

Test report No. Page Issued date FCC ID : 14098787H-A-R1 : 1 of 18 : February 16, 2022 : WAZSKEA7D04

RADIO TEST REPORT

Test Report No.: 14098787H-A-R1

Applicant : Mitsubishi Electric Corporation Himeji Works

Type of EUT : Smart Keyless System (Smart Unit)

Model Number of EUT : SKEA7D-04

FCC ID : WAZSKEA7D04

Test regulation : FCC Part 15 Subpart C: 2021

Test Result : Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report is a revised version of 14098787H-A. 14098787H-A is replaced with this report.

Date of test:	December 26, 2021 to January 11, 2022
Representative test engineer:	Kiyo
•	Kiyoshiro Okazaki
	Engineer
Approved by:	9. Jakamos
	Tsubasa Takayama
	Leader

lac-MRA

CERTIFICATE 5107.02

	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
\boxtimes	There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 2 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

REVISION HISTORY

Original Test Report No.: 14098787H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	14098787H-A	January 25, 2022	-	-
1	14098787H-A-R1	February 16, 2022	P.5	Deletion of "Bandwidth" from LF Part for Radio Specification of Clause 2.2.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 3 of 18

Issued date : February 16, 2022 FCC ID : WAZSKEA7D04

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	LIMS	Laboratory Information Management System
AC	Alternating Current	MCS	Modulation and Coding Scheme
AFH	Adaptive Frequency Hopping	MRA	Mutual Recognition Arrangement
AM	Amplitude Modulation	N/A	Not Applicable
Amp, AMP	Amplifier	NIST	National Institute of Standards and Technology
ANSI	American National Standards Institute	NS	No signal detect.
Ant, ANT	Antenna	NSA	Normalized Site Attenuation
AP	Access Point	OBW	Occupied BandWidth
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
ВТ	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadrature Phase Shift Keying
CW	Continuous Wave	RBW	Resolution BandWidth
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RNSS	Radio Navigation Satellite Service
DSSS	Direct Sequence Spread Spectrum	RSS	Radio Standards Specifications
DUT	Device Under Test	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR, T/R	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
ETSI	European Telecommunications Standards Institute	Vert.	Vertical
EU	European Union	WLAN	Wireless LAN
EUT	Equipment Under Test		
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date FCC ID : 14098787H-A-R1 : 4 of 18 : February 16, 2022 : WAZSKEA7D04

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	10
SECTION 6: -20 dB Bandwidth	
SECTION 7: 99% Bandwidth	12
APPENDIX 1: Test data	13
Radiated Emission (Fundamental and Spurious Emission)	
-20 dB Bandwidth / 99 % Occupied Bandwidth	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Radiated Spurious Emission	
Worst Case Position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 5 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

SECTION 1: Customer information

Company Name : Mitsubishi Electric Corporation Himeji Works

Address : 840, Chiyoda-machi, Himeji City, Hyogo-ken 670-8677 Japan

Telephone Number : +81-79-298-7363 Contact Person : Yasuhiro Takahashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1. Identification of EUT

Type : Smart Keyless System (Smart Unit)

Model Number : SKEA7D-04

Serial Number : Refer to SECTION 4.2
Receipt Date : December 9, 2021
Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab.

2.2. Product Description

Model: SKEA7D-04 (referred to as the EUT in this report) is a Smart Keyless System (Smart Unit).

General Specification

Rating : DC 12.0 V

Radio Specification

LF Part

Equipment Type : Transmitter
Frequency of operation : 125 kHz
Type of modulation : ASK
Clock frequency (maximum) : 8 MHz
Antenna Type : Inductive

<u>RF Part</u> *1)

Type of Receiver : Receiver
Frequency of operation : 315 MHz
Intermediate frequency : 280 kHz
Antenna Type : Pattern antenna
Local Oscillator Frequency : 314.72 MHz
Clock Frequency (maximum) : 30.32 MHz
Voltage Controlled Oscillator : 1888.32 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of RF Part was performed separately from this test report, and the conformability is confirmed.

Test report No. : 14098787H-A-R1
Page : 6 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
Conducted Emission	<fcc></fcc>	<fcc></fcc>	-	N/A	N/A	N/A
	ANSI C63.10:2013	Section 15.207				*1)
	6 Standard test methods	<ised></ised>				
	<ised></ised>	RSS-Gen 8.8				
	RSS-Gen 8.8					
Electric Field Strength of	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	11.6 dB	Complied
Fundamental Emission	ANSI C63.10:2013	Section 15.209			125 kHz, 0 deg.	a)
	6 Standard test methods	<ised></ised>			Peak with Duty factor	
	<ised></ised>	RSS-210 7.2				
	RSS-Gen 6.5, 6.12	RSS-Gen 8.9				
Electric Field Strength of	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	20.4 dB	Complied
Spurious Emission	ANSI C63.10:2013	Section 15.209			924.769 MHz,	a)
	6 Standard test methods	<ised></ised>			Horizontal, QP	
	<ised></ised>	RSS-210 7.3				
	RSS-Gen 6.5, 6.6, 6.13	RSS-Gen 8.9				
-20 dB Bandwidth	<fcc></fcc>	<fcc></fcc>	Radiated	N/A	N/A	Complied
	ANSI C63.10:2013	Reference data				b)
	6 Standard test methods	<ised></ised>				
	<ised></ised>	-				
	-					

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Radiated emission)

b) Refer to APPENDIX 1 (data of -20 dB Bandwidth / 99 % Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The battery voltage (DC 12V) is provided to the EUT. Input voltage to RF part does not go through the regulator. So the test was performed with the supply voltage varied between 85 % and 115% of the nominal rated supply voltage (DC 12 V) and the variation of the input power does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test report No. : 14098787H-A-R1
Page : 7 of 18

Issued date : February 16, 2022 FCC ID : WAZSKEA7D04

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
99 % Occupied Bandwidth	RSS-Gen 6.7	-	Radiated	N/A	N/A	_

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Test Item		Frequency range		Uncertainty (+/-)
Radiated emission	d emission 3 m 9 kHz to 30 MHz		3.3 dB	
	10 m			3.2 dB
	3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
			(Vertical)	5.0 dB
		200 MHz to 1000 MHz	(Horizontal)	5.2 dB
			(Vertical)	6.3 dB
	10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
			(Vertical)	4.8 dB
		200 MHz to 1000 MHz	(Horizontal)	5.0 dB
			(Vertical)	5.0 dB
	3 m	1 GHz to 6 GHz		4.9 dB
		6 GHz to 18 GHz		5.2 dB
	1 m	10 GHz to 26.5 GHz		5.5 dB
		26.5 GHz to 40 GHz		5.5 dB
	10 m	1 GHz to 18 GHz		5.2 dB
-20 dB Bandwidth / 99 %	Occupied Bandwidth	-		0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 8 of 18

Issued date : February 16, 2022 FCC ID : WAZSKEA7D04

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

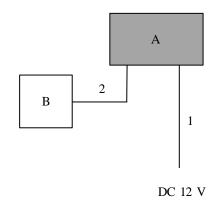
1 elephone. +81 390 22	+ 8999, Facsilille: +81	390 24 6124		
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 14098787H-A-R1
Page : 9 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

SECTION 4: Operation of EUT during testing

4.1. Operating Mode(s)

Test mode		Remarks	
1) Transmitti	ng mode (125 kHz)	-	
* EUT was set b	by the software as follows;		
Software:	DX100481 Version 3964		
(Date: 2019.5.29, Storage location: EUT memory)			
*This setting of	software is the worst case.		
Any conditions	under the normal use do not exceed the condition of setting.		
In addition, end	users cannot change the settings of the output power of the product.		

4.2. Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Smart Keyless System	SKEA7D-04	20211118-E2	Mitsubishi Electric	EUT
	(Smart Unit)		No.47	Corporation Himeji Works	
В	SW	-	-	Mitsubishi Electric	_
				Corporation Himeji Works	

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.50	Unshielded	Unshielded	-
2	Signal Cable	0.55	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 10 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

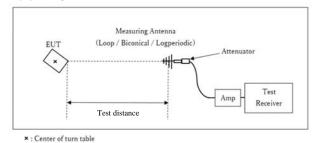
Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz					
Instrument used	100 11112	Test Receiver								
Detector	PK / AV	QP	PK / AV	QP	QP					
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz					
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m					

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore, the measured level of emissions may be higher than if measurements were made without a ground plane.

However, test results were confirmed to pass against standard limit.

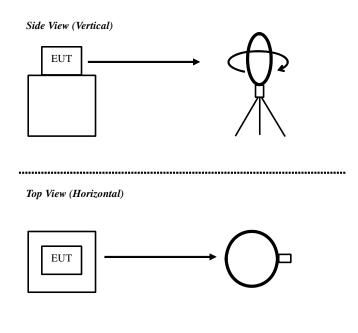

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

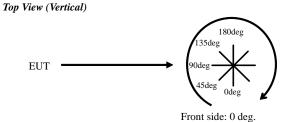
^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Test report No. : 14098787H-A-R1
Page : 11 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

[Test Setup] Below 1 GHz


Test Distance: 3 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.


The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 1 GHz
Test data : APPENDIX
Test result : Pass

Figure 1: Direction of the Loop Antenna

Front side: 0 deg. Forward direction: clockwise

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 12 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

SECTION 6: -20 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth	50 kHz	300 Hz	910 Hz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99% Bandwidth

Test Procedure

Test data

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used					
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *)	Max Hold *)	Spectrum Analyzer					
	*) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.											

: APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 13 of 18
Issued date : February 16, 2022

FCC ID : WAZSKEA7D04

APPENDIX 1: Test data

Radiated Emission (Fundamental and Spurious Emission)

Report No. 14098787H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.2

Date December 26, 2021 January 5, 2022
Temperature / Humidity 19 deg. C / 28 % RH 24 deg. C / 28 % RH
Engineer Junya Okuno Kiyoshiro Okazaki (Above 30 MHz) (Below 30 MHz)

Mode 1

PK or QP

PK or QP											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	-	14.0	45.6	31.6	Fundamental (DC 10.2 V)
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	-	14.0	45.6	31.6	Fundamental (DC 12.0 V)
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	-	14.0	45.6	31.6	Fundamental (DC 13.8 V)
0deg	0.25000	PK	47.3	18.9	-64.2	32.3	1	-30.3	39.6	69.9	
0deg	0.37500	PK	52.6	18.8	-64.2	32.3	1	-25.1	36.1	61.2	
0deg	0.50000	QP	35.7	18.8	-24.2	32.3	1	-2.0	33.6	35.6	
0deg	0.62500	QP	40.4	18.8	-24.2	32.4	1	2.6	31.7	29.1	
0deg	0.75000	QP	31.7	18.8	-24.2	32.4	1	-6.1	30.1	36.2	
0deg	0.87500	QP	34.1	18.8	-24.2	32.4	1	-3.7	28.7	32.4	
0deg	1.00000	QP	29.1	18.8	-24.2	32.4	-	-8.7	27.6	36.3	
0deg	1.12500	QP	29.7	18.8	-24.2	32.4	1	-8.1	26.5	34.6	
0deg	1.25000	QP	27.4	18.8	-24.1	32.4	-	-10.3	25.6	35.9	
Hori.	49.150	QP	24.1	11.5	7.4	32.3	-	10.7	40.0	29.3	
Hori.	60.560	QP	22.3	7.7	7.6	32.3	1	5.3	40.0	34.7	
Hori.	122.076	QP	21.3	13.1	8.4	32.2	1	10.6	43.5	32.9	
Hori.	494.349	QP	21.1	17.9	11.3	32.1	1	18.2	46.0	27.8	
Hori.	713.628	QP	21.1	20.2	12.6	32.0	-	21.9	46.0	24.1	
Hori.	924.769	QP	20.6	22.2	13.7	30.9	1	25.6	46.0	20.4	
Vert.	49.150	QP	29.9	11.5	7.4	32.3	-	16.5	40.0	23.5	
Vert.	60.560	QP	22.5	7.7	7.6	32.3	-	5.5	40.0	34.5	
Vert.	122.076	QP	21.2	13.1	8.4	32.2	-	10.5	43.5	33.0	
Vert.	494.349	QP	21.1	17.9	11.3	32.1	-	18.2	46.0	27.8	
Vert.	713.628	QP	21.1	20.2	12.6	32.0	-	21.9	46.0	24.1	
Vert.	924.769	QP	20.5	22.2	13.7	30.9	-	25.5	46.0	20.5	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + D.Factor + Filter) - Gain(Amprifier)$

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	0.0	14.0	25.6	11.6	Fundamental (DC 10.2 V)
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	0.0	14.0	25.6	11.6	Fundamental (DC 12.0 V)
0deg	0.12500	PK	101.4	18.9	-74.0	32.3	0.0	14.0	25.6	11.6	Fundamental (DC 13.8 V)
0deg	0.25000	PK	47.3	18.9	-64.2	32.3	0.0	-30.3	19.6	49.9	
0deg	0.37500	PK	52.6	18.8	-64.2	32.3	0.0	-25.1	16.1	41.2	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + D.Factor + Filter) - Gain(Amprifier) + Duty\ factor\ * The Cable + Attenuator + D.Factor + Filter) - Gain(Amprifier) + Duty\ factor\ * The Cable + Attenuator + D.Factor + Filter) - Gain(Amprifier) + Duty\ factor\ * The Cable + Attenuator\ *$

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	M argin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.12500	PK	101.4	18.9	6.0	32.3	1	94.0	1	1	Fundamental

 $Result = Reading + Ant \; Factor + Loss \; (Cable + Attenuator) - Gain (Amprifier)$

It was confirmed that there was no difference by the input voltage in the spurious emission.

The pre-amplifier used for carrier frequency measurement was not saturated.

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

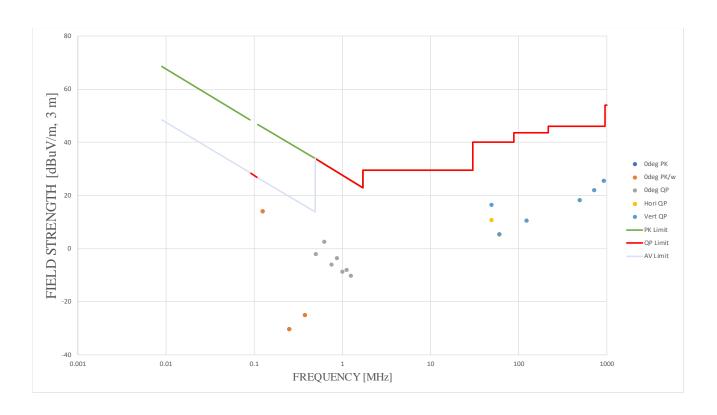
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

Test report No. : 14098787H-A-R1
Page : 14 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

<u>Radiated Spurious Emission</u> (Plot data, Worst case for Fundamental Emission)


Report No. 14098787H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

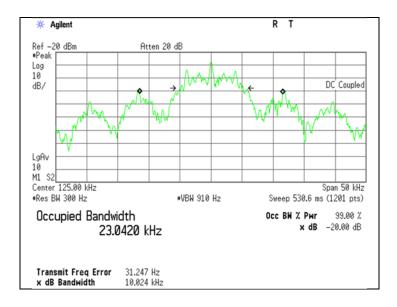
Date Decen Temperature / Humidity 19 deg Engineer Junya

(Above 30 MHz) Mode Mode 1

No.3 No.2 January 5, 2022
19 deg. C / 28 % RH Junya Okuno (Above 30 MHz) No.2 January 5, 2022
24 deg. C / 28 % RH Kiyoshiro Okazaki (Below 30 MHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 15 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04


-20 dB Bandwidth / 99 % Occupied Bandwidth

Report No. 14098787H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date January 11, 2022
Temperature / Humidity 20 deg. C / 38 % RH
Engineer Hiroki Numata
Mode Mode 1

-20 dB Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]
10.024	23.0420

^{*}It was confirmed that there was no difference by the input voltage.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14098787H-A-R1
Page : 16 of 18
Issued date : February 16, 2022
FCC ID : WAZSKEA7D04

APPENDIX 2: Test instruments

Test equipment

Test	equipmen Local ID		Description	Manufacturer	Model	Serial	Last Calibration	Cal
Item	2000 22	221120 22	2 escription		1120401	501101	Date	Int
RE	MAEC-03	142008	AC3_Semi Anechoic	TDK	Semi Anechoic	DA-10005	05/22/2020	24
			Chamber(NSA)		Chamber 3m			
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E.	3805	51201197	01/07/2021	12
				CORPORATION				
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-	178648	EMI measurement	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
	MEMI-02		program					
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess-	VHA9103+BBA9106	VHA 91031302	08/28/2021	12
				Elektronik OHG				
RE	MLA-22	141266	Logperiodic Antenna	Schwarzbeck Mess-	VUSLP9111B	9111B-191	08/21/2021	12
			(200-1000MHz)	Elektronik OHG				
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/09/2021	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/19/2021	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/18/2021	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
RE	MAEC-02	142004	AC2_Semi Anechoic	TDK	Semi Anechoic	DA-06902	05/26/2020	24
			Chamber(NSA)		Chamber 3m			
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/19/2021	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/10/2021	12
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/05/2021	12
RE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini-	3D-2W(12m)/	-	02/18/2021	12
				Circits,Fujikura	5D-2W(5m)/			
					5D-2W(0.8m)/			
					5D-2W(1m)			
RE	MCC-255	207745	Coaxial Cable	UL Japan Inc.	-	-	05/17/2021	12
RE	MLPA-01	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	04/17/2021	12
RE	MHF-24	141295	High Pass Filter	Rohde & Schwarz	EZ-25/3	100041	02/18/2021	12
			0.15-30MHz					
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/09/2021	12
RE	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	09/30/2021	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: RE: Radiated Emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN