

RF Test Report

For

Applicant Name:

ORAIMO TECHNOLOGY LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG EUT Name: Wireless Headset Brand Name: oraimo **OHP-610** Model Number: Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF230719R00701 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2AXYP-OHP-610 2023-07-03 to 2023-07-14 2023-07-18

Prepared By:

Date:

Approved By:

Date:

Chris		
Chris Liu 2023-07-		
Figur	* 4	
Rvan.C.J /	EMC Manager	

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2023-07-18

Page 1 of 82

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230719R00701

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-07-18	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2 1.3	Identification of the Responsible Testing Location	
2	-	DUCT INFORMATION	
	2.1	Application Information	
	2.2	Manufacturer Information	
	2.3	Factory Information	6
	2.4 2.5	General Description of Equipment under Test (EUT) Technical Information	
3		MARY OF TEST RESULTS	
3		Test Standards	
	3.1 3.2	lest Standards	
	3.3	Summary of Test Result	
4	TEST	CONFIGURATION	8
	4.1	Test Equipment List	8
	4.2	Test Auxiliary Equipment	. 13
	4.3	Test Modes	
5	EVA	LUATION RESULTS (EVALUATION)	. 14
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)	. 15
	6.1	Occupied Bandwidth	. 15
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
	6.2	Maximum Conducted Output Power	
	0.2	6.2.1 E.U.T. Operation:	
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Channel Separation	
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:6.3.3 Test Data:	
	6.4	Number of Hopping Frequencies	
	•	6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Dwell Time	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram: 6.5.3 Test Data:	
	6.6	Emissions in non-restricted frequency bands	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	. 26
		6.6.3 Test Data:	
	6.7	Band edge emissions (Radiated)	. 27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230719R00701

	6.7.1 E.U.T. Operation:	
	6.7.2 Test Data:	
6.8	Emissions in restricted frequency bands (below 1GHz)	
	6.8.1 E.U.T. Operation:	
	6.8.2 Test Data:	
6.9	Emissions in restricted frequency bands (above 1GHz)	
	6.9.1 E.U.T. Operation:	
	6.9.2 Test Data:	
APPENDI)	(

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	Huizhou New Leader Industry Co., Ltd .		
Address:	North 2nd Street, Jinmao Road, Chenjiang Town, Huicheng District, Huizhou, Guangdong, China		

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Wireless Headset
Test Model Number:	OHP-610
Series Model Number:	N/A

2.5 Technical Information

Power Supply:	Rechargeable Li-ion Battery: 902030 Nominal Voltage: 3.7V Rated Capacity: 500mAh 1.85Wh Limited Charge Voltage: 4.2V
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type:	PCB antenna
Antenna Gain [#] :	2.55 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
The following measurement uncertainty levels have been estimated for tests performed on the EUT as		
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately		

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2.

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Maximum Conducted Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Separation					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 82

Test Report Number: BTF230719R00701

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Number of Hopping Frequencies							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27		

Emissions in restricted frequency bands (below 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 82

RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricte	Emissions in restricted frequency bands (above 1GHz)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery
the ground plane of 3m chamber polarities were performed. Durin	.5m for the measurement below & above 1GHz above r. Measurements in both horizontal and vertical g the test, each emission was maximized by: having nvestigated all operating modes, rotated about all 3

axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:An intentional radiator shall be designed to ensure that no antenna other than that
furnished by the responsible party shall be used with the device. The use of a
permanently attached antenna or of an antenna that uses a unique coupling to the
intentional radiator shall be considered sufficient to comply with the provisions of
this section.

5.1.1 Conclusion:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 14 of 82 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

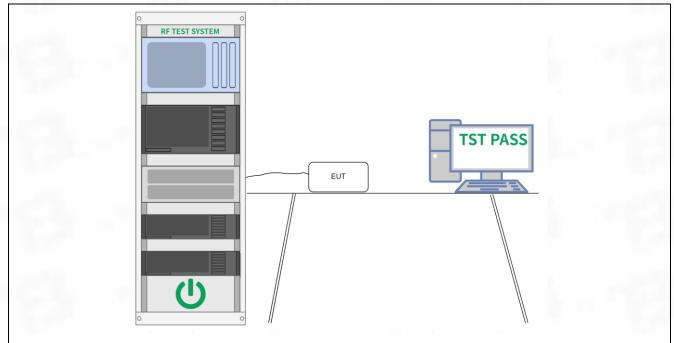
Radio Spectrum Matter Test Results (RF) 6

Occupied Bandwidth 6.1

Test Requirement: emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of ti part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section und which the equipment operates, is contained within the frequency band designat in the rule section under which the equipment is operated. Test Method: Occupied bandwidth—relative measurement procedure Inter rule section under which the equipment is operated. Occupied bandwidth—relative measurement procedure Test Limit: Intentional radiators operating under the alternative provisions to the general emission limits, as contained with 55.217 through 15.257 and in subpart E of ti part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment is operated. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer she be between two times and five times the OBW. b) The cominal IF filter bandwidth (VBW) shall be in the range of 1% to 55 the OBW and video bandwidth (VBW) shall be approximately three times RBW unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operatin. In general, the p of the spectral envelope shall be more than [10 log (OEW/RBWI)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. <th>ſ</th> <th></th> <th>Interaction of an electron comparation of a state of the second st</th>	ſ		Interaction of an electron comparation of a state of the second st
Test Method: Occupied bandwidth—relative measurement procedure Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §\$ 15.217 through 15.257 and in subpart E of th part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section und which the equipment operates, is contained in the specific rule section und which the equipment operates, is contained within the frequency band designal in the rule section under which the equipment is operated. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer sh be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 55 the OBW and video bandwidth (YBW) shall be approximately three times RBW unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the p of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more thar dB below the target "-xx dB down" requirement; that is, if the requirement calls measuring the -20 dB OBW, the instrument noise floor at the selected RBW sh be at least 30 dB below the target be the tarce to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value. </td <th></th> <td>Test Requirement:</td> <td>whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated</td>		Test Requirement:	whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated
Procedure: Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of th part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment is operated. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzers be be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 59 the OBW and video bandwidth (VBW) shall be approximately three times RBW unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the p of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than [40 log (OBW/RBW)] below the reference evalue. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carr or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrue analyzer marker to the highest level of the displayed trace (this is the reference value). Procedure: f) Determine the "-xx dB down amplitude" using [(reference value) – xx]. Alternatively, this calculation may be made by using the marker-delta functi		Toot Mathad	
 Procedure: Procedure:		Test Method.	
 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer she be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% the OBW and video bandwidth (VBW) shall be approximately three times RBW unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the pr of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more thar dB below the target "-xx dB down" requirement; that is, if the requirement calls measuring the -20 dB OBW, the instrument noise floor at the selected RBW she at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carr or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function or the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the B modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace for step g) shall be used for step j). i) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral displ		Test Limit:	emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated
this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of spectral display, such that the marker is at or slightly below the "-xx dB down		Procedure:	 in the rule section under which the equipment is operated. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the
this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of spectral display, such that the marker is at or slightly below the "-xx dB down			below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 15 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 15 of 82



marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.1.1 E.U.T. Operation:

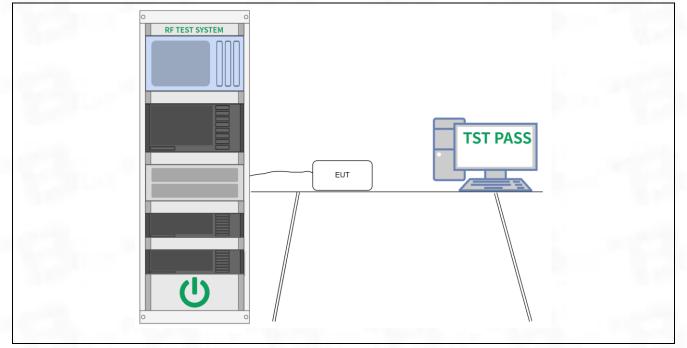
Operating Environment:			
Temperature:	25.6 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.

