

Page 1 of 27

Report No.: KS2204S1365E04

TEST REPORT

Report No	KS2204S1365E04		
FCC ID·······:	2AO94-LW001BGPRO		
Applicant:	MOKO TECHNOLOGY LIMITED		
Address	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua , Shenzhen,China 518110		
Manufacturer	MOKO TECHNOLOGY LIMITED		
Address	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua , Shenzhen,China 518110		
Product Name:	Smart Tracker		
Trade Mark	N/A		
Model/Type reference:	LW001-BG PRO		
Listed Model(s)	N/A		
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.249		
Date of Receipt:	April 09, 2022		
Date of Test Date:	April 09, 2022~May 09, 2022		
Date of issue	May 09, 2022		
Test result:	Pass		
prepare by: (Printed name + Signature)	Sky dang		
Approved by: (Printed name + Signature)	Neil Wan Neil Wan		
Testing Laboratory Name:	KSIGN Testing Co., Ltd.		
Address:	Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China		
reproduced except in full, without the v product endorsement by KSIGN. The te shall be invalid without all the signature	pletely for legal use with the approval of the applicant. It should not be written approval of our laboratory. The client should not use it to claim est results in the report only apply to the tested sample. The test report es of testing engineers, reviewer and approver. Any objections must be ce the date when the report is received. It will not be taken into		

consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

Page

1. TEST SUMMARY	3
1.1. Test Standards 1.2. Report version 1.3. Test Description 1.4. Table of Carrier Frequency 1.5. Measurement Uncertainty 1.6. Environmental conditions	3 4 4 5
2. GENERAL INFORMATION	6
2.1. Client Information 2.2. General Description of EUT 2.3. Description of Test Modes 2.4. Measurement Instruments List	6 7
3. TEST ITEM AND RESULTS	9
3.1. ANTENNA REQUIREMENT 3.2. CONDUCTED EMISSION 1 3.3. 20DB BANDWIDTH 1 3.4. RADIATED SPURIOUS EMISSIONS	.0 1
4. EUT TEST PHOTOS	:6
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	27

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	May 09, 2022	Original

1.3. Test Description

FCC Rules Part 15.249				
T = 4 H = 11	Section in CFR 47	Decult	Test	
Test Item	FCC	Result	Engineer	
Antenna requirement	15.203	Pass	Allen Li	
AC Power Line Conducted Emissions	15.207	N/A	Allen Li	
20dB Bandwidth	Section 15.215(c)	Pass	Allen Li	
Band edge Emissions	Section 15.249(d)	Pass	Allen Li	
Field Strength of Fundamental	Section 15.209	Pass	Allen Li	
Radiated Spurious Emissions	Section 15.205(a),Section 15.209(a), Section 15.249	Pass	Allen Li	

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. The product is battery powered.

1.4. Table of Carrier Frequency

Channel	Frequency (MHz)	
01	902.3	
02	902.5	
03	902.7	
:	:	
32	908.5	
62	914.5	
63	914.7	
64	914.9	

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	MOKO TECHNOLOGY LIMITED
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen,China 518110
Manufacturer:	MOKO TECHNOLOGY LIMITED
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen,China 518110

2.2. General Description of EUT

Product Name:	Smart Tracker
Trade Mark:	N/A
Model/Type reference:	LW001-BG PRO
Listed Model(s):	N/A
Model Different:	N/A
Power supply:	N/A
Power supply(Battery):	DC 3.65V From Battery
Hardware version:	LW001_BG_V2.4
Software version:	V1.0
Specification	
Modulation:	Lora
Operation frequency:	902.3MHz-914.9MHz
Channel number:	64
Antenna type:	FPC Antenna
Antenna gain:	1.20 dBi

2.3. Description of Test Modes

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency: 902.3MHz/908.5MHz/914.9MHz

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

	Tonscend JS0806-2 Test system				
ltem	tem Test Equipment Manufacturer Model No.		Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/18/2022
3	Analog Signal Generator	HP	83752A	3344A00337	03/18/2022
4	Power Sensor	Agilent	E9304A	MY50390009	03/18/2022
5	Power Sensor	Agilent	E9300A	MY41498315	03/18/2022
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/18/2022
7	Climate Chamber	Angul	AGNH80L	1903042120	03/18/2022
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/18/2022
9	RF Control Unit	Tonscend	JS0806-2	/	03/18/2022

Page 8 of 27

Transmitter spurious emissions & Receiver spurious emissions					
ltem	Test Equipment	Manufacturer	Manufacturer Model No.		Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	03/18/2022
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/22/2022
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/22/2022
4	Spectrum Analyzer	HP	8593E	3831U02087	03/22/2022
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/27/2022
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/22/2022
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/22/2022
11 Note:	Horn Antenna	Schwarzbeck	BBHA 9170	00943	03/28/2022

Note:

1)The Cal. Interval was one year.

