

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202212128F01

TEST Report

Applicant: TPARTS CO.,LTD

Address of Applicant: 1402B Yifenghua Mansion, Dalang St,

Longhua District, Shenzhen, Guangdong, China

Manufacturer: TPARTS CO.,LTD

Address of 1402B Yifenghua Mansion, Dalang St,

Manufacturer: Longhua District, Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: WIRELESS GAME CONTROLLER

Model No.: TP170

Series model: TP285

Trade Mark: N/A

FCC ID: 2A9SU-TP170

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Dec.13,2022

Date of Test: Dec.13,2022~Dec.19,2022

Date of report issued: Dec.19,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Dec.19,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Dec.19,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Dec.19,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Dec.19,2022
	Authorized Signature		

2. Contents

		Page
1. \	VERSION	2
	CONTENTS	
3. 1	TEST SUMMARY	4
4. (GENERAL INFORMATION	5
4.1.	. GENERAL DESCRIPTION OF EUT	5
4.2.		
4.3.		
4.4.		
4.5.	5. ABNORMALITIES FROM STANDARD CONDITIONS	7
4.6.	6. TEST FACILITY	7
4.7.		
4.8.	3. Additional Instructions	7
5. 1	TEST INSTRUMENTS LIST	8
6. 1	TEST RESULTS AND MEASUREMENT DATA	9
6.1.	. CONDUCTED EMISSIONS	9
6.2.	CONDUCTED PEAK OUTPUT POWER	12
6.3.	3. 20DB EMISSION BANDWIDTH	13
6.4.	Frequencies Separation	17
6.5.	6. HOPPING CHANNEL NUMBER	19
6.6.		
6.7.		
	6.7.1. Conducted Emission Method	
	6.7.2. Radiated Emission Method	
6.8.		
	6.8.1. Conducted Emission Method	
	6.8.2. Radiated Emission Method	
7. 1	TEST SETUP PHOTO	45
8 F	EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

_	!	
	Product Name:	WIRELESS GAME CONTROLLER
	Model No.:	TP170
	Series model:	TP285
	Test sample(s) ID:	HTT202212128-1(Engineer sample)
		HTT202212128-2(Normal sample)
	Operation Frequency:	2402MHz~2480MHz
	Channel numbers:	79
	Channel separation:	1MHz
	Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
	Antenna Type:	PCB Antenna
	Antenna gain:	-2.30dBi
	Power Supply:	DC 3.7V Form Battery and DC 5V From External Circuit

Operation	Frequency each	n of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

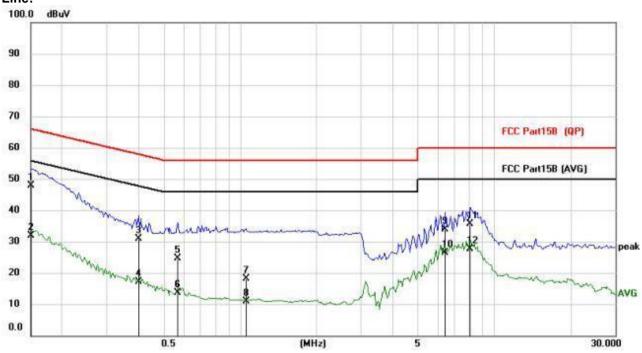
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

၁ .	rest instrume					
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	Toot =quipmont	manadataro		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

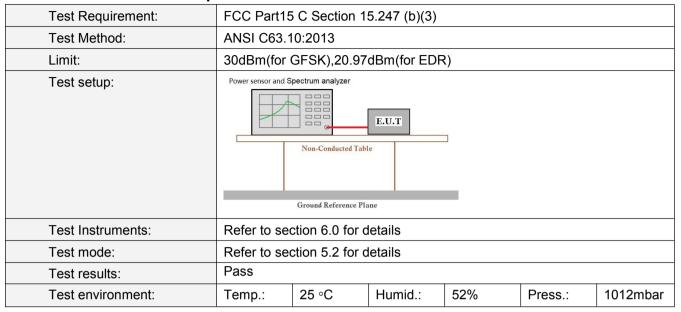
6.1. Conducted Emissions


	-					
Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto				
Limit:	- (1411.)	Limit	(dBuV)			
	Frequency range (MHz)	Quasi-peak	Aver	age		
	0.15-0.5	66 to 56*	56 to	46*		
	0.5-5	56	46			
	5-30	60	50)		
Test setup:	* Decreases with the logarithm of the frequency.					
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E U T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
	 The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imposions. The peripheral devices are LISN that provides a 500hm termination. (Please refer the photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: 	n network (L.I.S.N.). The dance for the measure also connected to the m/50uH coupling important of the block diagram of the checked for maximum distribution of the interface can be desired the maximum emission.	This provides uring equipmed e main powe edance with soft the test set on conducted sion, the related the sion of the test set on the test set on the test set on the test set on the related the test set on the test set of the test set on the test set on the test set of the test set of the test set of the test set on the test set of	ent. r through a 500hm tup and tive e changed		
Test Instruments:	Refer to section 6.0 for details	<u> </u>				
Test mode:	Refer to section 5.2 for details					
Test environment:		nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