6.2 Maximum Conducted Output Power


Test Requirement:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	
Test Method:	Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices	
Test Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 	

6.2.1 E.U.T. Operation:

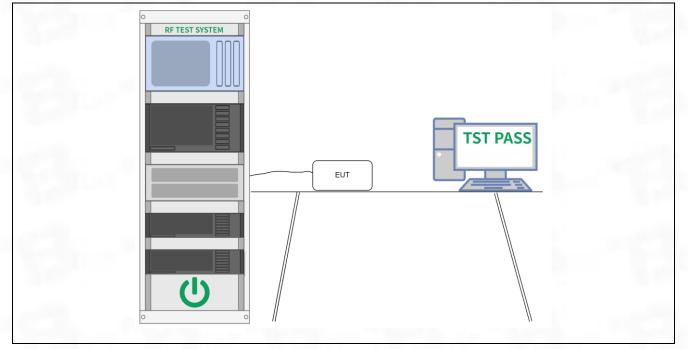
Operating Environment:			
Temperature:	25.6 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

Channel Separation 6.3


Test Requirement:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	Carrier frequency separation
Test Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

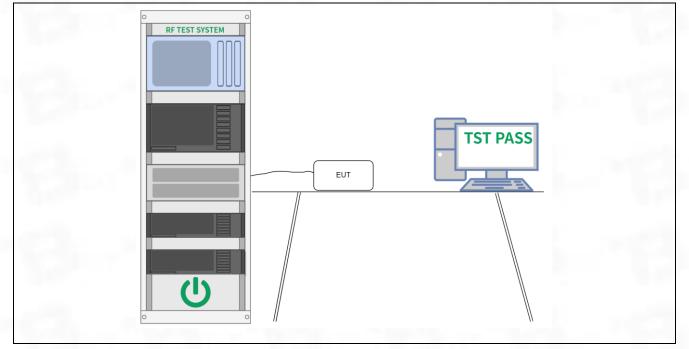
Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

Number of Hopping Frequencies 6.4


Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Number of hopping frequencies
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.6 °C	1.00		
Humidity:	50.6 %	100	1000	
Atmospheric Pressure:	1010 mbar			

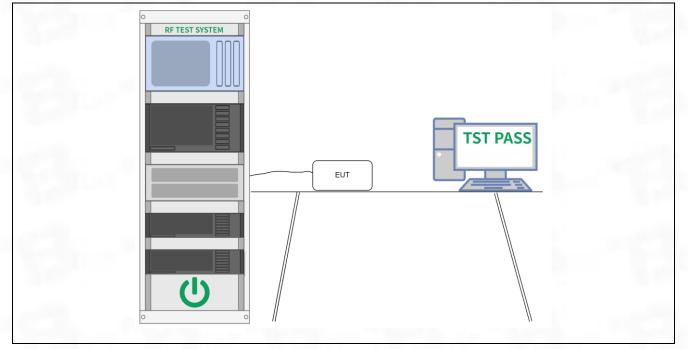
6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 **Dwell Time**

Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Time of occupancy (dwell time)
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopps shall be consistent with the
	values described in the operational description for the EUT.


6.5.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.6 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

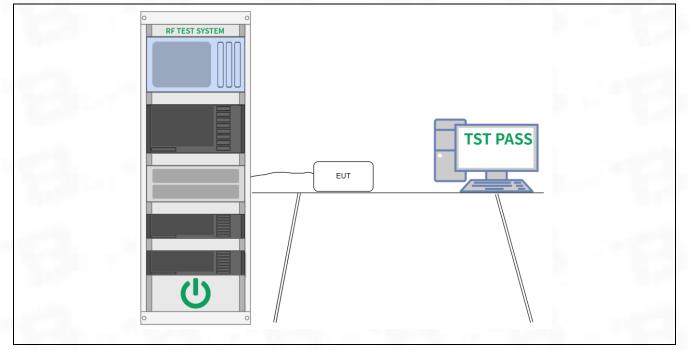
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Conducted spurious emissions test methodology
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.6 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Please Refer to Appendix for Details.

6.7 Band edge emissions (Radiated)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Method:	Radiated emissions test	S			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
Test Limit:	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands i §§ 15.231 and 15.241.	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections	ed in the frequency bands However, operation within		
Procedure:	ANSI C63.10-2013 secti	on 6.6.4			
6.7.1 E.U.T. Operation:					
-					

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

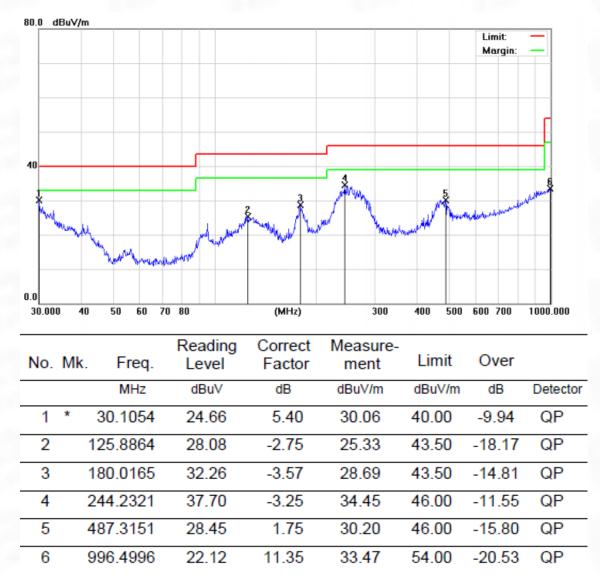
6.7.2 Test Data:

Test result for GFSK Mode(the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	62.92	-8.76	54.16	74	19.84	Н	PK
2390	56.71	-8.76	47.95	54	6.05	Н	AV
2390	61.90	-8.73	53.17	74	20.83	V	PK
2390	56.98	-8.73	48.25	54	5.75	V	AV
			High Cha	innel			
2483.5	60.51	-8.76	51.75	74	22.25	Н	PK
2483.5	55.95	-8.76	47.19	54	6.81	Н	AV
2483.5	63.36	-8.73	54.63	74	19.37	V	PK
2483.5	55.29	-8.73	46.56	54	7.44	V	AV

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

6.8 Emissions in restricted frequency bands (below 1GHz)


Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Method:	Radiated emissions test	S	1			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
Test Limit:	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating unde 54-72 MHz, 76-88 MHz,	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz s permitted under other section	ed in the frequency bands . However, operation within			
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4				
6.8.1 E.U.T. Operation	n:					

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst case of GFSK mode are in the report Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

					Lim Ma	it: — rgin: —
						r
* ····································	mit of the	Martin Martine	M	hampth	yduniddd	Married and Street
Therefore and the second	with Sura Consultation					
0.000 40 50 60 70 80	(MHz)	300	400	500	600 7	700 1000

Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	31.0706	24.39	4.97	29.36	40.00	-10.64	QP
2		88.3421	28.07	-5.70	22.37	43.50	-21.13	QP
3		136.9391	26.86	-3.80	23.06	43.50	-20.44	QP
4		252.0627	33.91	-4.41	29.50	46.00	-16.50	QP
5		472.1760	30.37	0.38	30.75	46.00	-15.25	QP
6		989.5355	25.36	7.92	33.28	54.00	-20.72	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.9 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Method:	Radiated emissions test	Radiated emissions tests					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
Test Limit:	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	radiators operating unde 54-72 MHz, 76-88 MHz,	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections	ed in the frequency bands However, operation within				
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4					
6.9.1 E.U.T. Operation	n:						

Operating Environment:	
Temperature:	24.9 °C
Humidity:	49.4 %
Atmospheric Pressure:	1010 mbar

6.9.2 Test Data:

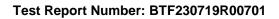
GFSK

-									
	Freq. (MHz)	Low channel: 2402MHz							
		Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
		H/V	PK	AV	PK	AV	PK	AV	
	4804	V	59.10	41.48	74	54	-14.90	-12.52	
	7206	V	59.81	39.10	74	54	-14.19	-14.90	
	4804	Н	58.33	40.86	74	54	-15.67	-13.14	
	7206	Н	58.54	39.54	74	54	-15.46	-14.46	

Free	Middle channel: 2441MHz							
Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4882	V	59.11	41.58	74	54	-14.89	-12.42	
7323	V	59.84	39.11	74	54	-14.16	-14.89	
4882	Н	59.49	40.25	74	54	-14.51	-13.75	
7323	Н	59.47	40.47	74	54	-14.53	-13.53	

Frag	High channel: 2480MHz							
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4960	V	59.89	41.73	74	54	-14.11	-12.27	
7440	V	59.07	39.33	74	54	-14.93	-14.67	
4960	Н	59.76	39.72	74	54	-14.24	-14.28	
7440	Н	58.08	39.08	74	54	-15.92	-14.92	

Note:


- 1. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. 2.
- З. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation(GFSK, Pi/4 DQPSK, 8DPSK), and the worst caseMode(GFSK) 4. was submitted only.

