

EMC TEST REPORT

(Partial COMPLIANCE)

Report Number: 102837160BOX-001b Project Number: G102837160

Report Issue Date: 02/06/2017

Model(s) Tested: WhoopStrap 2.0/830-000004 (USB

charger)

Model(s) Partially Tested: None

Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 15 Subpart C (15.247): 10/2016

RSS-247 Issue 1: 05/2015

CFR47 FCC Part 15 Subpart B: 10/2016 ICES 003: 01/2016 updated 06/2016

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client: Whoop Inc. 1325 Boylston Street Suite 401 Boston, MA 02215 USA

Report prepared by

Vothana Z Von

Report reviewed by

Vathana Ven / Staff Engineer, EMC

Michael F. Murphy / Team Leader, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

Table of Contents

1	Introduction and Conclusion	3
2	Test Summary	3
3	Client Information	4
4	Description of Equipment Under Test and Variant Models	4
5	System Setup and Method	5
6	Output Power	7
7	Band Edge Compliance	18
8	Radiated Emissions from Digital device and Receiver	23
9	AC Mains Conducted Emissions	35
10	Revision History	42

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Output Power and Human RF Exposure (CFR47 FCC Part 15 Subpart C (15.247): 10/2016 RSS-247 Issue 1: 05/2015 RSS-102 Issue 5: 03/2015)	Pass
7	Band Edge Compliance (CFR47 FCC Part 15 Subpart C (15.247): 10/2016 RSS-247 Issue 1: 05/2015)	Pass
8	Radiated Emissions from Digital parts and Receiver (CFR47 FCC Part 15 (15.109): 10/2016 ICES 003: 01/2016 and updated 06/2016)	Pass
9	AC Mains Conducted Emissions (FCC Part 15 Subpart B: 10/2016 ICES 003: 01/2016 and updated 06/2016, FCC Part 15 Subpart C:2016)	Pass
10	Revision History	

Note: Limited testing was performed for permissive change as different wall charger was used with the WhoopStrap 2.0. The WhoopStrap 2.0 was tested and certified (Report # 102743203BOX-001).

3 Client Information

This EUT was tested at the request of:

Client: Whoop Inc.

1325 Boylston Street Suite 401

Boston, MA 02215

USA

Contact: Michael Costa **Telephone:** (617) 670-1074 x153

Fax: None

Email: costa@whoop.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Whoop Inc.

1325 Boylston Street Suite 401

Boston, MA 02215

USA

Equipment Under Test					
Description Manufacturer Model Number Serial Number					
Wrist worn strap	Whoop Inc.	WhoopStrap 2.0	20D125 6		
Dual USB Wall Charger	Whoop Inc.	830-000004	TM16500012		

Receive Date:	10/11/2016, 12/08/2016	Test Date:	12/21/2016 – 02/06/2017
Received Condition:	Good	Test Complete Date:	02/06/2017
Type:	Production		

Description of Equipment Under Test (provided by client)

The EUT is a Dual USB Wall Charger uses with wrist worn strap that measures strain and recovery

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
120VAC	2.1A	50/60Hz	1		

Operating modes of the EUT:

	No.	Descriptions of EUT Exercising
	1	Transmit mode with Frequency hopping enabled.
Ī	2	Transmit mode with Frequency hopping disabled. Transmitting in single channel.
Ī	3	Receive mode

Software used by the EUT:

N	ο.	Descriptions of EUT Exercising
	1	None

Radio/Receiver Characteristics			
Frequency Band(s)	2402 – 2480 MHz		
Modulation Type(s)	GFSK, pi/4-DQPSK, 8DPSK		
Maximum Output Power	0.000272 W		
Test Channels	CH0 – 2402 MHz, CH 39 – 2441 MHz, CH 78 – 2480 MHz		
Occupied Bandwidth	Not performed		
Frequency Hopper: Number of Hopping Channels	79		
Frequency Hopper: Channel Occupancy			
Time	Not performed		
MIMO Information (# of Transmit and			
Receive antenna ports)	1 – Integral antenna		
Equipment Type	Bluetooth		
ETSI LBT/Adaptivity	N/A		
ETSI Adaptivity Type	N/A		
ETSI Temperature Category (I, II, III)	N/A		
ETSI Receiver Category (1, 2, 3)	N/A		
Antenna Type and Gain	Integral (Gain 0.5 dBi)		

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method

	Cables						
ID	Description	Length (m)	Shielding	Ferrites	Termination		
1	USB cable	1	None	None	AC mains		

Support Equipment					
Description Manufacturer Model Number Serial Number					
Laptop	HP	T60M283.00	N/L		

5.1 Method:

Configuration as required by FCC CFR47 Part 15 Subpart C (15.247): 10/2016, RSS-247 Issue 1: 05/2015 FCC CDR47 Part 15 Subpart B: 10/2016. ICES 003: 01/2016 updated 06/2016 and ANSI C63.10: 2013.

5.2 EUT Block Diagram:

6 Output Power

6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 May 2016 and ANSI C 63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 Db	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	- dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

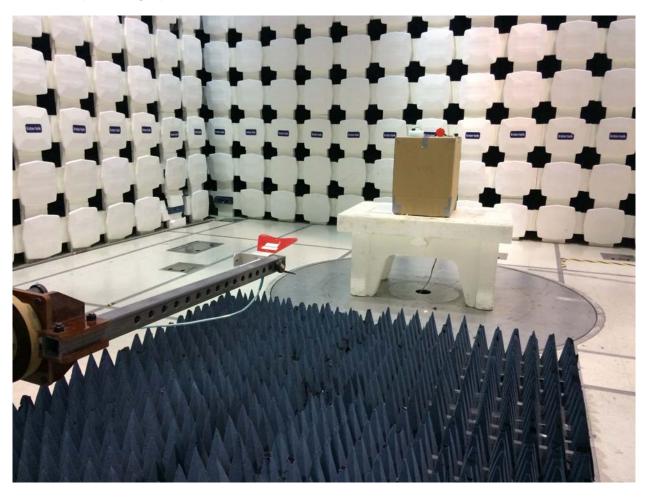
UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

6.2 Test Equipment Used:

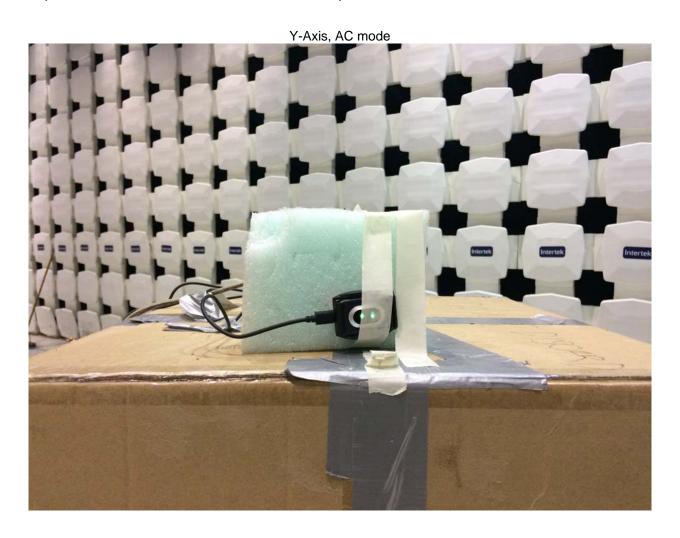
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004'	Weather Station	Davis Instruments	7400	Α	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
	-		3m Track B			
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	cables	multiple	07/30/2016	07/30/2017

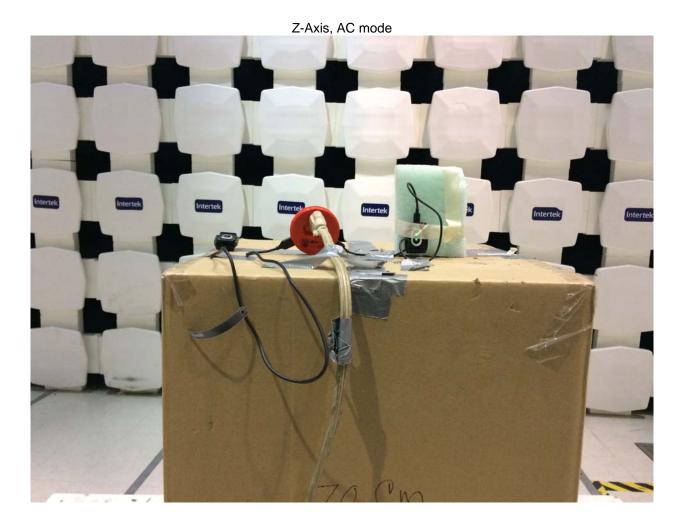
Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010


Note: Your Laptop may use a different version of Excel. Record the version you actually used!

6.3 Results:


The sample tested was found to Comply.


Output power was measured to determine the Class of permissive change.

6.4 Setup Photographs:

Test Data:

NONE

IC

Harmonic?

Radiated Emissions

 Company: Whoop Inc.
 Antenna & Cables:
 HF
 Bands: N, LF, HF, SHF

 Model #: WhoopStrap 2.0/830-000004 (USB charger)
 Antenna: ETS001 02-10-17.txt
 ETS001 02-10-17.txt

 Serial #: 20D125 6/TM16500012 (USB charger)
 Cable(s): 145-416 1-18 GHz 09-17-17.txt
 NONE.

Engineers: Vathana Ven Location: 10M Barometer: DAV004 Filter:

 Project #: G102837160
 Date(s): 02/06/17

 Standard: FCC Part 15 Subpart C 15.247
 Temp/Humidity/Pressure: 20c
 15%
 1009mB

Receiver: R&S ESI (145-128) 03-10-2017 Limit Distance (m): 3
PreAmp: None Test Distance (m): 3

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC 60Hz Frequency Range: Frequencies Shown Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak:		Peak: QP Av					s) - Preamp s = Restricte				W/VBW
	Ant.			Antenna	Cable	Pre-amp		EIRP	EIRP		
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB	
				ote: RF Out							
	Note: EIRP	Obtained by									
PK	V	2402.000	48.97	32.29	3.67	0.00	0.00	-10.29	30.00	-40.29 -35.66	5/10 MHz
PK	H Note: EIRR	2402.000 Obtained by	53.60	32.29	3.67	0.00	0.00	-5.66 (dBu\//m\@	30.00		5/10 MHz
PK	V	2402.000	48.33	32.29	3.67	0.00	0.00	-10.93	30.00	-40.93	1/3 MHz
PK	H	2402.000	50.10	32.29	3.67	0.00	0.00	-9.16	30.00	-39.16	1/3 MHz
				ote: RF Out							
	Note: EIRP	Obtained by							3m - 95.22 :	= dBm EIRF)
PK	V	2402.000	46.80	32.29	3.67	0.00	0.00	-12.46	30.00	-42.46	5/10 MHz
PK	Н	2402.000	52.44	32.29	3.67	0.00	0.00	-6.82	30.00	-36.82	5/10 MHz
		Obtained by									
PK	V	2402.000	46.00	32.29	3.67	0.00	0.00	-13.26	30.00	-43.26	1/3 MHz
PK	Н	2402.000	52.03	32.29	3.67	0.00	0.00	-7.23	30.00	-37.23	1/3 MHz
	Noto: EIDD	Obtained by		ote: RF Out					2m 05.22	dPm EIDI	
PK	V	2402.000	49.90	32.29	3.67	0.00	0.00	-9.36	30.00	-39.36	5/10 MHz
PK	Н	2402.000	49.00	32.29	3.67	0.00	0.00	-10.26	30.00	-40.26	5/10 MHz
		Obtained by									
PK	V	2402.000	48.80	32.29	3.67	0.00	0.00	-10.46	30.00	-40.46	1/3 MHz
PK	Н	2402.000	47.55	32.29	3.67	0.00	0.00	-11.71	30.00	-41.71	1/3 MHz
			No	ote: RF Outp	out Power, C	Channel 39,	GFSK, X-ax	kis			
	Note: EIRP	Obtained by	applying th	e path loss	correction fo	or a 3m test	distance, E		3m - 95.22 :	= dBm EIRF	2
PK	V	2441.000	46.00	32.26	3.73	0.00	0.00	-13.23	30.00	-43.23	5/10 MHz
PK	Н	2441.000	51.37	32.26	3.73	0.00	0.00	-7.86	30.00	-37.86	5/10 MHz
		Obtained by									
PK	V	2441.000	45.00	32.26	3.73	0.00	0.00	-14.23	30.00	-44.23	1/3 MHz 1/3 MHz
PK	Н	2441.000	50.97	32.26	3.73	0.00	0.00	-8.26	30.00	-38.26	1/3 MHZ
	Note: FIRP	Obtained by		ote: RF Outp					3m = 95 22 -	- dBm FIRE	5
PK	V V	2441.000	48.80	32.26	3.73	0.00	0.00	-10.43	30.00	-40.43	5/10 MHz
PK	Н	2441.000	50.45	32.26	3.73	0.00	0.00	-8.78	30.00	-38.78	5/10 MHz
		Obtained by									
PK	V	2441.000	48.60	32.26	3.73	0.00	0.00	-10.63	30.00	-40.63	1/3 MHz
PK	Н	2441.000	49.79	32.26	3.73	0.00	0.00	-9.44	30.00	-39.44	1/3 MHz
			No	ote: RF Outp	out Power, C	Channel 39,	GFSK, Z-ax	(is			
		Obtained by			correction for						
PK	V	2441.000	47.90	32.26	3.73	0.00	0.00	-11.33	30.00	-41.33	5/10 MHz
PK	H	2441.000	45.88	32.26	3.73	0.00	0.00	-13.35	30.00	-43.35	5/10 MHz
DV	Note: EIRP	Obtained by									
PK PK	H	2441.000 2441.000	47.00 44.00	32.26 32.26	3.73 3.73	0.00	0.00	-12.23 -15.23	30.00 30.00	-42.23 -45.23	1/3 MHz 1/3 MHz
1.1		2771.000		ote: RF Outp					30.00	-43.23	1/3 IVITIZ
	Note: EIRP	Obtained by							3m - 95.22 :	= dBm EIRF	5
PK	V	2480.000	48.84	32.23	3.78	0.00	0.00	-10.37	30.00	-40.37	5/10 MHz
PK	Н	2480.000	50.97	32.23	3.78	0.00	0.00	-8.24	30.00	-38.24	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction fo	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRF	5
PK	V	2480.000	48.20	32.23	3.78	0.00	0.00	-11.01	30.00	-41.01	1/3 MHz
PK	Н	2480.000	50.45	32.23	3.78	0.00	0.00	-8.76	30.00	-38.76	1/3 MHz
				ote: RF Outp							
		Obtained by									
PK	V	2480.000		32.23	3.78	0.00	0.00	-13.21	30.00	-43.21	5/10 MHz
PK	Н	2480.000	48.46	32.23	3.78	0.00	0.00	-10.75	30.00	-40.75	5/10 MHz
	Note: FIDD	Obtained by		ote: RF Outp					2m 0F 22	dDm FIDE	
PK	Note: EIRP	Obtained by 2480.000	applying th 44.90					-14.31			1/3 MHz
PK PK	H	2480.000	44.90	32.23 32.23	3.78 3.78	0.00	0.00	-14.31 -11.27	30.00 30.00	-44.31 -41.27	1/3 MHz
FIV		2400.000		ote: RF Outp					30.00	-41.27	1/3 IVIT1Z
	Note: FIRP	Obtained by							3m - 95 22 -	= dBm FIRE	<u> </u>
PK	V	2480.000	49.50	32.23	3.78	0.00	0.00	-9.71	30.00	-38.71	5/10 MHz
	H	2480.000	47.00	32.23	3.78	0.00	0.00	-12.21	30.00	-42.21	5/10 MHz
PK										•	
PK	Note: EIRP	Obtained by	applying th	e patn loss i	correction ic	n a siii test	uistance, E	(4247111)	0111 00.22	- abiii Liiki	
PK PK	Note: EIRP	Obtained by 2480.000	46.00	32.23	3.78	0.00	0.00	-13.21	30.00	-39.31	1/3 MHz