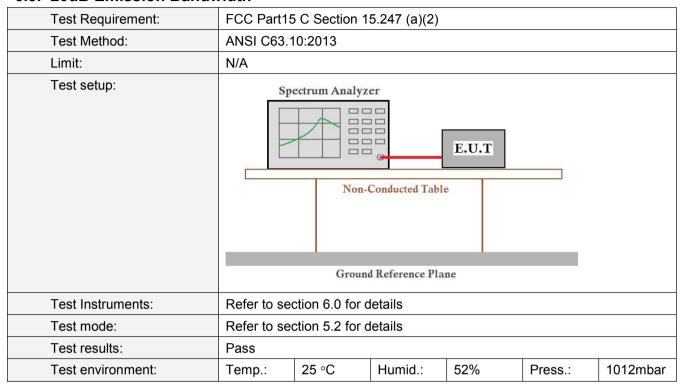
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detecto
1	*	0.1500	37.52	10.37	47.89	66.00	-18.11	QP
2		0.1500	21.63	10.37	32.00	56.00	-24.00	AVG
3		0.3996	20.47	10.43	30.90	57.86	-26.96	QP
4		0.3996	6.74	10.43	17.17	47.86	-30.69	AVG
5		0.5673	14.07	10.55	24.62	56.00	-31.38	QP
6		0.5673	2.97	10.55	13.52	46.00	-32.48	AVG
7		1.0548	7.27	10.89	18.16	56.00	-37.84	QP
8		1.0548	-0.13	10.89	10.76	46.00	-35.24	AVG
9		6.4320	22.60	11.33	33.93	60.00	-26.07	QP
10		6.4320	15.05	11.33	26.38	50.00	-23.62	AVG
11		8.0622	24.25	11.46	35.71	60.00	-24.29	QP
12		8.0622	16.09	11.46	27.55	50.00	-22.45	AVG


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1578	36.93	10.26	47.19	65.58	-18.39	QP
2	1	0.1578	21.24	10.26	31.50	55.58	-24.08	AVG
3		1.1445	8.22	10.80	19.02	56.00	-36.98	QP
4		1.1445	-0.44	10.80	10.36	46.00	-35.64	AVG
5		1.9362	7.73	10.82	18.55	56.00	-37.45	QP
6		1.9362	0.98	10.82	11.80	46.00	-34.20	AVG
7		2.8488	13.04	10.84	23.88	56.00	-32.12	QP
8		2.8488	5.33	10.84	16.17	46.00	-29.83	AVG
9		6.1784	26.82	10.92	37.74	60.00	-22.26	QP
10		6.1784	18.93	10.92	29.85	50.00	-20.15	AVG
11		7.5006	24.39	11.02	35.41	60.00	-24.59	QP
12		7.5006	18.63	11.02	29.65	50.00	-20.35	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

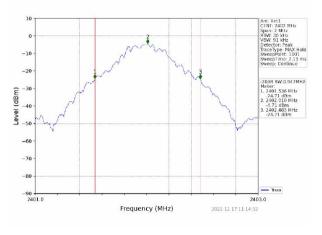
6.2. Conducted Peak Output Power



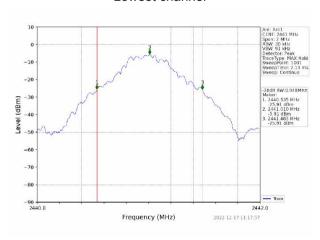
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-2.29			
GFSK	Middle	-3.44	30.00	Pass	
	Highest	-4.32			
	Lowest	0.30			
π/4-DQPSK	Middle	-1.25	20.97	Pass	
	Highest	-2.39			
	Lowest	0.60			
8-DPSK	Middle	-0.90	20.97	Pass	
	Highest	-1.97			

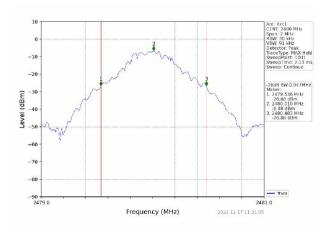
6.3. 20dB Emission Bandwidth


Measurement Data

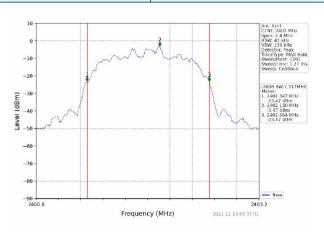
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.947	
GFSK	Middle	0.948	Pass
	Highest	0.947	
	Lowest	1.317	
π/4-DQPSK	Middle	1.305	Pass
	Highest	1.320	
	Lowest	1.313	
8-DPSK	Middle	1.312	Pass
	Highest	1.312	

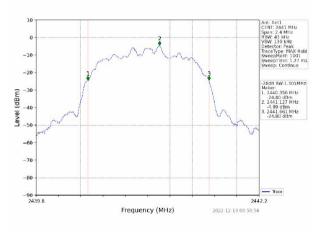


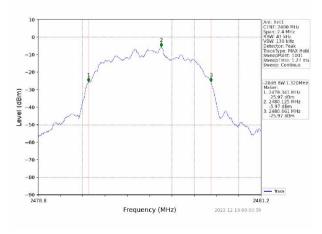
Test plot as follows:


Test mode: GFSK mode

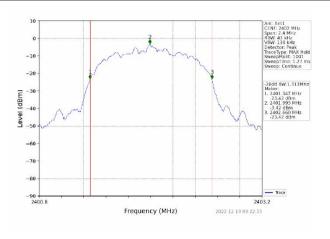
Lowest channel

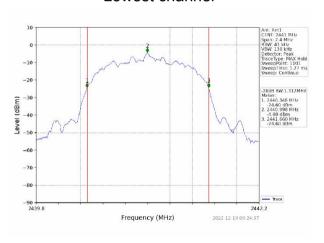

Middle channel

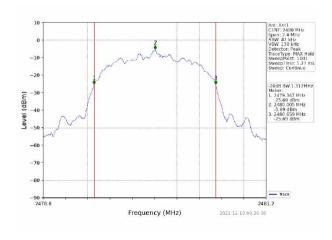

Highest channel


Test mode: $\pi/4$ -DQPSK mode

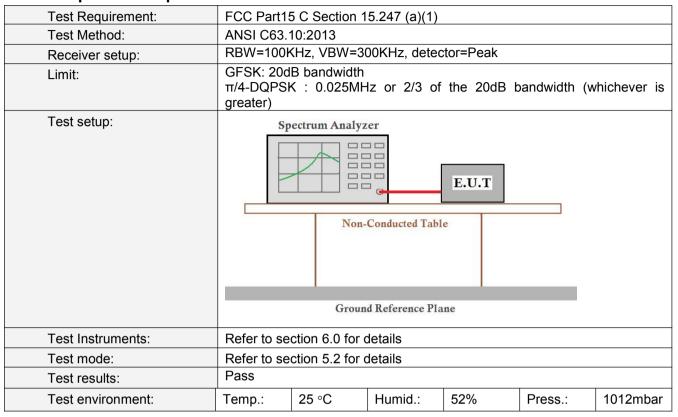
Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

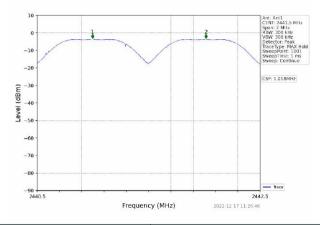
Lowest channel


Middle channel

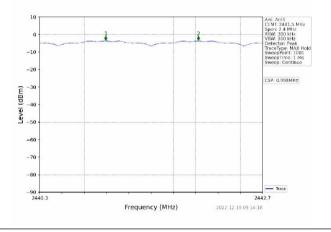
Highest channel

6.4. Frequencies Separation

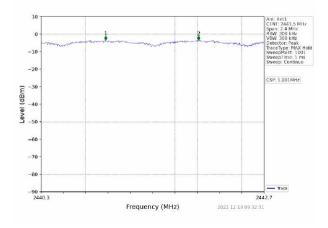
Measurement Data


Weasurement Date	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
GFSK	Middle	1.018	0.948	Pass
π/4-DQPSK	Middle	0.998	0.88	Pass
8-DPSK	Middle	1.001	0.875	Pass

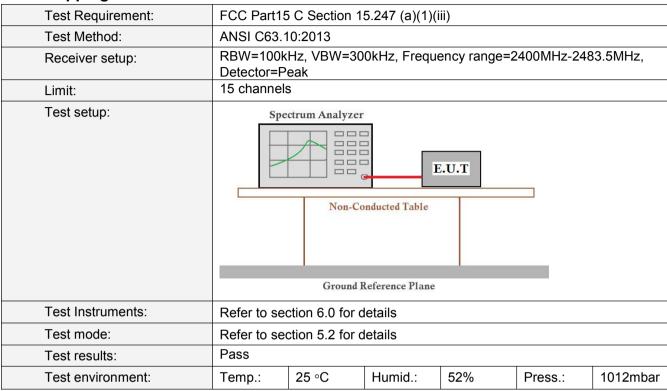
Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

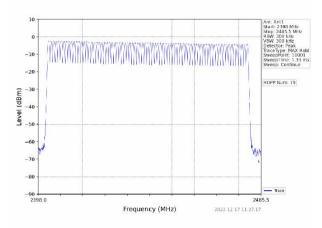

Modulation mode: GFSK

Test mode: π/4-DQPSK

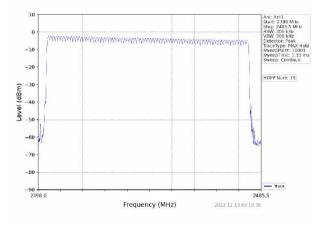


Modulation mode: 8-DPSK

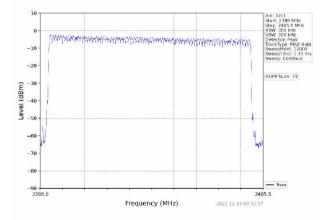
6.5. Hopping Channel Number


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)((iii)				
Test Method:	ANSI C63.	ANSI C63.10:2013						
Receiver setup:	RBW=1MH	lz, VBW=1Mł	∃z, Span=0H	z, Detector=	=Peak			
Limit:	0.4 Second	i						
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table						
		Groun	d Reference Pla	ine				
Test Instruments:	Refer to se	ction 6.0 for o	details					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.390	124.410	400	Pass
Hopping	DH3	1.646	278.174	400	Pass
Hopping	DH5	2.908	302.432	400	Pass

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.414	132.480	400	Pass
Hopping	2DH3	1.664	271.232	400	Pass
Hopping	2DH5	2.916	341.172	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3, 3-DH3

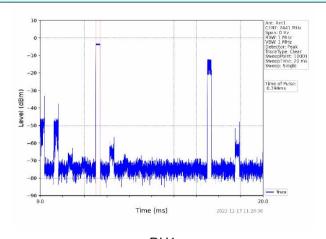
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

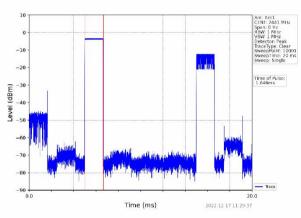
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.412	187.460	400	Pass
Hopping	3DH3	1.666	268.226	400	Pass
Hopping	3DH5	2.900	345.100	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

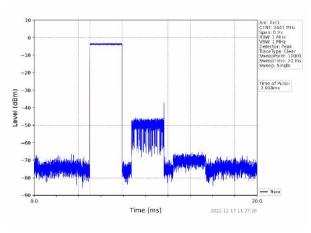
Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

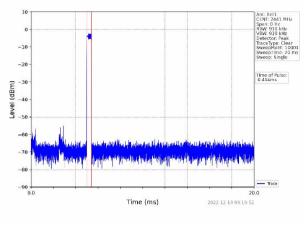

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

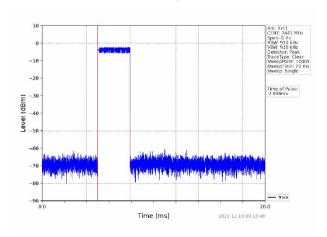


Test plot as follows:

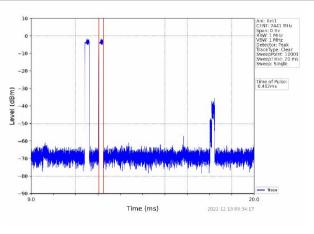

GFSK mode

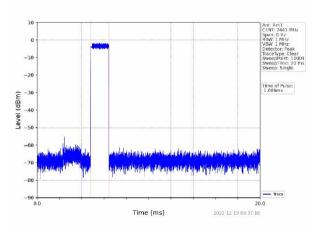


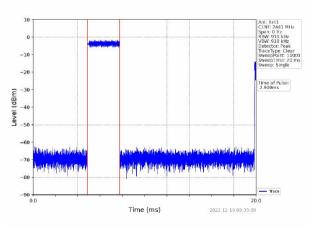
DH3


π/4-DQPSK mode

2DH1

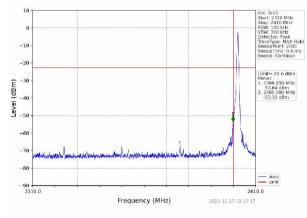

2DH3

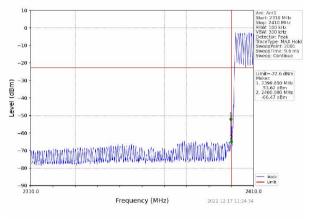

2DH5


8-DPSK mode

3DH3

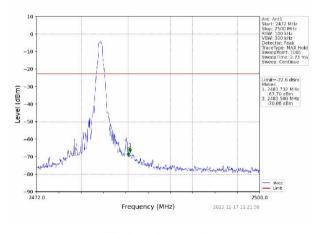
6.7. Band Edge

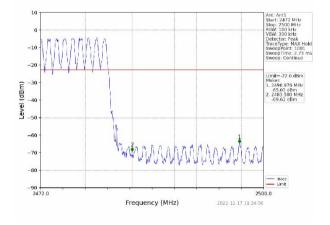

6.7.1. Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kH	Iz, VBW=30	0kHz, Detect	tor=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to sect	ion 5.2 for d	etails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows: GFSK Mode:

Test channel Lowest channel

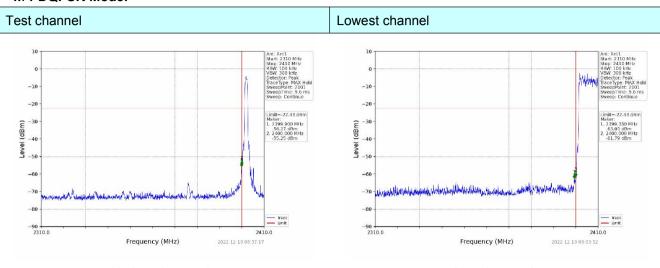



No-hopping mode

Hopping mode

Test channel:

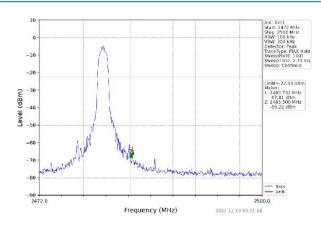
Highest channel



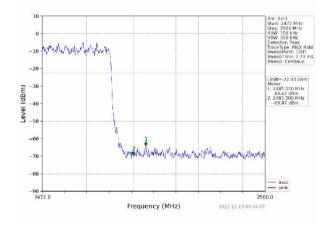
No-hopping mode

Hopping mode

π/4-DQPSK Mode:

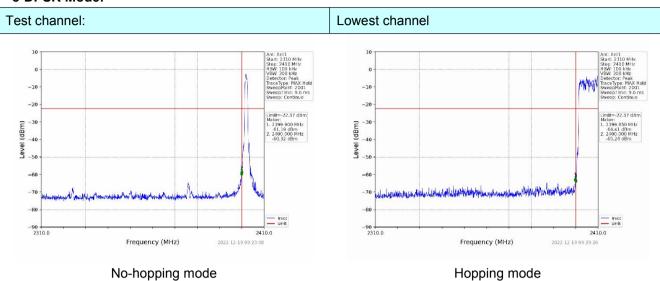


No-hopping mode

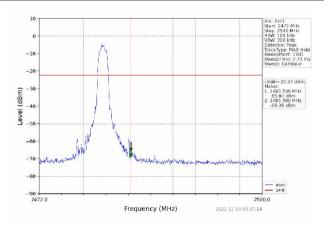

Hopping mode

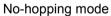
Test channel:

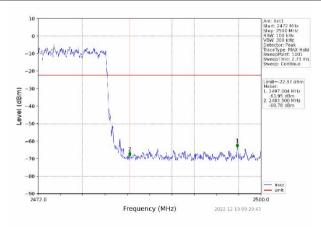
Highest channel


No-hopping mode

Hopping mode




8-DPSK Mode:



Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

6.7.2. Radiated Emission Method								
Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10	0:2013						
Test Frequency Range:	All of the res			ested, only	y the wo	orst band's (2	2310MHz to	
Test site:	Measuremen	nt Distance:	3m					
Receiver setup:	Frequency	/ Detec	ctor	RBW	VBW	/ Re	mark	
·	Above 1GH	Above 1GHz						
Limit:	Fred	Frequency Limit (dBuV/m @3m) Re						
	Abov	e 1GHz		54.0 74.0			ge Value k Value	
Test setup:	Tum Table < 1m 4m > < 150cm > < 150cm > < 1 degree (150cm >)							
Test Procedure:	1 The FUT	was placed			reamplifier	ole 1.5 meter	s above the	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 						ving antenna above the Both or make the vorst case meters at to find the alues of the	
Test Instruments:	Refer to sect							
Test mode:	Refer to sect	ion 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mba							

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

_	110112011141 (1101010400)									
	Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)) (dBμV/m) (dBμV/m)		(dB)	Туре	
	2390	57.46	26.20	5.72	33.30	56.08	74.00	-17.92	peak	
	2390	45.31	26.20	5.72	33.30	43.93	54.00	-10.07	AVG	

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.35	26.20	5.72	33.30	57.97	74.00	-16.03	peak
2390	45.37	26.20	5.72	33.30	43.99	54.00	-10.01	AVG

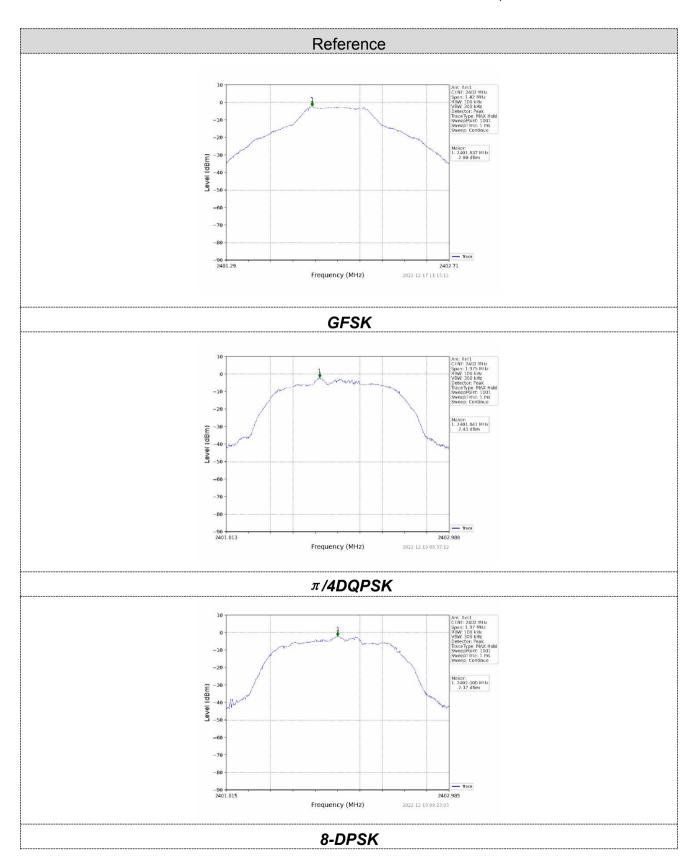
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

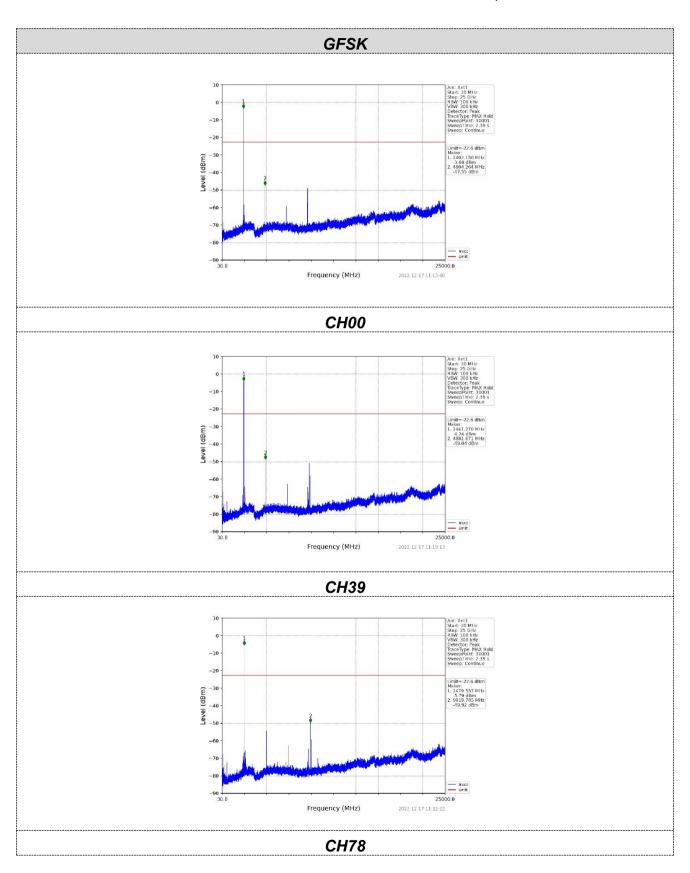
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.30	28.60	6.97	32.70	58.17	74.00	-15.83	peak
2483.5	41.67	28.60	6.97	32.70	44.54	54.00	-9.46	AVG

Vertical:

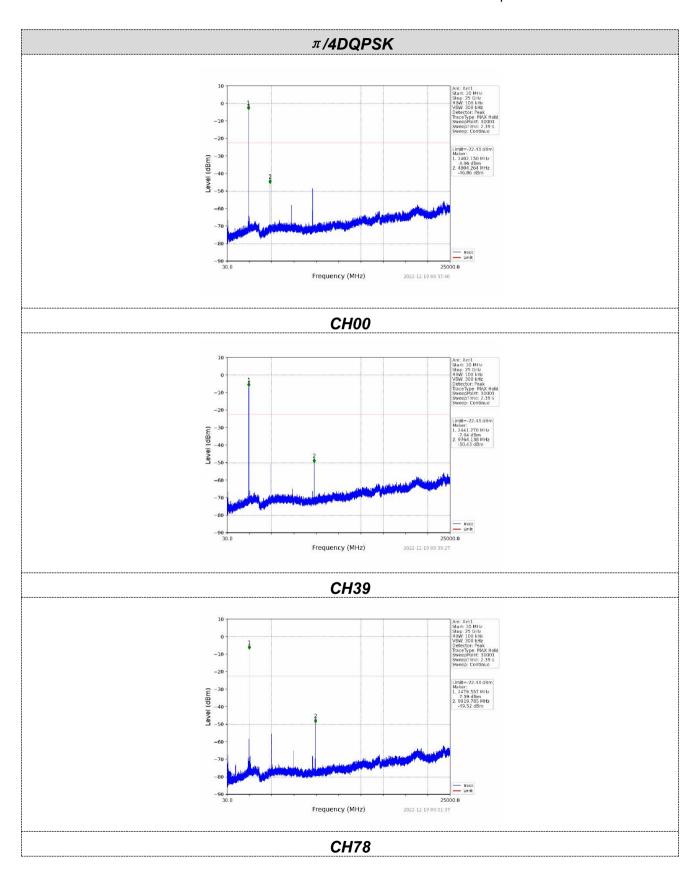
	v Ci tiodi.								
ĺ	Frequency	Meter Reading	Antenna		Preamp	Emission Level	Limits	Margin	
ļ	Frequency	Meter Reading	Factor	Cable Loss	Cable Loss Factor Emission Level		LIIIIII	iviargiri	Detector
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
	(1011 12)	(45 μτ)	(48/111)	(45)	(42)	(аврулп)	(авретт)	(45)	
	2483.5	55.67	28.60	6.97	32.70	58.54	74.00	-15.46	peak
		55.5.		0.0.					p - a
	2483.5	42.56	28.60	6.97	32.70	45.43	54.00	-8.57	AVG

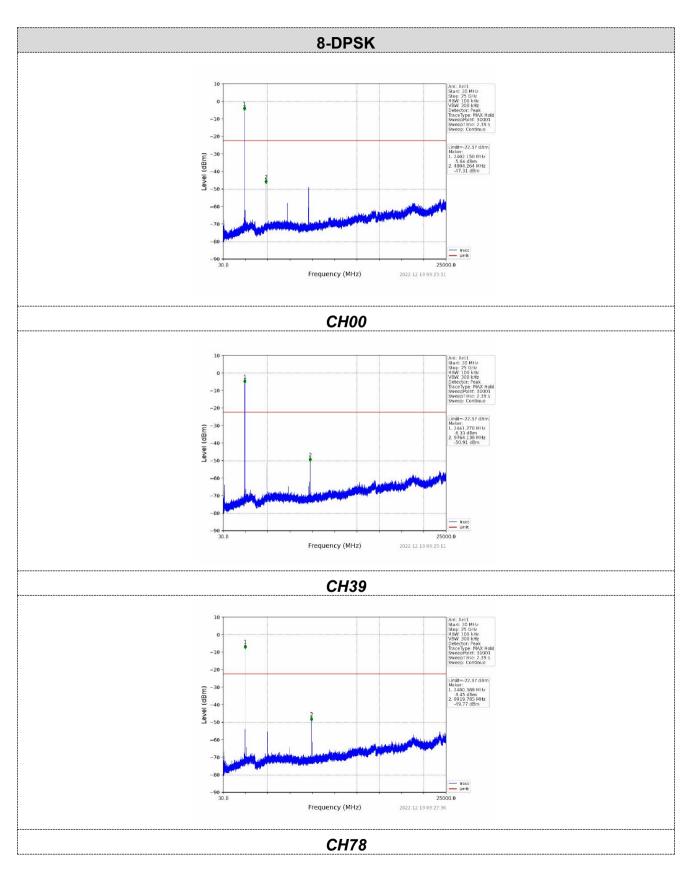


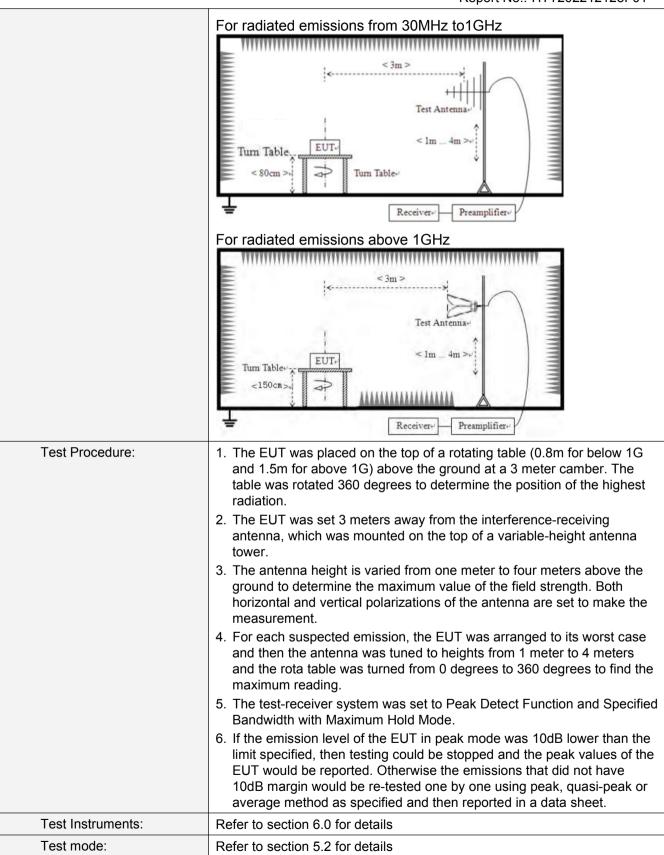
6.8. Spurious Emission


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)								
Test Method:	ANSI C63.10	ANSI C63.10:2013									
Limit:	spectrum into is produced the 100 kHz the desired p	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:	Spec			\perp							
Test Instruments:	Refer to sect	ion 6.0 for d	etails								
Test mode:	Refer to sect	ion 5.2 for d	etails								
Test results:	Pass										
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar					







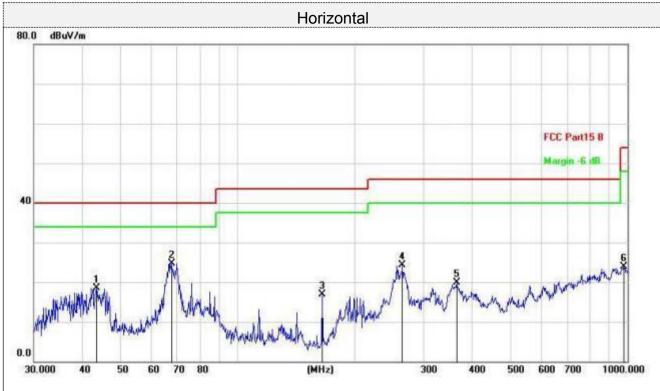
6.8.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency Detector RBW VBW Value 9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-peak							
	9KHz-150KHz	Qι	ıasi-peak	200l	Ηz	600H	z	Quasi-peak
	150KHz-30MHz Quasi-peak 9KHz 30KHz Qua							Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	120K	Ήz	300KF	łz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>z</u>	Peak
	Above 10112		Peak	1MF	Ηz	10Hz	<u>.</u>	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	lz	30			QP		30m
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u> </u>	150			QP		
	216MHz-960MH	Z	200			QP		3m
	960MHz-1GHz		500			QP		3111
	Above 1GHz		500		Αv	erage		
	Above Toriz		5000		F	Peak		
Test setup:	For radiated emiss	ions	from 9kH:	z to 30)MH:	Z		
	***********	11111	********	*****	77777	*****	1	
	Turn Table EUT	7	< 3m > Test A	ntenna lm Receiver)			

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 6	0Hz					
Test results:	Pass						

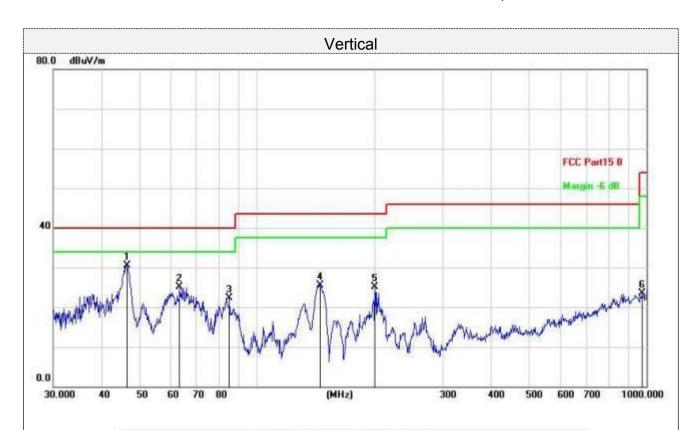
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over	
MHz	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	43.5057	35.83	-17.29	18.54	40.00	-21.46	QP
*	67.6751	44.30	-19.54	24.76	40.00	-15.24	QP
).	164.9075	35.14	-18.31	16.83	43.50	-26.67	QP
	264.7457	42.61	-18.30	24.31	46.00	-21.69	QP
į.	364.2595	37.23	-17.25	19.98	46.00	-26.02	QP
· ·	979.1804	27.93	-4.00	23.93	54.00	-30.07	QP
	*	MHz 43.5057 * 67.6751	Mk. Freq. Level MHz dBuV 43.5057 35.83 * 67.6751 44.30 164.9075 35.14 264.7457 42.61 364.2595 37.23	Mk. Freq. Level Factor MHz dBuV dB 43.5057 35.83 -17.29 * 67.6751 44.30 -19.54 164.9075 35.14 -18.31 264.7457 42.61 -18.30 364.2595 37.23 -17.25	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 43.5057 35.83 -17.29 18.54 * 67.6751 44.30 -19.54 24.76 164.9075 35.14 -18.31 16.83 264.7457 42.61 -18.30 24.31 364.2595 37.23 -17.25 19.98	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 43.5057 35.83 -17.29 18.54 40.00 * 67.6751 44.30 -19.54 24.76 40.00 164.9075 35.14 -18.31 16.83 43.50 264.7457 42.61 -18.30 24.31 46.00 364.2595 37.23 -17.25 19.98 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 43.5057 35.83 -17.29 18.54 40.00 -21.46 * 67.6751 44.30 -19.54 24.76 40.00 -15.24 164.9075 35.14 -18.31 16.83 43.50 -26.67 264.7457 42.61 -18.30 24.31 46.00 -21.69 364.2595 37.23 -17.25 19.98 46.00 -26.02

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	
1	*	46.3402	47.90	-17.35	30.55	40.00	-9.45	QP	
2		63.3132	43.82	-18.74	25.08	40.00	-14.92	QP	
3		84.9995	44.22	-21.96	22.26	40.00	-17.74	QP	
4	3	145.3506	43.41	-17.86	25.55	43.50	-17.95	QP	
5		200.6881	45.98	-20.95	25.03	43.50	-18.47	QP	
6		972.3374	27.91	-4.40	23.51	54.00	-30.49	QP	

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

	ľ	Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	51.43	31.40	8.18	31.50	59.51	74.00	-14.49	peak
4804	35.79	31.40	8.18	31.50	43.87	54.00	-10.13	AVG
7206	45.33	35.80	10.83	31.40	60.56	74.00	-13.44	peak
7206	28.69	35.80	10.83	31.40	43.92	54.00	-10.08	AVG

Vertical:

		Antenna		Preamp								
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin					
								Detector				
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре				
4804	51.37	31.40	8.18	31.50	59.45	74.00	-14.55	peak				
4804	35.98	31.40	8.18	31.50	44.06	54.00	-9.94	AVG				
7206	42.59	35.80	10.83	31.40	57.82	74.00	-16.18	peak				
7206	28.74	35.80	10.83	31.40	43.97	54.00	-10.03	AVG				
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.											

CH Middle (2441MHz)

Horizontal.

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	51.22	31.40	9.17	32.10	59.69	74.00	-14.31	peak
4882	36.75	31.40	9.17	32.10	45.22	54.00	-8.78	AVG
7323	42.86	35.80	10.83	31.40	58.09	74.00	-15.91	peak
7323	28.76	35.80	10.83	31.40	43.99	54.00	-10.01	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	51.42	31.40	9.17	32.10	59.89	74.00	-14.11	peak
4882	36.58	31.40	9.17	32.10	45.05	54.00	-8.95	AVG
7323	42.06	35.80	10.83	31.40	57.29	74.00	-16.71	peak
7323	28.63	35.80	10.83	31.40	43.86	54.00	-10.14	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz)

Horizontal.

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
(141112)	(авру)	(aB/III)	(ub)	(45)	(GBAV/III)	(аврелн)	(GD)	1,700
4960	51.33	31.40	9.17	32.10	59.80	74.00	-14.20	peak
4960	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7440	42.69	35.80	10.83	31.40	57.92	74.00	-16.08	peak
7440	27.89	35.80	10.83	31.40	43.12	54.00	-10.88	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	51.26	31.40	9.17	32.10	59.73	74.00	-14.27	peak
4960	36.80	31.40	9.17	32.10	45.27	54.00	-8.73	AVG
7440	41.96	35.80	10.83	31.40	57.19	74.00	-16.81	peak
7440	28.75	35.80	10.83	31.40	43.98	54.00	-10.02	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----