Test Report Number: BTF230719R00701

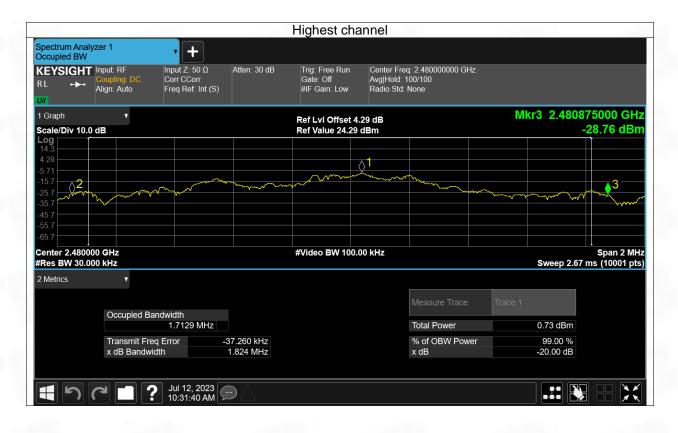
Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Bandwidth

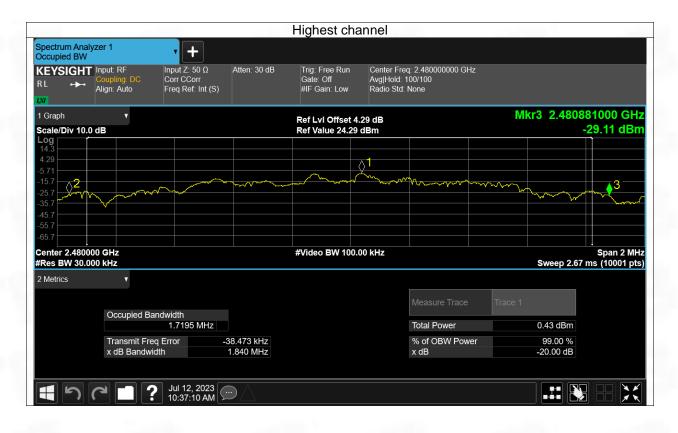
- 1.1 OBW
- 1.1.1 Test Result

Test channel	-20dB Occupy Bandwidth (MHz)						
rest channer	GFSK	π/4-DQPSK	8DPSK	Conclusion			
Lowest	0.856	1.245	1.214	PASS			
Middle	0.880	1.256	1.216	PASS			
Highest	1.824	1.840	1.838	PASS			


1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

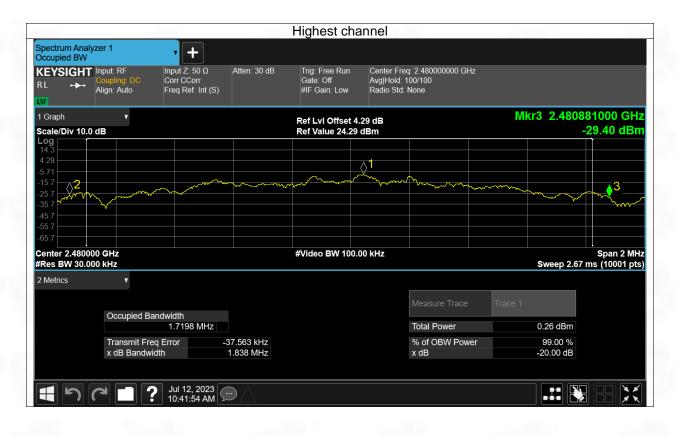
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Pi/4DQPSK Modulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


8DPSKModulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Report Number: BTF230719R00701

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2. Maximum Conducted Output Power

2.1 Power

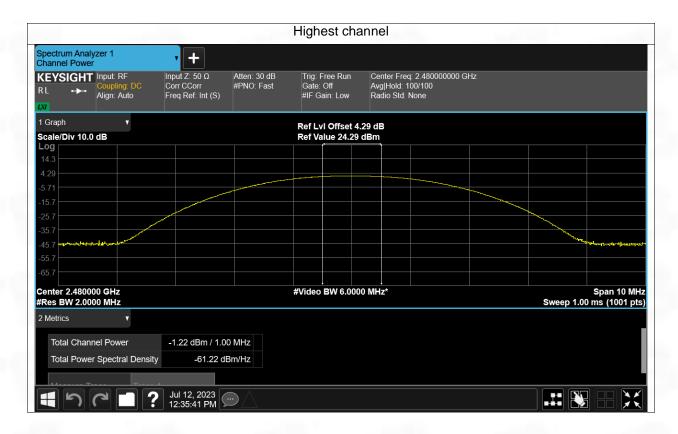
2.1.1 Test Result

	GFSK mo	de	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-1.16	20.97	PASS
Middle	-0.89	20.97	PASS
Highest	-1.22	20.97	PASS

Pi/4DQPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-1.20	20.97	PASS	
Middle	-0.82	20.97	PASS	
Highest	-1.19	20.97	PASS	

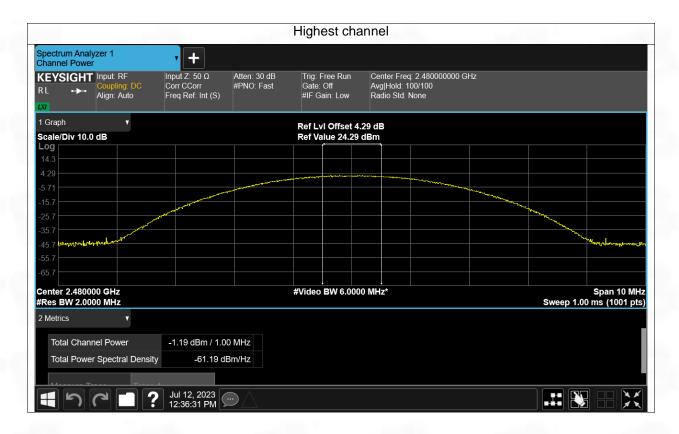
	8DPSK mc	ode	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-1.12	20.97	PASS
Middle	-0.74	20.97	PASS
Highest	-1.11	20.97	PASS

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

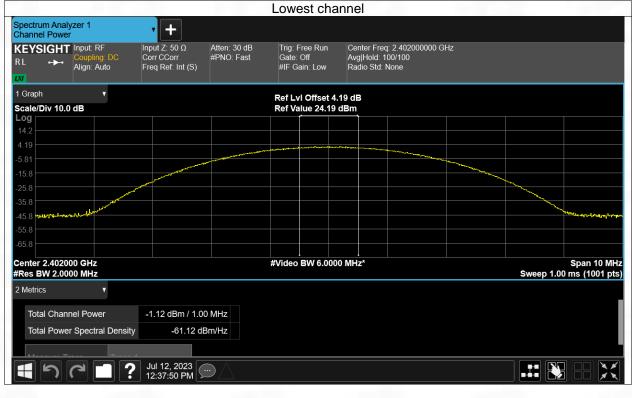

2.1.2 Test Graph

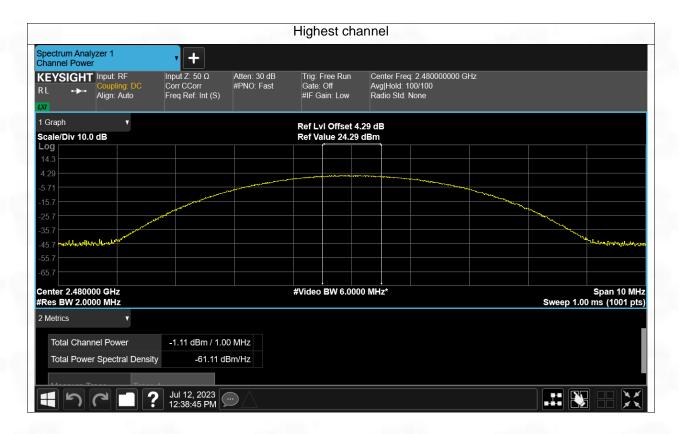
GFSK Modulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Pi/4DQPSK Modulation


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


8DPSKModulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

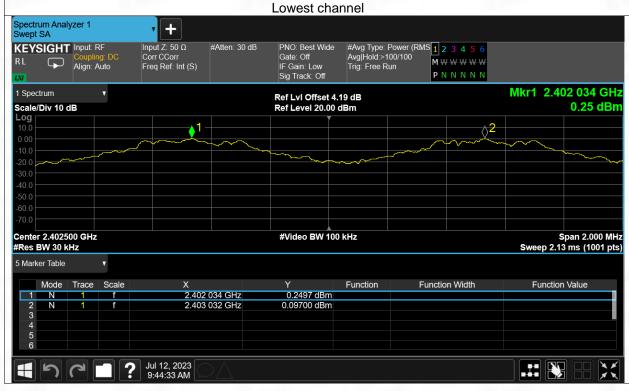
3. Carrier Frequency Separation

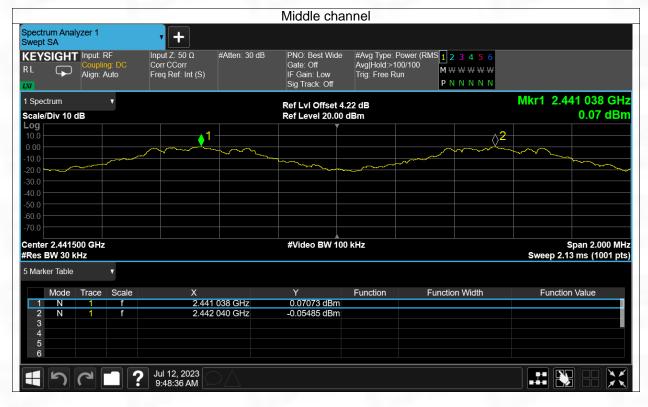
3.1 Ant1

3.1.1 Test Result

	GFSK mo	de	
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
Lowest	0.998	2/3*20dB BW	PASS
Middle	1.002	2/3*20dB BW	PASS
Highest	0.996	2/3*20dB BW	PASS

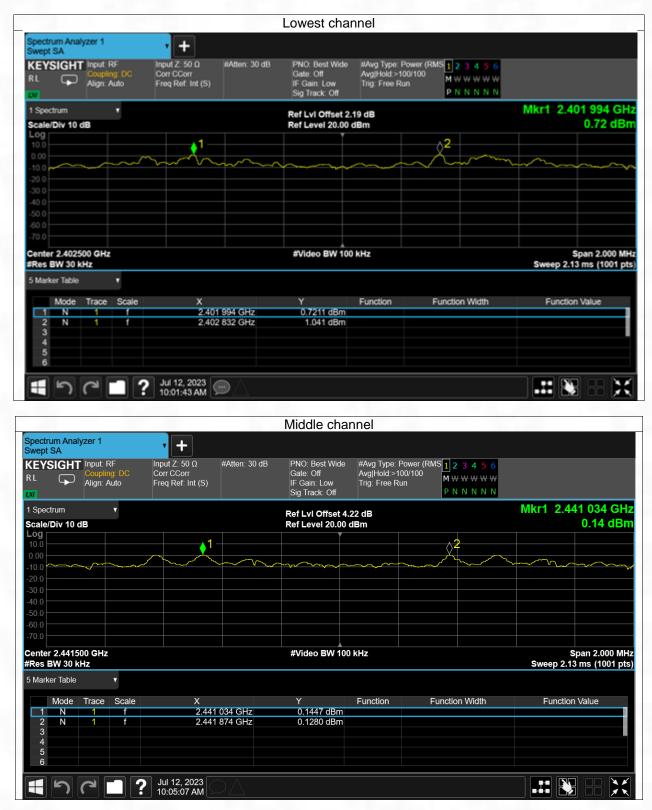
Pi/4 DQPSK mode				
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result	
Lowest	0.838	2/3*20dB BW	PASS	
Middle	0.840	2/3*20dB BW	PASS	
Highest	1.160	2/3*20dB BW	PASS	


	8DPSKmo	de	
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
Lowest	0.998	2/3*20dB BW	PASS
Middle	0.998	2/3*20dB BW	PASS
Highest	1.000	2/3*20dB BW	PASS


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 49 of 8.BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