2)The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 900~928 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

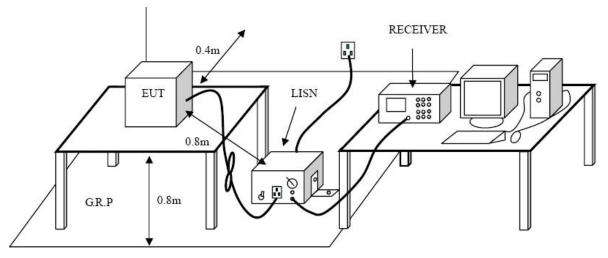
Note: The antenna is permanently fixed to the EUT

3.2. Conducted Emission

<u>Limit</u>

Conducted Emission Test Limit

Eroguopov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

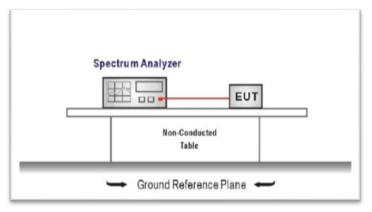
Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Results

Note: The device is powered by an internal battery, so this item is not available.



3.3. 20dB Bandwidth

<u>Limit</u>

Operation frequency range 902~928MHz.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

<u>Test Mode</u>

Please refer to the clause 2.3..

Test Results

Test Mode:			Lora
annel frequency (MHz)	20dB Bandwi	dth [MHz]	Verdict
902.3	0.139	3	PASS
908.5	0.139	3	PASS
914.9	0.139	8	PASS
	902.3M		
	002.00		
Spectrum Ref Level 20.00 dBm Off Att 30 dB SW IPk Max	set 8.23 dB ⊕ RBW 3 kHz T 632.1 µs ● VBW 10 kHz M		
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	M2[1]	4.40 dBm 902.286540 MHz 125.904486252 kHz -15.46 dBm 902.230100 MHz 01
Marker	051 pt3	•	3pail 300.0 KH2
Type Ref Trc X M1 1 9 T1 1 902 T2 1 902 D1 M1 1	Y-value Y-value 02.2301 MHz -15.46 dBm .237048 MHz 0.47 dBm .362952 MHz -0.65 dBm 139.36 kHz -0.10 dB 2.28554 MHz 4.40 dBm	Function Occ Bw	Function Result 125.904486252 kHz
			18.05.2022

3.4. Radiated Spurious Emissions

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

Standard FCC15.249

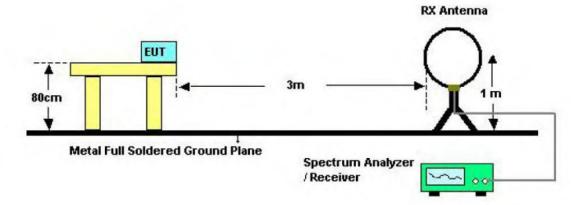
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics
	(millivolts/meter)	(microvolts/meter)
900-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

Distance	Field Strengths	Limit
Meters	μ V/m	dB(µV)/m
300	2400/F(kHz)	
30	24000/F(kHz)	
30	30	
3	100	40.0
3	150	43.5
3	200	46.0
3	500	54.0
3	Other:74.0dB(µV)/m(Peak) 54.0dB	(μV)/m (Average)
n level dB µ V = 20 l	og Emission level μV/m	
,	· · ·	5
	-	ument, antenna and the
	Meters 300 30 30 30 30 3 4 <	Meters µ V/m 300 2400/F(kHz) 30 24000/F(kHz) 30 30 3 150 200 30 300 30 300 30 300 30 300 30 300 300 300 300 300 300 300 300 300 300 300

FREQUENCY RANGE OF RADIATED MEASUREMENT

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 1MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

TRF No. FCC Part 15.249_R1


Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China Tel:+(86) 0571-8836 6861 Fax: +(86) 0571-8836 6821 E-mail:server@ksign.cn Web: www.ksign.cn

Test Configuration

Below 30MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

1) Final level = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4) Pre-scan 902.30MHz, 908.5MHz and 914.9MHz mode, and found the 902.3MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 5) Pre-scan 902.30MHz, 908.5MHz and 914.9MHz mode, and found the 902.3MHz mode it is worse case for above 1GHz, so only show the test data for worse case.
- 6) 18GHz ~ 25GHz

The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
902.30	118.11	-11.26	106.85	114	7.15	Horizontal	Peak
902.30	95.63	-11.26	84.37	94	9.63	Horizontal	AVG
908.50	117.8	-11.26	106.54	114	7.46	Horizontal	Peak
908.50	95.32	-11.26	84.06	94	9.94	Horizontal	AVG
914.90	117.57	-11.26	106.31	114	7.69	Horizontal	Peak
914.90	95.09	-11.26	83.83	94	10.17	Horizontal	AVG

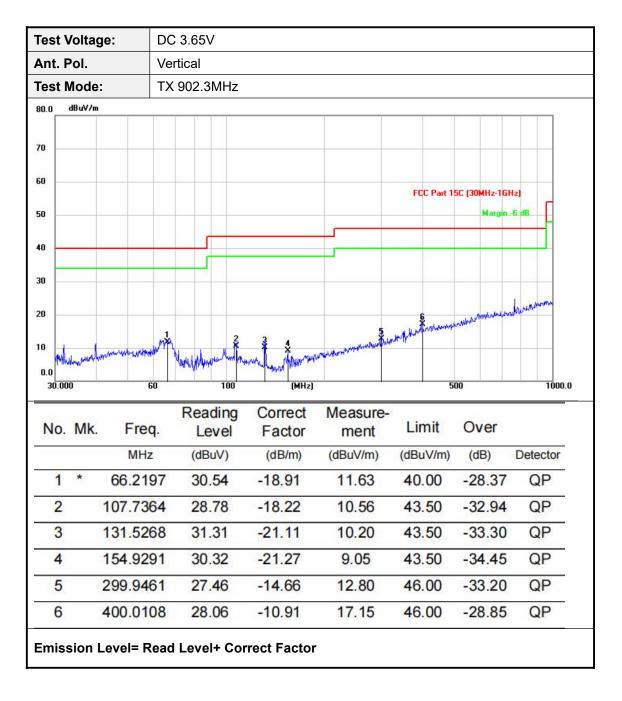
Radiated field strength of the fundamental signal

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
902.30	118.32	-11.26	107.06	114	6.94	Vertical	Peak
902.30	95.84	-11.26	84.58	94	9.42	Vertical	AVG
908.50	118.01	-11.26	106.75	114	7.25	Vertical	Peak
908.50	95.53	-11.26	84.27	94	9.73	Vertical	AVG
914.90	117.78	-11.26	106.52	114	7.48	Vertical	Peak
914.90	95.3	-11.26	84.04	94	9.96	Vertical	AVG

Note:

1. Level (dBuV/m)= Reading (dBuV)+Factor(dB/m)

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

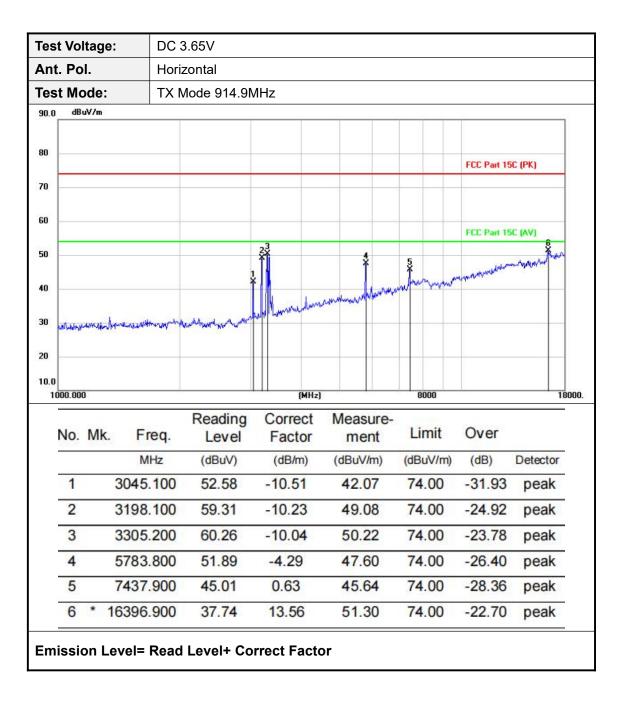
30MHz-1GHz

Test Vo	oltage	DC	3.65V					
Ant. Po	ol.	Hori	zontal					
Test M	ode:	TX 9	902.3MHz					
80.0 dE	Bu∀/m							
70	_							
60						FCC D-4 1	EC (2014)1- 10	
50						FLL Part I	5C (30MHz-10 Margir	
40								
30								
0.0	working	Sahahang	Real Constant and the second	a to think have	when the all blood on			
30.000		60	Reading	(MHz)	Measure-	5	600	1000.0
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	1
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		45.0108	25.34	-16.07	9.27	40.00	-30.73	QP
2	*	83.4342	32.99	-20.85	12.14	40.00	-27.86	QP
3		136.6990	31.56	-21.35	10.21	43.50	-33.29	QP
4		2 <mark>59.415</mark> 6	29.38	-15.57	13.81	46.00	-32.19	QP
5		368.7576	27.14	-11.93	15.21	46.00	-30.79	QP
6		452.7196	27.15	-10.30	16.85	46.00	-29.15	QP
Emissi	ion Le	vel= Read	Level+ Corr	ect Factor				

Above 1GHz

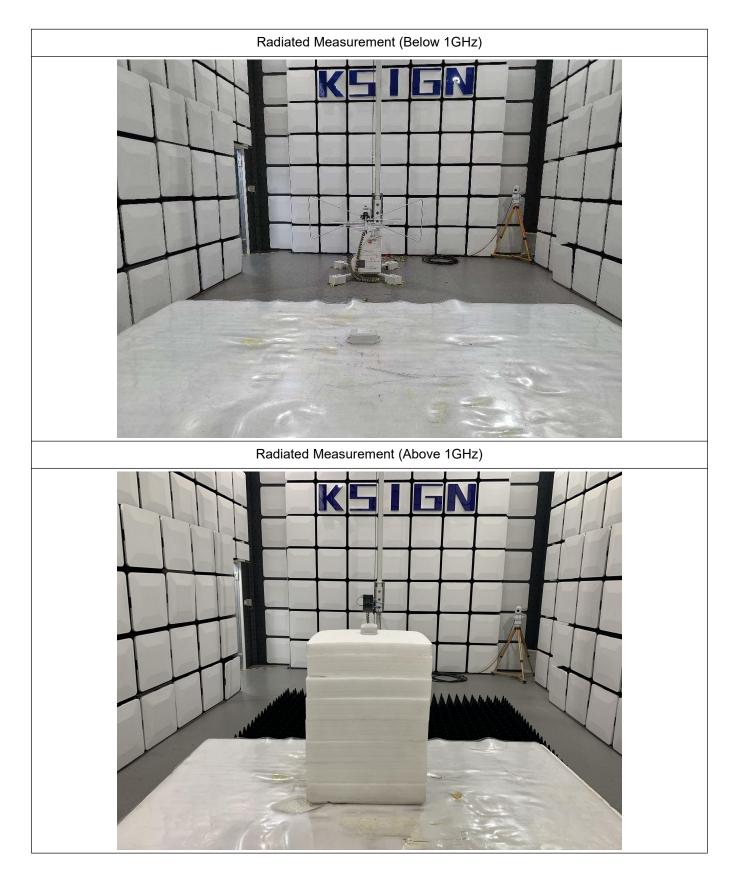
Test V	oltage): D	C 3.65	v							
Ant. P	ol.	H	lorizon	tal							
Test N	lode:	Т	X Mod	e 902.3	3MHz						
90.0 d	lBu¥/m		1			1 1	-	1 1			1
80									FCC Part 1	5C (PK)	
70											
60									FCC Part 1	SC (AV)	
50			_		*×	3 X		5		5	
					l fil		and and	manhal	Manadanterit	- <u> </u>	
40						hund	and the second second				
	nonenutritera	er-mitichaltertrater	monster	an when the	. Munud	-	and the second s				
40 30 _{Nerre} , 20	nneniektee	an man stranka skolov skolo	An ten son being	an a	and the state	and man					
30		an one ji na kubelovetka	marcan	sound	when the marked	Hz)		3000			8000
30 ((R	eading Level		t Measu	ire-	3000 imit	Over		8000
30 ////// 20 10.0 1000.0	000		Ri I.	eading	Correc	t Measu or mer	ure- nt L		10.0000000		
30 ((000 0. Mk.	Freq	R(۱.	eading Level	G Correct Facto	or Measu or mer) (dBuV/r	nt L n) (dE	imit	10.0000000	Detector	
30 20 10.0 1000.0 NO	000). Mk.	Freq	1. (00 (eading Level dBuV)	G Correct Factor (dB/m	or Measu or mer) (dBuV/r	nt L n) (dE 8 74	imit BuV/m)	(dB)	Detector	
30 40440 20 10.0 1000.0 NO). Mk.	Freq MHz 3203.20	1. (00 6 00 6	eading Level dBuV) 51.50	G Correct Facto (dB/m -10.22	et Measu or mer) (dBuV/r 2 51.2	ure- nt L m) (dE 8 74 1 74	imit ^{3uV/m)} 4.00	(dB) -22.72	Detector	_
30 10.0 10.0 1000.0 NO 1 20 1000.0 NO). Mk.	Freq MHz 3203.20 3349.40	R 1. 00 6 00 6	eading Level dBuV) 51.50 50.77	g Correc Facto (dB/m -10.22 -9.96	ct Measu or mer) (dBuV/r 2 51.2 50.8	ure- nt L m) (dE 8 74 1 74 1 74	imit ^{3uV/m)} 4.00 4.00	(dB) -22.72 -23.19	Detector peak peak peak	
30 10.0 10.0 1000.0 No 1 20 1000.0 No 1 2 3	000 0. Mk.	Freq MHz 3203.20 3349.40 5605.30	R 1. 00 (0 00 (0 00 (0 00 (0 00 (0)	eading Level dBuV) 61.50 60.77 53.70	g Correc Facto (dB/m -10.22 -9.96 -4.69	ct Measu or mer) (dBuV/r 2 51.2 50.8 49.0	ure- nt L m) (dE 8 74 1 74 1 74 4 74	imit ^{3uV/m)} 4.00 4.00 4.00	(dB) -22.72 -23.19 -24.99	Detector peak peak peak peak	8000