Radiated Emissions

 Company: Whoop Inc.
 Antenna & Cables:
 HF
 Bands: N, LF, HF, SHF

 Model #: WhoopStrap 2.0/830-000004 (USB charger)
 Antenna: ETS001 02-10-17.txt
 ETS001 02-10-17.txt
 ETS001 02-10-17.txt
 ETS001 02-10-17.txt
 NONE

 Serial #: 20D125 6/TM16500012 (USB charger)
 Location: 10M
 Barometer: DAV004
 Filter:
 NONE

 Project #: G102837160
 Date(s): 02/06/17
 Date(s): 02/06/17
 Date(s): 02/06/17
 NONE

Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 20c 15% 1009mB

Receiver: R&S ESI (145-128) 03-10-2017 Limit Distance (m): 3
PreAmp: None Test Distance (m): 3

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC 60Hz Frequency Range: Frequencies Shown Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

	Net = Rea	ading (dBuV/	m) + Antenr	na Factor (di	B1/m) + Cal	ole Loss (dE	3) - Preamp	Factor (dB)	- Distance F	actor (dB)	
Peak:		Peak: QP Av	erage: AVG							oted as RB	W/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance	EIRP	EIRP		
etector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB	
			Note	: RF Output	Power, Cha	annel 0, Pi/4	I-DQPSK, X	-axis			
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	dBm EIRI)
PK	V	2402.000	46.60	32.29	3.67	0.00	0.00	-12.66	30.00	-42.66	5/10 MHz
PK	Н	2402.000	48.20	32.29	3.67	0.00	0.00	-11.06	30.00	-41.06	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	•
PK	V	2402.000	45.40	32.29	3.67	0.00	0.00	-13.86	30.00	-43.86	1/3 MHz
PK	Н	2402.000	38.00	32.29	3.67	0.00	0.00	-21.26	30.00	-51.26	1/3 MHz
			Note	: RF Output	Power, Ch	annel 0, Pi/4	I-DQPSK, Y	-axis			
	Note: EIRP	Obtained by	applying th	e path loss	correction fo	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	0
PK	V	2402.000	44.10	32.29	3.67	0.00	0.00	-15.16	30.00	-45.16	5/10 MHz
PK	Н	2402.000	46.50	32.29	3.67	0.00	0.00	-12.76	30.00	-42.76	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	dBm EIRI	
PK	V	2402.000	43.90	32.29	3.67	0.00	0.00	-15.36	30.00	-45.36	1/3 MHz
PK	Н	2402.000	46.00	32.29	3.67	0.00	0.00	-13.26	30.00	-43.26	1/3 MHz
		2.02.000		: RF Output					00.00	10.20	170 1111 12
	Note: FIRP	Obtained by							3m - 95 22 :	= dBm FIRI)
PK	V	2402.000	48.00	32.29	3.67	0.00	0.00	-11.26	30.00	-41.26	5/10 MHz
PK	Н	2402.000	43.90	32.29	3.67	0.00	0.00	-15.36	30.00	-45.36	5/10 MHz
110		Obtained by									
DIZ											1/3 MHz
PK	V	2402.000	47.50 45.00	32.29	3.67	0.00	0.00	-11.76	30.00	-41.76	
PK	Н	2402.000		32.29	3.67	0.00	0.00	-14.26	30.00	-44.26	1/3 MHz
				RF Output							
		Obtained by						i			
PK	V	2441.000	41.00	32.26	3.73	0.00	0.00	-18.23	30.00	-48.23	5/10 MHz
PK	Н	2441.000	45.90	32.26	3.73	0.00	0.00	-13.33	30.00	-43.33	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	
PK	V	2441.000	40.56	32.26	3.73	0.00	0.00	-18.67	30.00	-48.67	1/3 MHz
PK	Н	2441.000	44.50	32.26	3.73	0.00	0.00	-14.73	30.00	-44.73	1/3 MHz
			Note:	RF Output	Power, Cha	nnel 39, Pi/	4-DQPSK, \	∕-axis			
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	>
PK	V	2441.000	43.70	32.26	3.73	0.00	0.00	-15.53	30.00	-45.53	5/10 MHz
PK	Н	2441.000	45.00	32.26	3.73	0.00	0.00	-14.23	30.00	-44.23	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	0
PK	V	2441.000	43.00	32.26	3.73	0.00	0.00	-16.23	30.00	-46.23	1/3 MHz
PK	Н	2441.000	44.80	32.26	3.73	0.00	0.00	-14.43	30.00	-44.43	1/3 MHz
			Note:	RF Output	Power, Cha	nnel 39, Pi/	4-DQPSK, Z	Z-axis			
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	0
PK	V	2441.000	45.00	32.26	3.73	0.00	0.00	-14.23	30.00	-44.23	5/10 MHz
PK	Н	2441.000	43.00	32.26	3.73	0.00	0.00	-16.23	30.00	-46.23	5/10 MHz
- 11		Obtained by									
PK	V	2441.000	44.30	32.26	3.73	0.00	0.00	-14.93	30.00	-44.93	1/3 MHz
PK	Н	2441.000	42.30	32.26	3.73	0.00	0.00	-16.93	30.00	-46.93	1/3 MHz
FIX	- "	2441.000							30.00	-40.93	1/3 WII 12
	Note: FIDD	Obtained by		RF Output					2m 0F 22	dDm EIDI	
DIC		Obtained by									_
PK	V	2480.000	44.20	32.23	3.78	0.00	0.00	-15.01	30.00	-45.01	5/10 MHz
PK	H	2480.000	45.60	32.23	3.78	0.00	0.00	-13.61	30.00	-43.61	5/10 MHz
	Note: EIRP	Obtained by									
PK	V	2480.000	43.30	32.23	3.78	0.00	0.00	-15.91	30.00	-45.91	1/3 MHz
PK	Н	2480.000	47.98	32.23	3.78	0.00	0.00	-11.23	30.00	-41.23	1/3 MHz
			Note:	RF Output	Power, Cha	nnel 78, Pi/	4-DQPSK, \	∕-axis			
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRI	>
PK	V	2480.000	43.49	32.23	3.78	0.00	0.00	-15.72	30.00	-45.72	5/10 MHz
PK	Н	2480.000	41.90	32.23	3.78	0.00	0.00	-17.31	30.00	-47.31	5/10 MHz
	•	Obtained by				•	•				•
PK	V	2480.000	42.28	32.23	3.78	0.00	0.00	-16.93	30.00	-46.93	1/3 MHz
PK	Н	2480.000	40.60	32.23	3.78	0.00	0.00	-18.61	30.00	-48.61	1/3 MHz
	· · · ·	00.000		RF Output				•	55.00	.5.01	., 5 1411 12
	Note: EIDD	Obtained by							3m - 05 22	- dBm EIDI	5
PK	V V	2480.000	47.90	32.23		0.00	0.00	-11.31	30.00		5/10 MHz
PK	H				3.78					-41.31	
гΝ		2480.000	45.70	32.23	3.78	0.00	0.00	-13.51	30.00	-43.51	5/10 MHz
DI		Obtained by						i		1	
PK	V	2480.000	46.90	32.23	3.78	0.00	0.00	-12.31	30.00	-42.31	1/3 MHz
PK	Н	2480.000	44.00	32.23	3.78	0.00	0.00	-15.21	30.00	-45.21	1/3 MHz

