

TEST REPORT

Applicant:Beijing Orion Star Technology Co., Ltd.Address:Room A-2570, 2nd Floor No. 30 Shixing Street, Shijingshan
District, Beijing China.

Product Name: Dispatch Center

FCC ID: 2A3BD-OSADF02R

47 CFR Part 15, Subpart E(15.407) ANSI C63.10-2013 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

Report Number: 2402W68103E-RF-00D

Report Date: 2024/10/9

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Keeho Ywn

Reviewed By: Pedro Yun Title: Project Engineer

fron Cas

Approved By: Ivan Cao Title: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

> Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \bigstar . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

CONTENTS

DOCUMENT REVISION HISTORY	
1. GENERAL INFORMATION ······	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 ACCESSORY INFORMATION ·····	5
1.3 ANTENNA INFORMATION DETAIL	5
1.4 EQUIPMENT MODIFICATIONS ·····	6
2. SUMMARY OF TEST RESULTS ······	7
3. DESCRIPTION OF TEST CONFIGURATION	
3.1 OPERATION FREQUENCY DETAIL ·····	
3.2 EUT OPERATION CONDITION ·····	
3.3 SUPPORT EQUIPMENT LIST AND DETAILS ·····	
3.4 SUPPORT CABLE LIST AND DETAILS	
3.5 BLOCK DIAGRAM OF TEST SETUP	
3.6 TEST FACILITY	
3.7 MEASUREMENT UNCERTAINTY ·····	
4. REQUIREMENTS AND TEST PROCEDURES	
4.1 AC LINE CONDUCTED EMISSIONS	
4.1.1 Applicable Standard4.1.2 EUT Setup	
4.1.3 EMI Test Receiver Setup 4.1.4 Test Procedure	
4.1.4 Test Procedure 4.1.5 Corrected Amplitude & Margin Calculation	
4.1.6 Test Result	
4.2 RADIATION SPURIOUS EMISSIONS	
4.2.1 Applicable Standard	
4.2.2 EUT Setup	
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup 4.2.4 Test Procedure	
4.2.5 Corrected Result & Margin Calculation	
4.2.6 Test Result ····································	
4.3.1 Applicable Standard	
4.3.2 EUT Setup	
4.3.3 Test Procedure	
4.3.4 Test Result	
4.4 MAXIMUM CONDUCTED OUTPUT POWER ······	
4.4.1 Applicable Standard ····· 4.4.2 EUT Setup·····	
4.4.2 EU1 Setup 4.4.3 Test Procedure	
4.4.4 Test Result	
4.5 MAXIMUM POWER SPECTRAL DENSITY ·····	
4.5.1 Applicable Standard	
Report Template Version: FCC-WiFi5- Client -V1.2	Page 2 of 111

	4.5.2 EUT Setup
	4.5.3 Test Procedure 24
	4.5.4 Test Result
	4.6 DUTY CYCLE
	4.6.1 EUT Setup
	4.6.2 Test Procedure 26
	4.6.3 Judgment
	4.7 ANTENNA REQUIREMENT ······ 27
	4.7.1 Applicable Standard ····· 27
	4.7.2 Judgment 27
5.	. Test DATA AND RESULTS ······ 28
	5.1 AC LINE CONDUCTED EMISSIONS 28
	5.2 RADIATION SPURIOUS EMISSIONS ····································
	5.3 EMISSION BANDWIDTH ······ 82
	5.4 99% OCCUPIED BANDWIDTH 90
	5.5 MAXIMUM CONDUCTED OUTPUT POWER ······ 98
	5.6 POWER SPECTRAL DENSITY ······100
	5.7 DUTY CYCLE
E	XHIBIT A - EUT PHOTOGRAPHS ······110
	XHIBIT B - TEST SETUP PHOTOGRAPHS ······111
-	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402W68103E-RF-00D	Original Report	2024/10/9

1. GENERAL INFORMATION

EUT Name:	Dispatch Center
EUT Model:	OS-A-DF02R
Operation Frequency:	5150-5250MHz: 5180-5240 MHz(802.11a/n ht20) 5190-5230 MHz(802.11n ht40) 5250-5350MHz: 5260-5320 MHz (802.11a/n ht20) 5270-5310 MHz(802.11n ht40) 5470-5725MHz: 5500-5720 MHz (802.11a/n ht20) 5510-5710 MHz(802.11n ht40) 5725-5850MHz: 5745-5825 MHz (802.11a/n ht20) 5755-5795 MHz(802.11n ht40)
Maximum Average Conducted Output Power:	5150-5250MHz:11.85dBm 5250-5350MHz:11.68dBm 5350-5470MHz:12.22dBm 5725-5850MHz:12.84dBm
Modulation Type:	802.11a/n: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	DC 12V from Adapter
Serial Number:	2QWQ-1 (For RF Conducted Test) 2QWQ-3 (For AC Line Conducted Emissions and Radiated Spurious Emission Test)
EUT Received Date:	2024/8/30
EUT Received Status:	Good

1.1 Product Description for Equipment under Test (EUT)

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter	Shenzhen Keyu Power Supply Technology Co.,Ltd	KA24D- 1202000US	Input:100-240Vac~50/60Hz 0.65A Max Output:12Vdc,2000mA

1.3 Antenna Information Detail

Antenna Manufacturer	Antenna Type	Frequency Range	Antenna Gain			
			5.15~5.25GHz	4.16dBi		
Huizhou Speed Wireless	Dinala antanna	50	5.25~5.35 GHz	4.16dBi		
technology Co.,Ltd.	Dipole antenna 50	50	5.47~5.725 GHz	4.32dBi		
			5.725~5.85 GHz	4.23dBi		
The design of compliance with §15.203:						
Unit uses a p	Unit uses a permanently attached antenna.					
Unit uses a u	Unit uses a unique coupling to the intentional radiator.					
	Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.					

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407 (a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant

Note 1: For AC line conducted emissions, the maximum output power channel was tested. Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz and 18-40GHz, the maximum output power channel was tested.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20:

5150-5250MHz Band		5250-5350	MHz Band	MHz Band5470-5725 MHz Ba		5725-5850MHz Band	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805
/	/	/	/	116	5580	165	5825
/	/	/	/	120	5600	/	/
/	/	/	/	124	5620	/	/
/	/	/	/	128	5640	/	/
/	/	/	/	132	5660	/	/
/	/	/	/	136	5680	/	/
/	/	/	/	140	5700	/	/
/	/	/	/	144	5720	/	/

For 802.11n ht40:

5150-5250MHz		5250-53	50 MHz	5470-5725 MHz		5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
/	/	/	/	118	5590	/	/
/	/	/	/	126	5630	/	/
/	/	/	/	134	5670	/	/
/	/	/	/	142	5710	/	/

Note: Additional channels cross the band 5470-5725MHz and 5725-5850 MHz, Conducted output power/ Power Spectral Density/bandwidth test with the additional channel to compliance with stricter limit of the two bands(5470-5725MHz more stricter).

3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The EUT configuration is below:

EUT Exercise Software: CMD.exe

The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer ▲ :

5150-5250 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5180	6Mbps	15.5
802.11a	Middle	5200	6Mbps	15.5
	Highest	5240	6Mbps	15.5
	Lowest	5180	MCS0	14.5
802.11n ht20	Middle	5200	MCS0	14.5
	Highest	5240	MCS0	14.5
902.11 m h t 40	Lowest	5190	MCS0	13.5
802.11n ht40	Highest	5230	MCS0	13.5

5250-5350 MHz Band:

Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5260	6Mbps	15.5
802.11a	Middle	5280	6Mbps	15.5
	Highest	5320	6Mbps	15.5
	Lowest	5260	MCS0	14.5
802.11n ht20	Middle	5280	MCS0	14.5
	Highest	5320	MCS0	14.5
802.11n ht40	Lowest	5270	MCS0	13.5
002.111111140	Highest	5310	MCS0	13.5

5470-5725 MHz Band:

Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5500	6Mbps	20
802.11a	Middle	5580	6Mbps	20
802.11a	Highest	5700	6Mbps	20
	Cross	Frequency (MHz) Data rate Pov est 5500 6Mbps 900 ile 5580 6Mbps 900 est 5700 6Mbps 900 est 5700 6Mbps 900 est 5700 6Mbps 900 est 5700 MCS0 900 est 5500 MCS0 900 est 5700 MCS0 900 est 5710 MCS0 900 est 5510 MCS0 900 est 5550 MCS0 900 est 5570 MCS0 900 est 5510 MCS0 900 est 5670 MCS0 900 est 5670 MCS0 900	20	
	Lowest	5500	MCS0	20
802.11n ht20	lest ChannelsFrequency (MHz)Data rateLowest55006MbpsMiddle55806MbpsHighest57006MbpsCross57206MbpsLowest5500MCS0Middle5580MCS0Middle5580MCS0Middle5510MCS0Lowest5510MCS0Lowest5510MCS0Highest5500MCS0Lowest5510MCS0Highest5500MCS0Highest5500MCS0Middle5550MCS0Highest5670MCS0	20		
802.11h ht20	Highest	5700	MCS0	20
	Cross	5720	MCS0	20
	Lowest	5510	MCS0	18
802.11n ht40	Middle	5550	MCS0	18
602.11h ht40	Highest	5670	MCS0	18
	Cross	5710	MCS0	18

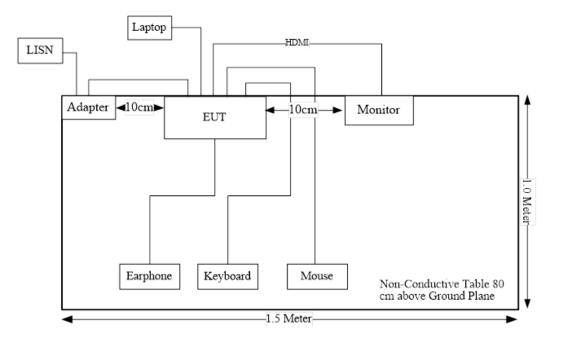
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5745	6Mbps	22
802.11a	Middle	5785	6Mbps	22
	Highest	5825	6Mbps	22
	Lowest	5745	MCS0	22
802.11n ht20	Middle	5785	MCS0	22
	Highest	5825	MCS0	22
802.11n ht40	Lowest	5755	MCS0	21
	Highest	5795	MCS0	21

Note:

1. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

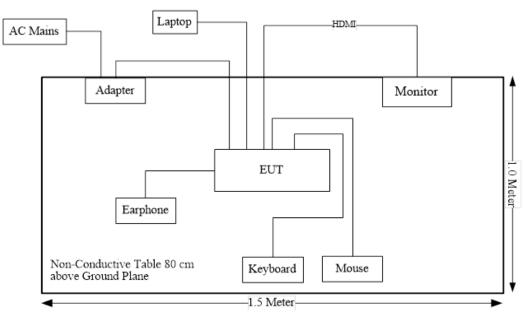
3.3 Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
PHILIPS	Mouse	SPK7214	M214BQ210411117
PHILIPS	Keyboard	SPK6234	K234210510744
CLC	Earphone	Blackview5.0	EMZBEP21103001W
Lenovo	Laptop	E450	PF-OMR8KV
DELL	Monitor	P2721Q	CN-0XJ46C-FCC00-135-
DELL	Monitor P2/21Q A		A97L-A03

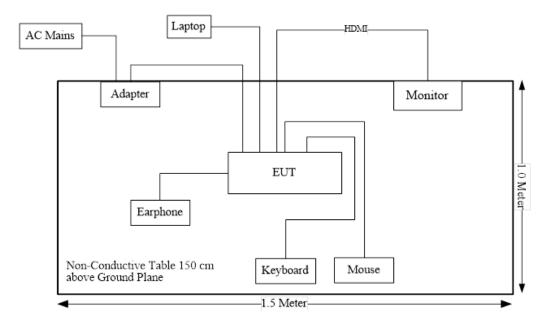

3.4 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
DC Cable	No	No	1	Adapter	EUT
RJ45 Cable	No	No	10	Laptop	EUT
HDMI Cable	Yes	Yes	1.2	Monitor	EUT
Mouse Cable	No	No	1.5	Mouse	EUT
Keyboard Cable	No	No	1.5	Keyboard	EUT
Earphone Cable	No	No	1.5	Earphone	EUT

Report No.: 2402W68103E-RF-00D


3.5 Block Diagram of Test Setup

AC line conducted emissions:


Spurious Emissions: Below 1GHz:

Report Template Version: FCC-WiFi5- Client -V1.2

Above 1GHz:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,
Unwanted Emissions, radiated	18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

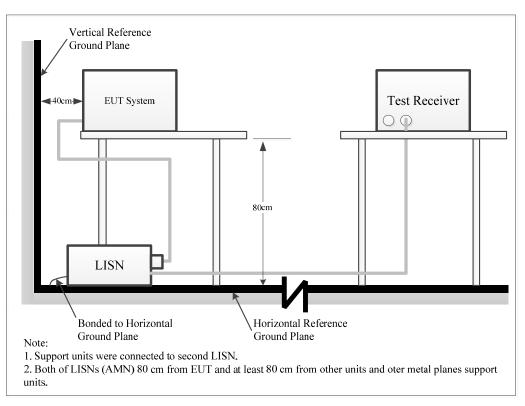
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

4.1.6 Test Result

Please refer to section 5.1.

4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard

FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

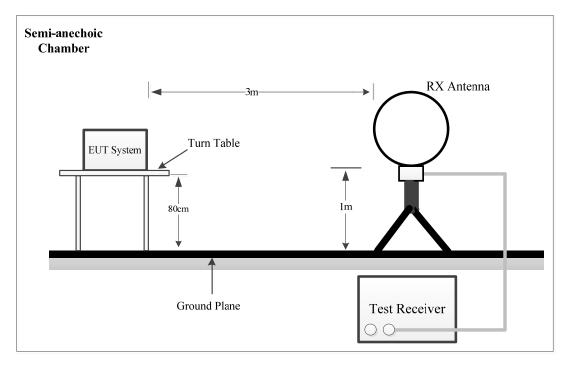
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band:

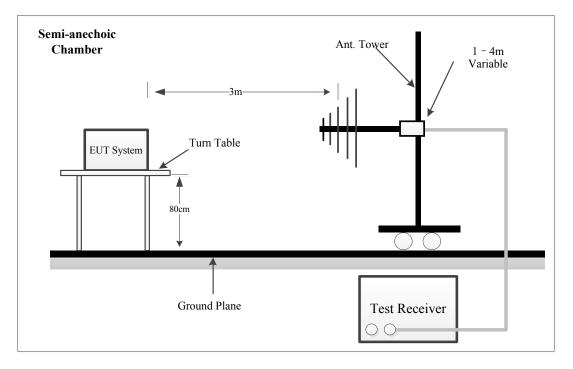
(i) All emissions shall be limited to a level of $_{-27}$ dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in \S 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

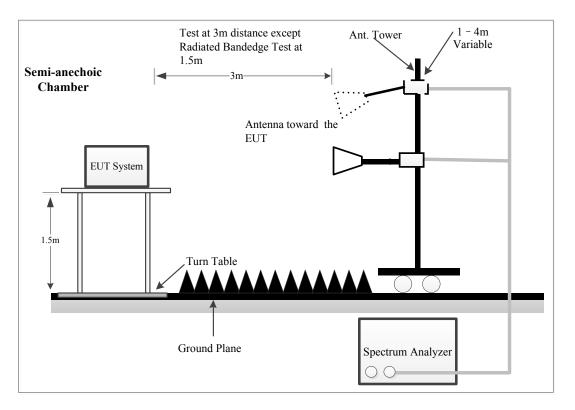
(8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.


(9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207. (10) The provisions of § 15.205 apply to intentional radiators operating under this section.

(11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.


(c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

4.2.2 EUT Setup


9kHz~30MHz:

30MHz~1GHz:

Above 1GHz:

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	Measurement	RBW	Video B/W	IF B/W
9 kHz – 150 kHz	QP/AV	200 Hz	1 kHz	200 Hz
150 kHz – 30 MHz	QP/AV	9 kHz	30 kHz	9 kHz
30 MHz – 1000 MHz	PK	100 kHz	300 kHz	/
50 MITZ - 1000 MITZ	QP	/	/	120 kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
A	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	≥1/T

Note: T is minimum transmission duration

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an QP measurement.

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

For Radiated Bandedge test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.0dB

4.2.5 Corrected Result & Margin Calculation

The basic equation except radiated bandedge test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

Result = Reading + Factor

For Radiated Bandedge test:

Factor = Antenna Factor + Cable Loss-Distance extrapolation Factor

Result = Reading + Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

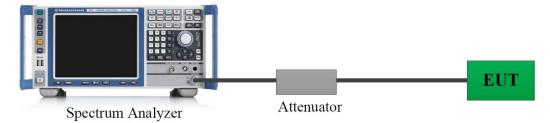
Margin = Limit – Result

4.2.6 Test Result

Please refer to section 5.2.

4.3 Emission Bandwidth

4.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = peak.

d) Trace mode = max hold

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

Report Template Version: FCC-WiFi5- Client -V1.2

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer \blacktriangle .

4.4.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.4.4 Test Result

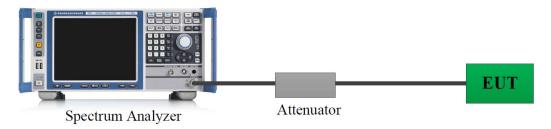
Please refer to section 5.5.

4.5 Maximum Power Spectral Density

4.5.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer \blacktriangle .

4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

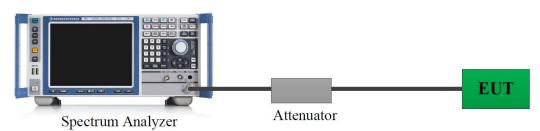
Duty cycle ≥98%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

4.5.4 Test Result

Please refer to section 5.6.

4.6 Duty Cycle

4.6.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.6.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7$ µs.)

4.6.3 Judgment

Report Only. Please refer to section 5.7.