Test Vo									
Ant. Po	ol.		Vert	ical					
Fest M				/lode 902.3	MHz				
90.0 dl	Bu¥/m							1	
80			2 m					FCC Part 15	C (PK)
70						_			
60								FCC Part 15	C (AV)
50					12	. 4	5 ¥	a series	whenter
					I	³ ∫	A Marine manufal	American	
40						the A shall be and			
				W.	+ Mannahamen	- Marchandra and and and and and and and and and an			
40 30 wyldyd	milian	Winner	phoney for the second	www.weekersterreterreterreterreterreterreterr	+ Bornon alanda	-Marillanin and and and and and and and and and an			
	anderse	Managerial	phaneyk and b	an al and an a she way a she w	and the manual second	-Mandrada harrist			
30 www.		yran yn control	alen ngh share	an al a la an		-Mandballand			
30 20 10.0 1000.00			req.	Reading	(MH2) Correct Factor	Measure- ment	8000 Limit	Over	18
30 20 10.0 1000.00	00	F			(MH2) Correct	Measure-	8000		
30 20 10.0 1000.00	00	F	req.	Level	(MH2) Correct Factor	Measure- ment	8000 Limit	Over	18
30 20 10.0 1000.00 NO.	00	F	req. IHz .200	Level (dBuV)	(dB/m)	Measure- ment (dBuV/m)	8000 Limit (dBuV/m)	Over (dB)	Detector
30 20 10.0 1000.00 NO.	00	Fr M 3203	req. IHz .200 .100	Level (dBuV) 56.47	(MH2) Correct Factor (dB/m) -10.22	Measure- ment (dBuV/m) 46.25	8000 Limit (dBuV/m) 74.00	Over (dB) -27.75	Detector
30 20 10.0 1000.00 No. 1 20 1000.00 1000.00	00	Fi M 3203 3351	req. IHz .200 .100 .300	Level (dBuV) 56.47 56.58	(MHz) Correct Factor (dB/m) -10.22 -9.95	Measure- ment (dBuV/m) 46.25 46.63	8000 Limit (dBuV/m) 74.00 74.00	Over (dB) -27.75 -27.37	Detector peak peak
30 20 10.0 1000.00 No. 1 2 3	00	Fi M 3203 3351 5605	req. Hz .200 .100 .300 .700	Level (dBuV) 56.47 56.58 48.07	(MHz) Correct Factor (dB/m) -10.22 -9.95 -4.69	Measure- ment (dBuV/m) 46.25 46.63 43.38	8000 Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -27.75 -27.37 -30.62	Detector peak peak peak