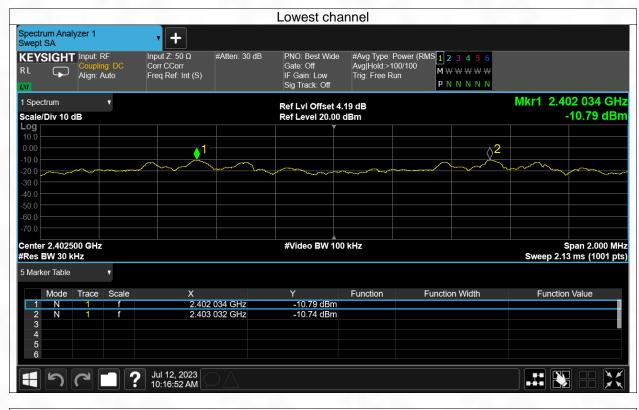
3.1.2 Test Graph

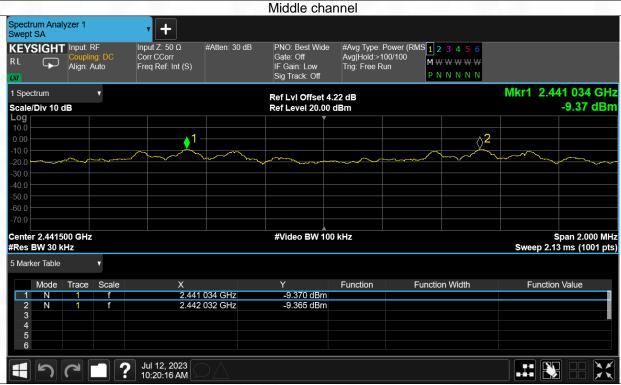
GFSK Modulation


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Pi/4DQPSK Modulation


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



8DPSKModulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

4. Number of Hopping Frequencies

4.1 HoppNum

4.1.1 Test Result

Mode	Hopping channel numbers	Limit	Result
GFSK,P/4-DQPSK, 8DPSK	79	15	PASS

4.1.2 Test Graph

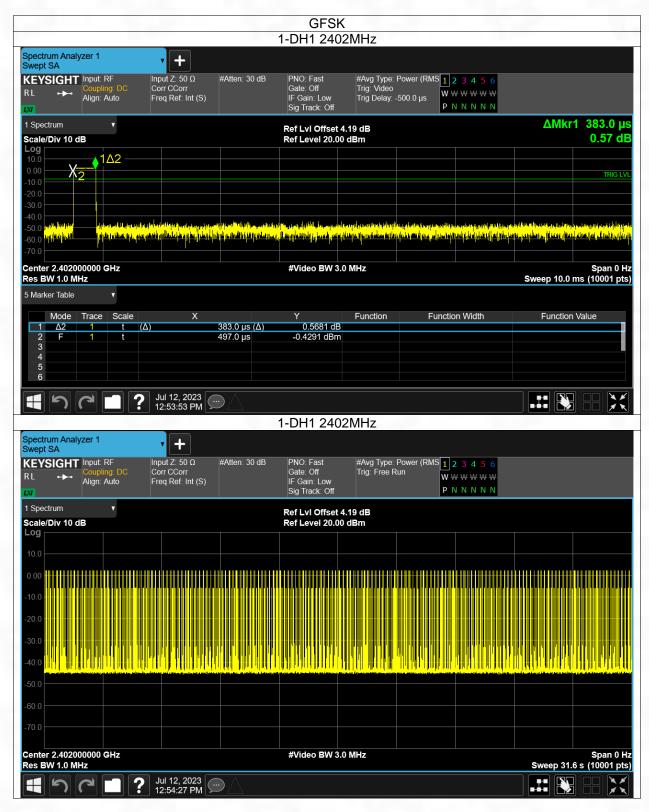
100			GFSł	<		1 N
Spectrum Analyzer 1 Swept SA	• +					
KEYSIGHT Input: RF R L Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (R Avg Hold:>100/100 Trig: Free Run	MS 1 2 3 4 5 6 M + + + + + + + + + + + + + + + + + + +	
1 Spectrum v Scale/Div 10 dB			Ref LvI Offset 4 Ref Level 20.00			Mkr1 2.402 004 0 GHz 1.79 dBm
Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -70.0		VAAAAAAA			MMMMMM	
Start 2.40000 GHz #Res BW 100 kHz			#Video BW 300) kHz		Stop 2.48350 GHz Sweep 8.00 ms (1001 pts)
5 Marker Table 🔹 🔻						
Mode Trace Scale 1 N 1 f 2 N 1 f 3 4 5 5 6 6 6 6	X 2.402 00 2.480 07		Y 1.790 dBm 1.922 dBm	Function	Function Width	Function Value
4 56 6	J ul 12, 2023 9:40:29 AM					
			P/4-DQP	SK	_	
Spectrum Analyzer 1 Swept SA	• +					
KEYSIGHT Input: RF RL Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (F Avg Hold:>100/100 Trig: Free Run	8MS <mark>1</mark> 23456 M₩₩₩₩₩₩ PNNNNN	
1 Spectrum v Scale/Div 10 dB			Ref LvI Offset 4 Ref Level 20.00			Mkr1 2.401 670 0 GHz -3.16 dBm
Log 10.0 10.0	mmmm		ļ.		ronuroun	
Start 2.40000 GHz #Res BW 100 kHz			#Video BW 300) kHz		Stop 2.48350 GHz Sweep 8.00 ms (1001 pts)
5 Marker Table 🔹 🔻						
Mode Trace Scale 1 N 1 f 2 N 1 f 3	X 2.401 67 2.480 24		Y -3.157 dBm 1.680 dBm	Function	Function Width	Function Value
4 5 6						

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230719R00701

					8DPS	SK			
Spectrum Ana Swept SA	alyzer 1		• +						
KEYSIGH	T Input: Coupl Align:	ling: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Hold:> Trig: Free F	Run M ₩ 🗄	3 4 5 6 \\ \\ \\ \\ N N N N	
1 Spectrum Scale/Div 10	dB	T			Ref Lvi Offse Ref Level 20.			Mkr	1 2.401 920 5 GHz -8.85 dBm
Log 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 2.40000					#Video BW		12000000000	MAMMAN	2 2 5 top 2.48350 GHz
#Res BW 10	0 kHz				#video Bw	300 KHZ			Stop 2:48350 GHZ Sweep 8.00 ms (1001 pts)
5 Marker Table Mode	Trace	f		20 5 GHz	Y -8.852 dBi		Function	Width	Function Value
2 N 3 4 5 6	1	f	2.480 5	77 5 GHz	-12.44 dBi				
1 5	2		? Jul 12, 2023 10:13:28 AM						

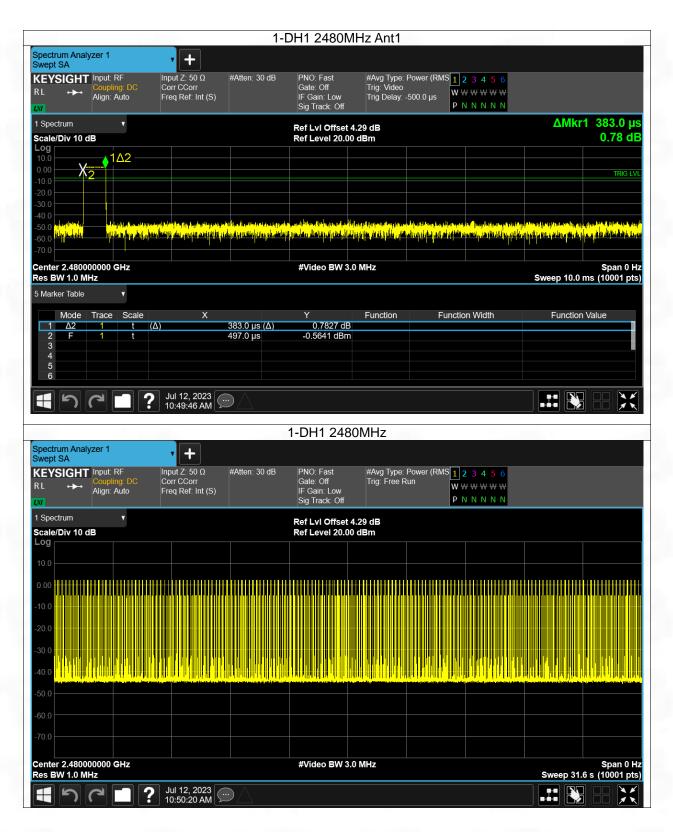
5. Time of Occupancy (Dwell Time)


5.1 Ant1

5.1.1 Test Result

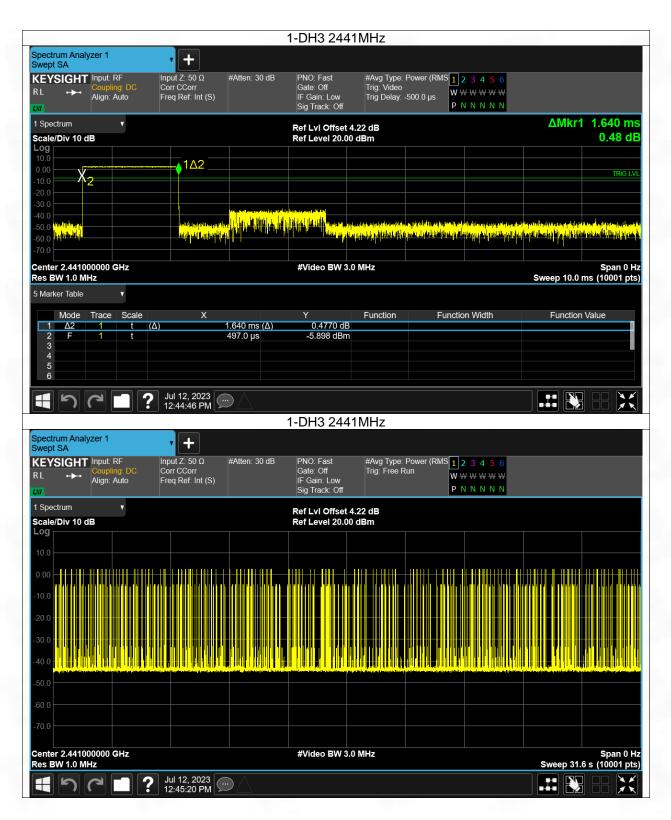
Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.383	122.177	319	31600	400	Pass
1-DH1	2441	0.383	122.177	319	31600	400	Pass
1-DH1	2480	0.383	122.177	319	31600	400	Pass
1-DH3	2402	1.639	268.796	164	31600	400	Pass
1-DH3	2441	1.64	278.8	170	31600	400	Pass
1-DH3	2480	1.639	249.128	152	31600	400	Pass
1-DH5	2402	2.887	308.909	107	31600	400	Pass
1-DH5	2441	2.886	288.6	100	31600	400	Pass
1-DH5	2480	2.887	288.7	100	31600	400	Pass

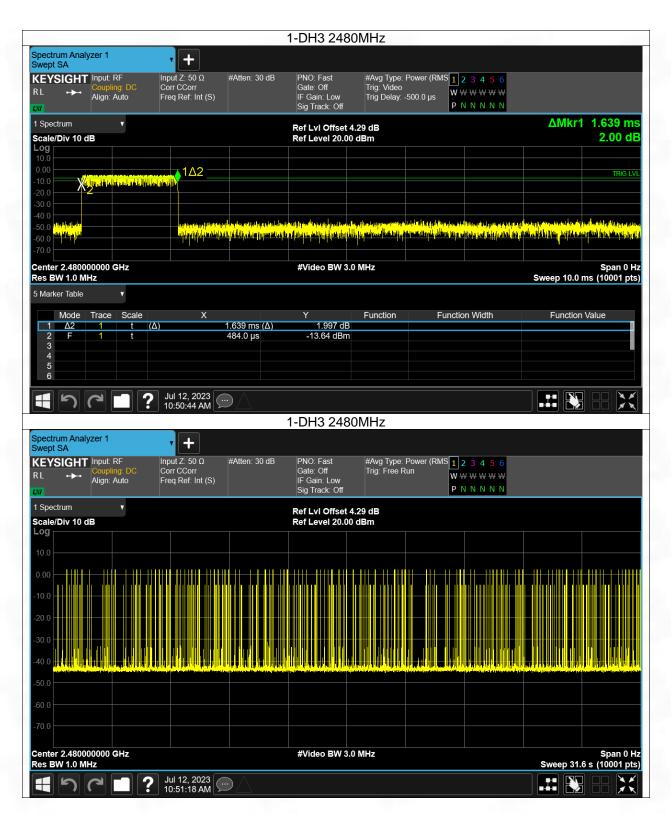
5.1.2 Test Graph

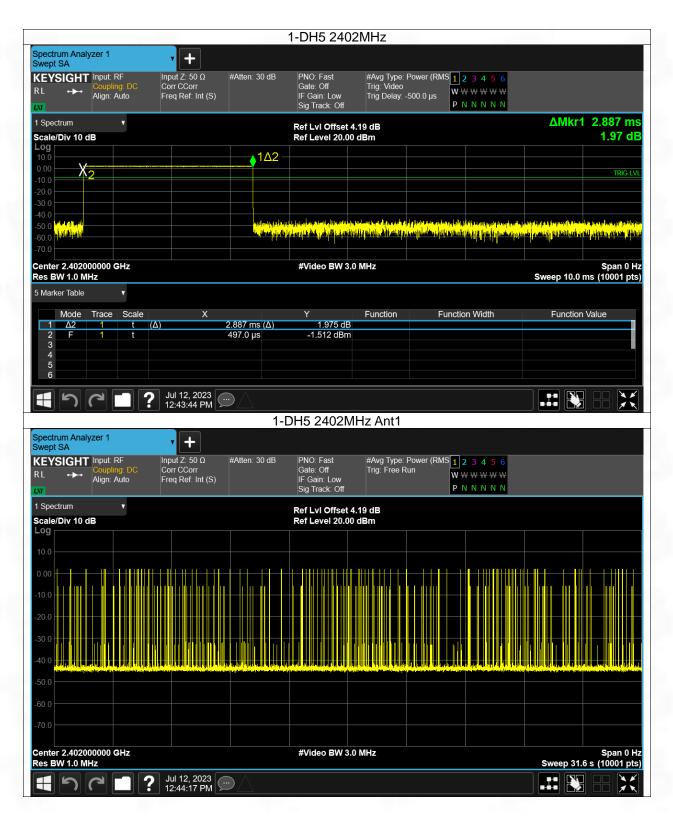

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

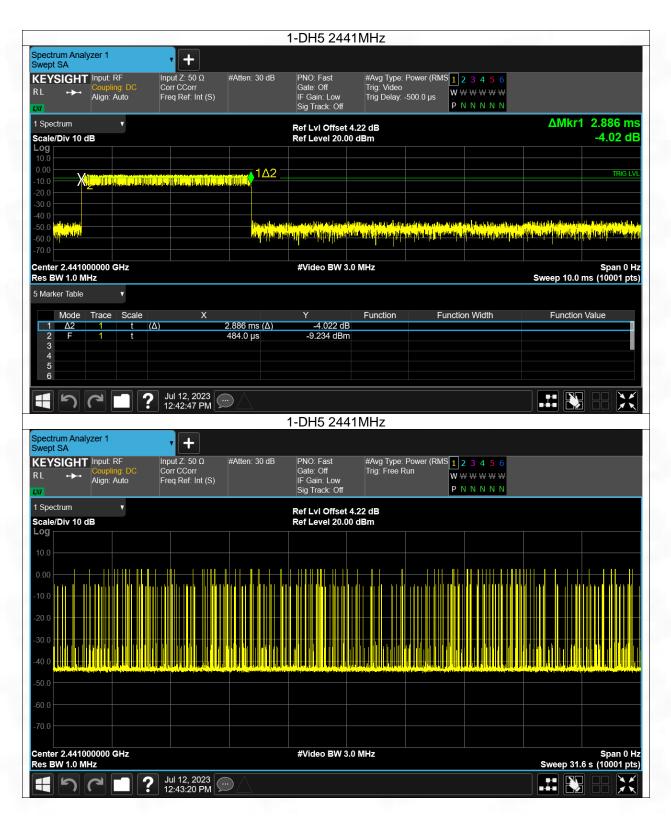
	1-0	DH1 2441MHz		
Owept OA	+			
RI Coupling: DC Corr C	:Corr G Ref: Int (S) IF	NO: Fast #Avg Type: F Sate: Off Trig: Video F Gain: Low Trig Delay: -: sig Track: Off	Cower (RMS 1 2 3 4 5 6 500.0 μs P N N N N N N	
1 Spectrum v Scale/Div 10 dB		ef LvI Offset 4.22 dB ef Level 20.00 dBm		ΔMkr1 383.0 μs 3.55 dB
Log 10.0 10.0				
0.00 -10.0				TRIG LVL
-20.0 -30.0 -40.0				
	an a	na na haran na haran na haran an haran na haran An haran na h	Anne Mary Mary and Anna Anna Anna Anna Anna Anna Anna	
Center 2.441000000 GHz Res BW 1.0 MHz	#	Video BW 3.0 MHz		Span 0 Hz Sweep 10.0 ms (10001 pts)
5 Marker Table				
Mode Trace Scale $1 \Delta 2 1 t (\Delta)$	383.0 μs (Δ)	Y Function 3.550 dB	Function Width	Function Value
2 F 1 t 3 4	497.0 µs	-2.088 dBm		
5 6				
	2, 2023 2:56 PM			
		OH1 2441MHz		
Spectrum Analyzer 1				
Swept SA	+			
Swept SA KEYSIGHT Input: RF Coupling: DC Coupling: DC	 2: 50 Ω #Atten: 30 dB PI cCorr G Ref: Int (S) IF	NO: Fast #Avg Type: F bate: Off Trig: Free Ri F Gain: Low ig Track: Off	Power (RMS <mark>1</mark> 23456 un ₩₩₩₩₩₩ PNNNNN	
Swept SA Input: RF Input: RF RL Input: RF Coupling: DC Align: Auto Freq F 1 Spectrum V	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	Sate: Off Trig: Free Ri - Gain: Low sig Track: Off	un W W W W W	
Swept SA Input: RF Input: RF R L Coupling: DC Align: Auto 1 Spectrum Scale/Div 10 dB Log 10.0	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA KEYSIGHT RL Align: Auto Freq F Scale/Div 10 dB O	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA Input: RF Input: RF R L Coupling: DC Align: Auto 1 Spectrum Scale/Div 10 dB Log 10.0	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA KEYSIGHT Input: RF RL Align: Auto Freq F Scale/Div 10 dB Log 10.0 .10.0 .10.0 .200	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA KEYSIGHT Input: RF RL Input: RF Coupling: DC Align: Auto Scale/Div 10 dB Log 10.0 0.00 -10.0 -20.0	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto Scale/Div 10 dB Log 10.0	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA Input: RF RL Aign: Auto I Spectrum Scale/Div 10 dB Log 10.0 10.0 0.00 -10.0 0.00 -30.0 0.00 -60.0 0.00	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA Input: RF Input: RF Coupling: DC RL Align: Auto Freq F I Spectrum • Scale/Div 10 dB Input: RF 10.0 -20.0 -30.0 -50.0	2:50 Ω #Atten: 30 dB P Corr G Ref: Int (S) IF Si	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	
Swept SA Input: RF RL Aign: Auto I Spectrum Scale/Div 10 dB Log 10.0 10.0 0.00 -20.0 0.00 -30.0 0.00 -60.0 0.00	Z: 50 Q Corr Ref: Int (S) #Atten: 30 dB P G Ref Re Re Re Re Re Re Re Re Re Re	ate: Off Ing: Free Ri - Gain: Low big Track: Off Pf LvI Offset 4.22 dB	un W W W W W	Span 0 Hz Sweep 31.6 s (10001 pts)

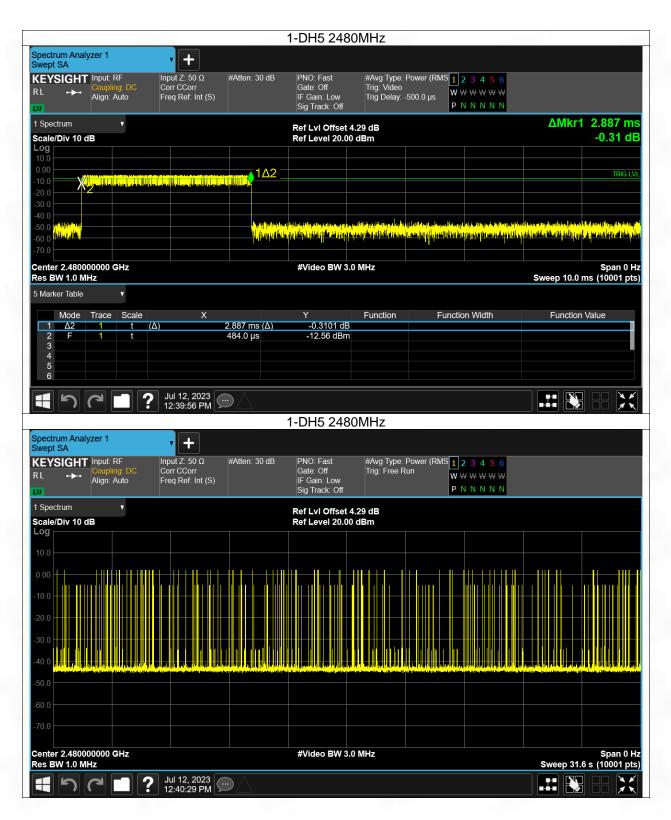
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 61 of 8BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China







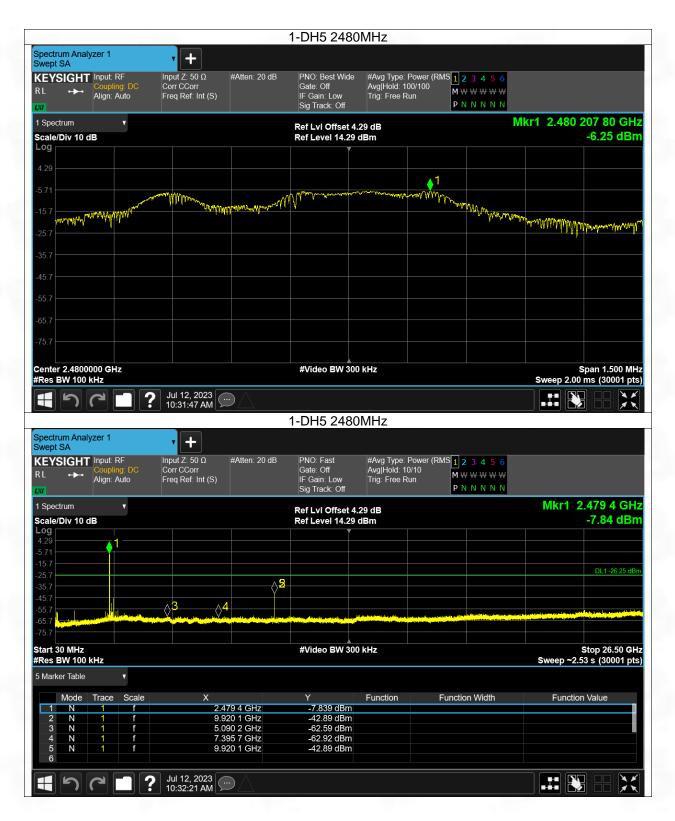




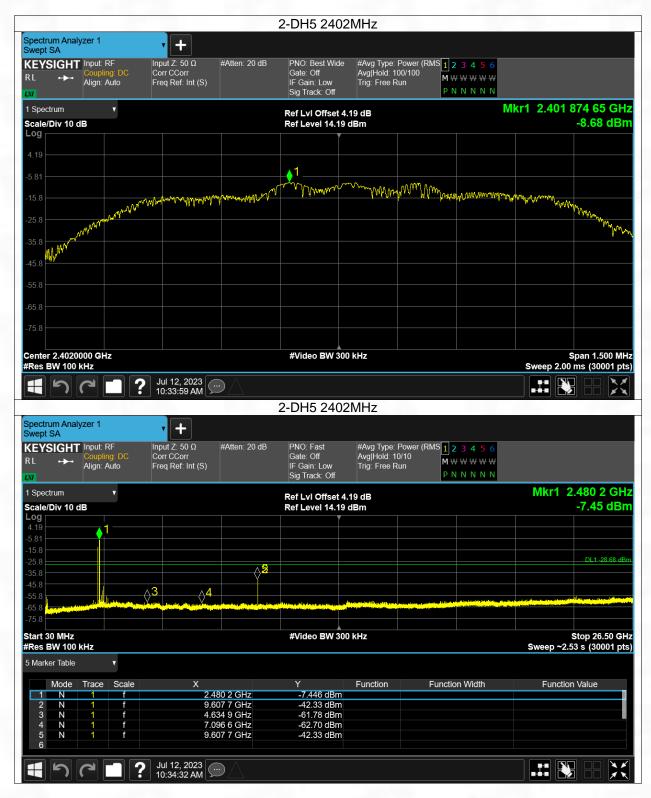
- 6. Unwanted Emissions In Non-restricted Frequency Bands
- 6.1 CSE
- 6.1.1 Test Result(pass)

