-13.82	≤4.48
		26	17	-19.26	-19.76	-19.13	-18.94	-13.24	≤4.48
		52	37	-18.31	-18.13	-19.53	-19.12	-12.71	≤4.48
		52	44	-19.31	-18.89	-18.92	-19.04	-13.02	≤4.48
		106	53	-18.34	-17.83	-17.41	-17.34	-11.69	≤4.48
		106	56	-17.10	-17.51	-17.27	-17.27	-11.26	≤4.48
		242	61	-16.05	-15.07	-15.64	-16.34	-9.73	≤4.48
		242	62	-16.53	-15.65	-16.48	-16.37	-10.22	≤4.48
		484	65	-15.60	-13.63	-14.62	-16.07	-8.86	≤ 4.4 8

According to FCC KDB 662911 D01 Multiple Transmitter Output v02r01, For Power spectral density (PSD) measurements on the devices:

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi.$

Directional gain = 9.52 dBi, The Power density Limits was reduce 3.52 dB.

Please refer to the following plots

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 180 of 303

WIFI

Chain 0 B Mode Low Channel

Date: 13.DEC.2024 11:48:40

Middle Channel

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 181 of 303

Date: 13.DEC.2024 12:00:59

G Mode Low Channel

Date: 13.DEC.2024 13:21:30

Date: 13.DEC.2024 13:23:52

High Channel

Date: 13.DEC.2024 13:26:16

Date: 13.DEC.2024 13:30:51

Date: 13.DEC.2024 13:33:33

Date: 13.DEC.2024 13:36:11

N40 Mode

Low Channel

Date: 13.DEC.2024 13:40:17

Date: 13.DEC.2024 13:44:20

High Channel

Date: 13.DEC.2024 13:47:54

AX20 Mode Low Channel

Date: 13.DEC.2024 13:52:13

Date: 13.DEC.2024 13:54:59

Date: 13.DEC.2024 13:58:12

AX40 Mode

Low Channel

Date: 13.DEC.2024 14:02:46

Date: 13.DEC.2024 14:09:51

High Channel

Date: 13.DEC.2024 14:12:52

Chain 1 B Mode Low Channel

Date: 13.DEC.2024 14:40:07

Middle Channel

Date: 13.DEC.2024 14:34:39

Date: 13.DEC.2024 14:36:32

G Mode Low Channel

Date: 13.DEC.2024 14:44:38

Date: 13.DEC.2024 14:53:56

High Channel

Date: 13.DEC.2024 14:58:01

N20 Mode Low Channel

Date: 13.DEC.2024 15:55:13

Date: 13.DEC.2024 15:52:59

Date: 13.DEC.2024 15:59:28

N40 Mode

Low Channel

Date: 13.DEC.2024 16:05:02

Date: 13.DEC.2024 16:11:22

High Channel

Date: 13.DEC.2024 16:14:26

AX20 Mode Low Channel

Date: 13.DEC.2024 16:18:45

Date: 13.DEC.2024 16:23:52

Date: 13.DEC.2024 16:34:55

AX40 Mode

Low Channel

Date: 13.DEC.2024 16:46:01

Date: 13.DEC.2024 16:49:26

High Channel

Date: 13.DEC.2024 16:53:37

Chain 2 B Mode Low Channel

Date: 16.DEC.2024 08:38:41

Middle Channel

Date: 16.DEC.2024 08:42:00

Date: 16.DEC.2024 08:44:34

G Mode Low Channel

Date: 16.DEC.2024 08:47:15

Date: 16.DEC.2024 08:50:09

High Channel

Date: 16.DEC.2024 08:52:41