Test	t Vol	laye				J 3	.65	v													
Ant	. Po	I.			Н	oriz	onta	al													
Test	t Mo	ode:			(T)	٢N	lode	e 90	8.5N	ИНz											
90.0 Г	dBu\	V/m				-			-		_		<u> </u>	-	-	1					-
80																		FCC Par	rt 150	(PK)	
70									_												_
60									_									FCC Par	nt 150	(AV)	_
50						-				12 ¥1			3 ¥		4 X		5		1.01241		Б Х
										N.					with	man	www	MANNE	www.	e wayna	
	halauteration		delector	week wh	Annalogie	Ale	at the state	Muph	Amme	Jahar	فمودستهور يعهله	www	www.	Marriette							
30 20 10.0	фЛитични 00.000		dekolene	week with	troneloff	Alfre	ertent.h	Augura	Ament		(MH2		all book and	April		8000					1800
30 20 10.0 100					req		Re	eadi	-)	Mea	sureent		8000 Lim	it	Ove	er.		1800
30 20 10.0 100	00.000			F			Re	eadi	el	F	(MH2 prrect)	Mea	ent			11	Ove (dB)		Dete	
30 20 10.0 100	00.000			F	req		Re	eadi Lev	el /)	F.	(MH2 prrect actor)	Mea	ent √/m)	(0	Lim	//m)			Dete	ctor
30 20 10.0 100	00.000 No.		. 32	F N 249	req		Re ((eadi Lev dBu	el /) 2	F: (((MH2 prrect actor dB/m))	Mea m((dBu)	ent V/m) 28	(0	Lim Bu\	//m))0	(dB)	72	1999 (1997) (19	ctor ak
30 20 10.0 100	No.		32	F 249 351	req IHz .10		Re ((eadi Lev dBu	el /) 2 3	F: ((-1) -9	(MH2 prrect actor dB/m) 0.14)	Mea mo (dBu) 49.	ent //m) 28 .98	(0	Lim JBu\ 74.(//m) 00	(dB) -24.	72 02	pe	^{ctor} ak ak
30 20 10.0 100	No. 1		32 33 56	F 249 351	req IHz .10	0 0	Re ((5 5	eadi Lev dBu 39.4	el /) 2 3 2	Fi ((-1) -9 -4	(MHz prrect actor dB/m) 0.14 0.95)	Mea: m((dBu) 49. 49.	ent //m) 28 98 72	(0	Lim 1Bu\ 74.0	//m))0)0	(dB) -24. -24.	72 02 28	pe pe	ctor ak ak ak
20 10.0 100	No.		32 33 56 73	F 249 351 386 312	req IHz .10 .90	0 0 0	Re ((55 55	eadi Lev dBu 59.4 59.9	el /) 2 3 2 8	Fi ((-1) -9 -4	(MHz prrect actor dB/m) 0.14 0.95)	Mea: m((dBu) 49. 49.	ent //m) 28 .98 .72 .42	(0	Lim 1Bu\ 74.0 74.0	//m))0)0)0	(dB) -24. -24.	72 02 28 58	pe pe	ctor ak ak ak ak

Fest Vo	Itage:	DC 3	3.65V					
Ant. Po	ol.	Verti	cal					
Test Mo		TX N	/lode 908.5N	/Hz				
90.0 dB	lu¥/m	-						
80							FCC Part 150	C (PK)
70								
60							FCC Part 150	C (AV)
50				1 ²	3	4 × 5		Munant
				Î	where	munim	would be would	
40								
	and the second second	Mahandunaman	and a state of the second	www. Williams.	den Man Munder			
30 <mark>energy</mark>	underspectrate and	Melandona	and and the second	w William Maran	den Martin Martine Contraction			
30 20	undernspendenser	Mahandanatanat	and a stranger and a	Mummun				
30 20		Notontput	and and and the second	(MHz)		8000		1800
30 20 10.0 1000.00	0	req.	Reading		Measure- ment	8000 Limit	Over	1800
30 20 10.0 1000.00	⁰ Mk. F		Reading	(MH2) Correct	Measure-		Over (dB)	Detector
30 20 10.0 1000.00	⁰ Mk. F	req. IHz	Reading Level	(MH2) Correct Factor	Measure- ment	Limit		
30 parts (7 20 10.0 1000.00 NO.	o Mk. F	req. IHz .100	Reading Level (dBuV)	(MH2) Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
30 period 20 10.0 1000.000 NO.	0 Mk. F M 3249	req. Hz .100 .400	Reading Level (dBuV) 56.07	(MH2) Correct Factor (dB/m) -10.14	Measure- ment (dBuV/m) 45.93	Limit (dBuV/m) 74.00	(dB) -28.07	Detector peak
30 period 20 10.0 1000.000 No. 1 2000.000	• Mk. F 3249 3349	req. Hz .100 .400	Reading Level (dBuV) 56.07 57.55	(MH2) Correct Factor (dB/m) -10.14 -9.96	Measure- ment (dBuV/m) 45.93 47.59	Limit (dBuV/m) 74.00 74.00	(dB) -28.07 -26.41	Detector peak peak
30 20 10.0 1000.00 NO. 1 2 3	^₀ Mk. Fr 3249 3349 5977	req. Hz .100 .400 .600 .100	Reading Level (dBuV) 56.07 57.55 50.66	(MH2) Correct Factor (dB/m) -10.14 -9.96 -3.85	Measure- ment (dBuV/m) 45.93 47.59 46.81	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -28.07 -26.41 -27.19	Detector peak peak peak



Fest	VOI	laye.	DC 3						
Ant. Pol.		Verti	Vertical						
Test Mode:		TX N	TX Mode 914.9MHz						
90.0	dBu	V/m							
80								FCC Part 150	: (PK)
70 -									
60								FCC Part 150	(AV)
50					2	4	2		6
				1	: X 3	Î	5 X	whethere	
30 🛹 20 –	riyhyashah	helinder and an and	an a	ugindeskedangen transferrie		Law work of the second		abolt contract	
30 20 10.0	Ng kacalar 10.000	hda awaa hafa waa	an a	un alle began transformer		Law war on the factor and	8000		1800
20 10.0 1000	0.000		Freq.	Reading	Munhamm	Measure- ment		Over	
30 - 20 - 10.0 - 1000	0.000			Reading	(MHz) Correct	Measure-	8000		
30 - 20 - 10.0 - 1000	0.000	Mk.	Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	8000 Limit	Over	1800
30 - 20 - 10.0 - 1000	10.000 NO.	Mk. 304	Freq. MHz	Reading Level (dBuV)	(dB/m)	Measure- ment (dBuV/m)	8000 Limit (dBuV/m)	Over (dB)	Detector
30 - 20 - 10.0 - 1000	NO.	Mk. 304 334	Freq. MHz 6.800	Reading Level (dBuV) 53.96	(dB/m) -10.51	Measure- ment (dBuV/m) 43.45	8000 Limit (dBuV/m) 74.00	Over (dB) -30.55	Detector
30 - 20 - 10.0 - 1000	No. 1 2	Mk. 304 334 373	Freq. MHz 6.800 9.400	Reading Level (dBuV) 53.96 55.21	(MHz) Соггест Factor (dB/m) -10.51 -9.96	Measure- ment (dBuV/m) 43.45 45.25	8000 Limit (dBuV/m) 74.00 74.00	Over (dB) -30.55 -28.75	Detector peak peak
30 - 20 - 10.0 - 1000	NO. 1 2 3	Mk. 304 334 373 599	Freq. MHz 6.800 9.400 3.600	Reading Level (dBuV) 53.96 55.21 51.41	(MHz) Correct Factor (dB/m) -10.51 -9.96 -9.09	Measure- ment (dBuV/m) 43.45 45.25 42.32	8000 Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -30.55 -28.75 -31.68	Detector peak peak peak

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the report Report No.: KS2204S1365E01 --THE END--