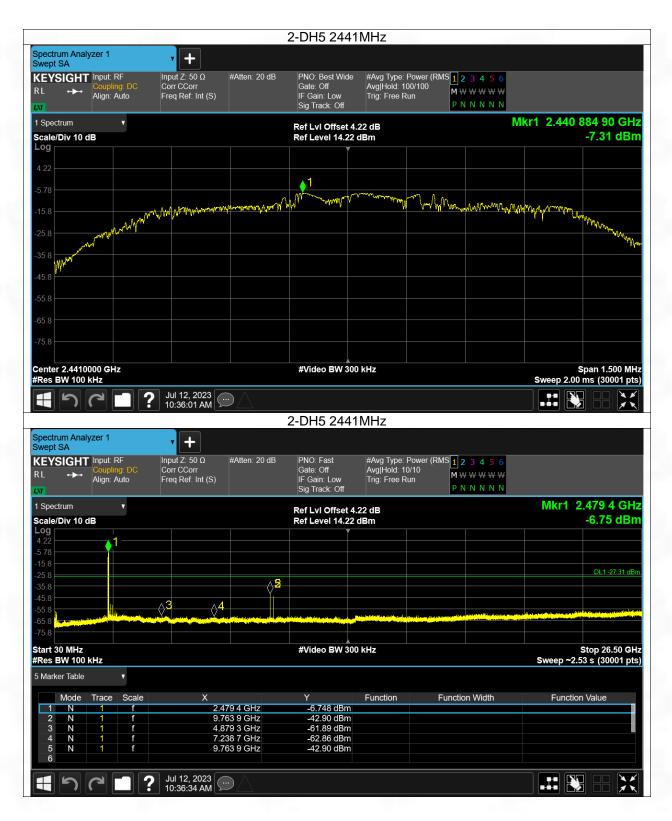


6.1.2 Test Graph

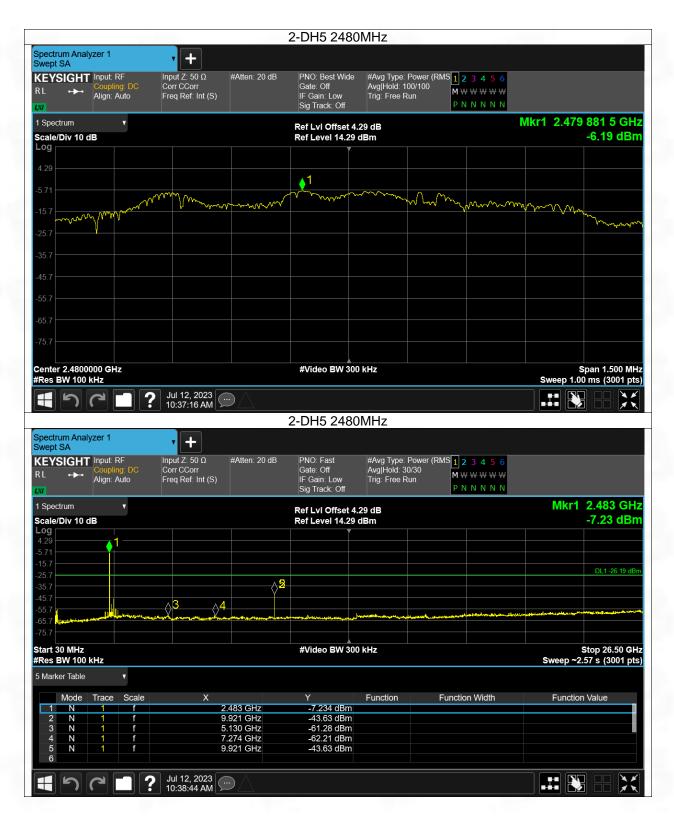


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

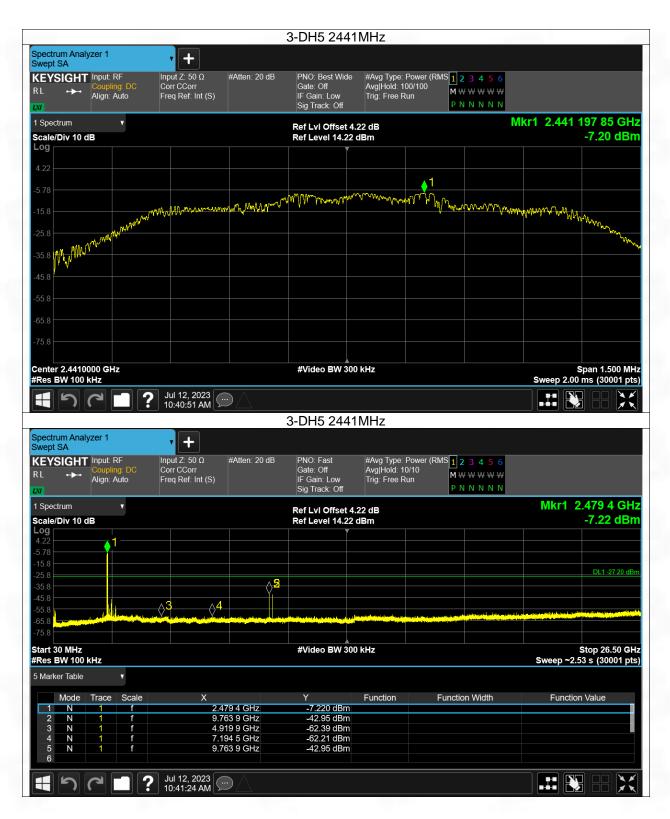




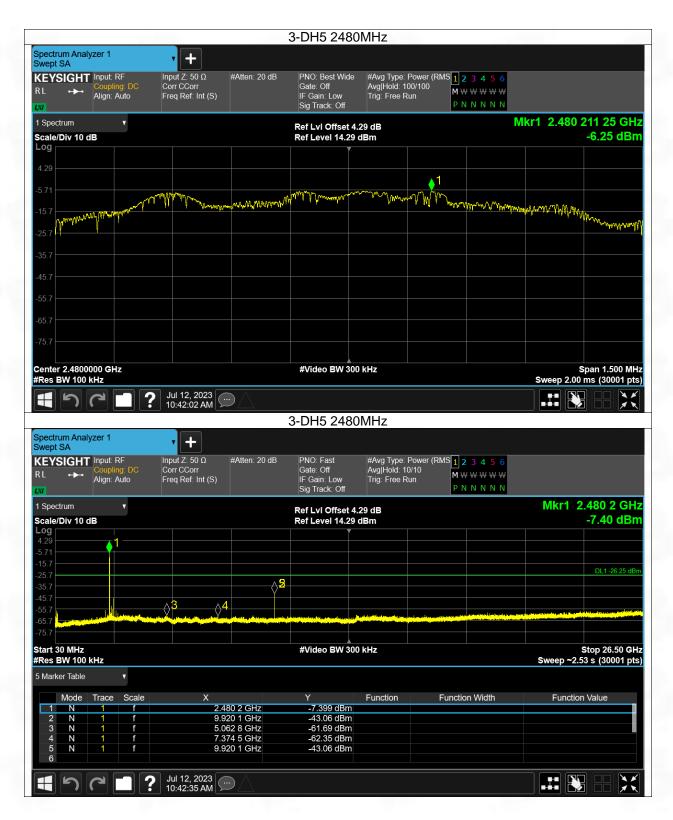
Pi/4DQPSK mode



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



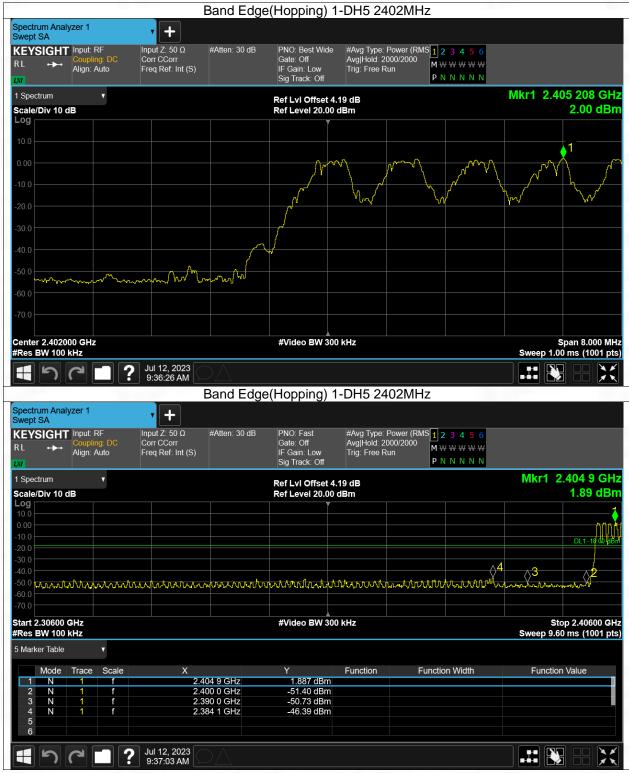
8DPSK mode



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

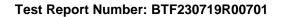
Test Report Number: BTF230719R00701

6.2 Band Edge


6.2.1 Test Result(Pass)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 79 of 82BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2.2 Test Graph


GFSK Modulation (the worst case)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --