

Page 1 of 54

JQA File No.: KL80170088S Issue Date: June 13, 2017

TEST REPORT

Applicant : SHARP CORPORATION, IoT Communication BU

Address : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Products : Smart Phone

Model No. : 606SH

Serial No. : 004401/11/612057/3

004401/11/612067/2

FCC ID : APYHRO00250

Test Standard : CFR 47 FCC Rules and Regulations Part 15

Test Results : Passed

Date of Test : May 16 ~ 22, 2017

dem

Kousei Shibata Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 2 of 54

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT: Equipment Under TestEMC: Electromagnetic CompatibilityAE: Associated EquipmentEMI: Electromagnetic InterferenceN/A: Not ApplicableEMS: Electromagnetic Susceptibility

N/T : Not Tested

☑ - indicates that the listed condition, standard or equipment is applicable for this report.

 \Box - indicates that the listed condition, standard or equipment is not applicable for this report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 3 of 54

1 Description of the Equipment Under Test

1. Manufacturer : SHARP CORPORATION, IoT Communication BU

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Smart Phone

3. Model No. : 606SH

4. Serial No. : 004401/11/612057/3

004401/11/612067/2

5. Product Type : Pre-production

6. Date of Manufacture : April, 2017

7. Power Rating : 4.0VDC (Lithium-ion Battery UBATIA270AFN1 3010mAh)

8. Grounding : None

9. Transmitting Frequency : WLAN: 2412.0 MHz(01CH) -2462.0MHz(11CH)

: Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)

10. Receiving Frequency : WLAN: 2412.0 MHz(01CH) -2462.0MHz(11CH)

Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)

11. Max. RF Output Power : 18.24 dBm(Measure Value of IEEE802.11b)

21.98 dBm(Measure Value of IEEE802.11g) 22.29 dBm(Measure Value of IEEE802.11n) 1.43 dBm(Measure Value of Bluetooth LE)

12. Antenna Type : Inverted-L Type Antenna (Integral)

13. Antenna Gain : 0 dBi (Main/Sub)

14. Category : DTS

15. EUT Authorization : Certification16. Received Date of EUT : May 15, 2017

17. Channel Plan

WLAN:

The carrier spacing is 5 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2407.0 + 5*nReceiving Frequency (in MHz) = 2407.0 + 5*nwhere, n: channel number ($1 \le n \le 11$)

Bluetooth Low Energy Mode:

The carrier spacing is 2 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2402.0 + 2*n Receiving Frequency (in MHz) = 2402.0 + 2*n

where, n : channel number $(0 \le n \le 39)$

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 4 of 54

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15

Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \square - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Shigeru Osawa

Deputy Manager

JQA KITA-KANSAI Testing Center

higen Osawa

SAITO EMC Branch

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 5 of 54

3 Test Procedure

Test Requirements : §15.247, §15.207 and §15.209

Test Procedure : ANSI C63.10–2013

Testing unlicensed wireless devices.

KDB 558074 D01

DTS Meas Guidance v04: April 5, 2017.

KDB 414788 D01

Radiated Test Site v01: April 18, 2017

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date: March 30, 2018) VCCI Registration No. : A-0002 (Expiry date: March 30, 2018)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2019)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2019)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 6 of 54

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	Smart Phone	Sharp	606SH	004401/11/612057/3 *1) 004401/11/612067/2 *2)	APYHRO00250
В	AC Adapter	Sharp	SHCEJ1		N/A
C	Stereo Handsfree	Sharp			N/A
D	DTV Antenna	Sharp			N/A

^{*1)} Used for Field Strength of Spurious Emission.

The auxiliary equipment used for testing:

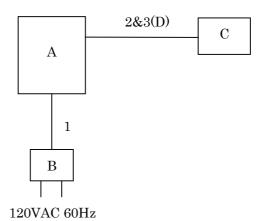
None

Type of Cable:

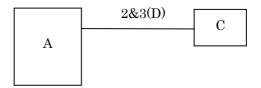
No.	Description	Identification (Manu. etc.)	Connector Shielded	Cable Shielded	Ferrite Core	Length (m)
1	USB conversion cable			NO	NO	1.5
2	Handsfree Cable			NO	NO	1.5
3	DTV Antenna Cable			NO	NO	0.1

^{*2)} Used for Antenna Conducted Emission.

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 7 of 54

6.2 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Earphone used

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 8 of 54

6.3 Operating Condition

Power Supply Voltage : 4.0 VDC (for Battery)

120 VAC, 60 Hz (For AC Adapter)

Transmitting/Receiving

WLAN:

Transmitting frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)Receiver frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)

Bluetooth Low Energy Mode(Bluetooth 4.2 + EDR + LE):

Transmitting frequency : 2402.0 MHz(0CH) - 2480.0 MHz(39CH)Receiver frequency : 2402.0 MHz(0CH) - 2480.0 MHz(39CH)

Modulation Type 1. 802.11b: DSSS 2. 802.11g: OFDM 3. 802.11n: OFDM

4. LE Packet (Modulation Type: GFSK)

Other Clock Frequency 19.2MHz, 27MHz, 27.12MHz

The tests were carried under the worst channel (maximum power).

(Ref. JQA File number: KL80160050, FCC ID: APYHRO00237)

1. IEEE802.11b: 2412.0 MHz (1 ch)

2. IEEE802.11g: 2437.0 MHz (6 ch)

3. IEEE802.11n: 2462.0 MHz (11 ch)

4. Bluetooth LE: 2402.0 MHz (0 ch)

The tests were performed in the following worst condition.

Mode	Condition
IEEE802.11b	11 Mbps
IEEE802.11g	18 Mbps
IEEE802.11n	MCS5 (52 Mbps)

Note: The worst condition was determined based on the test result of Maximum Peak Output Power.

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement.

The EUT with temporary antenna port was used in conducted measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: WLAN_BT Manual test mode operation_ver 2
- Software Version: Version 2
- Storage Location: Controller PC(supplied by applicant)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 9 of 54

7 Test Requirements

7.0.1 Introduction

This application re-use data collected on a similar device. The subjected device of this application (Model No.: 606SH, FCC ID: APYHRO00250) is electrically identical to the reference device (Model No.: 507SH, FCC ID: APYHRO00237) for the portions of the circuitry corresponding to the data being re-used.

The FCC ID: APYHRO00237 test data shall remain representative of FCC ID: APYHRO00250. A statement that the applicant takes full responsibility that the test data as referenced in this section represent compliance for this FCC ID: APYHRO00250.

7.0.2 Difference Section

The device of this application is electrically identical to the reference device other than the FeliCa Block. Please refer to the Comparison List Between 507SH and 606SH.

7.0.3 Spot Check Verification Data Section

The spot check verification tests were carried under the worst channel (maximum power).

(Ref. JQA File number: KL80160050, FCC ID: APYHRO00237)

Conducted: 2462.0 MHz (11 ch)
 Radiated: 2412.0 MHz (1 ch)

Test Item	Reference Model (FCC ID: APYHRO00237)	Spot Check Model (FCC ID: APYHRO00250)
Peak Output Power (Conduction)	21.86dBm (at 2462.0 MHz)	22.29dBm (at 2462.0 MHz)
Radiated Emission	43.51dBuV/m (at 2390.0MHz)	44.20dBuV/m (at 2390.0MHz)

Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		1
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Not Tested	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power (Conduction)	Section 15.247(b)(3)	Section 7.5	Passed	1
Peak Power Density (Conduction)	Section 15.247(e)	Section 7.6	Not Tested	•
Spurious Emissions (Conduction)	Section 15.247(d)	Section 7.7	Not Tested	-
AC Powerline Conducted Emission	Section 15.207	Section 7.8	Not Tested	-
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 10 of 54

7.0.4 Reference Detail Section

Equipment Class	FCC ID	Test Report Title	Report Section
DTS	APYHRO00250	APYHRO00237_TestReport_KL80160050	All sections
(WLAN,		(DTS)	applicable
Bluetooth LE)			

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 11 of 54

7.1	Channel Separation	1	
Fo	or the requirements,	\square - Applicable [\square - Tested. \square - Not Applicable	\Box - Not tested by applicant request.]
R_0	emarks:		
7.2	Minimum Hopping	Channel	
Fo	or the requirements,	\square - Applicable $[\square$ - Tested. \square - Not Applicable	\square - Not tested by applicant request.]
Re	emarks:		
7.3	Occupied Bandwidt	h	
Fo	or the requirements,		$\ensuremath{ riangledown}$ - Not tested by applicant request.]
7.4	Dwell Time		
Fo	or the requirements,	\square - Applicable [\square - Tested. \boxtimes - Not Applicable	\Box - Not tested by applicant request.]
Re	emarks:		
7.5	Peak Output Power	(Conduction)	
Fo	or the requirements,		\Box - Not tested by applicant request.]
7.5.1	Test Results		
Fo	or the standard,	oxdot - Passed $oxdot$ - Failed	\square - Not judged
Pe Pe	eak Output Power of leak Output Power out	IEEE802.11g is IEEE802.11n is Bluetooth LE is	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Re	emarks:		

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 12 of 54

7.5.2 Test Instruments

Shielded Room S4							
Туре	Type Model Serial No. (ID) Manufacturer						
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10			
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/2			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/2			

NOTE: The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 13 of 54

7.5.4 Test Data

1) IEEE 802.11b

 Test Date: May 16, 2017

 Data Rate: 11Mbps
 Temp.: 26 °C, Humi: 43 %

Transmi	tting Frequency	Correction Factor	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.15	8.09	18.24	66.68	30.00	+11.76

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Minimum Margin: 30.00 - 18.24 = 11.76 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

06	2437	
Rate	Meter Reading	Remark
	[dBm]	
1Mbps	7.82	
2Mbps	8.06	
5.5Mbps	8.03	
11Mbps	8.09	*

[MHz]

*: Worst Rate

 \mathbf{CH}

All comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 14 of 54

2) IEEE 802.11g

Data Rate: 18Mbps

<u>Test Date: May 16, 2017</u> <u>Temp.: 26 °C, Humi: 43 %</u>

Transm	mitting Frequency Correction Factor		Meter Reading Conducted Peak Output Power			Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]	
0.6	2/137	10 15	11 83	21 98	157 76	30 00	± 8 02	

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 10.15 dB+) Meter Reading = 11.83 dBm

Result = 21.98 dBm = 157.76 mW

Minimum Margin: 30.00 - 21.98 = 8.02 (dB)

NOTES

 \mathbf{CH}

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

06	2437	
Rate	Meter Reading	Remark
	[dBm]	
6Mbps	10.74	
9Mbps	11.27	
12Mbps	11.60	
18Mbps	11.83	*
24Mbps	11.15	
36Mbps	11.74	
48Mbps	11.27	
54Mbps	11.66	

[MHz]

* : Worst Rate

All comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 15 of 54

3) IEEE 802.11n

 Test Date: May 16, 2017

 Data Rate: MCS5
 Temp.: 26 °C, Humi: 43 %

Trans mi	Transmitting Frequency		Meter Reading	ter Reading Conducted Peak Output Power		Limits	Margin
СН	[MHz]	Factor [dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
11	2462	10.15	12.14	22.29	169.43	30.00	+ 7.71

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.15 dB+) Meter Reading = 12.14 dBm

Result = 22.29 dBm = 169.43 mW

Minimum Margin: 30.00 - 22.29 = 7.71 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.		
Peak	OFF		

СН 06	[MHz] 2437	
Rate	Meter Reading	Remark
	[dBm]	
MCS0	11.35	
MCS1	11.67	
MCS2	11.68	
MCS3	11.62	
MCS4	11.75	
MCS5	12.14	*
MCS6	11.79	
MCS7	11.27	

^{*:} Worst Rate

 $\ensuremath{\mathrm{All}}$ comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 16 of 54

4) Bluetooth LE(Modulation type: GFSK)

<u>Test Date: May 16, 2017</u> <u>Temp.: 26 °C, Humi: 43 %</u>

Transm	itting Frequency	Correction Factor	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
0 0	2402	10.15	-8.72	1.43	1.39	30.00	+28.57

Calculated result at 2402.000 MHz, as the worst point shown on underline:

 $\begin{array}{llll} & \text{Correction Factor} & = & 10.15 \text{ dB} \\ \text{+)} & \underline{\text{Meter Reading}} & = & -8.72 \text{ dBm} \end{array}$

Result = 1.43 dBm = 1.39 mW

Minimum Margin: 30.00 - 1.43 = 28.57 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	Off

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 17 of 54

7.6	Peak Power Density	y(Conduction)					
Fo	or the requirements,	☑ - Applicable [□ - Tes □ - Not Applicable	eted. ☑ - Not	tested by	applicant	reque	st.]
7.7	Spurious Emissions	s(Conduction)					
Fo	or the requirements,	☑ - Applicable [☐ - Tes☐ - Not Applicable	eted. ☑ - Not	tested by	applicant	reque	st.]
7.8	AC Powerline Cond	ucted Emission					
Fo	or the requirements,	☑ - Applicable [□ - Tes □ - Not Applicable	eted. ☑ - Not	tested by	applicant	reque	st.]
7.9	Radiated Emission						
Fo	or the requirements,	☑ - Applicable [☑ - Tes ☐ - Not Applicable	eted. 🗆 - Not	tested by	applicant	reque	st.]
7.9.1	Test Results						
Fo	or the standard,	☑ - Passed □ - Faile	ed □ - Not	judged			
M	in. Limit Margin (Av	erage)	9.8	_ dB	at <u>239</u>	90.0	MHz
Uı	ncertainty of Measur	ement Results	9 kHz	z – 30 MH	z <u>±</u>	3.0	dB(2σ)
	·		$30 \mathrm{MHz}$	– 300 MH		3.8	dB(2σ)
			$300~\mathrm{MHz}$ $-$	1000 MH	z <u>±</u>	4.8	dB(2σ)
				Hz - 6 GH		4.7	_ dB(2σ)
				z – 18 GH		4.6	_ dB(2σ)
			18 GH	z – 40 GH	z <u>±</u>	5.5	_ dB(2o)
D,	emarks: IEEE802.1	1n mode, Y axis position.					

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 18 of 54

7.9.2 Test Instruments

Anechoic Chamber A2								
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2018/02/28				
Loop Antenna	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2017/07/21				
RF Cable	RF Cable RG213/U		HUBER+SUHNER	2017/07/21				
Pre-Amplifier	re-Amplifier 310N 304573 (A-17)		SONOMA	2018/04/02				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2017/05/18				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2017/05/18				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2018/04/02				
Pre-Amplifier	TPA0118-36	1010 (A-37)	TOYO	2018/05/14				
Horn Antenna	91888-2	562 (C-41-1)	EATON	2017/06/12				
Horn Antenna	91889-2	568 (C-41-2)	EATON	2017/06/12				
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2017/06/13				
Horn Antenna	3160-05	9902-1061 (C-56)	EMCO	2017/06/13				
Horn Antenna	3160-06 9712-1045 (C-57) EMCO		EMCO	2017/06/13				
Horn Antenna	3160-07	9902-1113 (C-58)	EMCO	2017/06/13				
Horn Antenna	9904-1099		EMCO	2017/06/13				
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2017/06/15				
Attenuator	54A-10	W5713 (D-29)	Weinschel	2017/06/13				
Attenuator	2-10	BA6214 (D-79)	Weinschel	2017/06/15				
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/08/02				
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2017/11/21				
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2018/01/10				
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2018/01/10				

NOTE: The calibration interval of the above test instruments is 12 months.

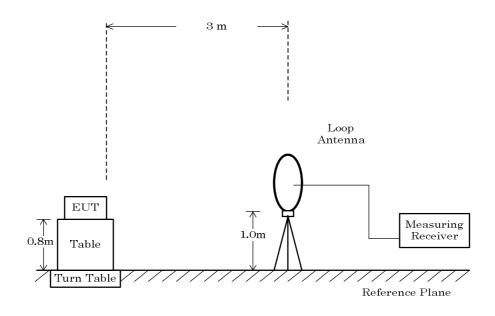
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 19 of 54

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz – 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.


The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

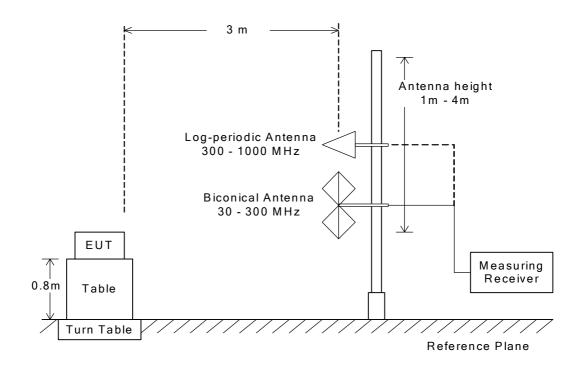
According to KDB 414788, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 20 of 54


7.9.3.2 Radiated Emission 30 MHz - 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 21 of 54

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

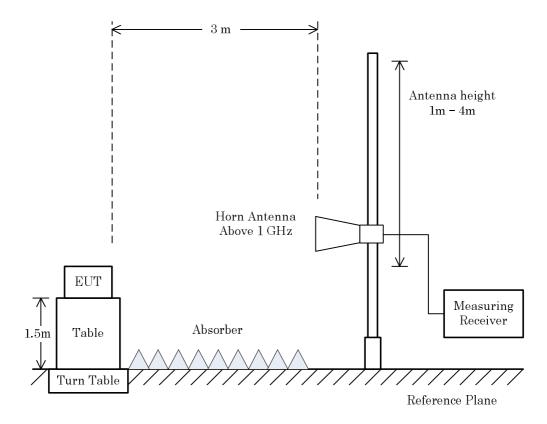
This configurations was used for the final tests.

The setting of the measuring instruments are shown as follows:

Type	Peak	Average	
Detector Function	Peak	Peak	
Res. Bandwidth	1 MHz	1 MHz	
Video Bandwidth	3 MHz	≥ 1/T *1)	
Video Filtering	Linear Voltage	Linear Voltage	
Sweep Time	AUTO	AUTO	
Trace	Max Hold	Max Hold	

Note: 1. T: Minimum transmission duration

Average (VBW) Setting:


Mode	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
Mode	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz)
IEEE802.11b(11Mbps)	0.02	0.94	97.9%	0.92	1.09	2.00
IEEE802.11g(18Mbps)	0.02	0.49	95.9%	0.47	2.13	3.00
IEEE802.11n(52Mbps(MCS5))	0.02	0.21	90.5%	0.19	5.26	10.00
Bluetooth LE	0.23	0.63	63.5%	0.40	2.50	3.00

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 22 of 54

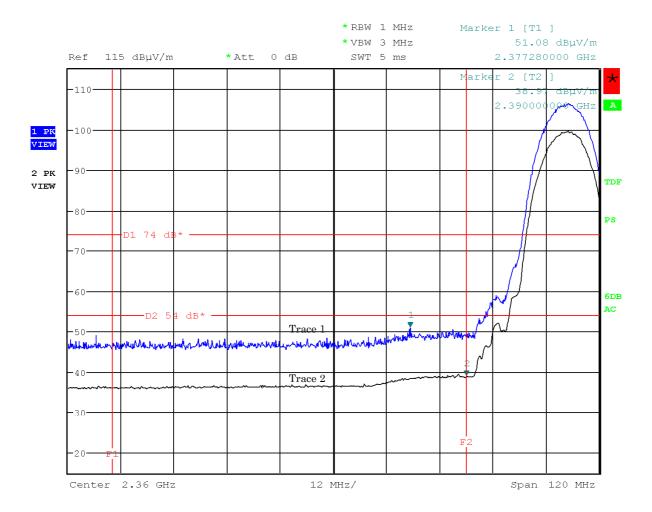
- Side View -

NOTE

When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 23 of 54

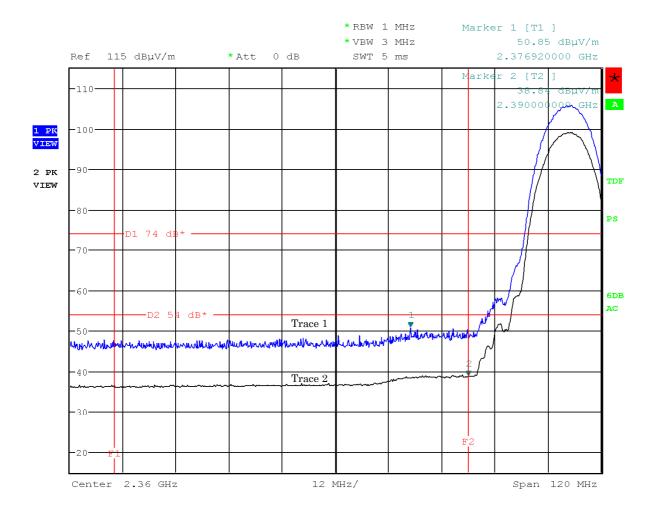

7.9.4 Test Data

7.9.4.1 Band-edge Compliance

<u>Test Date :May 19, 2017</u> <u>Temp.:23°C, Humi:37%</u>

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

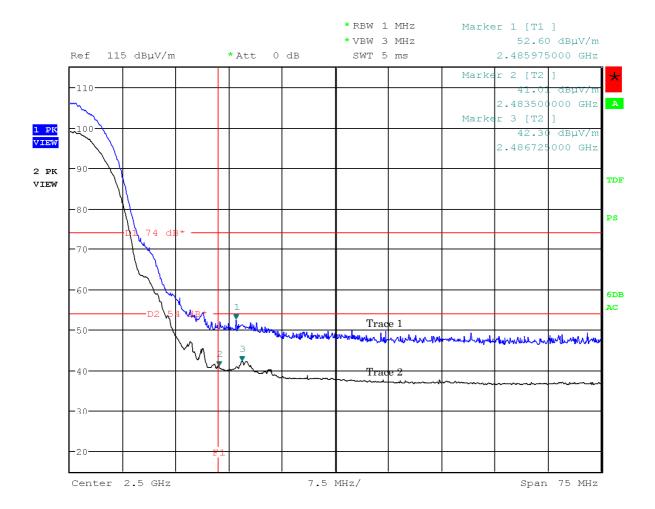


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 24 of 54

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

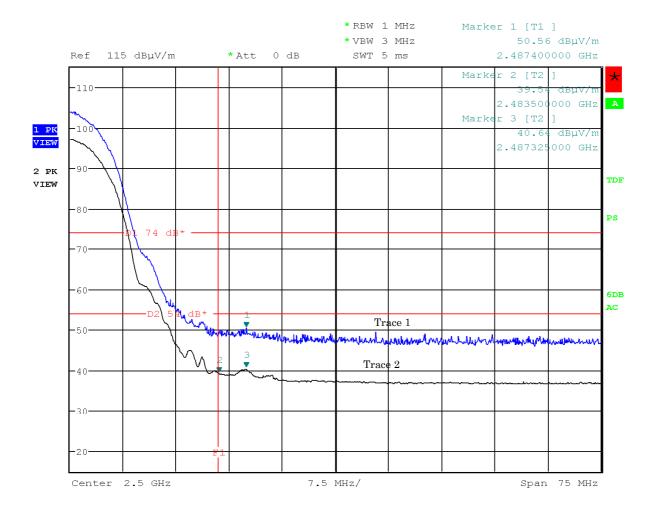


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 25 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

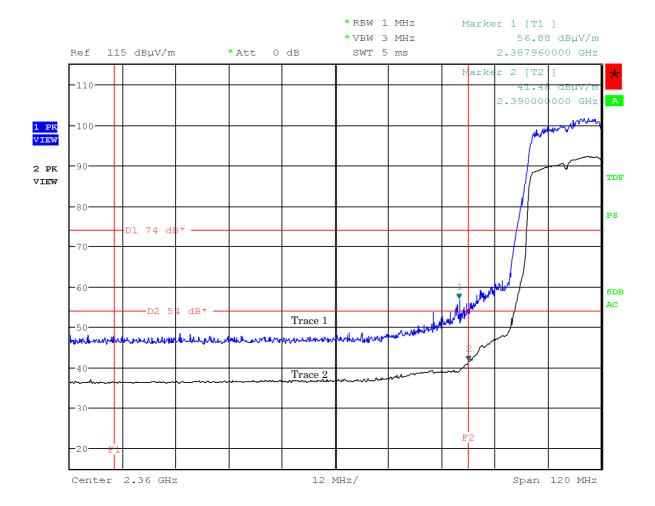


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 26 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

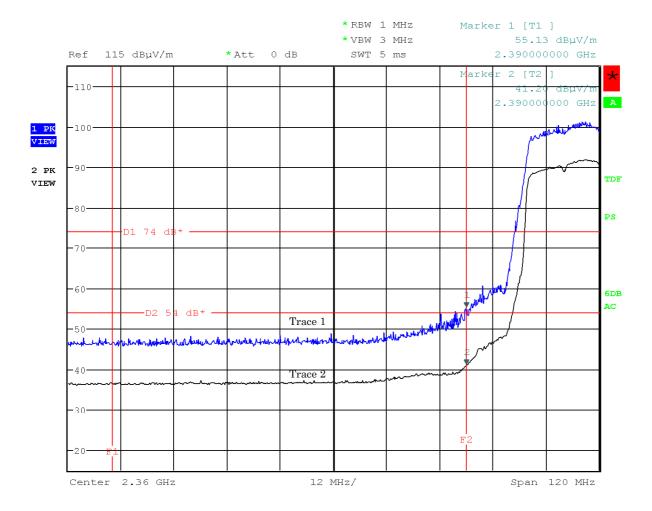


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 27 of 54

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

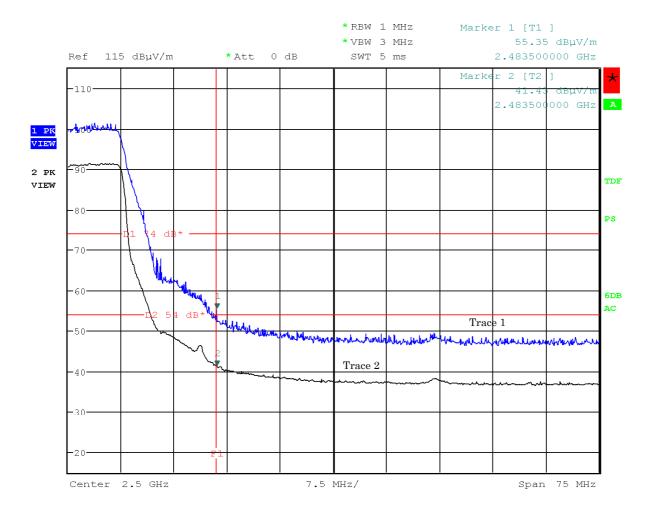


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 28 of 54

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

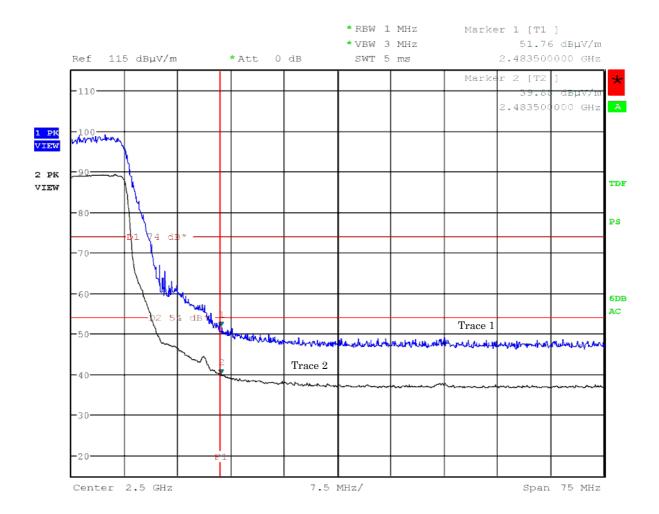


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 29 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

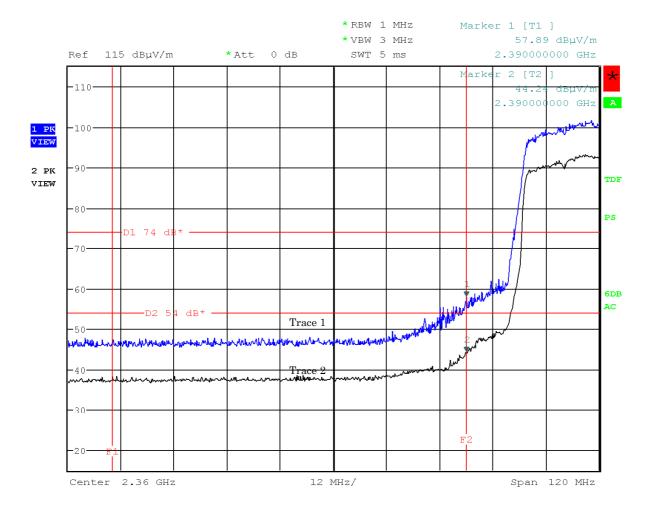


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 30 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

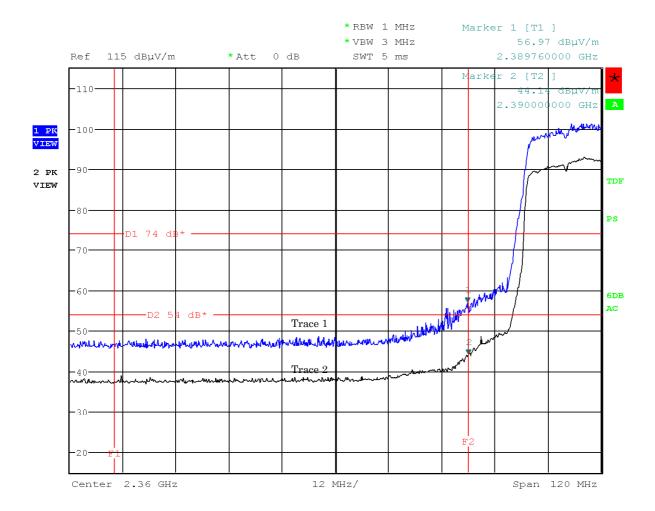


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 31 of 54

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n)

Antenna Polarization: Horizontal

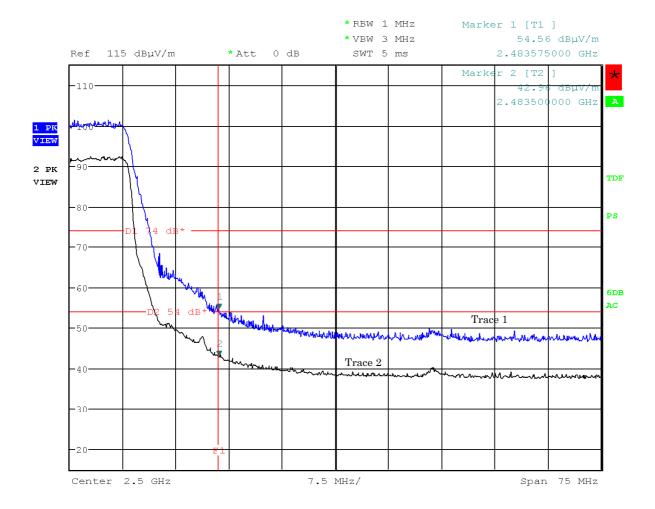


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 32 of 54

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n)

Antenna Polarization: Vertical

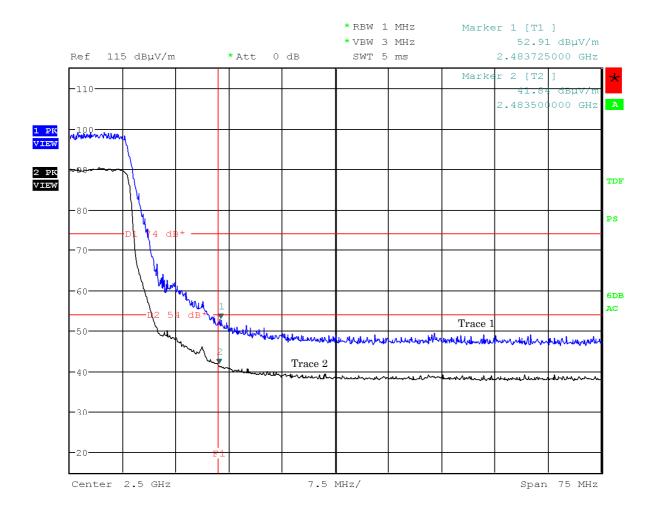


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 33 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n)

Antenna Polarization: Horizontal

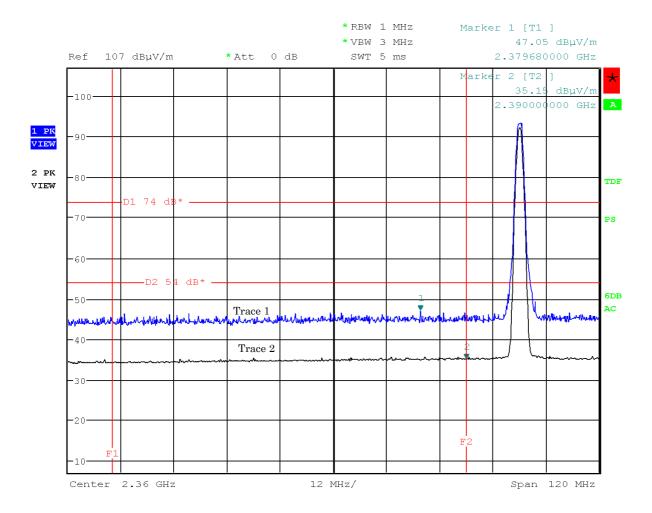


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 34 of 54

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n)

Antenna Polarization: Vertical

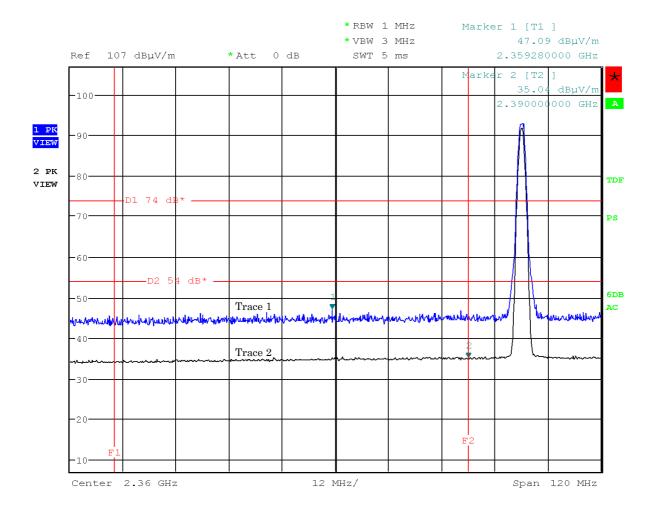

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 35 of 54

<u>Test Date :May 22, 2017</u> <u>Temp.:25°C, Humi:49%</u>

Mode of EUT: Bluetooth Low Energy, Hopping off (0ch: 2402 MHz)

Antenna Polarization: Horizontal



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 36 of 54

Mode of EUT : Bluetooth Low Energy, Hopping off (0ch: $2402\ \mathrm{MHz})$

Antenna Polarization: Vertical



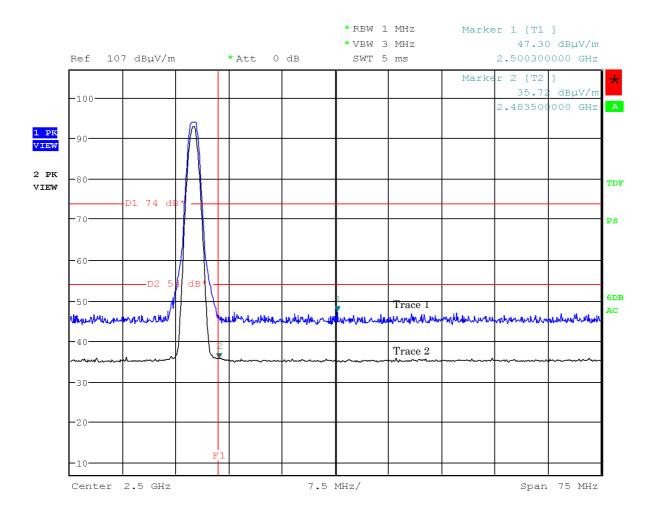
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 37 of 54

Mode of EUT: Bluetooth Low Energy, Hopping off (39ch: 2480 MHz)

Antenna Polarization: Horizontal

Note: The trace 1 is Peak . The trace 2 is Average.



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 38 of 54

Mode of EUT : Bluetooth Low Energy, Hopping off (39ch: 2480 MHz)

Antenna Polarization: Vertical

Note: The trace 1 is Peak . The trace 2 is Average.

Standard : CFR 47 FCC Rules and Regulations Part 15

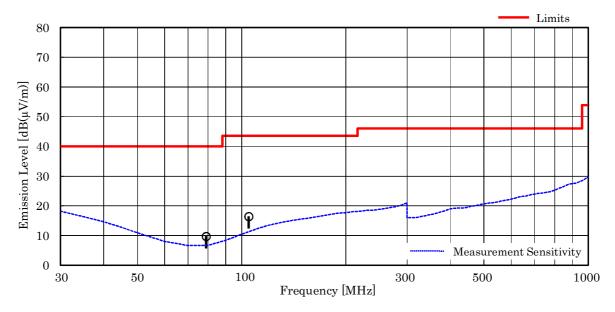
Page 39 of 54

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

<u>Test Date :May 18, 2017</u> <u>Temp.:23°C, Humi:43%</u>

Mode of EUT: WLAN/Bluetooth LE

Results: No spurious emissions in the range 20dB below the limit.


7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)

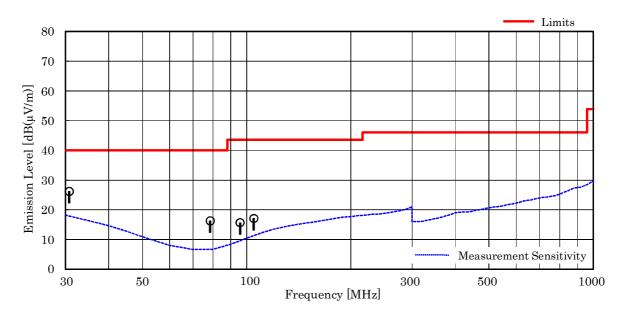
Mode of EUT: (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz/IEEE802.11b, IEEE802.11g and IEEE802.11n) has been listed.

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	Results [dB(µV/m)]	Margin [dB]	Remarks
78.99	6.5	-26.9	30.1	40.0	9.7	+30.3	_
104.82	11.0	-26.6	32.0	43.5	16.4	+27.1	_

- 1. Test Distance: 3 m
- 2. The spectrum was checked from $30~\mathrm{MHz}$ to $1000~\mathrm{MHz}$.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 104.82 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 11.0 + (-26.6) + 32.0 = 16.4 dB(μ V/m) Antenna Height: 177 cm, Turntable Angle: 241 °
- 7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 40 of 54

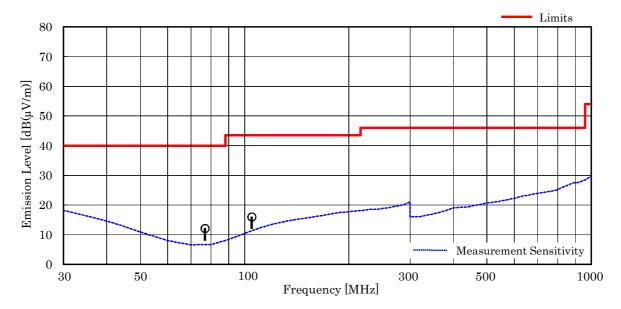
Test Date: May 18, 2017 Temp.: 23 °C, Humi: 43 %

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
30.75	18.5	-27.6	35.3	40.0	26.2	+13.8	
78.46	6.5	-26.9	36.7	40.0	16.3	+23.7	
95.66	9.3	-26.7	33.1	43.5	15.7	+27.8	_
104.82	11.0	-26.6	32.7	43.5	17.1	+26.4	_

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".5. The symbol of ">" means "more than".
- 6. Calculated result at $30.75~\mathrm{MHz}$, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 18.5 + (-27.6) + 35.3 = 26.2 dB(μV/m) Antenna Height : 100 cm, Turntable Angle : 28 °
- 7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 41 of 54

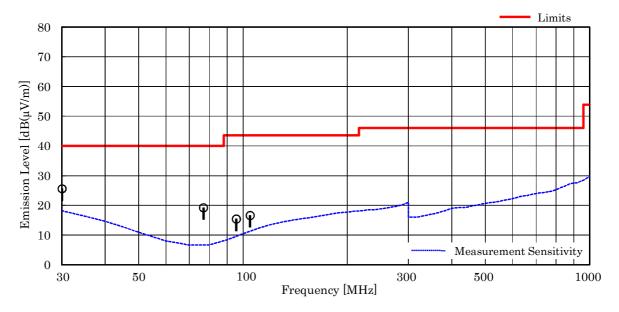
Mode of EUT: Bluetooth Low Energy

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
76.82	6.4	-26.9	32.6	40.0	12.1	+27.9	_
104.82	11.0	-26.6	31.6	43.5	16.0	+27.5	_

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 104.82 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 11.0 + (-26.6) + 31.6 = 16.0 dB(μ V/m) Antenna Height: 174 cm, Turntable Angle: 235 °
- 7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 42 of 54

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
30.03	18.8	-27.6	34.4	40.0	25.6	+14.4	
76.84	6.4	-26.9	39.7	40.0	19.2	+20.8	_
95.58	9.3	-26.7	32.8	43.5	15.4	+28.1	_
104.82	11.0	-26.6	32.2	43.5	16.6	+26.9	_

- 1. Test Distance: 3 m
- 2. The spectrum was checked from $30\ \mathrm{MHz}$ to $1000\ \mathrm{MHz}.$
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 30.03 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 18.8 + (-27.6) + 34.4 = 25.6 dB(μ V/m) Antenna Height : 100 cm, Turntable Angle : 346 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 43 of 54

7.9.4.4 Other Spurious Emission (Above 1000MHz)

Mode of EUT: IEEE802.11b

<u>Test Date</u>: May 22, 2017 <u>Temp.</u>: 25 °C, Humi: 49 %

Frequency	Antenna Factor	Corr. Factor		Meter Rea	r Readings [dB(μV)] l Vertical		Limits [dB(µV/m)]			esults (µV/m)]	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE	[uD]	
Test condition: Tx Low Ch												
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.4	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 46.0	< 36.0	> +18.0	
14472.0	37.0	-26.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.9	< 38.9	> +15.1	
19296.0	40.5	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	

Calculated result at 4824.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna Factor & = & 27.0 & dB(1/m) \\ Corr. Factor & = & -15.8 & dB \\ +) \underline{Meter Reading} & = & <28.0 & dB(\mu V) \\ \hline Result & = & <39.2 & dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <39.2 = >14.8 (dB)

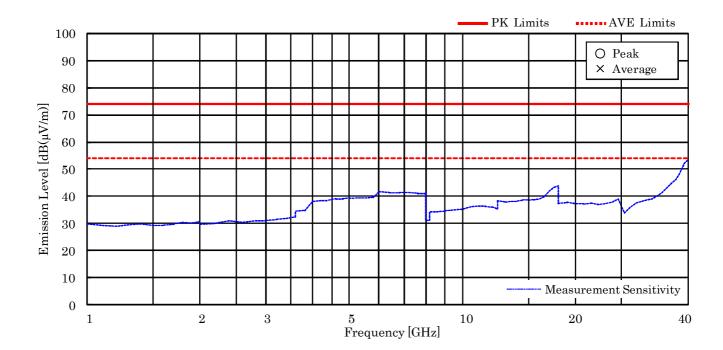
NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from $1~\mathrm{GHz}$ to $25~\mathrm{GHz}$ ($10\mathrm{th}$ harmonic of the highest fundamental frequency).
- $3. \ \mbox{The correction factor is shown as follows:}$

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. · Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

 $Corr.\ Factor\ [dB] = Cable\ Loss + 10dB\ Pad\ Att.\ -\ Pre-Amp.\ Gain\ [dB]\ (7.6-18.0GHz)$

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)


- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 44 of 54

Mode of EUT : IEEE802.11b TX Low ch (Horizontal/Vertical)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 45 of 54

Mode of EUT: IEEE802.11g

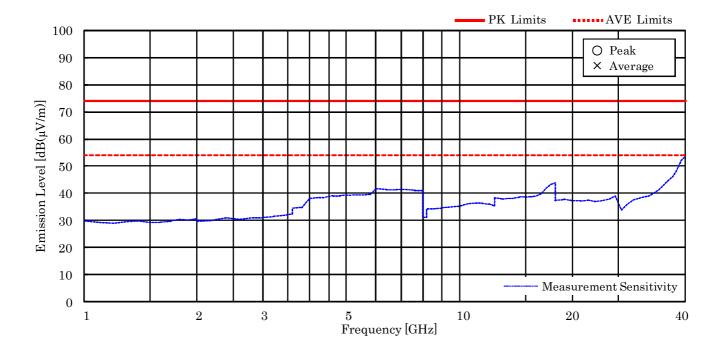
<u>Test Date</u>: <u>May 22, 2017</u> <u>Temp.</u>: 25 °C, Humi: 49 %

Frequency	Antenna Factor	Corr. Factor		Meter Read zontal	Ieter Readings [dB(μV)] ontal Vertical		Limits [dB(µV/m)]		Results [dB(µV/m)]		Margin [dB]	Remarks
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition: TX Middle Ch												
4874.0	27.0	-15.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.1	< 39.1	> +14.9	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	_
19496.0	40.5	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	

Calculated result at 7311.0 MHz, as the worst point shown on underline:

Antenna Factor = 29.9 dB(1/m) Corr. Factor = -16.1 dB +) Meter Reading = <28.0 dB(μ V) Result = <41.8 dB(μ V/m)

Minimum Margin: 54.0 - <41.8 = >12.2 (dB)


- 1. Test Distance: 3 m
- 2. The spectrum was checked from $1~\mathrm{GHz}$ to $25~\mathrm{GHz}$ ($10\mathrm{th}$ harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:
 - Corr. Factor [dB] = Cable Loss + 20dB Pad Att. Pre-Amp. Gain [dB] (1.0 7.6GHz)
 - Corr. Factor [dB] = Cable Loss + 10dB Pad Att. Pre-Amp. Gain [dB] (7.6 18.0GHz)
 - Corr. Factor [dB] = Cable Loss Pre-Amp. Gain [dB] (over 18 GHz)
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 46 of 54

Mode of EUT: IEEE802.11g TX Middle ch (Horizontal/Vertical)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 47 of 54

Mode of EUT: IEEE802.11n

<u>Test Date: May 22, 2017</u> <u>Temp.: 25 °C, Humi: 49 %</u>

Frequency	Antenna	Corr.		Meter Read		lings [dB(μV)]		Limits		Results		Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	V/m)]	[dB(μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition: TX High Ch												
4924.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7386.0	29.8	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.7	< 41.7	> +12.3	
12310.0	33.3	-25.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.4	< 35.4	> +18.6	
19696.0	40.5	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
22158.0	40.6	-43.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.2	< 37.2	> +16.8	

Calculated result at 7386.0 MHz, as the worst point shown on underline:

 $\begin{array}{cccc} \text{Antenna Factor} & = & 29.8 \text{ dB}(1/\text{m}) \\ \text{Corr. Factor} & = & -16.1 \text{ dB} \\ +) & \underline{\text{Meter Reading}} & = & <28.0 \text{ dB}(\mu\text{V}) \\ \hline \text{Result} & = & <41.7 \text{ dB}(\mu\text{V/m}) \end{array}$

Minimum Margin: 54.0 - <41.7 = >12.3 (dB)

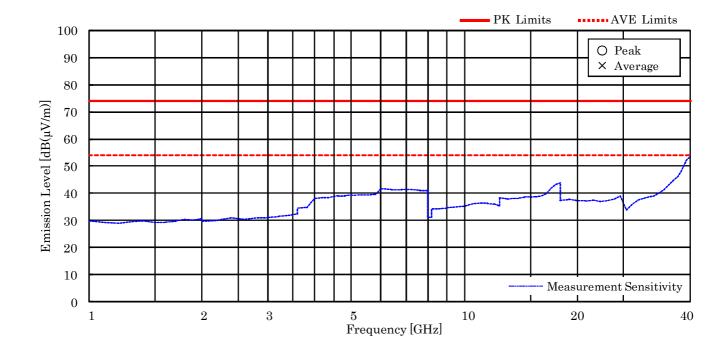
NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)


- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK : Peak $\,$ / AVE : Average

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 48 of 54

Mode of EUT: IEEE802.11n TX High ch (Horizontal/Vertical)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 49 of 54

Mode of EUT: Bluetooth Low Energy

<u>Test Date: May 22, 2017</u> <u>Temp.: 25 °C</u>, Humi: 49 %

Frequency	Antenna	Corr.		Meter Readings [dB(μV)]				Limits		Results		Remarks
	Factor	Factor	Hor	izontal	Ve	Ve rtical		$[dB(\mu V/m)]$		$[dB(\mu V/m)]$		
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	on: Tx Low	Ch										
4804.0	27.1	-15.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12010.0	33.5	-25.3	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 46.2	< 36.2	> +17.8	
19216.0	40.5	-43.1	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	

Calculated result at 4804.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna \ Factor & = & 27.1 \ dB(1/m) \\ Corr. \ Factor & = & -15.9 \ dB \\ +) \ \underline{Meter \ Reading} & = & <28.0 \ dB(\mu V) \\ \hline Result & = & <39.2 \ dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <39.2 = >14.8 (dB)

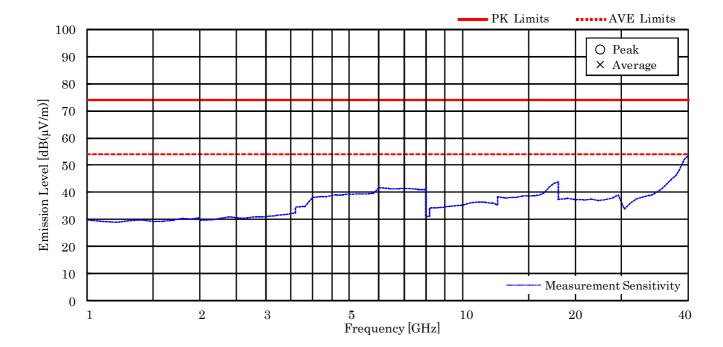
NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. · Pre-Amp. Gain [dB] (7.6 · 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)


- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK : Peak / AVE : Average

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 50 of 54

Mode of EUT : Bluetooth Low Energy TX Low ch (Horizontal/Vertical)