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.7.2 Judgment

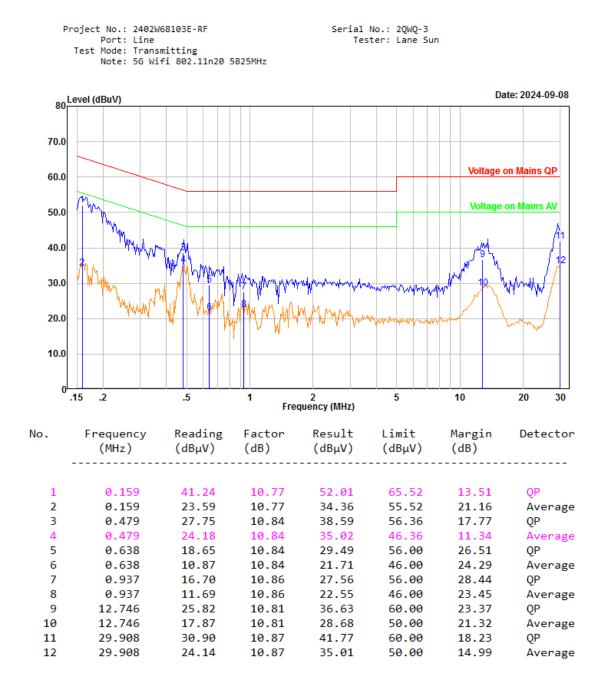
Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. Test DATA AND RESULTS

5.1 AC Line Conducted Emissions

Serial Number:	2QWQ-3	Test Date:	2024/9/8
Test Site:	CE	Test Mode:	Transmitting
Tester:	Lane Sun	Test Result:	Pass

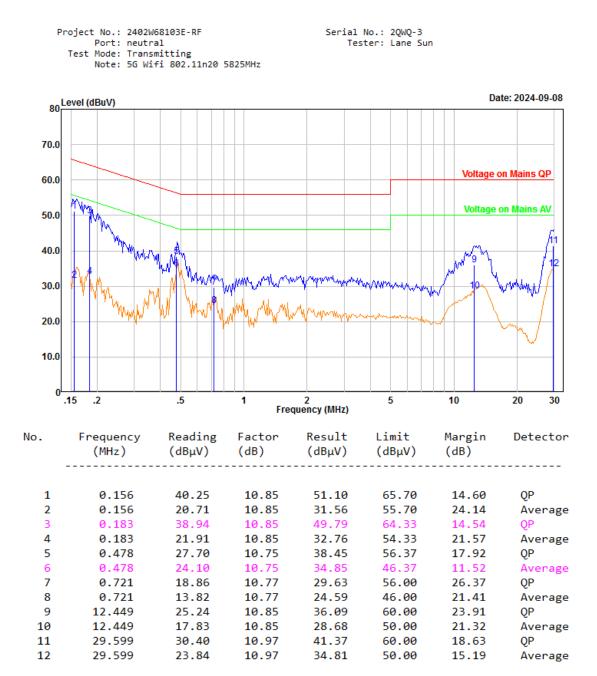
Environmental Conditions:


Temperature: (°C) 2:	25.5	Relative Humidity: (%)	63	ATM Pressure: (kPa)	100.3
-------------------------	------	------------------------------	----	------------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2024/9/5	2025/9/4
R&S	EMI Test Receiver	ESCI	100035	2024/8/18	2025/8/17
Audix	Test Software	E3	191218 V9	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Report No.: 2402W68103E-RF-00D

Report Template Version: FCC-WiFi5- Client -V1.2

Page 29 of 111

Report No.: 2402W68103E-RF-00D

5.2 Radiation Spurious Emissions

1) 9kHz - 1GHz

Serial Number:	2QWQ-3	Test Date:	2024/9/26
Test Site:	Chamber A	Test Mode:	Transmitting
Tester:	Alan Xie	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	25.7	Relative Humidity: (%)	44	ATM Pressure: (kPa)	100.6	

Test Equipment List and Details:

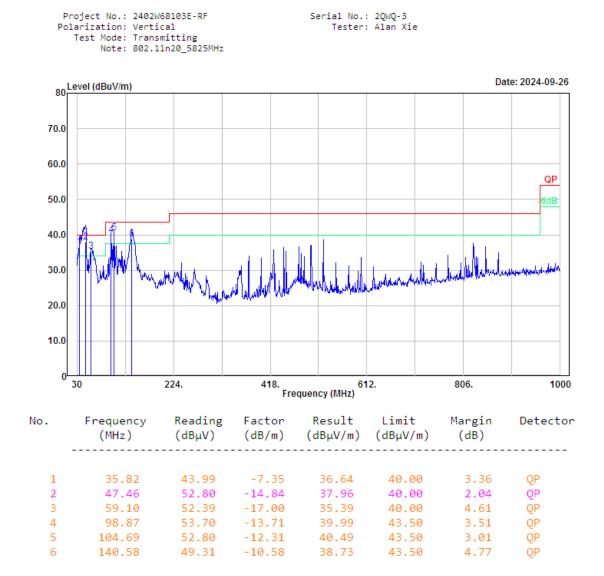
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/25	2026/10/24
Sunol Sciences	Hybrid Antenna	JB3	A060611-3	2024/1/12	2027/1/11
Wilson	Coaxial Attenuator	859936	F-08-EM014	2024/1/12	2027/1/11
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2024/7/1	2025/6/30
Sonoma	Amplifier	310N	372193	2024/8/16	2025/8/15
R&S	EMI Test Receiver	ESR3	102453	2024/8/26	2025/8/25
Audix	Test Software	E3	191218 V9	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


9kHz~30MHz

The 802.11 n20 5825MHz was tested. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30MHz-1GHz

Pol	roject No.: 2402W arization: Horiz Test Mode: Trans Note: 802.1	ontal		Serial No. Tester	: 2QWQ-3 : Alan Xie		
L	evel (dBuV/m)					Da	ate: 2024-09-26
80							
70.0							
60.0							QP
50.0							-6dB
40.0	17 Å Å	5		6			
30.0	M W	Martine Aller	Mumulu	AND AND LOUGH	www.	why wild be bedaughter	manufant
20.0	l r	איי קאן מיניר	all industry a survey of	a shi alimimimi a			
10.0							
0	30	224.	418. Fre	quency (MHz)	12.	806.	1000
No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)		Limit (dBµV/m)	Margin (dB)	Detector
	·····	(/		((
1	32.91	42 41	-5.43	36.98	40.00	3.02	QP
2	47.46		-14.84	36.76	40.00	3.24	QP
3	93.05		-15.59	39.72	43,50	3.78	QP
4	144.46		-10.93	38.77	43.50	4.73	0P
5	245.34	50.58	-11.23	39.35	46.00	6.65	Peak
6	485.90	43.96	-4.47	39.49	46.00	6.51	Peak

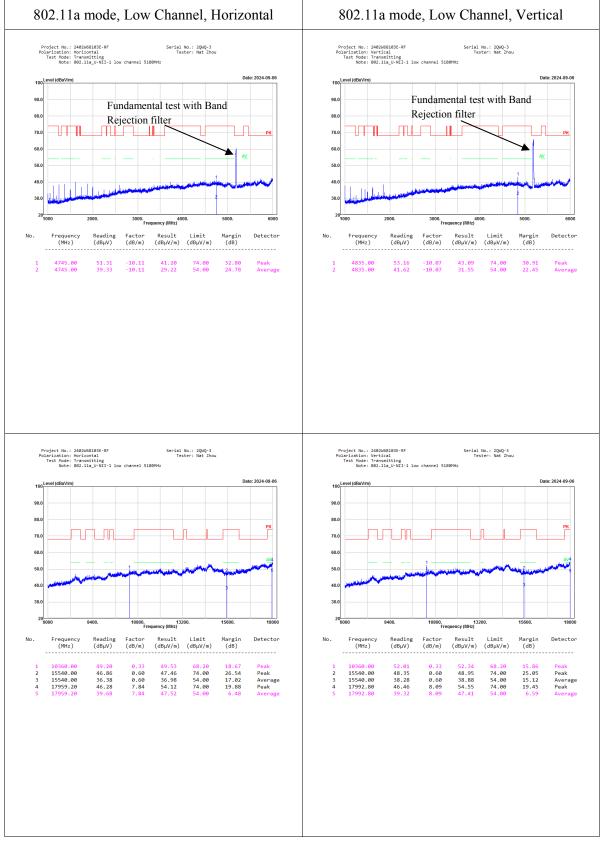
Report No.: 2402W68103E-RF-00D

Page 34 of 111

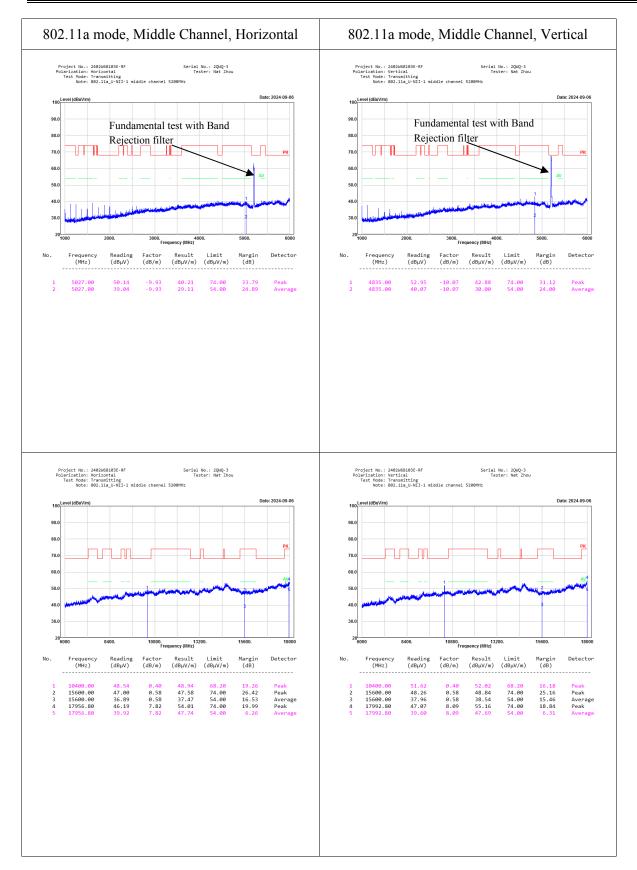
2) 1-40GHz:

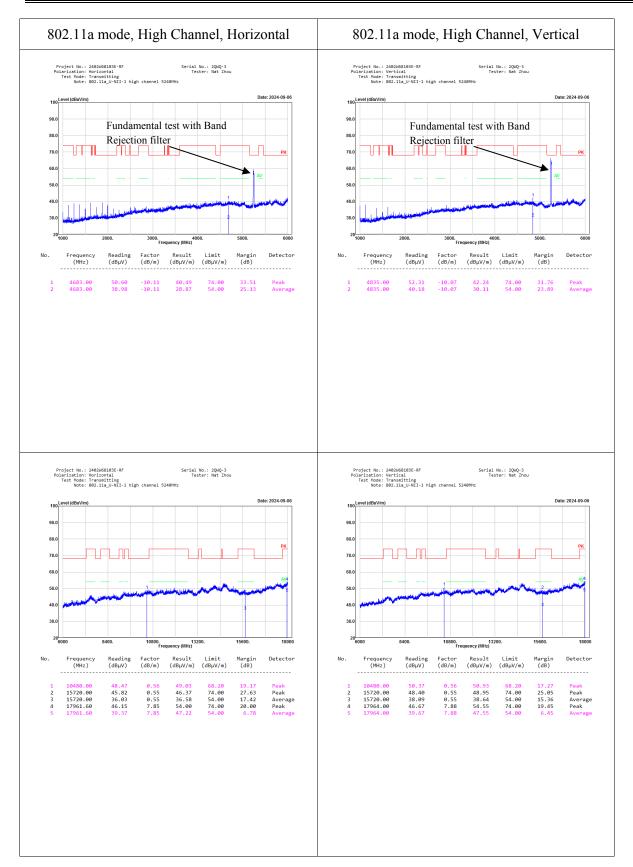
Serial Number:	2QWQ-3	Test Date:	2024/9/5-2024/9/6
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Nat Zhou, Colin Yang	Test Result:	Pass

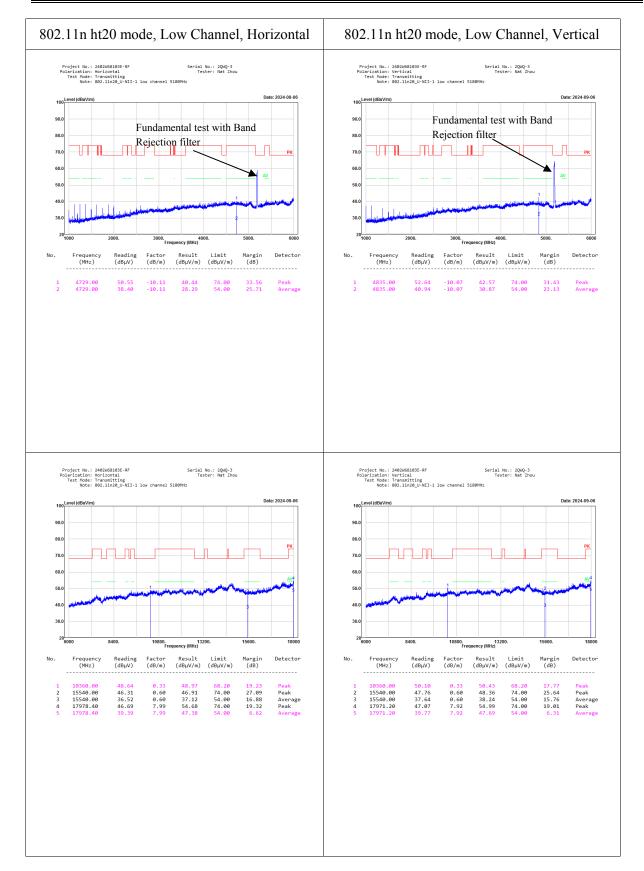
Environmental Conditions:


Temperature: (°C) 25.2-26.2	Relative Humidity: %	34-40	ATM Pressure: (kPa)	99.4-99.5
--------------------------------	----------------------	-------	------------------------	-----------

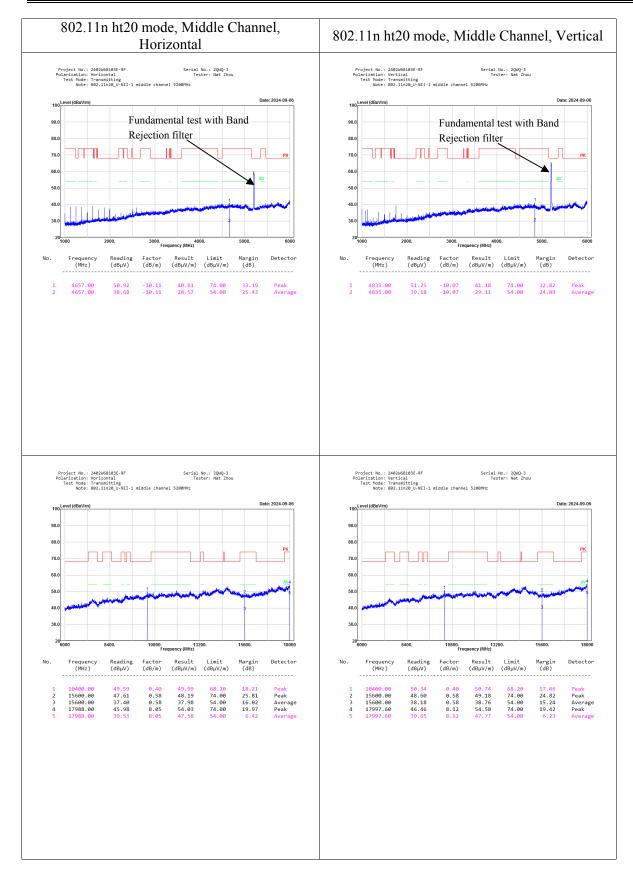
Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J- 10M	20231117004 #0001	2023/11/17	2024/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J- 6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-0118P	469	2024/4/15	2025/4/15
AH	Preamplifier	PAM-1840VH	191	2023/9/7	2024/9/6
R&S	Spectrum Analyzer	FSV40	101944	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 (V9)	N/A	N/A
Sinoscite	Band Rejection Filter	BSF5150-5850MN	0899003	2024/2/21	2025/2/20
Mini-Circuits	High Pass Filter	VHF-6010+	31118	2023/12/1	2024/11/30


* Statement of Traceability: Bay Area Compliance Laboratories Corp.(Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

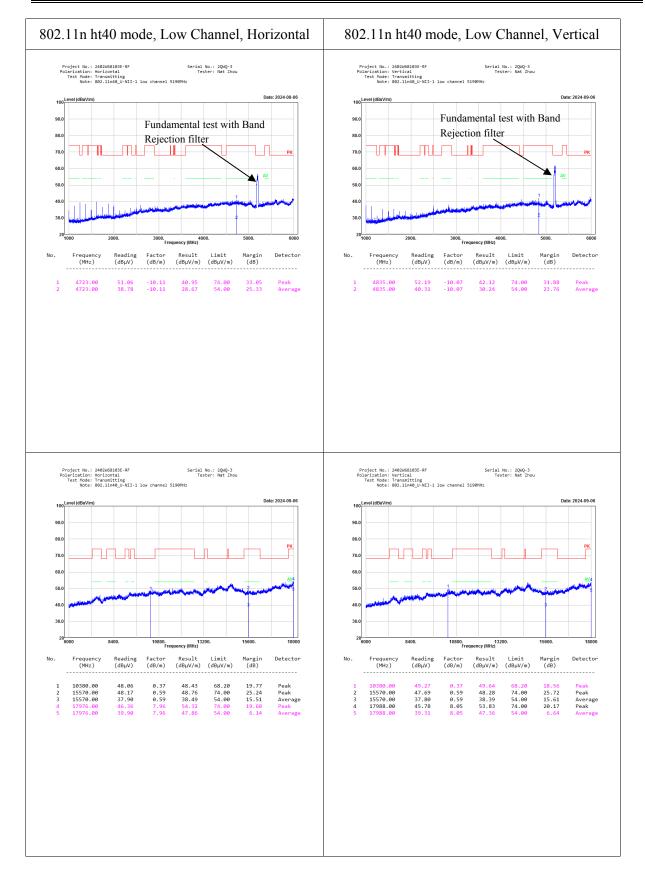

Worst Channel Test plots: 5150-5250MHz:

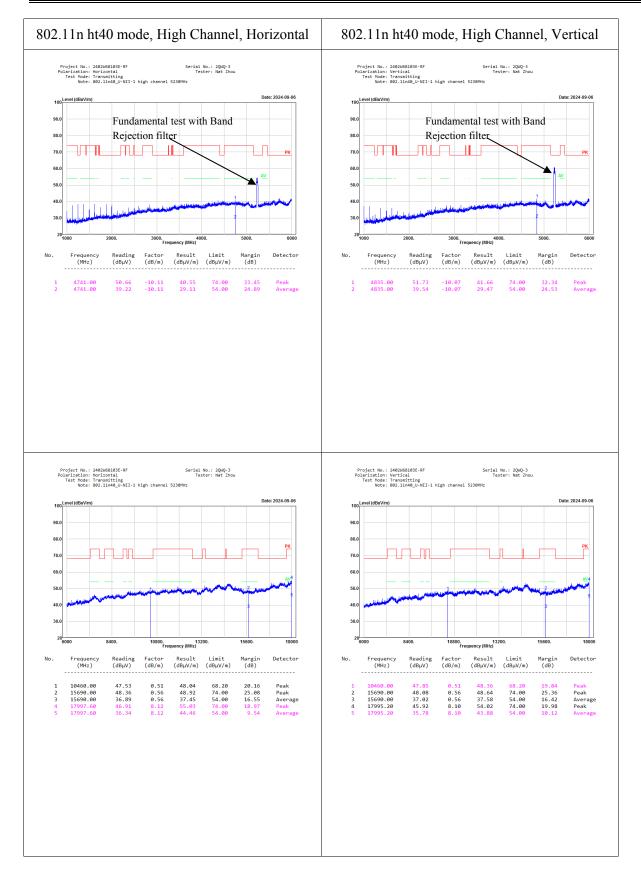
Page 36 of 111



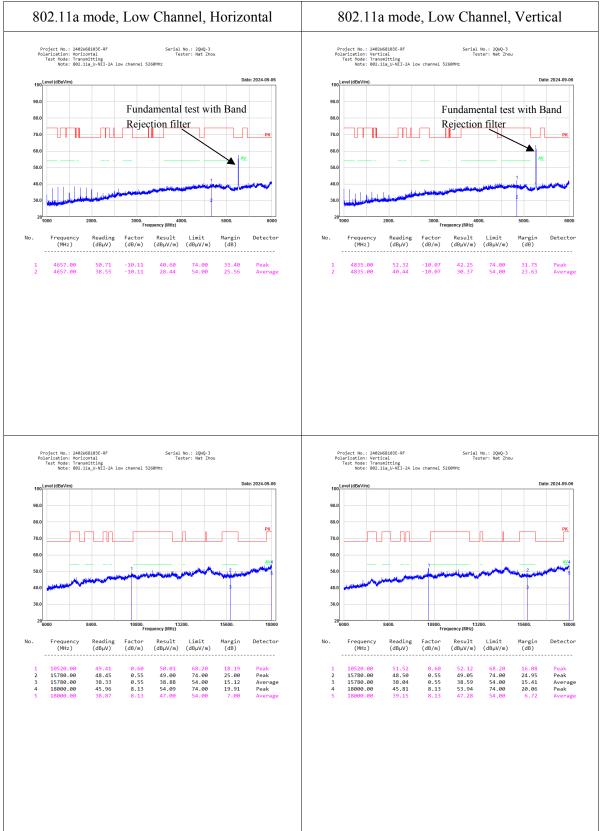


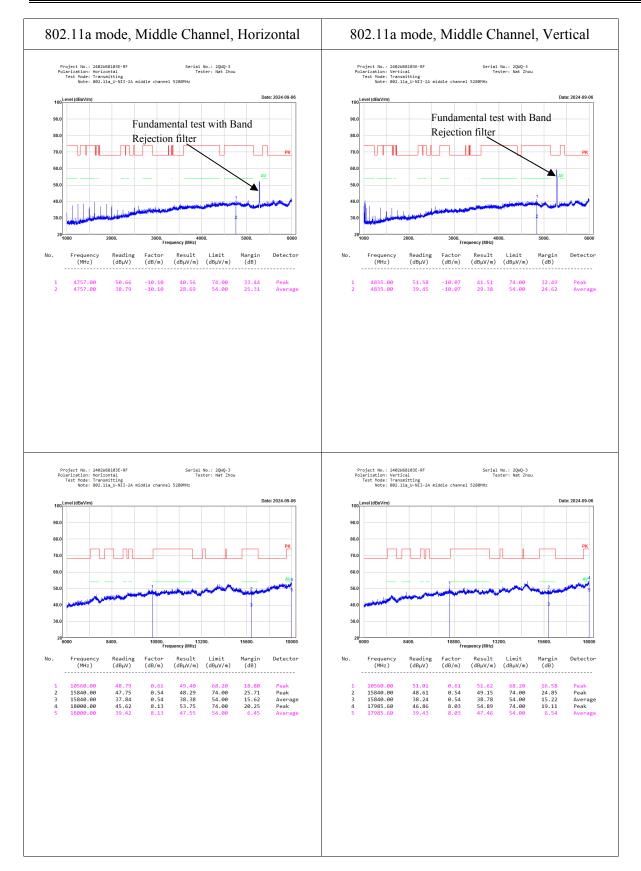
Report Template Version: FCC-WiFi5- Client -V1.2

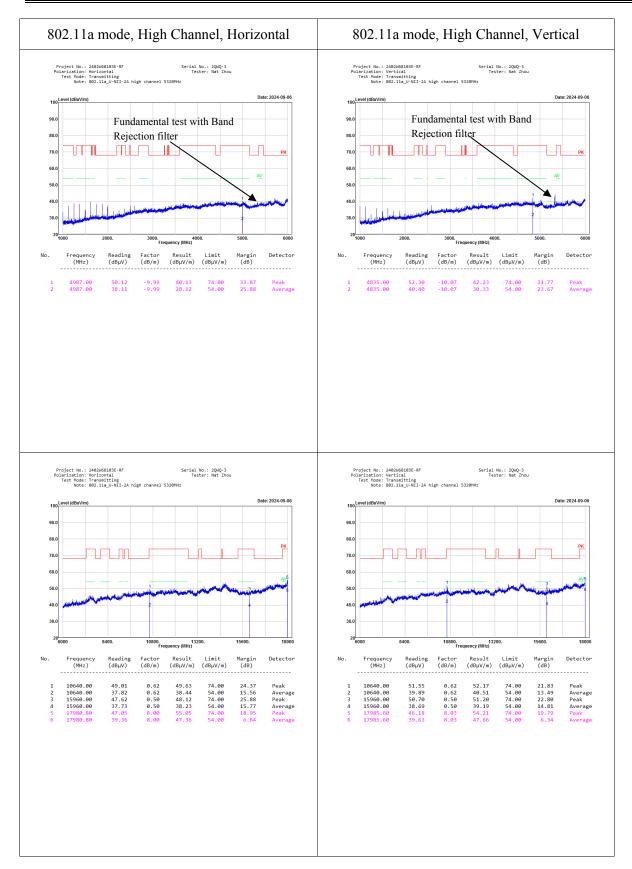

Page 39 of 111

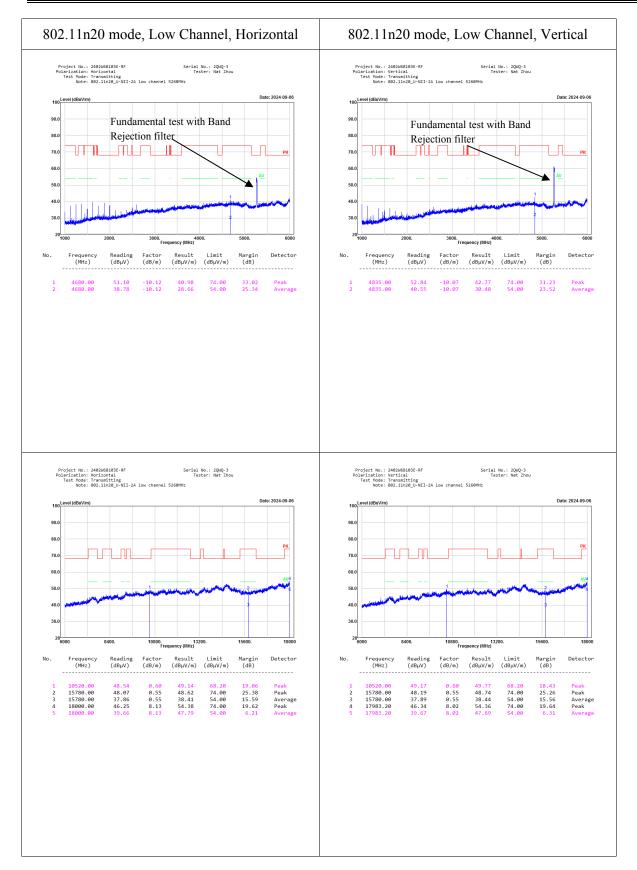


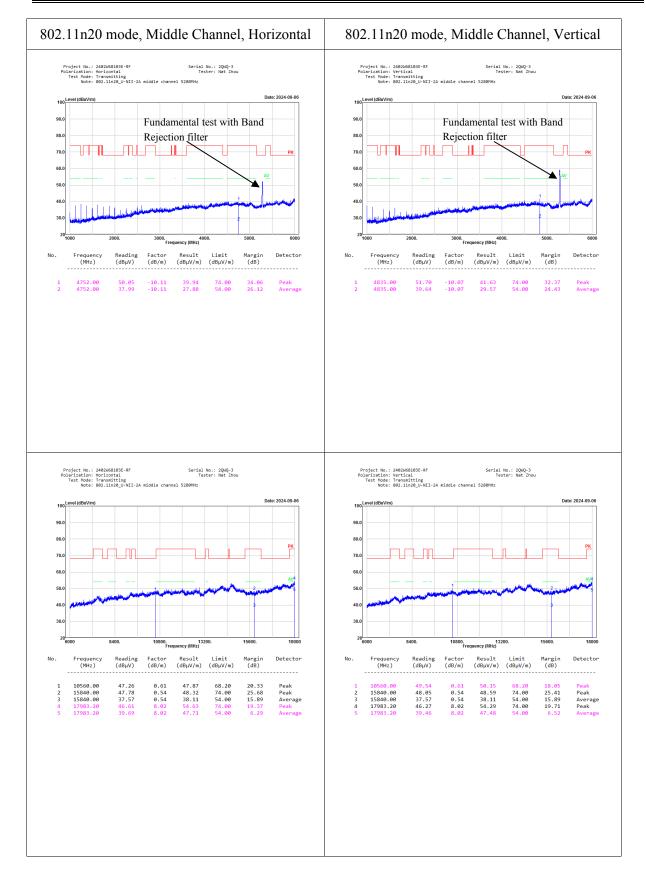
Page 40 of 111

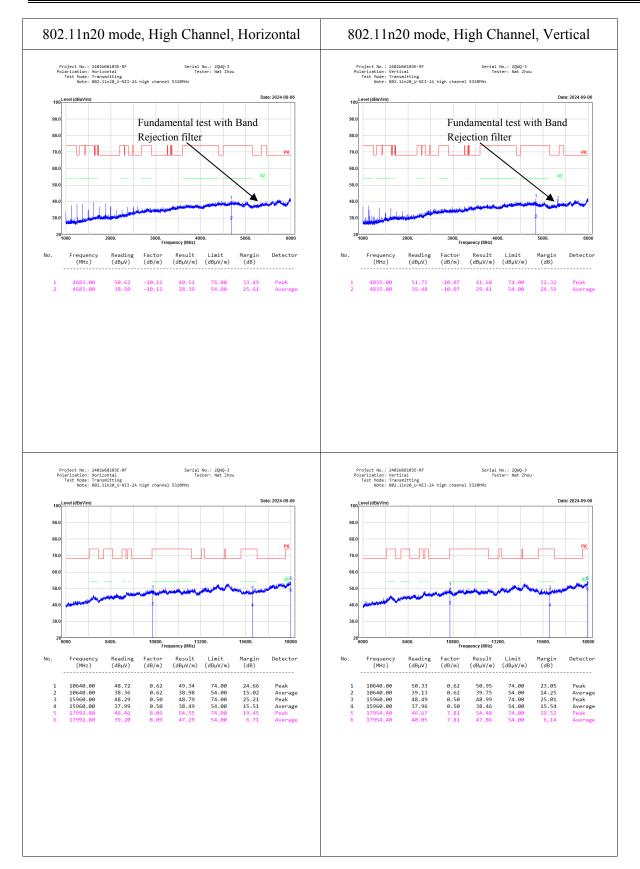

Page 41 of 111

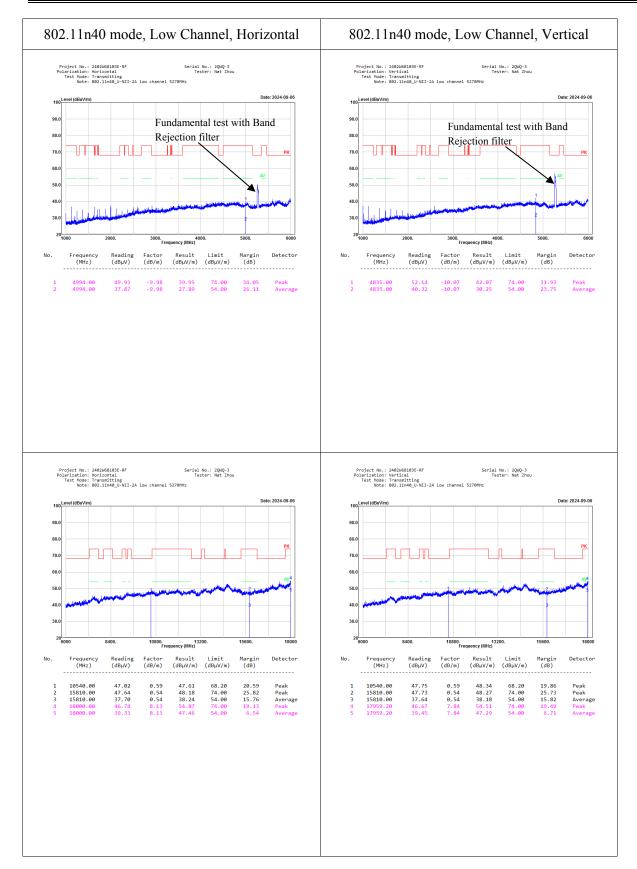


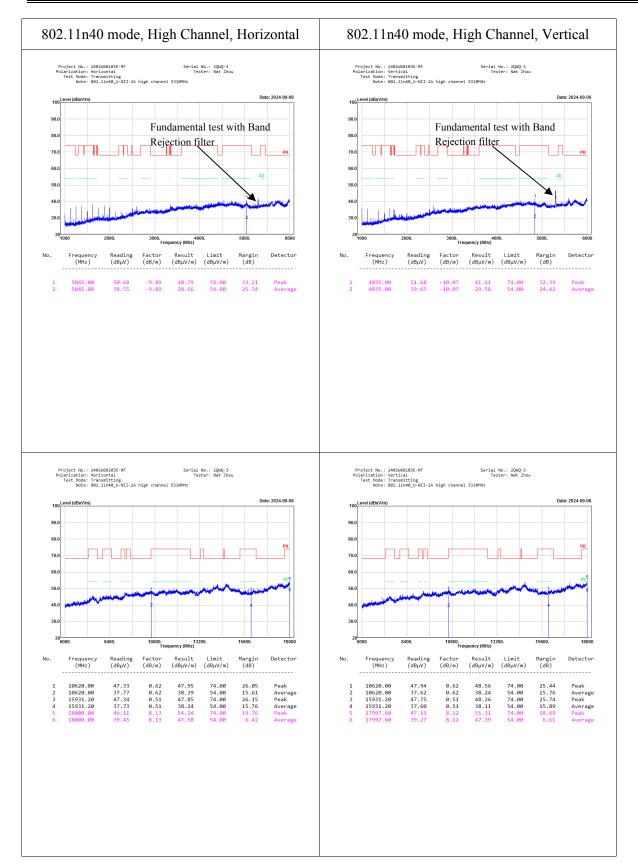


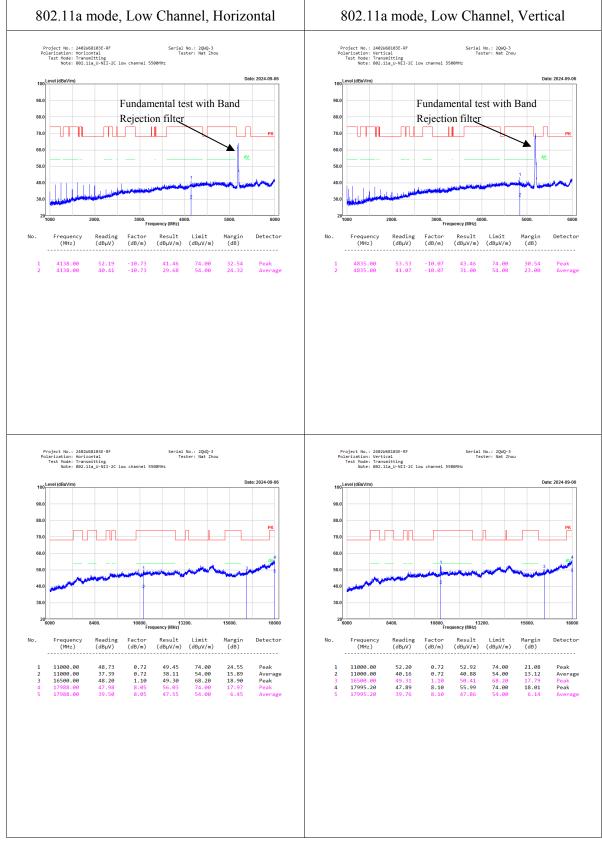

Page 43 of 111

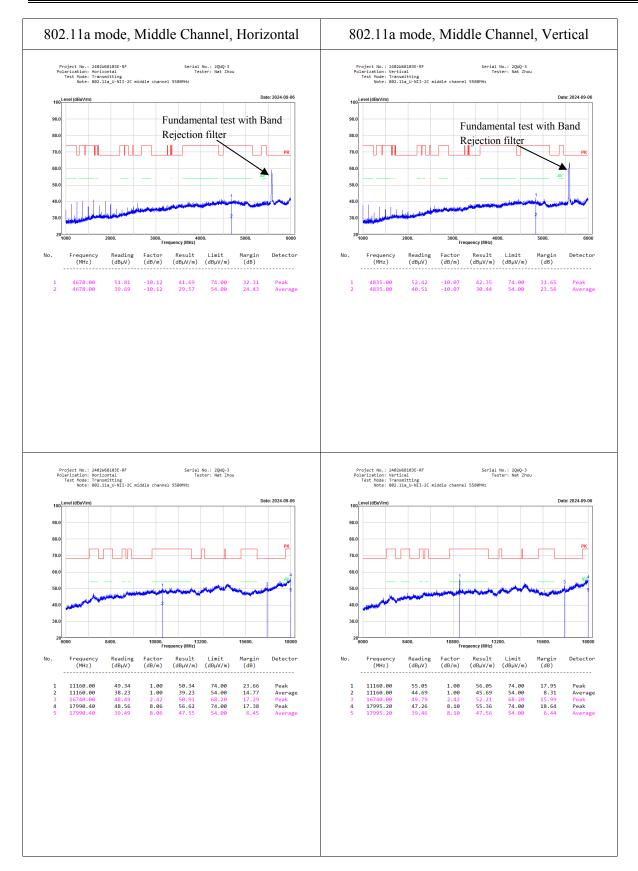

5250-5350MHz:

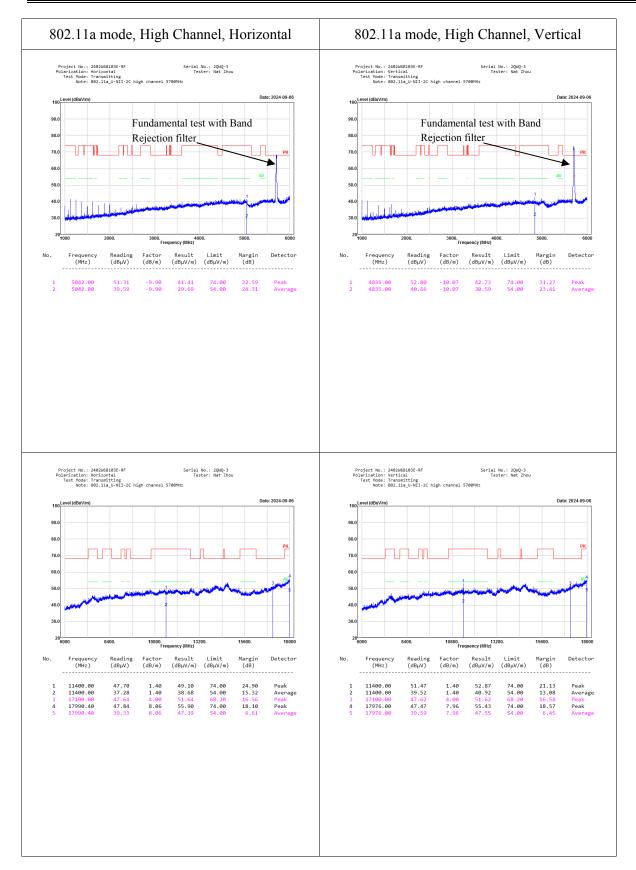


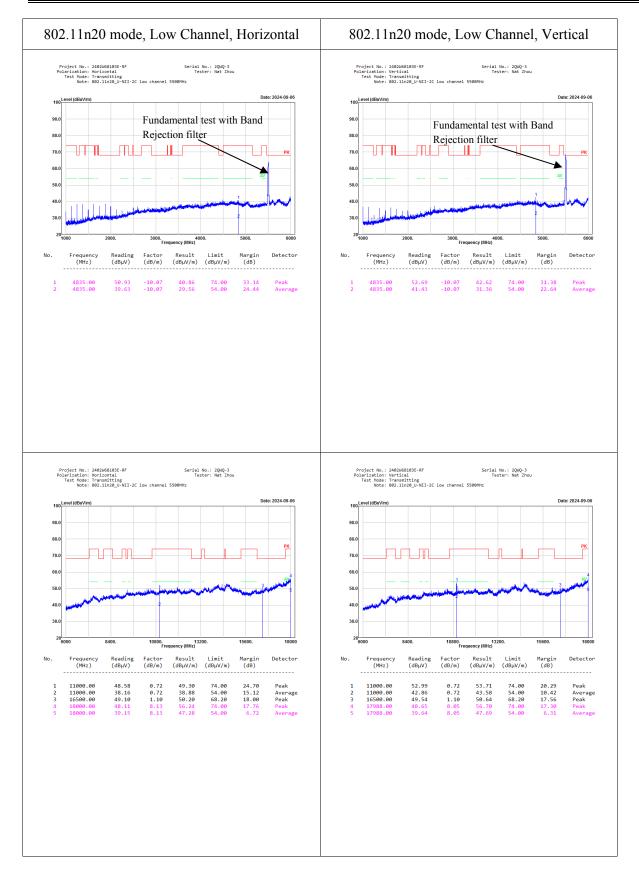


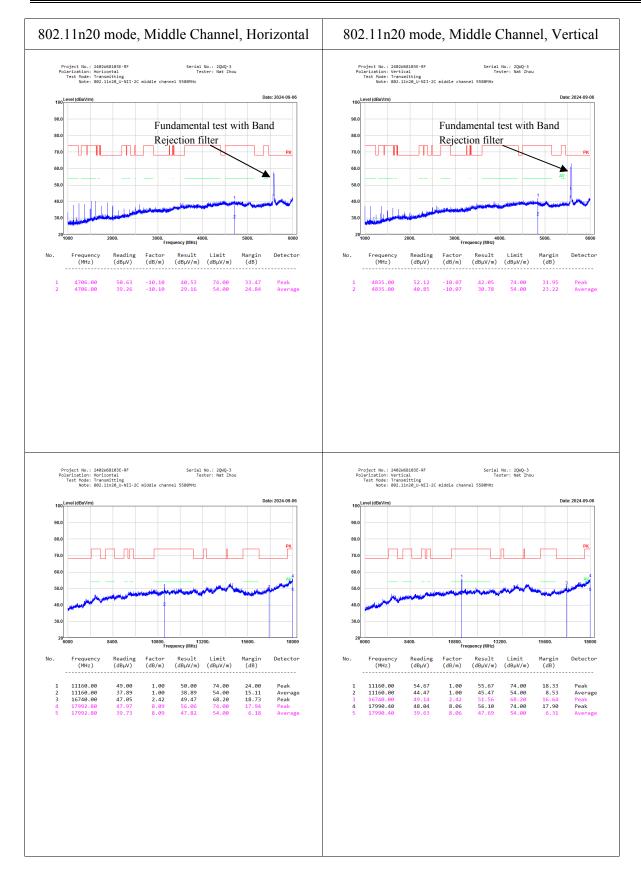


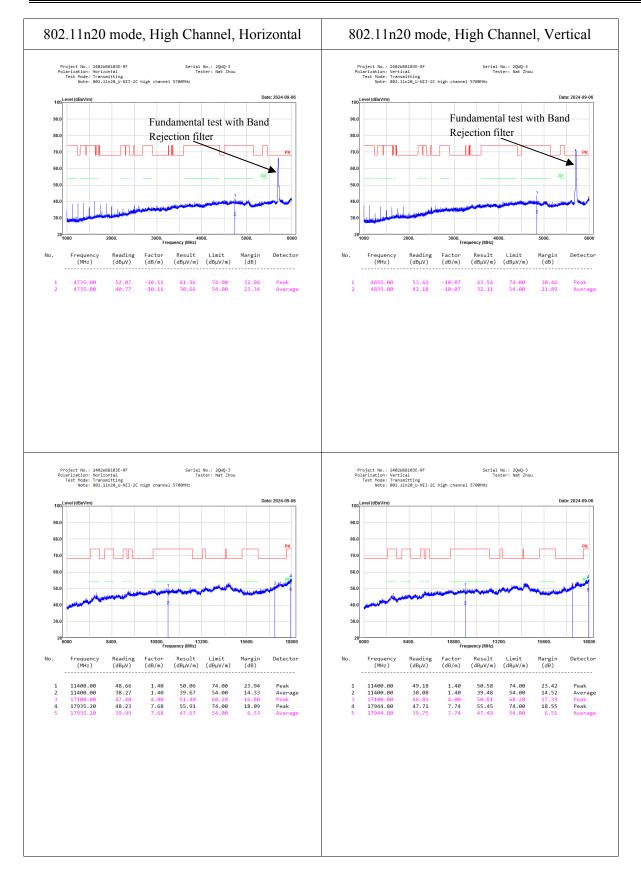


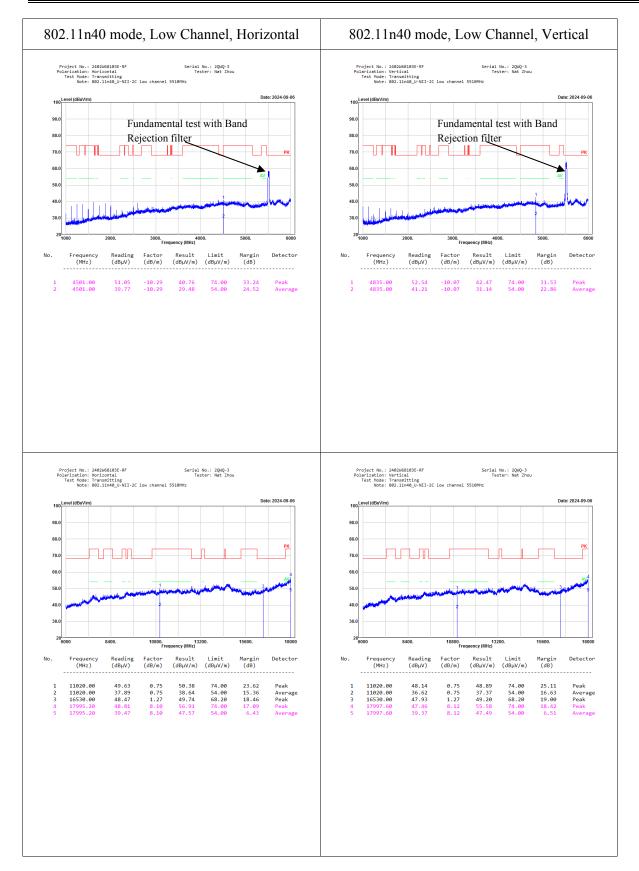


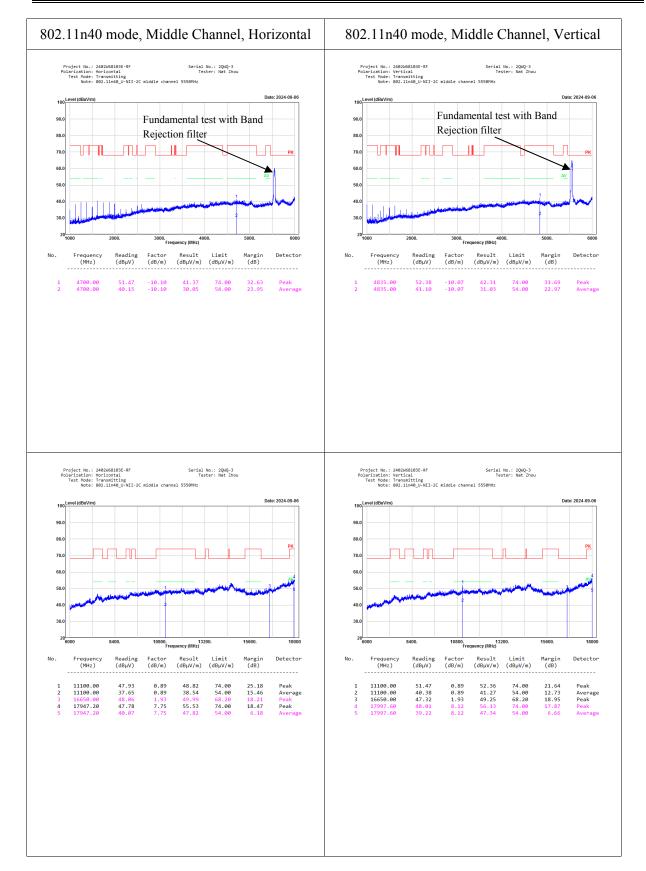

5470-5725MHz:

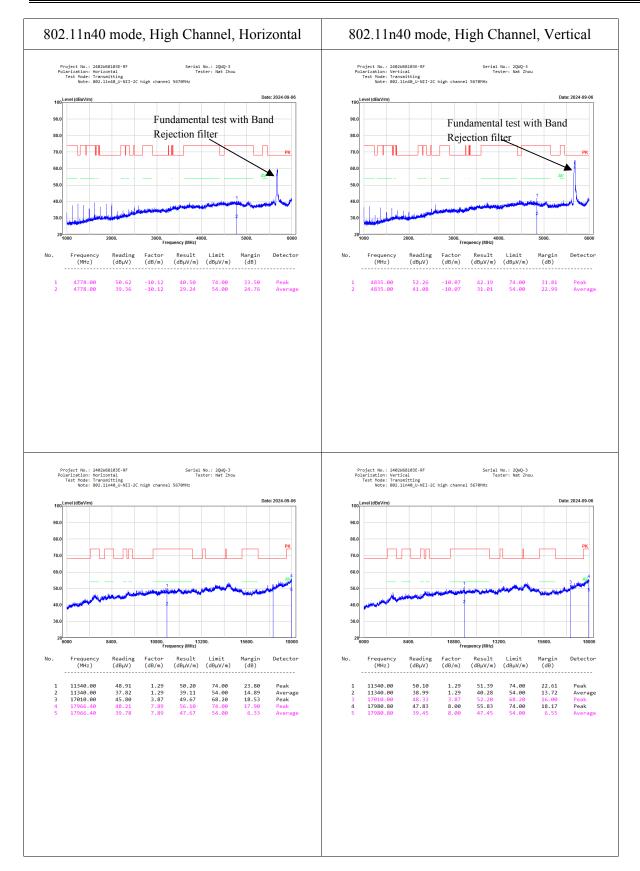

Report Template Version: FCC-WiFi5- Client -V1.2

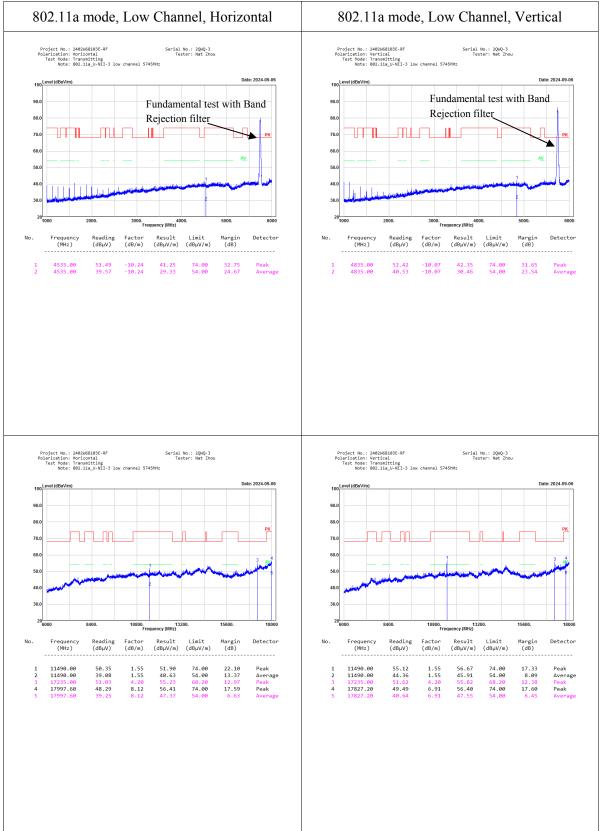

Page 53 of 111



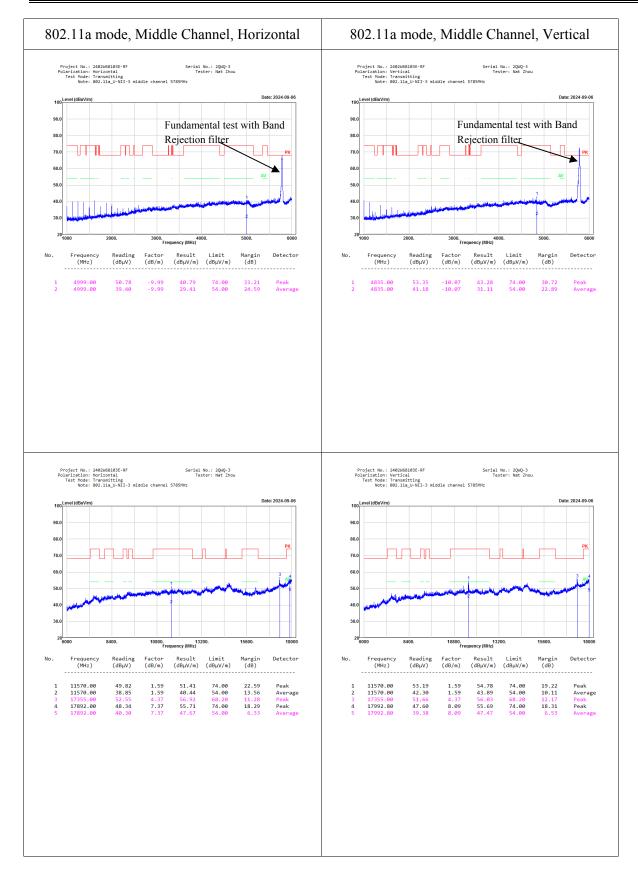

Report Template Version: FCC-WiFi5- Client -V1.2


Page 54 of 111

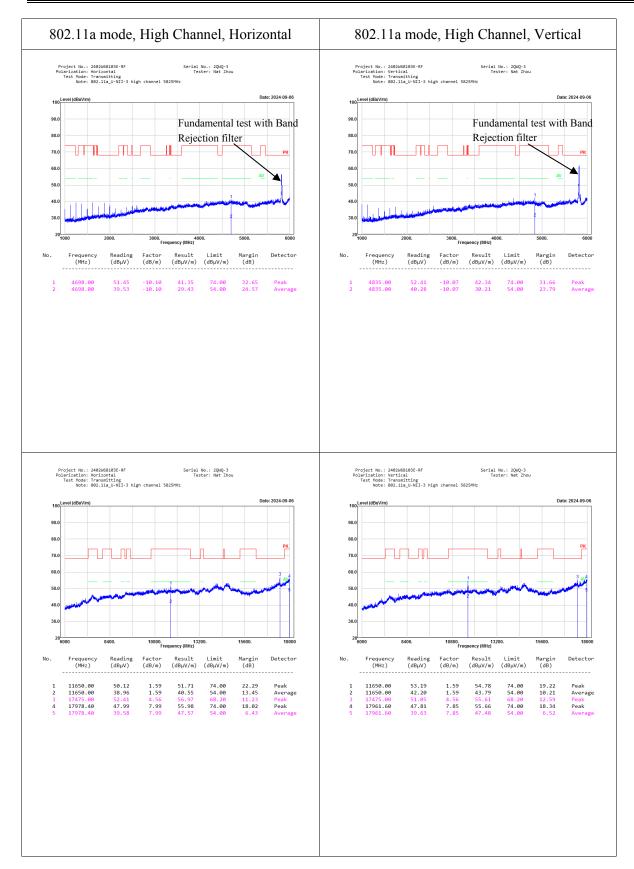


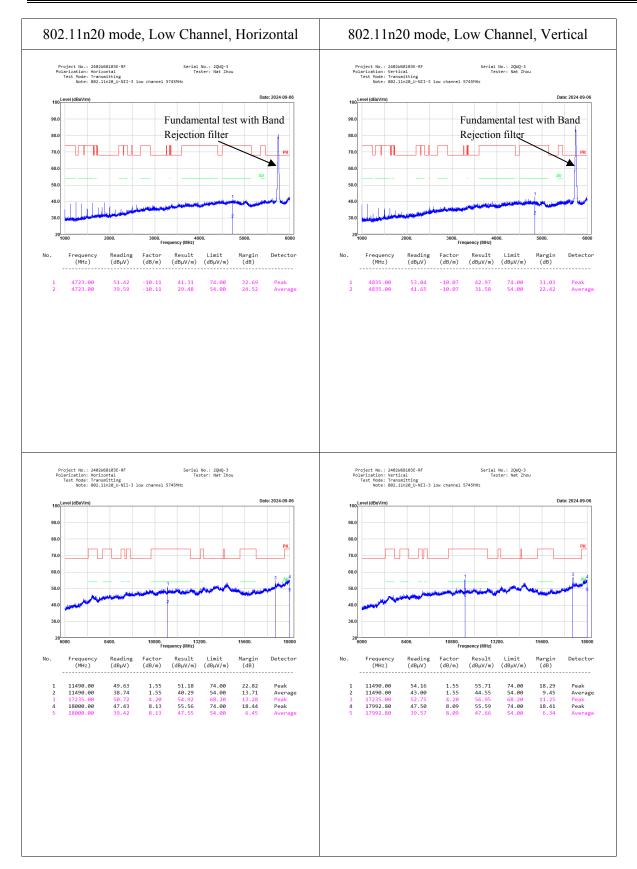


Page 59 of 111

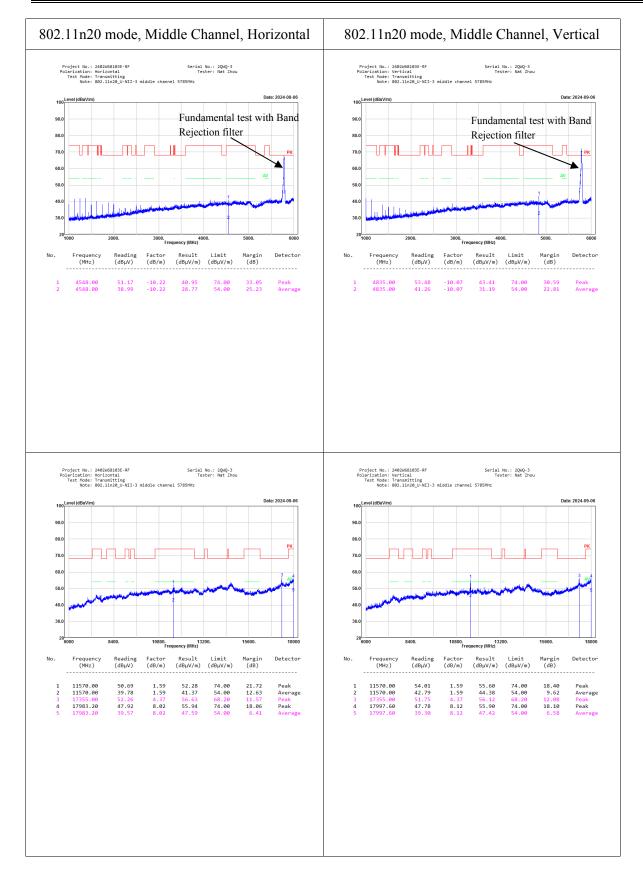


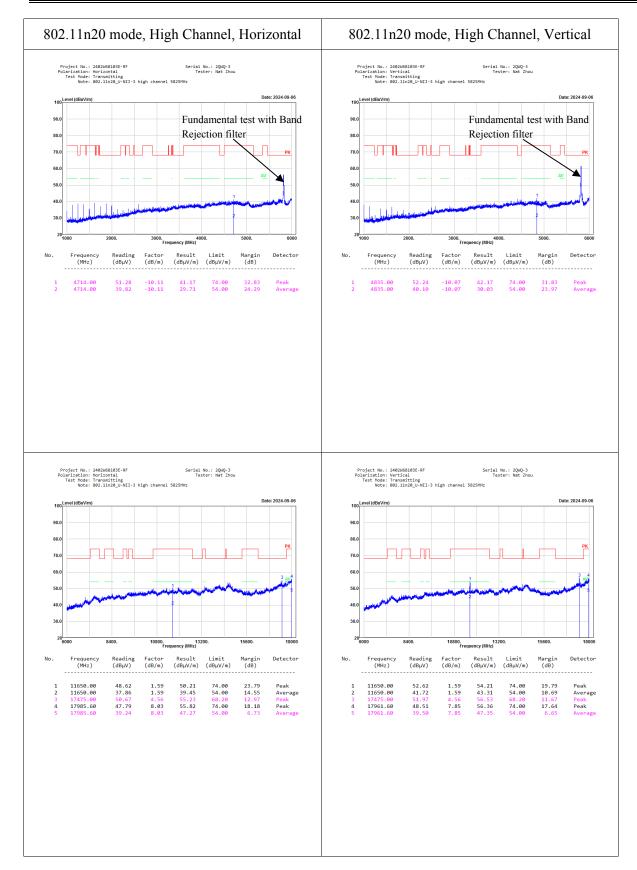
Page 60 of 111


5725-5850MHz:

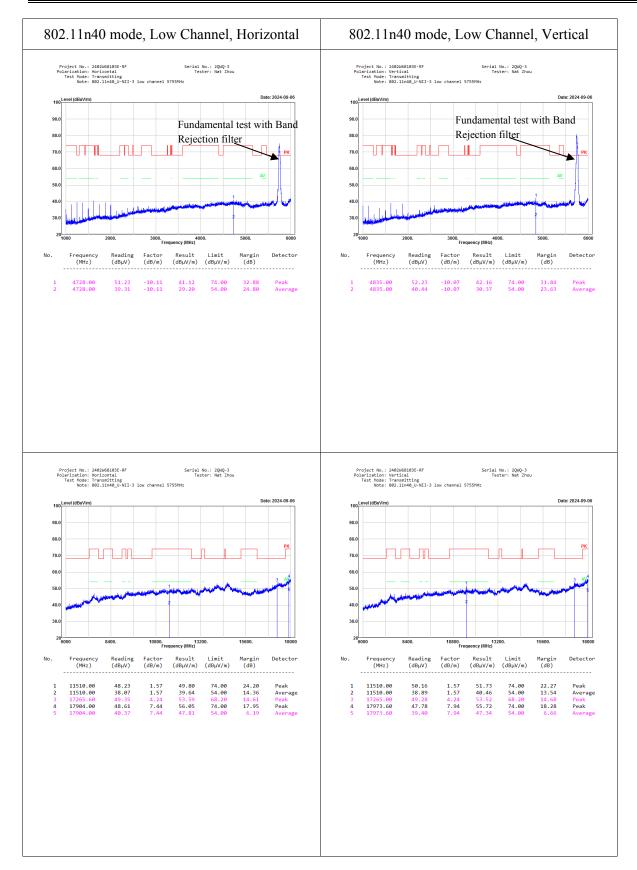


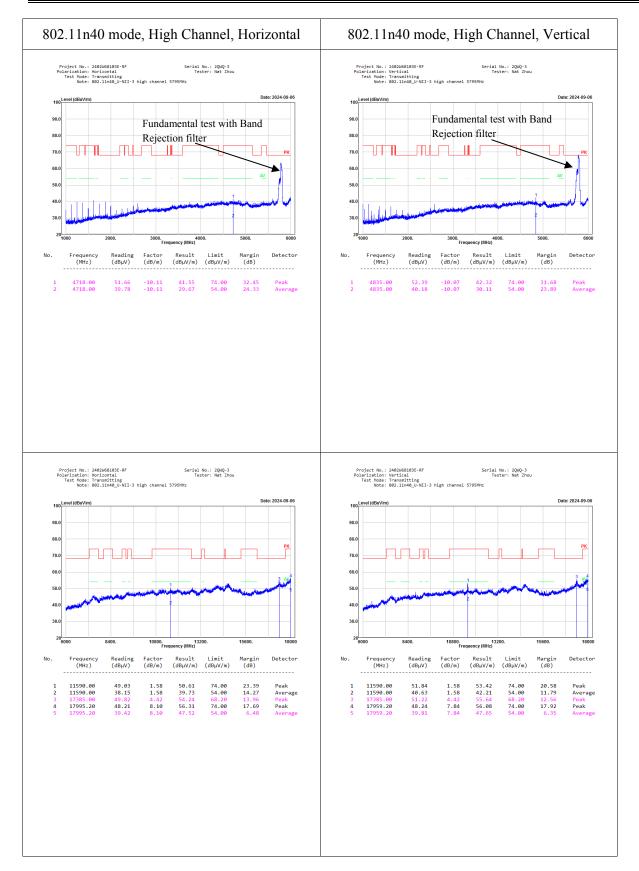
Page 61 of 111


Page 62 of 111

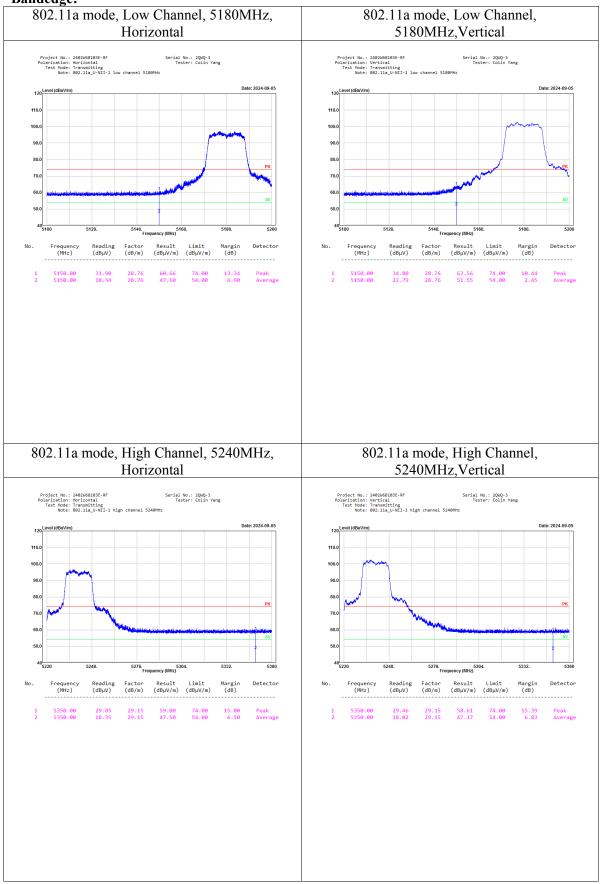


Report Template Version: FCC-WiFi5- Client -V1.2

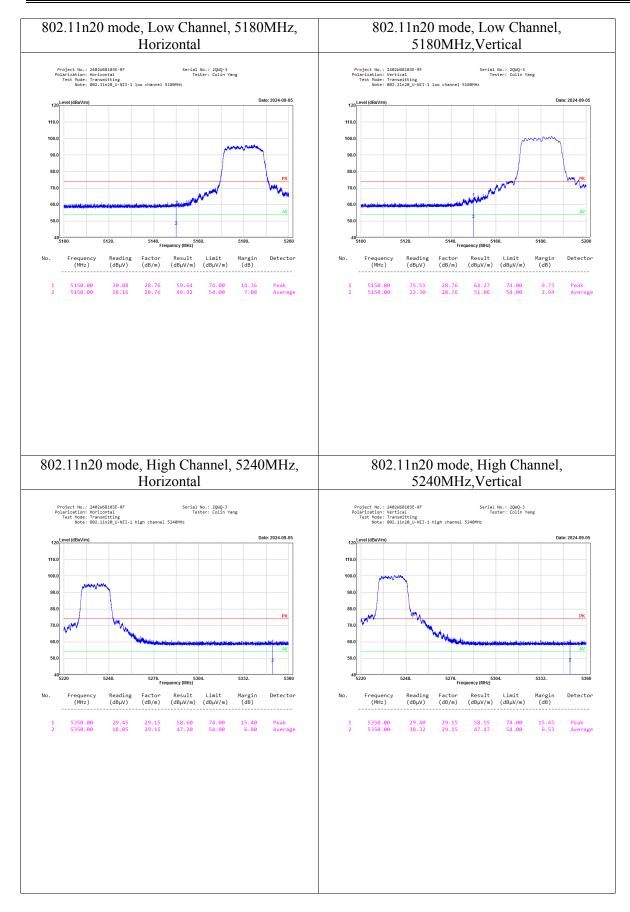

Page 64 of 111


Report Template Version: FCC-WiFi5- Client -V1.2

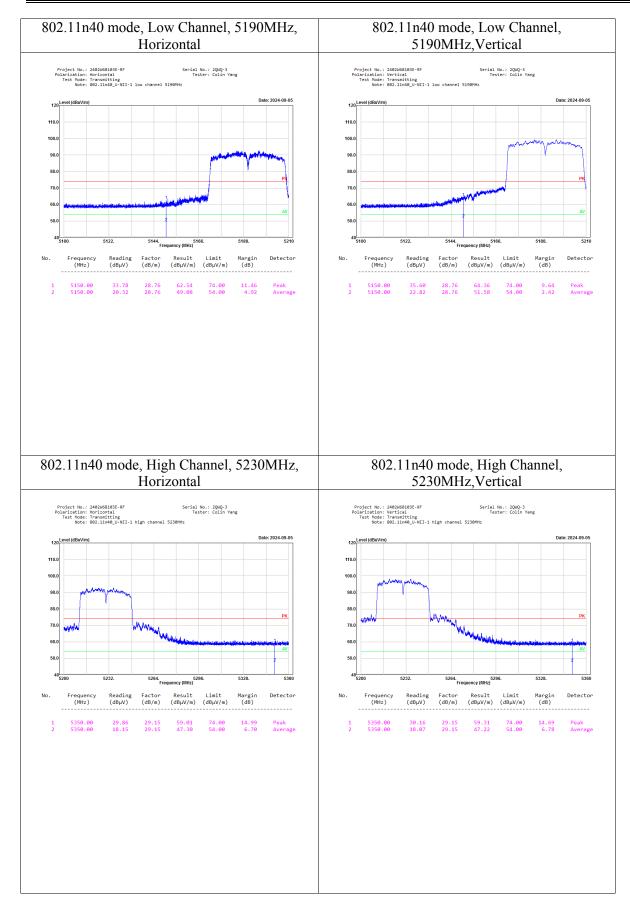
Page 66 of 111



Report Template Version: FCC-WiFi5- Client -V1.2

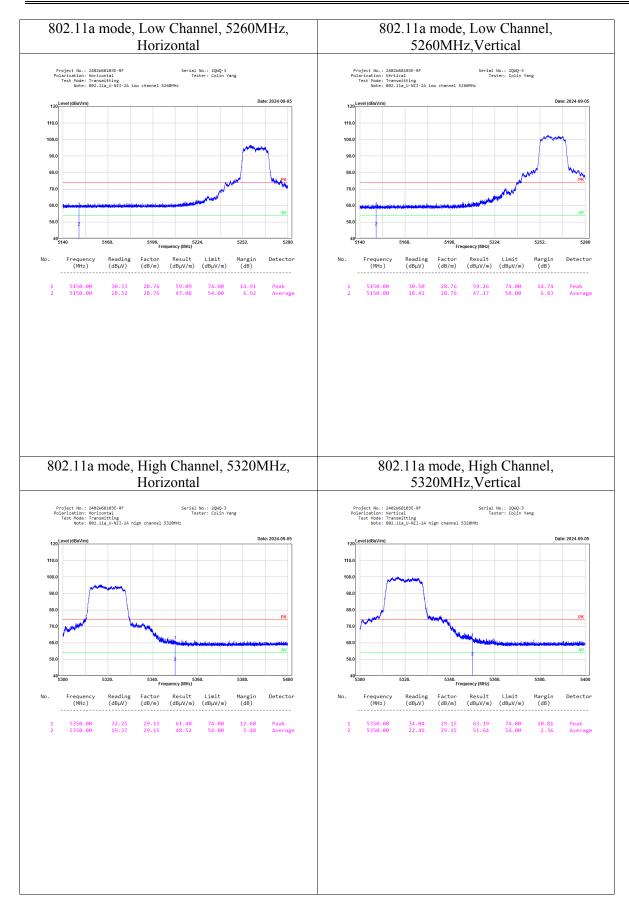

Page 67 of 111

Bandedge:


Report No.: 2402W68103E-RF-00D

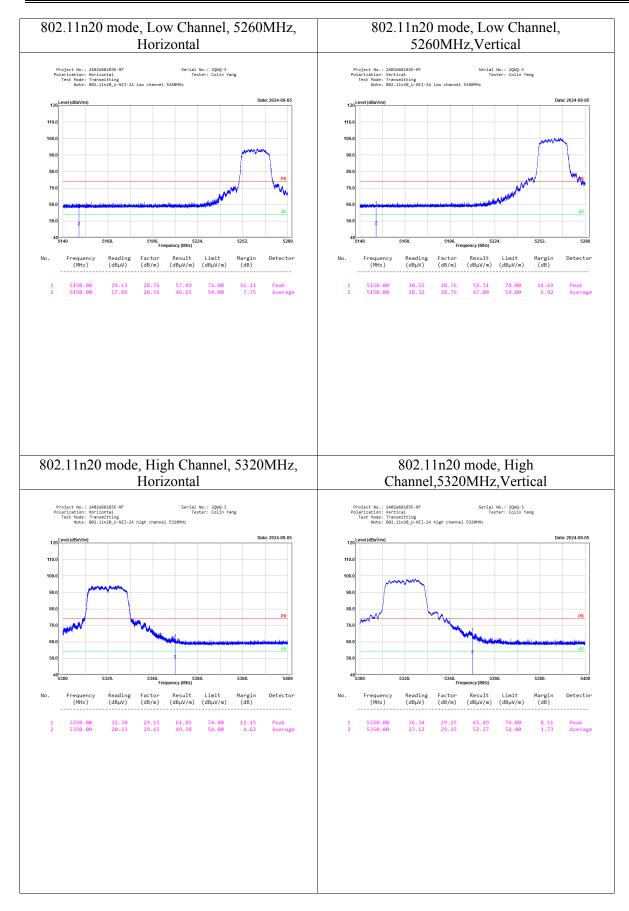
Report Template Version: FCC-WiFi5- Client -V1.2

Page 70 of 111


Report No.: 2402W68103E-RF-00D

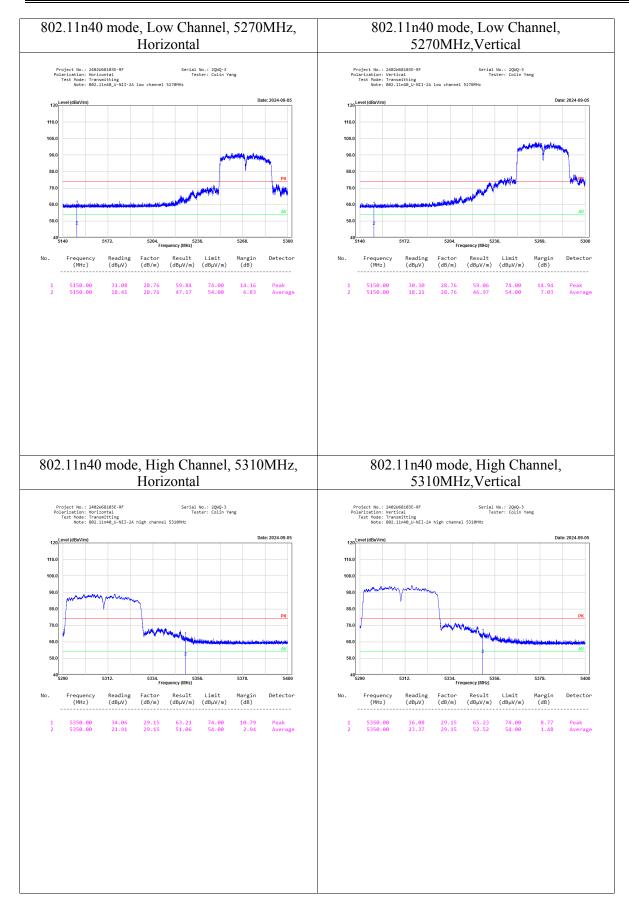
Report Template Version: FCC-WiFi5- Client -V1.2

Page 71 of 111


Report No.: 2402W68103E-RF-00D

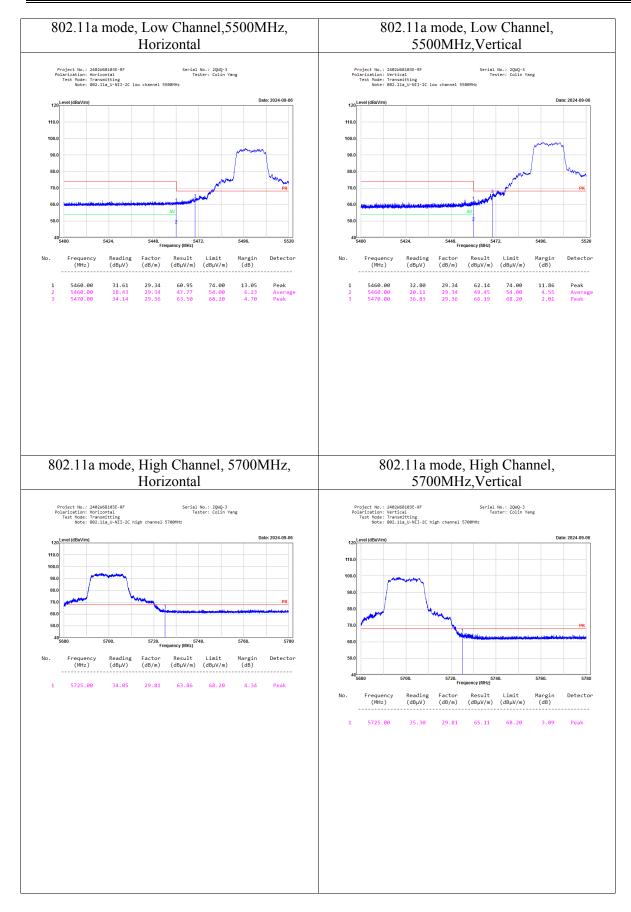
Report Template Version: FCC-WiFi5- Client -V1.2

Page 72 of 111


Report No.: 2402W68103E-RF-00D

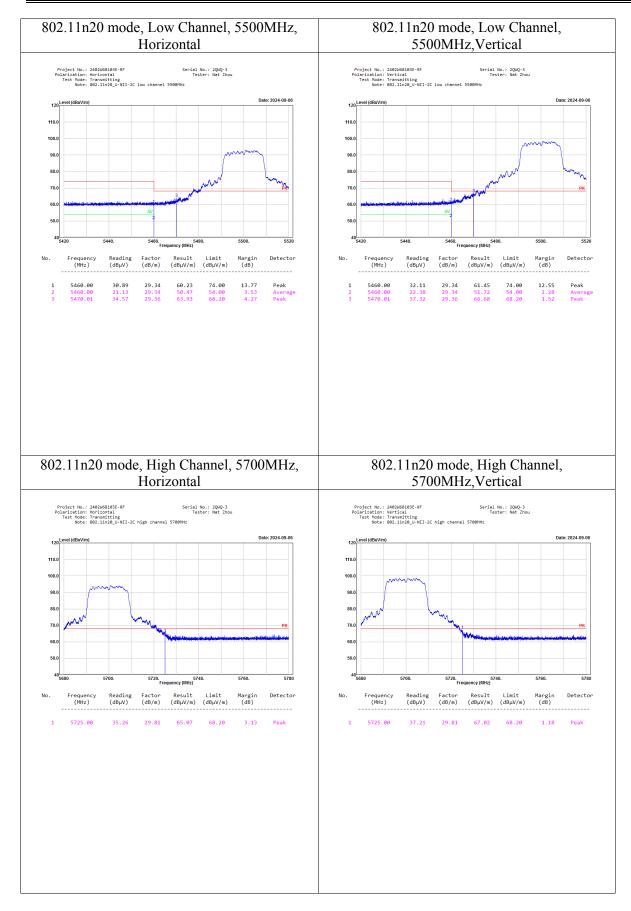
Report Template Version: FCC-WiFi5- Client -V1.2

Page 73 of 111


Report No.: 2402W68103E-RF-00D

Report Template Version: FCC-WiFi5- Client -V1.2

Page 74 of 111


Report No.: 2402W68103E-RF-00D

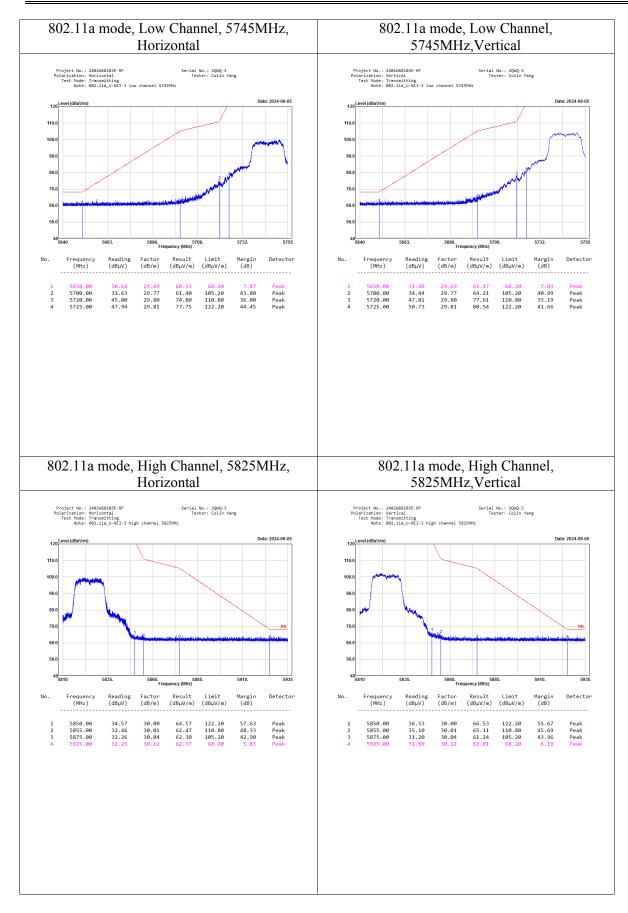
Report Template Version: FCC-WiFi5- Client -V1.2

Page 75 of 111


Report No.: 2402W68103E-RF-00D

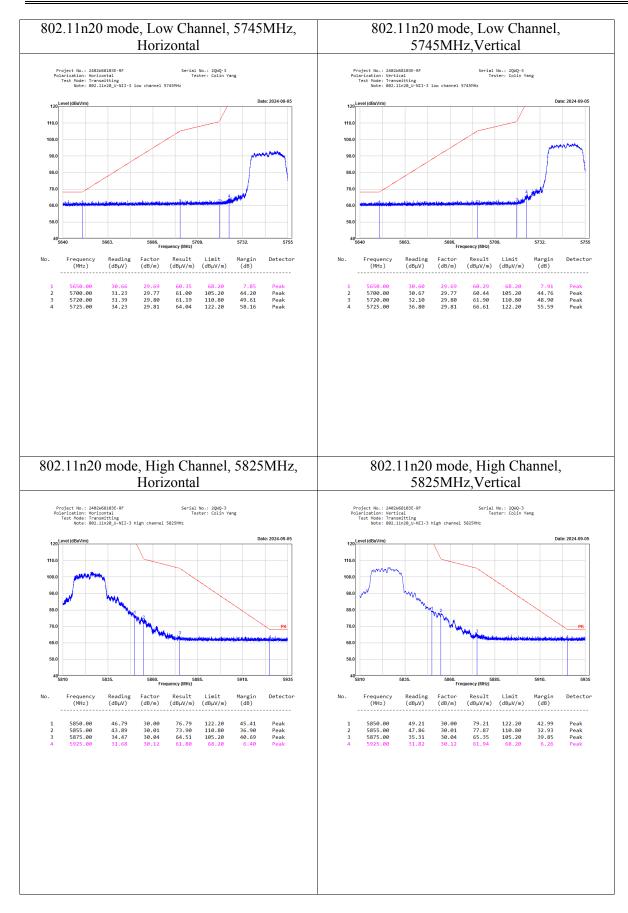
Report Template Version: FCC-WiFi5- Client -V1.2

Page 76 of 111

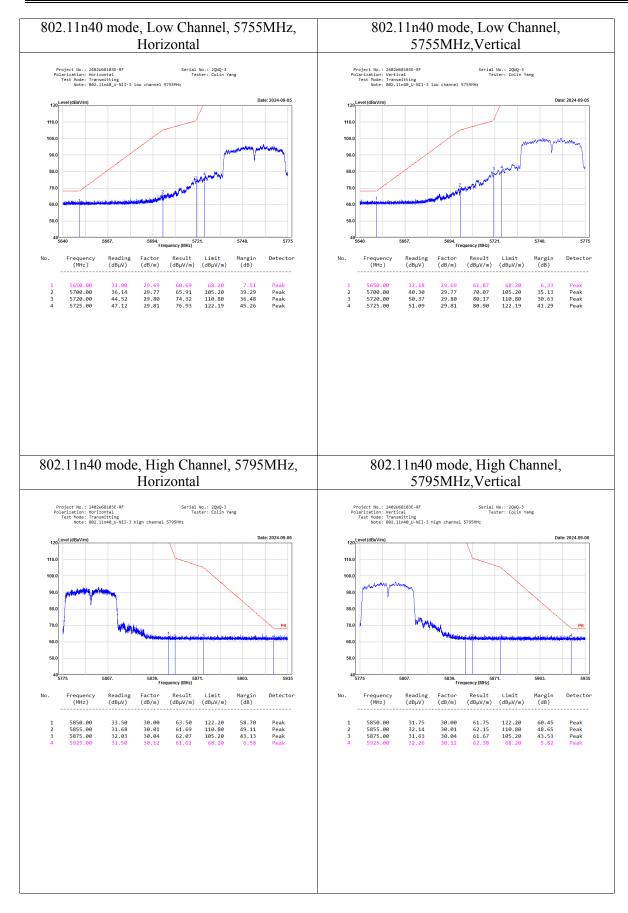

Report No.: 2402W68103E-RF-00D

Report Template Version: FCC-WiFi5- Client -V1.2

Page 77 of 111


Report No.: 2402W68103E-RF-00D

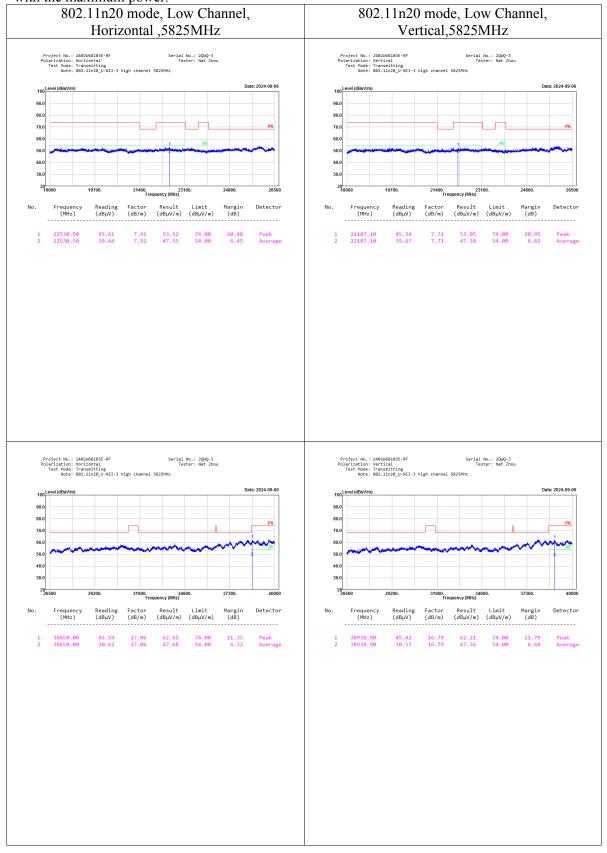
Report Template Version: FCC-WiFi5- Client -V1.2


Page 78 of 111

Report No.: 2402W68103E-RF-00D

Page 79 of 111

Report No.: 2402W68103E-RF-00D



Report Template Version: FCC-WiFi5- Client -V1.2

Page 80 of 111

18-40GHz:

No Emission was detected in the range 18-40GHz, test was performed on the mode and channel which with the maximum power.

5.3 Emission Bandwidth

Serial No.:	2QWQ-1	Test Date:	2024/09/11~2024/09/12	
Test Site:	RF	Test Mode:	Transmitting	
Tester:	Roy Xiao	Test Result:	Pass	

Environmental Conditions:

Temperature: (°C):	25.9~26.4	Relative Humidity: (%)	39~44	ATM Pressure: (kPa)	100.2~100.9
-----------------------	-----------	------------------------------	-------	------------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data: 26dB Emission Bandwidth: 5150-5250MHz

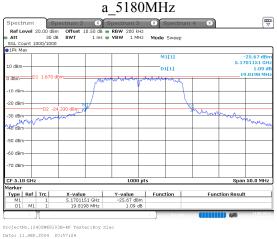
Mode	Value (MHz)
a_5180MHz	19.820
a_5200MHz	20.796
a_5240MHz	22.607
n20_5180MHz	24.009
n20_5200MHz	24.009
n20_5240MHz	24.187
n40_5190MHz	46.146
n40_5230MHz	47.748

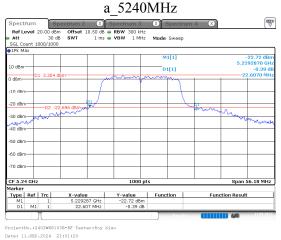
5250-5350MHz

Mode	Value (MHz)
a_5260MHz	27.144
a_5280MHz	26.666
a_5320MHz	31.481
n20_5260MHz	27.455
n20_5280MHz	29.719
n20_5320MHz	29.842
n40_5270MHz	57.014
n40_5310MHz	63.547

Report Template Version: FCC-WiFi5- Client -V1.2

5470-5725MHz

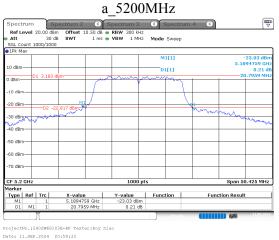

Mode	Value (MHz)
a_5500MHz	21.051
a_5580MHz	22.138
a_5700MHz	32.714
a_5720MHz	33.550
n20_5500MHz	29.898
n20_5580MHz	33.267
n20_5700MHz	37.591
n20_5720MHz	37.515
n40_5510MHz	66.427
n40_5550MHz	66.414
n40_5670MHz	72.827
n40_5710MHz	75.294

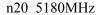

6dB Emission Bandwidth:

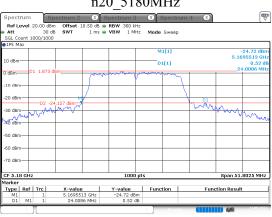
5725-5850MHz	

Mode	Value (MHz)	Limit (MHz)	Result
a_5745MHz	15.816	0.5	Pass
a_5785MHz	15.766	0.5	Pass
a_5825MHz	15.816	0.5	Pass
n20_5745MHz	17.317	0.5	Pass
n20_5785MHz	17.317	0.5	Pass
n20_5825MHz	17.317	0.5	Pass
n40_5755MHz	35.235	0.5	Pass
n40_5795MHz	35.335	0.5	Pass

5150-5250MHz

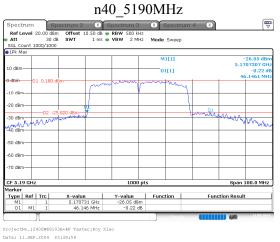




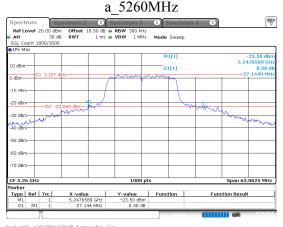

$n20_5200MHz$

Spectrum Sp	oectrum 2 🛛 🚿 :	Spectrum 3	Spectrum 4	X) 🖫
Ref Level 20.00 dBr	n Offset 10.50 dB 🧉	RBW 300 kHz		
Att 30 di	B SWT 1 ms 🖷	VBW 1 MHz	Mode Sweep	
SGL Count 1000/1000				
●1Pk Max				
			M1[1]	-24.71 dBn
10 dBm				5.1894995 GH
TO ODIII			D1[1]	0.17 di
0 dBm D1 1.926 c	Bm	and the second second second	and an od an a	24.0086 MH
o abiii	0000			
-10 dBm				
-20 dBm	M			
D2 -2-	4.074 dBm			01 8 A
-30 dBm	MM/			Mark .
the way the				monte
-40 dBm				
-50 dBm-		-		
-60 dBm-				
-70 dBm				
CF 5.2 GHz		1000 pt	s	Span 51.8025 MHz
Marker				
Type Ref Trc	X-value	Y-value	Function	Function Result
M1 1	5.1894995 GHz	-24.71 dBm		
D1 M1 1	24.0086 MHz	0.17 dB		
			Ready	11.09.202

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:37:00



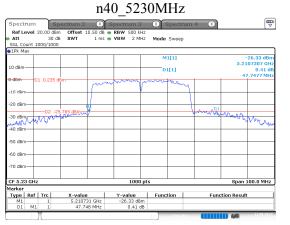
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:32:30


n20_5240MHz

Ref Level	20.00 dB	m Offset	10.50 dB 🧉	RBW 300 F	Hz			0		[9
Att	30 c	B SWT	1 ms 🧉	VBW 1N	1Hz	Mode	Sweep			
SGL Count	1000/1000	3								
1Pk Max										
						M	1[1]			-24.10 dB
0 dBm									5.23	294928 GI
lo ubili						D1	[1]			-0.34 (
) dBm	1.929	dBm	100-						2.	4.1874 M
			1 (***		Y		~			
10 dBm-				-	-					
							1			
20 dBm-		4 071 dBm	1				4.	Q1		
30 dBm-	00.00	4.071 dBm	ev.				1	Nar.		
	mon	d							andren	
¥0'dism	· ·								mby	Lawar n
50 dBm										
60 dBm		-			-					
70 dBm										
CF 5.24 GH	z			100) D pts				Span	59.81 MH
larker										
Type Ref	Trc	X-valu	9	Y-value		Funct	ion	Fund	tion Resul	t
M1	1	5.22949		-24.10 d						
D1 M:	. 1	24.18	74 MHz	-0.34	dB					

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:40:02

5250-5350MHz



ProjectNo.:2402W68103E-RF Tester:Roy Xiac Date: 11.SEP.2024 21:03:49

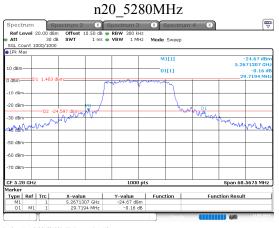
a_5320MHz

Spect			pectrum 2	×	Spectrum	3	Spectrur 🗙	n4 🛛		[₩ ▽
	evel :	20.00 dB			RBW 500					
Att		30 0	IB SWT	1 ms (VBW 21	1Hz	Mode Sweep			
		000/100	3							
1Pk M	ЭX									
							M1[1]			-22.14 dBr
									5.3	066548 GH
10 dBm							D1[1]			-0.29 d
0 dBm—	-0	1 4.127	dBm		han	Im	mm.		3	1.4810 MH
n anu-					1	T -				
					/					
-10 dBm					/					
				M1 ~	'					
-20 dBm			21.873 dBm-	and you			and the state of t	war why		
			am	ľ				- mar		
-30 dBm		man	v i						warmen and	
windth	JAN AN	NOR ALL AND A								longuerous
-40 aBM										
-50 dBm										
-60 dBrr										
-70 dBm										
CF 5.3	2 GHz				100	0 pts			Span 7	5.965 MHz
1arker										
Type	Ref	Trc	X-valu	e	Y-value		Function	Fund	tion Resul	t
M1		1	5.30665		-22.14 d	Bm				
D1	M1	1	31.4	81 MHz	-0.29	dB				
_	_	11					1	40000	4.44	11.89.282

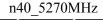

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:14:24

Report No.: 2402W68103E-RF-00D

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:44:00



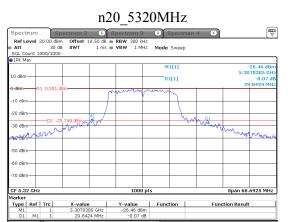
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:06:41


n20_5260MHz

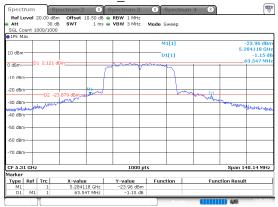
Spectrum		pectrum 2		Spectrum	_	X	Spectru	m 4 🛛 🗶		[,
Ref Level				RBW 300						
Att	30 d		1 ms (VBW 1	MHz	Mode	Sweep			
SGL Count	1000/1000	1								
1PK Max										
						м	1[1]			-25.05 dB
10 dBm					_		u u		0.2	4/130/G
		1				0.	4.4			0.31 0 7.4545 Mi
0 dBm	01 1.769 (dBm;	· ·	- marine		and a second	m	1	-	1
					Y.		7			
-10 dBm				-	-		-		-	
			1 /							
-20 dBm-		4.231 dBm	<u>11</u>				4	. /01		
0.0 10		4.231 0800	M				6	~ An	A .	
-30 dBm	- M	NV N	1						Mrg	
-30 dBm	WW								min	WWW
abin										
-50 dBm										
00 00										
-60 dBm				-	_				_	
-70 dBm					-			-	_	-
CF 5.26 GH	z			10	00 pts				Span 6	3.5675 MH
1arker										
Type Ref	Trc	X-valu	e	Y-value	1	Func	ion	FL	inction Resu	It
M1	1	5.24713	07 GHz	-25.05						
D1 M:	1 1	27.45	45 MHz	0.5	1 dB					
	1					_	- Donadar		AMA	11.09.202

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:43:20

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:46:47



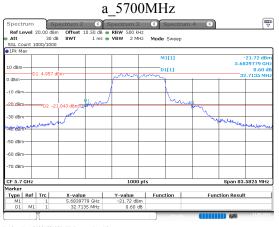
5470-5725MHz


Spectrum	pectrum 2	X	pectrum 3	XS	pectrum	4 X		1
Ref Level 20.00 dB Att 30 sGL Count 1000/100	IB SWT	50 dB 👄 1 ms 👄	RBW 300 kHz VBW 1 MHz	Mode S	Sweep			
1Pk Max								
				M1	[1]			29.17 dBr 95759 GH
10 dBm				D1	51		0.48	95759 GH 0.15 d
				0.1			21	.0512 MH
0 dBm-01 -2.356	dBm		-					
-10 dBm	T I	m	how	r~~r	m			
-10 dBm-		1						
-20 dBm								
-20 0011	Mi	/			\sim			
-30 dBm D2 -:	28.358 dBm					and the second		
-20 dBm 02 -:	men -						www.w	
AQ dBm								mary
-50 dBm								
-60 dBm								
-00 ubm								
-70 dBm								
CF 5.5 GHz			1000 p	ts			Span 50).675 MHz
Marker								
Type Ref Trc	X-value		Y-value	Functi	on	Fund	tion Result	
M1 1	5.4895759		-29.17 dBm					
D1 M1 1	21.0512	MHz	0.15 dB					

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:34:27

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 22:49:42

n40 5310MHz

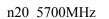

ProjectNo.:2402W68103E-RF Tester:Roy Xiao

Date: 11.SEP.2024 23:49:01

				a	_3380	11/11	IZ			
Spectr	um	η	Spectrum 2	X	Spectrum 3	X	Spectrun	n 4 🛛 🕅		E
Ref Le Att SGL COL		31	db SWT	0.50 dB 1 ms 🖷	RBW 300 kHz VBW 1 MHz		Sweep			
1Pk Ma	х									
10 dBm-							1[1] 1[1]		5.56	-27.88 dBr 590857 GH 0.01 d
0 dBm—	-0:	1 -1.7	33 dBm	dur	mm	min	m	-	2:	2.1382 MH
-10 dBm-	-		_	-	+ *		<u> </u>			
-20 dBm-	-		M1	/				V D1		
-30 dBm-		-02	-27,733 dBm	<i>J</i>				A Contraction of the local distance of the l	and and	
40 d8m-	de									Wal-white
-50 dBm-	+									
-60 dBm-	+									
-70 dBm-	-									
CF 5.58	GHz				1000 p	its			Span 51	.5525 MHz
1arker	0-61	True I	×			Func		F	ction Resul	
Type M1 D1	M1	1 1	X-value 5.56908 22.138	57 GHz	-27.88 dBm 0.01 dB		tion	Fun	ction Resul	c
						<u></u>	Ready	(1111)	4/0	11.09.202

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:37:21

a 5580MHz



ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 21:43:15

$n20_5500 MHz$

Spectrum		ipectrum 2 🛛 🛛 🔍		Spectr	um 4 🛛 🗶	\
Ref Level	20.00 dB					
SGL Count			s 👄 VBW 1 MH:	Mode Sweep		
1Pk Max	1000/100	0				
ALC: NO				M1[1]		-28.63 dBm
				- ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		5,4869456 GH
10 dBm				D1[1]		-0.22 df
						29.8978 MH
D dBm	01 -2.087	/ dBm	manny	A 1000 01	_	
10 dBm-			how we have	- many		
-10 dBm			1			
20 d8m						
20 0011		M1 .	/			
-30 dBm		28.087 dBm		· · · ·	mar	
SO GDIN	ړ.	AM			1. Mr	6
-40.d8m	man w	28.087 dBm				mahanangasturang
-50 dBm						
-60 dBm						
-70 dBm						
CF 5.5 GH2			1000	ots		Span 68.82 MHz
1arker						
Type Rei	f Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	5.4869456 GHz	-28.63 dBm			
D1 M	1 1	29.8978 MHz	-0.22 dB			
	1			Read	-	11.09.2024

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:53:06

Spect		-	pectrum 2 🛛 🗶	Spectrum 3	× Spectr	um 4 🛛 🗶	
Att	aver a	20.00 dBr 30 d		3 👄 RBW 500 kH 5 👄 VBW 2 MH			
	unt 1	000/1000		5 • • • • •	12 MOUB SWeep		
1Pk Ma		,					
					M1[1]		-21.79 dBn
10 dBm-							5.6811589 GH
TO GRU-	-		1		D1[1]		0.47 di
0 dBm—	- 0	1 4.702 0	18m-	mm	- marine		37.5905 MH
J UBIII-							
10 dBm							
				\sim	have		
-20 dBm	_	- 02 - 2	1 202 dpm	w.	~	WHI.	
			1.298 dBm			ma:	
-30 dBm	-		. est			- W	rs.
		All Mark	Ý . I				Junior manufactures and
40°0BH							
-50 dBm							
-60 dBm							
-00 ubii							
-70 dBm							
CF 5.7	GHz			1000	pts		Span 91.5925 MHz
1arker							
Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	5.6811589 GHz	-21.79 dBr			
D1	M1	1	37.5905 MHz	0.47 d	8		
		1			Read		11.09.202

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:58:48

 Spectrum 2
 Spectrum 3
 X
 Spectrum 3

 0 dBm
 Offset 10.50 dB
 • RBW 500 kHz
 30 dB
 SWT
 1 ms
 • VBW
 2 MHz
 Mode Sweep
 n 3 🛛 🗶 Spe Spectru n4 🗵 Ref Level 20.0 Att 1000 -20.42 di 5.7029725 M1[1] 0 dBr D1[1] m 10 dBr 20 dBrr 30 dBr ų.,, ando 40 dBm-50 dBm -60 dBm -70 dBm CF 5.72 GH Span 83.5825 MHz 1000 pt
 X-value
 Y-value
 Function

 5.7029739 GHz
 -20.42 dBm
 -0.10 dB

 33.5501 MHz
 -0.10 dB
 -0.10 dB

 Marker

 Type
 Ref
 Trc

 M1
 1

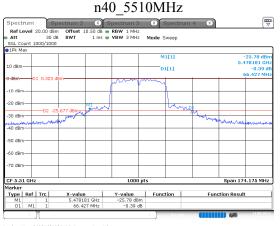
 D1
 M1
 1
 Function Result

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 21:45:32

_

n20_5580MHz

Spectrum	ı s	Spectrum 2	× Spectr	um 3	× Spectr	um 4 🛛 🗶		- ("
Ref Level Att SGL Count	30	dB SWT 1	dB 👄 RBW ms 👄 VBW		Mode Sweep			
∋1Pk Max								
10 dBm					M1[1]		5.56364	46 dBr -77 GH 0.07 d
		-10			UI[1]			71 MH
-10 dBm	01 0.676	dBm-	- f~		~~~			
-20 dBm		25 224 dam	~		h	M. R1		
-30 dBm	- 10 June	25.324 dBm				Andrew	Manufan	
:40-86m	Libridgen.							بعلتقيلتمة
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.58 GH	z			1000 pts	5		Span 80.27	5 MHz
larker								
	f Trc	X-value	Y-Ve		Function	Fun	ction Result	
M1 D1 M	1 1	5.5636477 Gł 33.2671 Mł		.46 dBm 0.07 dB				
	J				Read	·	4,40	1.09.202


ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:55:59

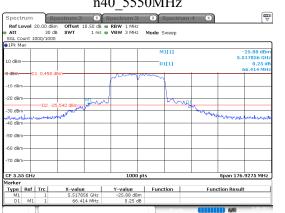
n20_5720MHz

CCL CA	unt 1	30 dB 000/1000	SWT 1 ms	VBW 2 MI	Iz Mode	Sweep		
91Pk M		000/1000						
					N	1[1]		-22.05 dE
10 dBm								5.7011974 G
		1 5.379 di	3m	m		1[1]		0.64 37.5150 M
0 dBm-	-				· ~	1		
						N I		
-10 dBn				1		1		
-20 dBn	_		621 dBm Min W	54		- Smil	Win1	
		02 -20	.621 dBm				maining	
-30 dBn	-		pl -					MAC.
و بدار	Auguste	mound	f					When have been alson
-40 aBn								
-50 dBn	-							
-60 dBn								
-70 dBn								
CF 5.7	2 CH2			1000	nte			Span 90.09 MH
Marker	e unz			1000	pea			opun 90.09 MP
Type	Ref	Trc	X-value	Y-value	Fund	tion	Fund	ction Result
M1		1	5.7011974 GHz	-22.05 dB				
D1	M1	1	37.515 MHz	0.64 c	в			


ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 23:01:04

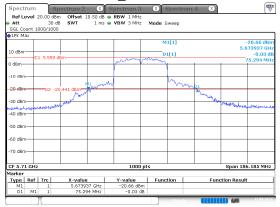
a_5720MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:51:33



Date: 12.SEP.2024 00:01:31

5725-5850MHz


Def Loval 20.0 dim Offset 10.50 die BBW 100 Hit SdL SdL <th></th> <th>a</th> <th>_5745]</th> <th>MHz</th> <th></th> <th></th>		a	_5745]	MHz		
att 30 db SWT 1.1 ms VBW 300 kHz Mode Sweep 501 Count 1000/1000 000/100 000/100 000/100 000/100 91Pk Max 01101 5.73711714 -7.51 d 0110 13.8138 h 0 dBm 01 0.418 dbm 0110 13.8138 h 13.8138 h 13.8138 h -00 dBm -02 -5.52 dbm 10.00 µth 4.04 µth 4.04 µth 10.01 µth 13.8138 h -00 dBm -02 -5.52 dbm 10.00 µth 4.04 µth <td< th=""><th>Spectrum S</th><th>pectrum 2 🛛 🕅</th><th>Spectrum 3</th><th>Spectru</th><th>im 4 🛛 🕅</th><th>l</th></td<>	Spectrum S	pectrum 2 🛛 🕅	Spectrum 3	Spectru	im 4 🛛 🕅	l
0 IPk Max M1[1] 7.51 d 10 dBm 011,11 5.73711714 0 dBm 011,01 15.73711714 0 dBm 011,01 15.8138 h 10 dBm 02 d.5 see dBm 101,01 -02 d.5 see dBm 101,01 15.8138 h -03 dBm -02 d.5 see dBm 100,01 -04 dBm -04,01 100,01 -05 dBm -04 -04,01 -05 dBm -04 -04,01 -06 dBm -04 -04,01 -07 dBm -04 -04,01 -06 dBm -04 -04,01 -06 dBm -04 -04,01 -07 dBm -04,01 -04,01 -06 dBm -04 -04,01 -07 dBm -04,01 -04,01 -06 dBm -04,01 -04,01 -07 dBm -04,01 -04,01 -07 dBm -04,01 -04,01 -07 dBm -04,01 -04,01 -07 dBm -04,01 -04,01	Att 30 d	IB SWT 1.1 ms 🖷		Mode Sweep		
10 dBm 01 0.418 db						
10 dbm 0 1 0.418 dm 0 1 0.413 1 2.23 1 2.33 1 2.33 1 2.35 1 2.55				M1[1]		-7.51 dBr
0 dBm 01 0.418 dbm 15,0150 N -02 -5,522 dBm 100 dbm -0 -03 dBm -02 -5,522 dBm 100 dbm -04 dbm -04 dbm -04 dbm -05 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -05 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm -04 dbm <td>0 d8m</td> <td></td> <td></td> <td></td> <td></td> <td>5.7371171 GH</td>	0 d8m					5.7371171 GH
6 dem 0.0 0.418 dpm 110 dpm </td <td></td> <td></td> <td></td> <td>01[1]</td> <td></td> <td></td>				01[1]		
10 dBm	dBm 01 0.418 (dêm und a l	A LAND	alatek tak	_	10.0100
20 dbm 		.582 dBm	and the second second second	man was weeked	_	
50 dBm	LO dBm					
50 dkm 60 dkm<	20 dBm				1	
50 dkm 60 dkm<					Maria I.	
50 dkm 60 dkm<	30 dBm	HUNDREAM			- Manuta in Ala	Hands
50 dBm	and a second	•				THE WORK ALL
50 dkm 60 dkm<	10 dBm					The second s
60 dBm						
70 dBm	JO GDIN					
CF 5.745 GHz 1000 pts Span 50.0 MI Orarkar Type Ref Trc X-value Y-value Function Function Result M1 1 5.7371/17 GHz 7.51 dBm Function Function Result	50 dBm					
CF 5.745 GHz 1000 pts Span 50.0 MI Orarkar Type Ref Trc X-value Y-value Function Function Result M1 1 5.7371/17 GHz 7.51 dBm Function Function Result						
Marker Yuel Yuele Function Function Result M1 1 5.7371171 GHz -7.51 GBm Function Function Result	/0 dBm		+			
Marker Yuel Yuele Function Function Result M1 1 5.7371171 GHz -7.51 GBm Function Function Result						
Type Ref Trc X-value Y-value Function Function Result M1 1 5.7371171 GHz -7.51 dBm -7.51 dBm -7.51 dBm			1000 pt:	5		Span 50.0 MHz
M1 1 5.7371171 GHz -7.51 dBm						
				Function	Functi	on Result
51 M1 1 100100 M12 110 00						
	1 1	10/0100 Mills	1,23 00			a at sets 11.00.202

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBF.2024 21:47:24

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 23:53:53

n40 5710MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 12.SEP.2024 00:04:09

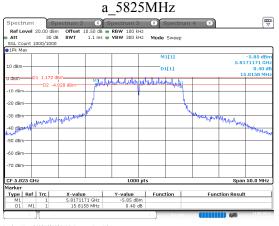
a 5785MHz X Sp trum 3 🛛 🗶 Spect Spe rum 4 🛛 🚿 Spectru UU dBm Offset 10. 30 dB SWT 1 /1000 Ref Level 20.0 Att 0.50 dB 👄 RBW 100 kHz 1.1 ms 👄 VBW 300 kHz Mode Sweep -6.92 dE 5.7771171 GF 1.15 o 15.7658 M M1[1] 10 dBm D1[1] Bala har and the when har and and -D2 -5.739 dBm 10 dBm -20 dBm 30 dBr Jow Work which where Maple Mary . 40 dBm 50 dBm -60 dBr -70 dBm CF 5.785 C 1000 pt Span 50.0 MHz
 Marker

 Type
 Ref
 Trc

 M1
 1

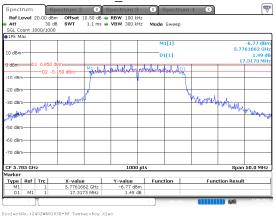
 D1
 M1
 1

 X-value
 Y-value
 Function


 5.7771171 GHz
 -6.92 dBm
 -6.92 dBm

 15.7658 MHz
 1.15 dB
 -6.92 dBm
 Function Result

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 21:49:55


n40_5550MHz

Report No.: 2402W68103E-RF-00D

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:54:27

n20_5785MHz

ProjectNo.:2402W68103E-RF Tes Date: 11.SEP.2024 23:09:46

n40 5755MHz

Spectr	um	\neg	Spec	trum	2	X	pect	rum 3	. (X	Spectr	um	4	×)		
Ref Le	vel :				t 10.50			100 k				_	_				
Att			dB	SWT	1	. ms 👄	VBW	300 ki	Hz I	Mode	Sweep						
SGL COL		000/10	00														
1Pk Ma	×																
										M	1[1]						-7.26 d
LO dBm-																5.7	374324
to dom										D	1[1]						-3.22
o dBm—																2	5.2352
2 SIDIT	-0	1 -1.16			M1	i i i i i i	1 LL	d. J.	1.1	ML.	11.0	i 4					
10 dBm-		D2	-7.16	0 dBm-	h	1000	When a	A MARK	W-P	a la la	WWW.	d.					
					1 r							۳.					
-20 dBm-																	
					. 17							- 1					
30 dBm-	-	to be be	hill.	d not h	hill a		-						ullif"	4 Million	4.44	Mart	_
30 dBm-		hitem .			1									1.1	1	110.116	holowala
AL OBH	Mara 1		-		_		-						+		+		ad MO
50 dBm-	-		+		_		-				<u> </u>		+		+		-
60 dBm-	-		-		-		-						+		+		
-70 dBm-	-		+		_		-				-	_	+		+		
CF 5.75	5 GH	z						1000	pts							Span	100.0 M
1arker																	
Type	Ref	Trc		X-va				alue		Func	tion			Fu	nctio	n Resu	lt
M1		1			7432 G			7.26 dB									
D1	M1	1		35	.235 M	Hz		-3.22 c	iв								
		1									. Do as		-		пп	436	12.09.

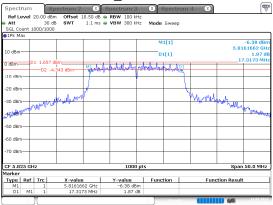
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 12.SEP.2024 00:05:33

Spectru Spe 10 dBm 30 dB XS 4 X 10.50 dB • RBW 100 kHz 1.1 ms • VBW 300 kHz Mode Sweep Ref Level 20.0 Att Offset SWT ot 1000 M1[1] -6.88 d 5.7361662 (10 dBm D1[1] .3173 Helenberten hellen be devladated do 10 dBrr -20 dBmmonth 1 mallet white the Mr.A. Ac dam--50 dBm 60 dBrr 70 dBm CF 5.745 G 1000 pt Span 50.0 MHz
 X-volue
 Y-value
 Function

 5.7361662
 648
 6.88 dBm
 17.3173 MHz

 17.3173
 MHz
 1.57 dB
 1.57 dB

 Marker


 Type
 Ref
 Trc

 M1
 1

 D1
 M1
 1
 Function Result

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:04:06

n20_5825MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:13:01

n40 5795MHz

●1Pk Ma	8X											
							м	1[1]				-11.77 dB
10 dBm-	-							เกม			5.7	2.13 c
											5	5.3353 MI
0 dBm—	-0	1 -1.099	dBm		يعادل الطولان ا	. 11	111	14.00	-			
-10 dBm			.099 dBm	mohlik	C C C C C C C C C C C C C C C C C C C	parte	en frank	ANNA	1			
									1			
-20 dBm	+					-						
			1.11	17					Л	and a second		
-30 dBm	-	uni hini	u uturdybaj	d l					b	h e nd die der Vichen	Multiple and	
-40 d8m	فمانك	NUMPED ****	1 1	ľ.							in dif	Harry
Nel-aller	~											
-50 dBm	-				_				_			
-60 dBm	+											
-70 dBm												
-70 0511												
CF 5.79	IS GH	z			1000	pts					Span	100.0 MH
Marker												
Type	Ref	Trc	X-value		Y-value		Func	tion		Func	tion Resu	lt
		1	5.7773		-11.77 dE	m						
M1 D1	M1	1		32 GH2 35 MHz	2.13							

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 12.SEP.2024 00:07:04

Report No.: 2402W68103E-RF-00D

5.4 99% Occupied Bandwidth

Serial No.:	2QWQ-1	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

Environmental Conditions:

Tem	perature: (°C):	25.9~26.4	Relative Humidity: (%)	39~44	ATM Pressure: (kPa)	100.2~100.9
-----	--------------------	-----------	------------------------------	-------	------------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data: 5150-5250MHz

5150-5250WIRZ							
Mode	99% OBW (MHz)						
a_5180MHz	16.450						
a_5200MHz	16.450						
a_5240MHz	16.450						
n20_5180MHz	17.700						
n20_5200MHz	17.700						
n20_5240MHz	17.700						
n40_5190MHz	36						
n40_5230MHz	36						

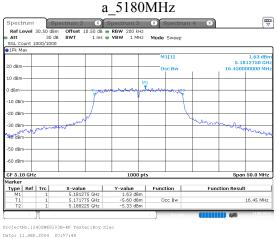
Note:

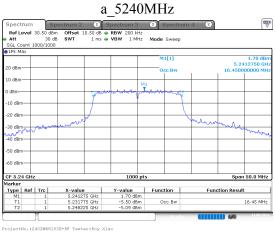
The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

5250-5350MHz

Mode	99% OBW (MHz)
a_5260MHz	16.550
a_5280MHz	16.550
a_5320MHz	16.550
n20_5260MHz	17.750
n20_5280MHz	17.750
n20_5320MHz	17.750
n40_5270MHz	36.100
n40_5310MHz	36.100

Mode	99% OBW (MHz)				
a_5500MHz	16.450				
a_5580MHz	16.500				
a_5700MHz	16.700				
a_5720MHz	16.750				
n20_5500MHz	17.750				
n20_5580MHz	17.850				
n20_5700MHz	18.650				
n20_5720MHz	18.400				
n40_5510MHz	36.400				
n40_5550MHz	36.400				
n40_5670MHz	38.500				
n40_5710MHz	40				

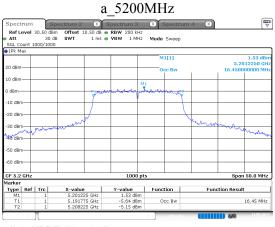

5725-5850MHz


Mode	99% OBW (MHz)			
a_5745MHz	16.550			
a_5785MHz	16.450			
a_5825MHz	16.450			
n20_5745MHz	17.900			
n20_5785MHz	17.750			
n20_5825MHz	17.750			
n40_5755MHz	36.800			
n40_5795MHz	36.200			

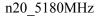
Note:

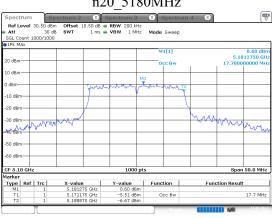
The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

5150-5250MHz



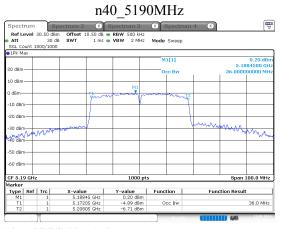
ProjectNo.:2402W68103E-RF Te Date: 11.SEP.2024 21:01:44


$n20_5200MHz$


Spectrum Ref Level		0	Spectrum 3 RBW 200 kHz	Spectru	m 4 🛛 🗶	
Att	30 d		VBW 1 MHz	Mode Sweep		
SGL Count :	1000/1000					
1Pk Max						
				M1[1]		0.64 dBr 5.2012750 GH
20 dBm				Occ Bw		5.2012750 GH 17.700000000 MH
				OLL BW	1	17.70000000 Min
LO dBm						
			M	1		
) dBm		Form	- Jan all and a good and and	white who	2	
10 dBm			¥		Ţ	
					VI.	
20 dBm					<u>\</u>	
					No 10.00	mmm
30 dBm	N.M.	March March			- 2000	March
30 dBm 	Acres 1					Mary
40 asm						
50 dBm						
00 00						
60 dBm						
CF 5.2 GHz			1000 pt	s		Span 50.0 MHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	5.201275 GHz	0.64 dBm			
T1 T2	1	5.191175 GHz	-5.45 dBm	Occ Bw		17.7 MHz
12	1	5.208875 GHz	-6.21 dBm			

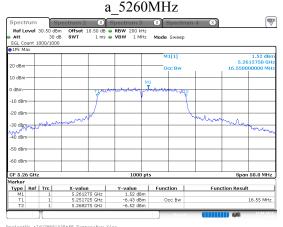
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:37:23

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 20:59:55



ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:32:57

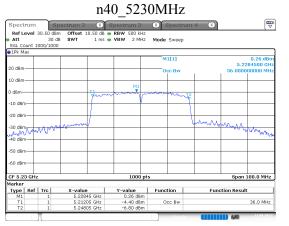
n20_5240MHz


Spectrum	S	pectrum 2	XS	pectrum 3	X	Spectru	n4 🗶		(\
Ref Level	30.50 dBr	n Offset 10.5	0 dB 😑	RBW 200 kH	:				
Att	30 d	B SWT	1 ms 👄	VBW 1 MH:	Mode	Sweep			
SGL Count :	1000/1000								
1Pk Max									
					M	1[1]			0.65 dBr
								5.23	87750 GH
20 dBm					0	cc Bw		17.7000	00000 MH
						1	1		
10 dBm									
				M1					
0 dBm		1	wash	part and a	whether	WWW I	2		
-10 dBm		ľ		1 Y		1 7			
-10 UBIII									
-20 dBm		1					V.		
-20 abiii									
-30 dBm		mal mor					MARA	A.O	
	$\chi_{N} \sqrt{N}$	4 ~ V						www	mon
40 dBm									· WY %
io abiii									
-50 dBm									
-60 dBm									
CF 5.24 GH	z			1000 p	its	-		Span	50.0 MHz
1arker									
Type Ref		X-value		Y-value	Func	tion	Fund	tion Result	
M1	1	5.238775 (0.65 dBm					
T1	1	5.231175 (-5.44 dBm		CC BW			17.7 MHz
T2	1	5.248875 (GHz	-6.72 dBm					

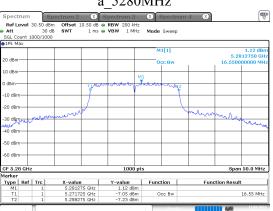
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:40:27

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:39:16

5250-5350MHz



ProjectNo.:2402W68103E-RF Tester Date: 11.SEP.2024 21:04:15

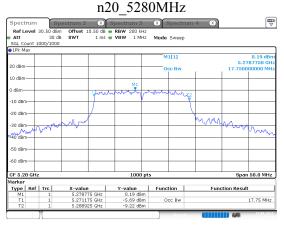

a_5320MHz

30.50 dBm 30 dE 1000/1000	SWT :	1 ms 🖷		Hz M1	Mode S M1[Occ	1] Bw			212750 GH
1000/1000				M1		1] Bw			212750 GH
			whatwar	M1	0cc	Bw			212750 GH
			wheeling	M1	0cc	Bw			
	1		wheeler	M1					212750 GH 100000 MH
	1		www	M1				16.5500	00000 MH
	1	- Jun m	www.	M1					
	1	ymm	whenhold	M1					
	1	Ymm	www	Jun					
		1	av			0			-
				ľ –		-wq2			
	1								
	0					7	an. A		
mahan	- www.						and and an	marga	
J									how
z			1000	pts				Spar	1 50.0 MHz
Trc	X-value		Y-value		Functio	on	Fun	ction Resul	t
1									
					Occ	BW			16.55 MHz
1	5.328275 0	Hz	-8.46 dE	m					
	Trc	z Trc x-value 1 5.321275 0 1 5.312725 0	z Trc X-value 1 5.321275 GHz 1 5.311725 GHz	z 1000 1 5.321275 GHz -0.07 GH 1 5.321275 GHz -0.07 GHz	z 1000 pts Trc X-value Y-value 1 5.321275 GHz -0.07 dBm 1 5.311725 GHz -0.824 dBm	z 1000 pts Trc X-value Y-value Function 1 5.521275 6Hz -0.07 6m 1 5.511275 6Hz -0.24 60m Occ	z 1000 pts	z 1000 pts Trc X-value Y-value Function Fun 1 5.321275 GHz -0.07 dBm Occ Bw	z 1000 pts Sper Trc X-value Y-value Function Function Result 1 5.321275 OHz -0.07 dBm Occ Bw

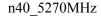
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:14:50

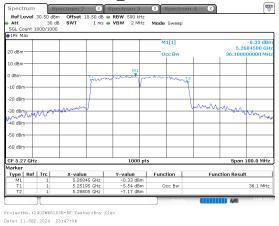
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 23:44:19

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:07:07

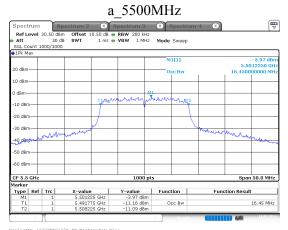

n20_5260MHz

Spectrum	S	oectrum 2 🛛 🚿	Spectrum 3	Spectrur	n4 🛛	[q
Ref Level			RBW 200 kHz			
Att	30 d		VBW 1 MHz	Mode Sweep		
SGL Count 1	000/1000					
1Pk Max						
				M1[1]		0.53 dB
20 dBm						5.2612750 GF
20 00111				Occ Bw		17.750000000 MH
10 dBm						
10 000			N	11		
0 dBm		Jun	- half the starter	hallow habers a		
		Anon	and the state of the	mound man to	2	
-10 dBm						
					VI.	
-20 dBm					1	
-30 dBm		norm			MM	mun
	1rdrw	14-1V				on charly have
40 dBm	0					and
-to abili						
-50 dBm						
-60 dBm			_			
CF 5.26 GHz	:	1 1	1000 pt	ts		Span 50.0 MH:
1arker						
Type Ref		X-value	Y-value	Function	Fund	tion Result
M1	1	5.261275 GHz	0.53 dBm			
T1	1	5.251175 GHz	-5.55 dBm	Occ Bw		17.75 MH
T2	1	5.268925 GHz	-8.63 dBm			

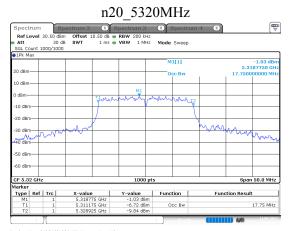

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:43:46

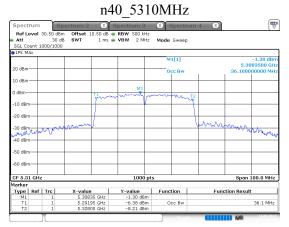

a 5280MHz

Report No.: 2402W68103E-RF-00D



ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:47:14

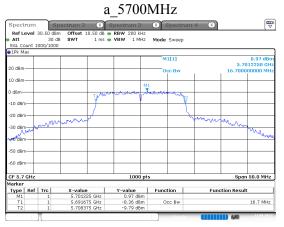



5470-5725MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 21:34:53

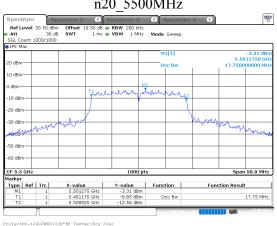
ProjectNo.:2402W68103E-RF Tester:Roy Xiac Date: 11.SEP.2024 22:50:07

ProjectNo.:2402W68103E-RF Tester:Roy Xiao


Date: 11.SEP.2024 23:49:20

rum 3 🚯 Spectrum 4 🔳 x) s Spectru S Ref Level 30.5 Att 0 dBm Offset 10. 30 dB SWT 50 dB • RBW 200 kHz 1 ms • VBW 1 MHz Mode Sweep 1Pk -3.14 df 5.5812250 G 16.50000000 M M1[1] 20 dBm· cc Bw 10 dBmdBm MI т 1,∕М -10 dBm -20 dBm--30 dBmm more w 40 d**an** -50 dBm -60 dBm 1000 p CF 5.58 G Span 50.0 MHz Type Ref Trc X-value Y-value Function 5.581225 GHz -3.14 dBm -3.5571725 GHz -11.05 dBm Occ Bw 5.588225 GHz -10.29 dBm -10.29 dBm -10.29 dBm -10.29 dBm -10.29 dBm Function Result T1 T2 16.5 MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 21:37:47

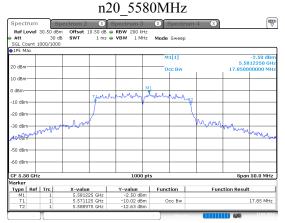

a 5580MHz

Report Template Version: FCC-WiFi5- Client -V1.2

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 21:43:43

n20 5500MHz

Date: 11.SEP.2024 22:53:36


n20 5700MHz

		_									_
Spectru	Im	Sp	ectrum 2	X	Spectrum 3	3	X	Spectru	m 4 🛛 🕅		[₩ ₩
Ref Lev	el 30	0.50 dBn	n Offset	10.50 dB (RBW 200 k	Hz					
Att 🗧		30 d£	SWT	1 ms (• VBW 1№	iHz	Mode	Sweep			
SGL Cour		30/1000									
1Pk Max											
							M	1[1]			1.59 dBm
20 dBm-											112750 GH;
20 UBIII-							0	cc Bw		18.6500	00000 MH
10 dBm-											
20 0011						M1					
0 dBm				metal	1.60.1	I.		And and			
				mour		r		March Ca	1		
-10 dBm-	-			1.	_	I					
				1 F					6		
-20 dBm-	+		1 Anno	f					Mann		
		mon	who							mm	
-30 dBm=	w **					+					and the second second
-40 dBm-						1					
-50 dBm-						-					
-60 dBm-											
-00 ubiii-											
CF 5.7 G	L 7				100) pts				Poar	50.0 MHz
Marker	112				100	pes				opui	1 30:0 14112
	tef	Trc	X-valu	o	Y-value	-	Func	tion	Euro	ction Resul	
M1		1		75 GHz	1.59 di	am	Func	cion	Fun	ccion Resul	
T1	-	1		75 GHz	-16.02 di		0	CC BW			18.65 MHz
T2	-	1		25 GHz	-17.59 di						
						_	-			4.444	11.09.2024

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:59:18

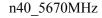
Spectru Spectrum 2 8 S 0 dBm Offset 10.50 dB • 30 dB SWT 1 ms • 3 🔿 Sp 4 X Ref Level 30.5 Att RBW VBW 200 kHz 1 MHz Mode Sweep unt 1000 1.62 dE 5.7212750 m 16.75000m M1[1] 20 d8m-10 dBmdBr -10 dBm -20 dBm N -30 dBmdi dBm -50 dBm -60 dBm-CF 5.72 GF 1000 pts Span 50.0 MHz Type Ref Trc M1 1 Function Result 16.75 MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 21:45:56

ProjectNo.:2402068103E-RF Tester:Roy Xia Date: 11.SEP.2024 22:56:26

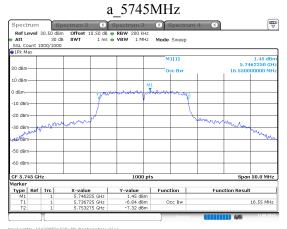
n20_5720MHz

1Pk M		000/1000					
					M1[1]		2.24 dB
20 dBm							5.7212750 G
					Occ Bw	1	18.40000000 MH
10 dBm				M			
0 dBm—				1 4 4 1			
D GBIM-			[Shall	- manual a	managene	Υ	
-10 dBrr	-		т	_		12	
			3			¥	
-20 dBm	-		my line			mon	
20 484	a b	MANN	· •				mmm
-30,48,0	~~						www
40 dBm							
-50 dBrr	-					-	
-60 dBm							
-00 UBII							
CF 5.7	2 GHz			1000 pt	s		Span 50.0 MH
1arker							
Туре	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	5.721275 GHz	2.24 dBm			
T1 T2		1	5.710925 GHz 5.729325 GHz	-14.30 dBm -15.51 dBm	Occ Bw		18.4 MH

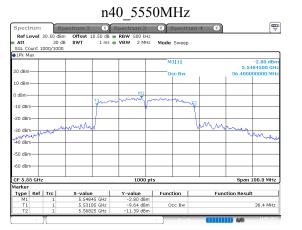

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:01:31

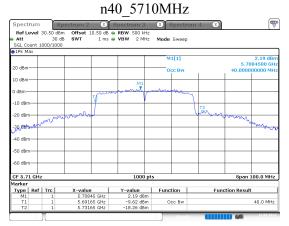

a_5720MHz

Report No.: 2402W68103E-RF-00D



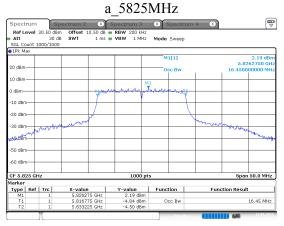
ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:51:54



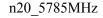

5725-5850MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 21:47:52

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 23:54:14

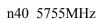

ProjectNo.:2402068103E-RF Tester:Roy Xia

Date: 12.SEP.2024 00:04:22

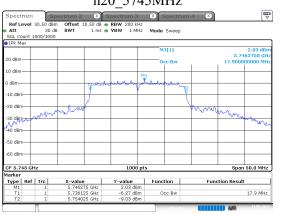

			C	i_3783	IVIIIZ		
Spectrum		Spectrum 2	X	Spectrum 3	🛛 🗴 Specti	rum 4 🛛 🗶	l Ţ
Ref Level	30.50	dBm Offset 1	0.50 dB	RBW 200 kHz			,
Att	30	dB SWT	1 ms	VBW 1 MHz	Mode Sweep		
SGL Count	1000/10	000					
1Pk Max							
					M1[1]		1.33 dBn
							5.7862250 GH
20 dBm					Occ Bw		16.450000000 MH
10 dBm							
TO UBIII				M	1		
D dBm				and the second and	Transa a r		
			- A MAN		and the second of the	Ý	
-10 dBm				-			
						1	
-20 dBm		_	1			<u> </u>	
			r -			monum	
-30 dBm —	a. M	un and and and and and and and and and an					have been the and
week	V~~ 1						W Marchen
4Q.dBm							
-50 dBm							
-50 dBm-							
-60 dBm							
oo abiii							
CF 5.785 G	Hz			1000 pt	s	1	Span 50.0 MHz
1arker							
Type Ref	Trc	X-value	- T	Y-value	Function	Eun Fun	ction Result
M1	1	5.7862	25 GHz	1.33 dBm			
T1	1	5.7767	75 GHz	-5.64 dBm	Occ Bw		16.45 MHz
T2	1	5.7932	25 GHz	-5.67 dBm			

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:50:27

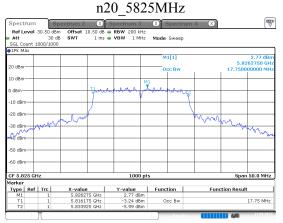
a 5785MHz



ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 21:54:49



Date: 11.SEP.2024 23:10:20



Refle	vel :	30.50 dB	m Offset 10.50	d8 👄 RBW 500 k	:Hz			(
Att		30 d		ns e VBW 2 M		Sween		
SGL CO	unt 1	000/1000	1					
1Pk Ma	x							
					MJ	[1]		2.47 dB
								5.7534500 GF
20 dBm-					Oc	c Bw		36.80000000 MH
							1	
10 dBm-				M1				
0 dBm—			T1	mound	mon	-AA -A		
o ubin-			Y~	0.000	V	Low M		
-10 dBm	_					1	2	
-20 dBm	_		1. Owerfrage				4mm	mm
		my mon	month					a mont
-30 aBh	ليهمن							- Maria
and a second								
-40 dBm	-							
-50 dBm	-							
-60 dBm								
-bu ubiii								
CF 5.75	IS GH	z		100) pts			Span 100.0 MHz
Marker				1	1			
Туре	Ref		X-value	Y-value	Funct	ion	Fund	tion Result
M1 T1		1	5.75345 GH			c Bw		36.8 MH;
T2		1	5.73685 GH			C D 19		30.8 MH
14	_	1	5.77303 GH	12:20 01	2001			

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 12.SEP.2024 00:05:48

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.5EP.2024 23:04:37

ProjectNo.:2402068103E-RF Tester:Roy Xia Date: 11.SEP.2024 23:13:26

n40 5795MHz

Spectrum		ectrum 2 🛛 🛛		🔍 Spectr	um 4 🛛 🗶	7
Ref Level	30.50 dBm 30.dF		B e RBW 500 kH s e VBW 2 MH			
SGL Count 1			- 1011 - 1111	in mode Sweep		
1Pk Max	,					
				M1[1]		2.61 dB
						5.7933500 GF
20 dBm				Occ Bw		36.20000000 MH
10 dBm						
TO GBW			M1			
0 dBm		T1	Jumay	mon	T2	
		1			Ÿ	
-10 dBm						
					1	
-20 dBm		00000			homen	my
	south the	mm			- p - w - i	may
-30 dBm						mann
-40 dBm						
-40 UBIII-						
-50 dBm						
00 00						
-60 dBm						
CF 5.795 GH	lz	· · · ·	1000	pts		Span 100.0 MHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	5.79335 GHz	2.61 dBr			
T1	1	5.77695 GHz	-3.18 dBr			36.2 MH
T2	1	5.81315 GHz	-4.77 dBr	n		

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 12.SEP.2024 00:07:18

 $n20_5745MHz$

Report No.: 2402W68103E-RF-00D

5.5 Maximum Conducted Output Power

Serial No.:	2QWQ-1	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Tem	perature: (°C):	25.9~26.4	Relative Humidity: (%)	39~44	ATM Pressure: (kPa)	100.2~100.9
-----	--------------------	-----------	------------------------------	-------	------------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2024/09/04	2025/09/03

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data: 5150-5250MHz

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5180MHz	11.77	24	Pass
a_5200MHz	11.65	24	Pass
a_5240MHz	11.85	24	Pass
n20_5180MHz	10.69	24	Pass
n20_5200MHz	10.7	24	Pass
n20_5240MHz	10.7	24	Pass
n40_5190MHz	9.75	24	Pass
n40_5230MHz	9.88	24	Pass
Note: The device is a Client device.	-	·	

5250-5350MHz

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5260MHz	11.68	24	Pass
a_5280MHz	11.29	24	Pass
a_5320MHz	10.08	24	Pass
n20_5260MHz	10.61	24	Pass
n20_5280MHz	10.2	24	Pass
n20_5320MHz	8.99	24	Pass
n40_5270MHz	9.39	24	Pass
n40_5310MHz	8.36	24	Pass

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5500MHz	6.26	24	Pass
a_5580MHz	6.92	24	Pass
a_5700MHz	11.05	24	Pass
a_5720MHz	11.69	24	Pass
n20_5500MHz	6.66	24	Pass
n20_5580MHz	7.49	24	Pass
n20_5700MHz	11.56	24	Pass
n20_5720MHz	12.22	24	Pass
n40_5510MHz	6.64	24	Pass
n40_5550MHz	6.72	24	Pass
n40_5670MHz	9.38	24	Pass
n40_5710MHz	11.71	24	Pass

5470-5725MHz

5725-5850MHz

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5745MHz	11.61	30	Pass
a_5785MHz	11.47	30	Pass
a_5825MHz	12.35	30	Pass
n20_5745MHz	12.1	30	Pass
n20_5785MHz	11.99	30	Pass
n20_5825MHz	12.84	30	Pass
n40_5755MHz	12.04	30	Pass
n40_5795MHz	12.2	30	Pass

5.6 Power Spectral Density

Serial No.:	2QWQ-1	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	25.9~26.4	Relative Humidity: (%)	39~44	ATM Pressure: (kPa)	100.2~100.9
-----------------------	-----------	------------------------------	-------	------------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). **Test Data:**

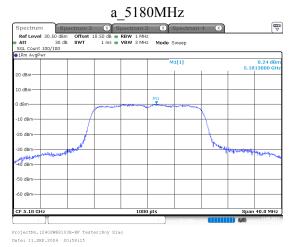
5150-5250MHz

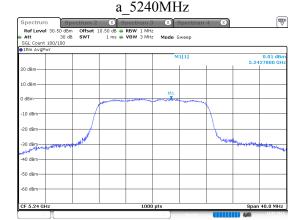
5150-5250WIIIZ					
Mode	Value (dBm/MHz)	Duty Cycle Factor(dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5180MHz	0.24	1.15	1.39	11	Pass
a_5200MHz	-0.07	1.15	1.08	11	Pass
a_5240MHz	0.01	1.15	1.16	11	Pass
n20_5180MHz	-1.29	1.22	-0.07	11	Pass
n20_5200MHz	-1.03	1.22	0.19	11	Pass
n20_5240MHz	-1.20	1.22	0.02	11	Pass
n40_5190MHz	-5.37	1.93	-3.44	11	Pass
n40_5230MHz	-5.81	1.93	-3.88	11	Pass
Note: The device is a Clier	nt device		1		1

Note: The device is a Client device.

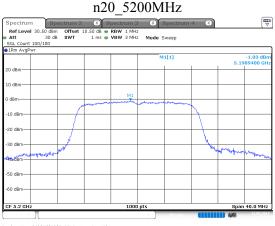
5250-5350MHz

Mode	Value (dBm/MHz)	Duty Cycle Factor(dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5260MHz	-0.30	1.15	0.85	11	Pass
a_5280MHz	-0.11	1.15	1.04	11	Pass
a_5320MHz	-1.35	1.15	-0.20	11	Pass
n20_5260MHz	-1.40	1.22	-0.18	11	Pass
n20_5280MHz	-1.78	1.22	-0.56	11	Pass
n20_5320MHz	-2.95	1.22	-1.73	11	Pass
n40_5270MHz	-5.76	1.93	-3.83	11	Pass
n40_5310MHz	-7.02	1.93	-5.09	11	Pass

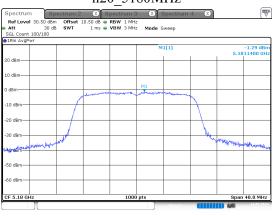

Mode	Value (dBm/MHz)	Duty Cycle Factor(dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5500MHz	-5.14	1.15	-3.99	11	Pass
a_5580MHz	-4.86	1.15	-3.71	11	Pass
a_5700MHz	-0.51	1.15	0.64	11	Pass
a_5720MHz	0.30	1.15	1.45	11	Pass
n20_5500MHz	-5.00	1.22	-3.78	11	Pass
n20_5580MHz	-4.33	1.22	-3.11	11	Pass
n20_5700MHz	-0.56	1.22	0.66	11	Pass
n20_5720MHz	0.41	1.22	1.63	11	Pass
n40_5510MHz	-8.72	1.93	-6.79	11	Pass
n40_5550MHz	-8.25	1.93	-6.32	11	Pass
n40_5670MHz	-5.99	1.93	-4.06	11	Pass
n40_5710MHz	-2.78	1.93	-0.85	11	Pass


5470-5725MHz

5725-5850MHz


3723-3030WIIIZ					
Mode	Value (dBm/500kHz)	Duty Cycle Factor(dB)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
a_5745MHz	-2.63	1.15	-1.48	30	Pass
a_5785MHz	-3.09	1.15	-1.94	30	Pass
a_5825MHz	-1.49	1.15	-0.34	30	Pass
n20_5745MHz	-2.59	1.22	-1.37	30	Pass
n20_5785MHz	-2.19	1.22	-0.97	30	Pass
n20_5825MHz	-1.87	1.22	-0.65	30	Pass
n40_5755MHz	-5.42	1.93	-3.49	30	Pass
n40_5795MHz	-4.75	1.93	-2.82	30	Pass

5150-5250MHz


ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 21:02:11

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SBP.2024 22:37:53

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:33:28

n20_5240MHz

ProjectNo.:2402W68103E-RF Tester:Roy Xiao Date: 11.SEP.2024 22:40:58