Non-Specific Radio Report Shell Rev. August 2015 Company: Whoop Inc. Model: WhoopStrap 2.0/830-000004 (USB charger) IC

Harmonic?

Radiated Emissions

Company: Whoop Inc. Antenna & Cables: HF Bands: N, LF, HF, SHF Model #: WhoopStrap 2.0/830-000004 (USB charger) Antenna: ETS001 02-10-17.txt ETS001 02-10-17.txt

Cable(s): 145-416 1-18 GHz 09-15-17.txt NONE. Serial #: 20D125 6/TM16500012 (USB charger) Engineers: Vathana Ven Location: 10M Barometer: DAV004

Project #: G102837160

Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 19c 1008mB

Receiver: R&S ESI (145-128) 03-10-2017 Limit Distance (m): 3 PreAmp: None Test Distance (m): 3

PreAmp Used? (Y or N): N 120VAC 60Hz Frequency Range: Frequencies Shown

	PreAmp Use				Frequency:		.C 60Hz		ency Range:		ies Shown
		ding (dBuV/									
Peak:	PK Quasi-F	eak: QP Av	erage: AVG							oted as RB\	W/VBW
	Ant.	l_	D ::	Antenna	Cable	Pre-amp	Distance	EIRP	EIRP	١	
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB out Power, 0	dB	dB	dBm	dBm	dB	l
	Note: FIRD	Obtained by							3m - 05 22 -	- dBm FIRE)
PK	V	2402.000	49.34	32.29	3.67	0.00	0.00	-9.92	30.00	-39.92	5/10 MHz
PK	Н	2402.000	50.50	32.29	3.67	0.00	0.00	-8.76	30.00	-38.76	5/10 MHz
		Obtained by			•					•	•
PK	V	2402.000	48.00	32.29	3.67	0.00	0.00	-11.26	30.00	-40.06	1/3 MHz
PK	Н	2402.000	49.40	32.29	3.67	0.00	0.00	-9.86	30.00	-39.86	1/3 MHz
			No	ote: RF Out	out Power, C	Channel 0, 8	BDPSK, Y-a	xis			
		Obtained by						i			
PK	V	2402.000	49.65	32.29	3.67	0.00	0.00	-9.61	30.00	-39.61	5/10 MHz
PK	H	2402.000	53.00	32.29	3.67	0.00	0.00	-6.26	30.00	-36.26	5/10 MHz
DI/		Obtained by									_
PK	V	2402.000	47.42	32.29	3.67	0.00	0.00	-11.84	30.00	-41.84	1/3 MHz
PK	Н	2402.000	48.90	32.29	3.67 out Power, 0	0.00	0.00	-10.36	30.00	-40.36	1/3 MHz
	Note: FIRP	Obtained by							3m - 95 22 :	= dBm FIRE)
PK	V	2402.000	53.38	32.29	3.67	0.00	0.00	-5.88	30.00	-35.88	5/10 MHz
PK	Н	2402.000	49.90	32.29	3.67	0.00	0.00	-9.36	30.00	-39.36	5/10 MHz
	Note: EIRP	Obtained by									
PK	V	2402.000	51.50	32.29	3.67	0.00	0.00	-7.76	30.00	-37.76	1/3 MHz
PK	Н	2402.000	46.00	32.29	3.67	0.00	0.00	-13.26	30.00	-37.89	1/3 MHz
			No	te: RF Outp	ut Power, C	hannel 39,	8DPSK, X-a	xis			
	Note: EIRP								3m - 95.22 :		
PK	V	2441.000		32.26	3.73	0.00	0.00	-9.33	30.00	-39.33	5/10 MHz
PK	H	2441.000	48.50	32.26	3.73	0.00	0.00	-10.73	30.00	-40.73	5/10 MHz
DI/		Obtained by									
PK	V H	2441.000	47.80	32.26	3.73	0.00	0.00	-11.43	30.00	-41.43	1/3 MHz
PK	п	2441.000	48.00	32.26	3.73 out Power, C	0.00	0.00	-11.23	30.00	-41.23	1/3 MHz
	Note: FIRP	Obtained by							3m - 95 22 :	= dBm FIRE)
PK	V	2441.000	48.84	32.26	3.73	0.00	0.00	-10.39	30.00	-40.39	5/10 MHz
PK	Н	2441.000	52.10	32.26	3.73	0.00	0.00	-7.13	30.00	-37.13	5/10 MHz
	Note: EIRP	Obtained by		e path loss	correction fo	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRF	,
PK	V	2441.000	46.77	32.26	3.73	0.00	0.00	-12.46	30.00	-42.46	1/3 MHz
PK	Н	2441.000	51.90	32.26	3.73	0.00	0.00	-7.33	30.00	-37.33	1/3 MHz
					out Power, C						
		Obtained by									
PK	V	2441.000	51.90	32.26	3.73	0.00	0.00	-7.33	30.00	-37.33	5/10 MHz
PK	H	2441.000	46.90	32.26	3.73	0.00	0.00	-12.33	30.00	-42.33	5/10 MHz
DV		Obtained by									
PK PK	V H	2441.000 2441.000	49.50 44.28	32.26 32.26	3.73 3.73	0.00	0.00	-9.73 -14.95	30.00 30.00	-39.73 -44.95	1/3 MHz 1/3 MHz
FK	_ п	2441.000			ut Power, C				30.00	-44.93	1/3 1/11/12
	Note: EIRP	Obtained by							3m - 95.22 :	= dBm EIRF)
PK	V	2480.000	48.71	32.23	3.78	0.00	0.00	-10.50	30.00	-40.50	5/10 MHz
PK	Н	2480.000	49.95	32.23	3.78	0.00	0.00	-9.26	30.00	-39.26	5/10 MHz
	Note: EIRP	Obtained by	applying th	e path loss	correction fo	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22 :	= dBm EIRF	
PK	V	2480.000	47.00	32.23	3.78	0.00	0.00	-12.21	30.00	-42.21	1/3 MHz
PK	Н	2480.000	50.90	32.23	3.78	0.00	0.00	-8.31	30.00	-38.31	1/3 MHz
					ut Power, C						
		Obtained by	1117 3					(
PK	V	2480.000	47.16	32.23	3.78	0.00	0.00	-12.05	30.00	-42.05	5/10 MHz
PK	H	2480.000	48.90	32.23	3.78	0.00	0.00	-10.31	30.00	-40.31	5/10 MHz
DI		Obtained by									
PK PK	V	2480.000	44.55	32.23	3.78	0.00	0.00	-14.66	30.00	-44.66 41.21	1/3 MHz
PN	Н	2480.000	48.00	32.23	3.78 out Power, C	0.00	0.00	-11.21	30.00	-41.21	1/3 MHz
	Note: FIRP	Obtained by							3m - 95 22 -	= dBm FIRF)
PK	V	2480.000	48.00	32.23	3.78	0.00	0.00	-11.21	30.00	-41.21	5/10 MHz
PK	Н	2480.000	43.90	32.23	3.78	0.00	0.00	-15.31	30.00	-45.31	5/10 MHz
	Note: EIRP							•	3m - 95.22 :		_
PK	V	2480.000	44.80	32.23	3.78	0.00	0.00	-14.41	30.00	-44.41	1/3 MHz
	T										

-13.26

FCC

Non-Specific Radio Report Shell Rev. August 2015 Company: Whoop Inc. Model: WhoopStrap 2.0/830-000004 (USB charger)

2480.000 42.99 32.23 3.78 0.00 0.00 -16.22 30.00 -46.22 1/3 MHz

Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

Test Personnel: Vathana Ven Test Date: 02/06/2017 Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15C, 15.247, RSS-247 Product Standard: Limit Applied: Below specified limit Input Voltage: 120VAC/60Hz Ambient Temperature: 19 °C Pretest Verification w/ Ambient Signals or BB Source: Yes Relative Humidity: 13 % Atmospheric Pressure: 1008 mbars

Deviations, Additions, or Exclusions: None

7 Band Edge Compliance

7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 May 2016 and ANSI C 63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	- dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

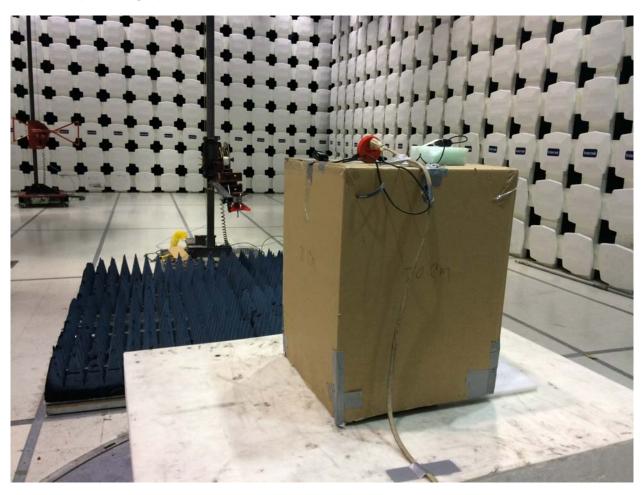
Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \text{ dB}\mu\text{V}\,/\,20)} = 39.8 \ \mu\text{V/m}$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004'	Weather Station	Davis Instruments	7400	Α	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
			3m Track B			
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	cables	multiple	07/30/2016	07/30/2017

Software Utilized:


Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

Note: Your Laptop may use a different version of Excel. Record the version you actually used!

7.3 Results:

The sample tested was found to Comply.

7.4 Setup Photographs:

Test Data:

Special Radiated Emissions

Company: Whoop

Antenna & Cables: HF Bands: N, LF, HF, SHF

Model #: WhoopStrap 2.0/830-000004 (USB charger)

Antenna: ETS001 02-10-17.txt ETS001 02-10-17.txt

Serial #: 20D125 6/TM16500012 (USB charger) Cable(s): 145-416 1-18 GHz 10-08-17.txt

Engineers: Vathana Ven Location: 10M Barometer: DAV004 Filter:

Project #: G102837160 Date(s): 12/21/16

Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 21c 29% 999 mB

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC 60Hz Frequency Range: See frequencies

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Ant.			Antenna	Cable	Pre-amp	Distance					1
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FC
Note: Lower Band Edge Compliance, 8DPSK none hopping]	
Н	2390.000	26.70	32.21	3.66	0.00	0.00	62.57	74.00	-11.43	1/3 MHz	RB
Н	2390.000	16.19	32.21	3.66	0.00	0.00	52.06	54.00	-1.94	1/3 MHz	RB
Note: Lower Band Edge Compliance, 8DPSK hopping]	
Н	2390.000	29.00	32.21	3.66	0.00	0.00	64.87	74.00	-9.13	1/3 MHz	RB
Н	2390.000	16.00	32.21	3.66	0.00	0.00	51.87	54.00	-2.13	1/3 MHz	RB
		Note:	Upper Band	Edge Com	pliance, 8DF	SK none h	opping				
Н	2483.500	27.59	32.22	3.79	0.00	0.00	63.60	74.00	-10.40	1/3 MHz	RB
Н	2483.500	15.99	32.22	3.79	0.00	0.00	52.00	54.00	-2.00	1/3 MHz	RB
Note: Upper Band Edge Compliance, 8DPSK hopping											
Н	2483.500	29.90	32.22	3.79	0.00	0.00	65.91	74.00	-8.09	1/3 MHz	RB
Н	2483.500	16.90	32.22	3.79	0.00	0.00	52.91	54.00	-1.09	1/3 MHz	RB
	Pol. (V/H) H H H H H	Pol. Frequency (V/H) H 2390.000 H 2390.000 H 2390.000 H 2390.000 H 2483.500 H 2483.500 H 2483.500	Pol. Frequency (V/H) MHz dB(uV) MHz dB(uV) Note: I H 2390.000 26.70 H 2390.000 16.19 Not H 2390.000 29.00 H 2390.000 16.00 Note: I H 2483.500 27.59 H 2483.500 29.90 Not	Pol. Frequency (V/H) Reading Factor (B(1/m)) MHz AB(uV) dB(1/m) Note: Lower Band S2.21 H 2390.000 16.19 32.21 Note: Lower Band Note: Lower Band S2.21 H 2390.000 29.00 32.21 H 2390.000 16.00 32.21 Note: Upper Band H 2483.500 27.59 32.22 Note: Upper Band S2.21 Note: Upper Band S2.21 Note: Upper Band S2.22 Note: Upper Band S2.22	Pol. Frequency (V/H) MHz dB(uV) dB(1/m) dB Note: Lower Band Edge Com H 2390.000 26.70 32.21 3.66 H 2390.000 16.19 32.21 3.66 Note: Lower Band Edge Com H 2390.000 29.00 32.21 3.66 H 2390.000 29.00 32.21 3.66 H 2390.000 16.00 32.21 3.66 Note: Upper Band Edge Com H 2483.500 27.59 32.22 3.79 H 2483.500 15.99 32.22 3.79 Note: Upper Band Edge Com Upper Band Edge Com Note: Upper Band Edge Com H 2483.500 29.90 32.22 3.79 Note: Upper Band Edge Com	Pol. (V/H) Frequency MHz Reading dB(uV) Factor dB(1/m) Loss dB Factor dB H 2390.000 26.70 32.21 3.66 0.00 H 2390.000 16.19 32.21 3.66 0.00 Note: Lower Band Edge Compliance, 8 H 2390.000 29.00 32.21 3.66 0.00 H 2390.000 16.00 32.21 3.66 0.00 Note: Upper Band Edge Compliance, 8DF H 2483.500 27.59 32.22 3.79 0.00 Note: Upper Band Edge Compliance, 8 H 2483.500 29.90 32.22 3.79 0.00	Pol. (V/H) Frequency (V/H) Reading dB(uV) Factor dB(1/m) Loss dB Factor dB Factor dB Note: Lower Band Edge Compliance, 8DPSK none holds Note: Lower Band Edge Compliance, 8DPSK none holds H 2390.000 26.70 32.21 3.66 0.00 0.00 H 2390.000 16.19 32.21 3.66 0.00 0.00 Note: Lower Band Edge Compliance, 8DPSK hopp H 2390.000 29.00 32.21 3.66 0.00 0.00 H 2390.000 16.00 32.21 3.66 0.00 0.00 Note: Upper Band Edge Compliance, 8DPSK none holds H 2483.500 27.59 32.22 3.79 0.00 0.00 Note: Upper Band Edge Compliance, 8DPSK hopp Note: Upper Band Edge Compliance, 8DPSK hopp BDPSK hopp Note: Upper Band Edge Compliance, 8DPSK hopp	Pol. Frequency Reading Factor Loss Factor dB dB dB dB dB dB dB d	Pol. (V/H) Frequency (V/H) Reading (M/H) Factor (M/H) Loss (M/H) Factor (M/H) Factor (M/H) Net (M/H) Limit (M/H) Limit (M/H) Limit (M/H) Met (M/H) Limit (M/H) Limit (M/H) Met (M/H) Limit (M/H) Met (M/H) Limit (M/H) Met (M/H)	Pol. Frequency Reading Factor Loss Factor dB dB dB dB dB dB dB d	Pol. Frequency Reading Factor Loss Factor dB dB dB dB dB dB dB d

Test Personnel:	Vathana Ven	Test Date:	12/21/2016
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	FCC Part 15C, 15.247,		
Product Standard:	RSS-247	Limit Applied:	Below specified limit
Input Voltage:	120VAC/60Hz		•
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or			
BB Source:	Yes	Relative Humidity:	29 %
		Atmospheric Pressure:	999 mbars

Deviations, Additions, or Exclusions: None

8 Radiated Emissions from Digital device and Receiver

8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15B, ICES-003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	- dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

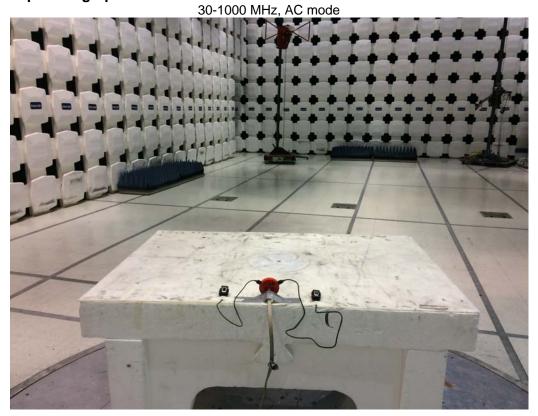
UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

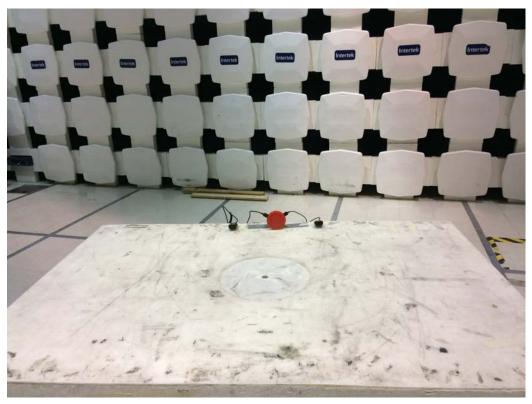
Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004'	Weather Station	Davis Instruments	7400	Α	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
			10m Track A			
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	Cables	multiple	07/30/2016	07/30/2017
145013	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2944A07027	05/02/2016	05/02/2017
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	03/09/2016	03/09/2017


Software Utilized:


Name	Manufacturer	Version
Compliance 5	Teseq	5.26.46.46

8.3 Results:

The sample tested was found to Comply.

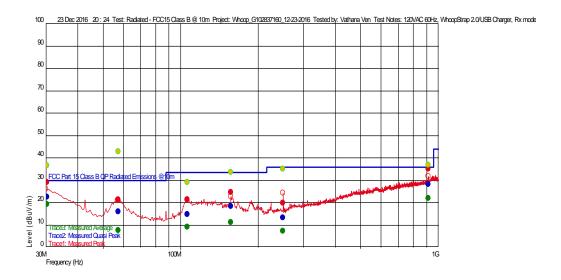
8.4 Setup Photographs:

8.5 Test Data:

Test Information

Test Details

Test:


Project:

User Entry
Radiated - FCC15 Class B @ 10m
Whoop_G102837160_12-23-2016
120VAC 60Hz, WhoopStrap 2.0/USB Charger, Rx mode
19 deg C
21%, 1015mbar
Vathana Van

Test Notes: Temperature: Humidity:

Vathana Ven 23 Dec 2016 20 : 24 Tested by: Test Started:

Prescan Emission Graph

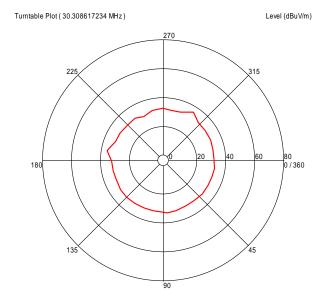
Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

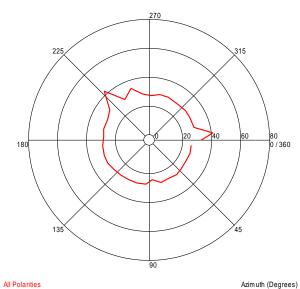
Swept Quasi Peak Data __ Swept Average Data

Emissions Test Data

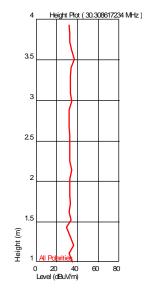

Trace2: Measured Quasi Peak

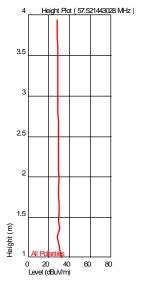
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
250.158116651 M	13.20	17.700	-25.324	36.020	-22.82	1	349	1.06	120 k	
106.562925661 M	14.90	18.113	-26.729	33.520	-18.62	i	271	1.14	120 k	
156.787374395 M	18.36	18.600	-26.187	33.520	-15.16	Ì	17	1.57	120 k	
57.521443028 M	16.06	13.300	-27.298	30.000	-13.94	i	217	1.05	120 k	
916.800000349 M	28.21	29.136	-23.091	36.020	-7.81	Ì	0	2.00	120 k	
30.308617234 M	22.41	27.253	-27.767	30.000	-7.59		202	3.62	120 k	

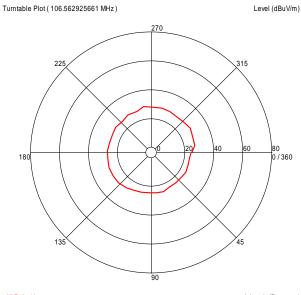
Non-Specific Radio Report Shell Rev. August 2015 Company: Whoop Inc. Model: WhoopStrap 2.0/830-000004 (USB charger) Additional Information

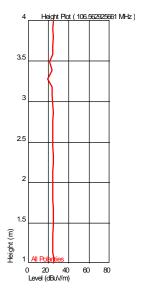

Level (dBuV/m)

Azimuth Plots

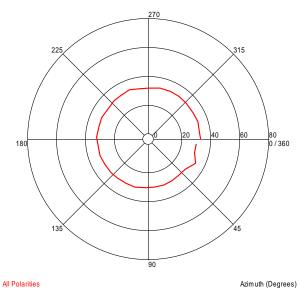


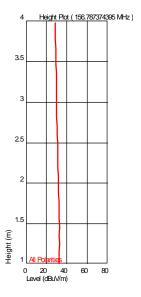

All Polarities Azimuth (Degrees)

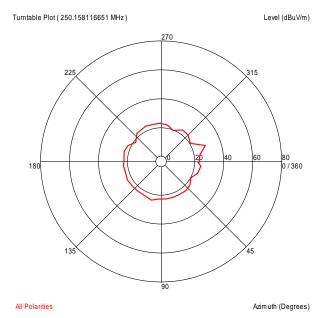


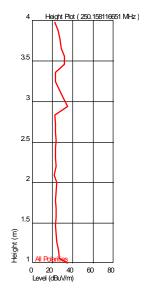


Turntable Plots

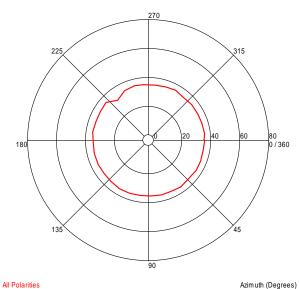


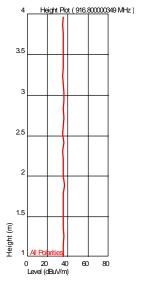



All Polarities Azimuth (Degrees)

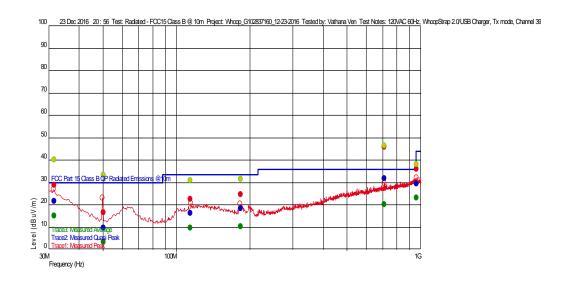

Turntable Plot (156.787374395 MHz)

Level (dBuV/m)





Test Information


Test Details

Test: Project: Test Notes:

User Entry
Radiated - FCC15 Class B @ 10m
Whoop_G102837160_12-23-2016
120VAC 60Hz, WhoopStrap 2.0/USB Charger, Tx mode, Channel 39

19 deg C 21%, 1015mbar Vathana Ven 23 Dec 2016 20 : 56 Temperature: Humidity: Tested by: Test Started:

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value

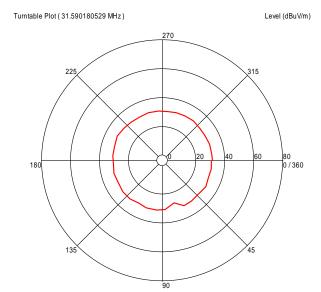
Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

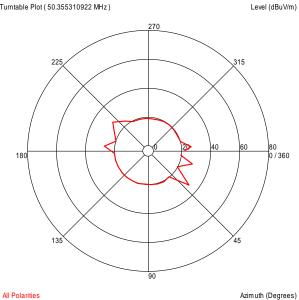
Swept Quasi Peak Data

Swept Average Data

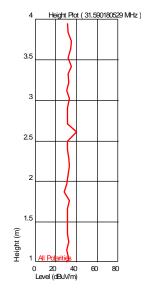

Emissions Test Data

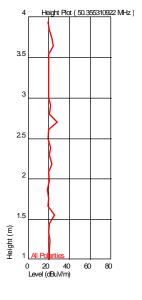
Trace2: Measured Quasi Peak

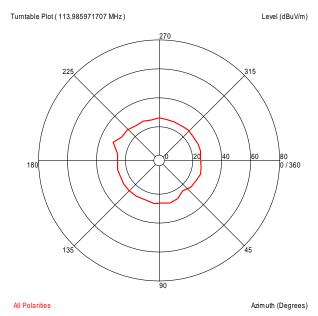
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
50.355310922 M	9.77	14.029	-27.382	30.000	-20.23		29	2.80	120 k	
113.985971707 M	16.17	19.397	-26.649	33.520	-17.35	ĺ	213	2.41	120 k	
183.440280236 M	18.38	17.300	-25.899	33.520	-15.14	İ	195	1.15	120 k	
964.29398788 M	29.46	29.814	-22.851	43.980	-14.52	İ	195	1.78	120 k	
31.590180529 M	21.51	26.228	-27.743	30.000	-8.49		197	2.71	120 k	
710.729458475 M	31.88	26.729	-23.843	36.020	-4.14		360	2.88	120 k	

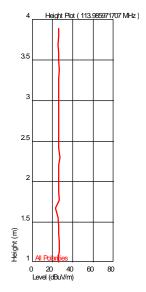

Non-Specific Radio Report Shell Rev. August 2015 Company: Whoop Inc. Model: WhoopStrap 2.0/830-000004 (USB charger) Additional Information

Azimuth Plots

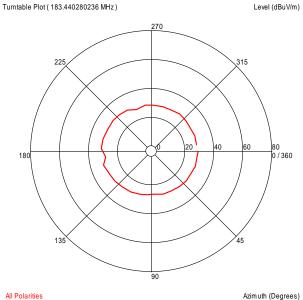


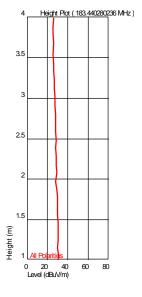

All Polarities Azimuth (Degrees)

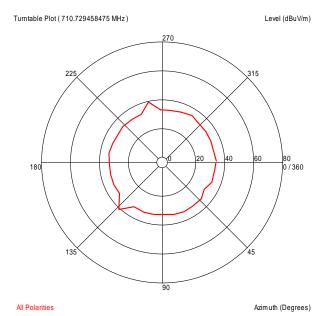

Turntable Plot (50.355310922 MHz)

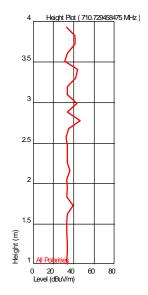


Turntable Plots

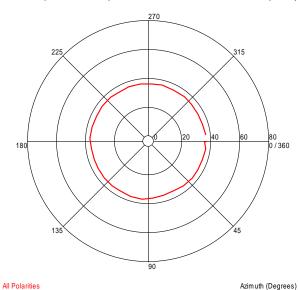


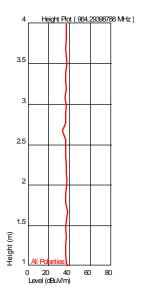






Level (dBuV/m)





Turntable Plot (964.29398788 MHz)

Level (dBuV/m)

Test Personnel:

Supervising/Reviewing
Engineer:
(Where Applicable)
Product Standard:

Vathana Ven

Vathana V

Input Voltage: Pretest Verification w/ Ambient Signals or BB Source:

Yes

120VAC/60Hz

Test Date: 12/23/2016

Limit Applied: Class B

Ambient Temperature: 19 °C

Relative Humidity: 21 %

Atmospheric Pressure: 1015 mbars

Deviations, Additions, or Exclusions: None

9 AC Mains Conducted Emissions

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart B and ICES 003, FCC Part 15 Subpart C.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted			
Emissions	150 kHz - 30 MHz	2.8dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	3.2dB	5.0dB

As shown in the table above our conducted emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in $dB\mu V$ RF = Reading from receiver in $dB\mu V$ LF = LISN or ISN Correction Factor in dBCF = Cable Correction Factor in dBAF = Attenuator Loss Factor in dB

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB\mu V / 20)} = 285.1 \ \mu V/m$

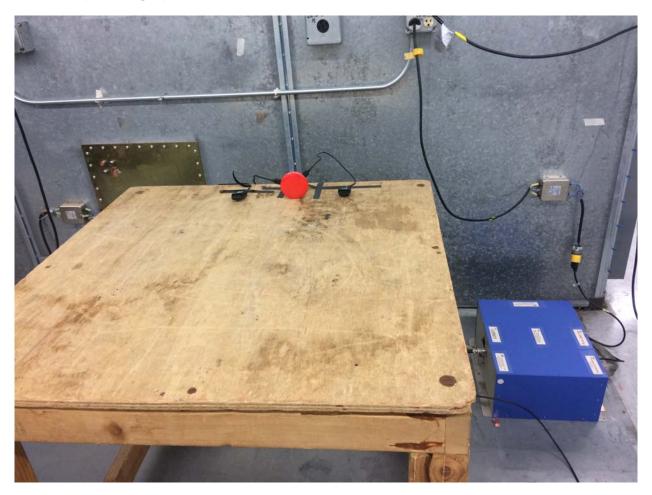
Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "TF" is the Transducer Factor; in this case LISN or ISN loss.

Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	11/28/2016	11/28/2017
			ESCI			
			1166.5950K0			
ROS002'	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	3	100067	07/29/2016	07/29/2017
CBLBNC				CBLBCN2012		
2012-4'	50 Ohm Coaxial Cable	Pomona	RG58C/U	-4	03/21/2016	03/21/2017
LISN31'	LISN - CISPR16 Compliant 9kHz-30MHz	Com-Power	LI-215A	191957	03/14/2016	03/14/2017
DS23A'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS23A	10/21/2016	10/21/2017


Software Utilized:

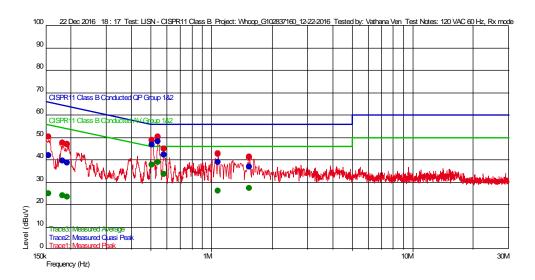
Name	Manufacturer	Version
Compliance5	Teseq	5.26.46.46

9.3 Results:

The sample tested was found to Comply.

9.4 Setup Photographs:

9.5 Plots/Data:


Operating @ 120VAC 60Hz Rx Mode

Test Information

Test Details Test: User Entry LISN – FCC Part 15B Class B LISN = FCC Fait 195 Class 2016 Whoop_G102837160_12-22-2016 120 VAC 60 Hz, Rx mode 23 deg C 18%, 1004 mB Vathana Ven Project: Test Notes: Temperature:

Humidity: Tested by: Test Started: 22 Dec 2016 18:17 Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data Swept Quasi Peak Data

Swept Average Data

Emissions Test Data

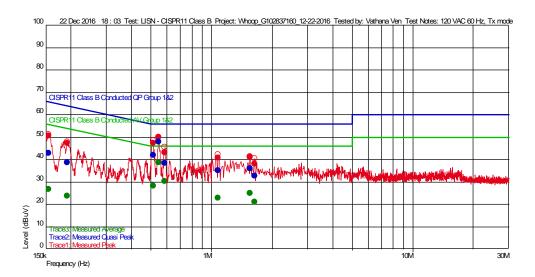
Trace2: Measured Quasi Peak

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
192.5 k	38.57	0.046	20.592	63.928	-25.35	9 k		N
182.3 k	39.49	0.054	20.592	64.380	-24.89	9 k		N
155.1 k	41.86	0.076	20.594	65.722	-23.86	9 k		N
1.549 M	36.99	0.020	20.552	56.000	-19.01	9 k		L1
1.081 M	38.88	0.020	20.544	56.000	-17.12	9 k		L1
580.95 k	42.22	0.021	20.568	56.000	-13.78	9 k		L1
505.3 k	46.57	0.023	20.573	56.000	-9.43	9 k		L1
543.55 k	48.12	0.022	20.570	56.000	-7.88	9 k		L1

Trace3: Measured Average

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
155.1 k	24.98	0.076	20.594	55.722	-30.74	9 k		N
192.5 k	23.43	0.046	20.592	53.928	-30.49	9 k		N
182.3 k	23.91	0.054	20.592	54.380	-30.47	9 k		N
1.081 M	26.15	0.020	20.544	46.000	-19.85	9 k		L1
1.549 M	27.31	0.020	20.552	46.000	-18.69	9 k		L1
580.95 k	33.51	0.021	20.568	46.000	-12.49	9 k		L1
505.3 k	37.69	0.023	20.573	46.000	-8.31	9 k		L1
543.55 k	38.87	0.022	20.570	46.000	-7.13	9 k		L1

Limits for the FCC and CISPR 11 are the same.


Operating @ 120VAC 60Hz Tx Mode

Test Information

User Entry LISN – FCC Part 15B Class B Whoop_G102837160_12-22-2016 120 VAC 60 Hz, Tx mode 23 deg C 18%, 1004 mB Vathana Ven Test Details Test: Project: Test Notes: Temperature:

Humidity: Tested by: Test Started: Vathana Ven 22 Dec 2016 18:03 Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

__ Swept Average Data

Emissions Test Data

Trace2: Measure	ed Quasi Peak							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
192.5 k	38.70	0.046	20.592	63.928	-25.22	9 k		N
1.639 M	32.75	0.020	20.554	56.000	-23.25	9 k		L1
155.1 k	42.81	0.076	20.594	65.722	-22.91	9 k		L1
1.081 M	34.94	0.020	20.544	56.000	-21.06	9 k		L1
1.558 M	35.90	0.020	20.553	56.000	-20.10	9 k		L1
585.2 k	38.24	0.020	20.568	56.000	-17.76	9 k		L1
513.8 k	41.99	0.023	20.572	56.000	-14.01	9 k		N
545.25 k	47.84	0.022	20.570	56.000	-8.16	9 k		L1

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
192.5 k	23.63	0.046	20.592	53.928	-30.30	9 k		N
155.1 k	26.63	0.076	20.594	55.722	-29.09	9 k		L1
1.639 M	21.19	0.020	20.554	46.000	-24.81	9 k		L1
1.081 M	22.74	0.020	20.544	46.000	-23.26	9 k		L1
1.558 M	25.07	0.020	20.553	46.000	-20.93	9 k		L1
513.8 k	28.13	0.023	20.572	46.000	-17.87	9 k		N
585.2 k	30.33	0.020	20.568	46.000	-15.67	9 k		L1
545.25 k	38.75	0.022	20.570	46.000	-7.25	9 k		L1

Limits for the FCC and CISPR 11 are the same.

Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

Vathana Ven Test Personnel: Test Date: 12/22/2016 Supervising/Reviewing Engineer: (Where Applicable) N/A FCC Part15 Subpart B Product Standard: ICES 003 Limit Applied: Class B Input Voltage: 120VAC 60Hz Pretest Verification w/ Ambient Temperature: 23 °C Ambient Signals or BB Source: BB Source Relative Humidity: 18 % Atmospheric Pressure: 1004 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 102837160BOX-001b Issued: 02/06/2017

10 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	12/23/2016	102837160BOX-001	VFVV	MFM ##	Original Issue
1	01/31/2017	102837160BOX-001a	VFVV	MFM ##	Corrected typo on page 3, 5, 36
2	02/06/2017	102837160BOX-001b	VFVV	MFM ##	Re-measured and added output power