

RF Exposure Study - Engineering Analysis per

FCC 2.1091

AIR-AP3802I-B-K9 AIR-AP3802I-UXK9 AIR-AP2802I-B-K9 AIR-AP2802I-UXK9

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102100

Prepared By: Cisco Systems Inc

170 West Tasman San Jose, CA 95134

USA

1.0: Attestation Statement of Compliance

The Cisco AIR-AP3802E-B-K9, 802.11AC radio has been evaluated for Maximum Permissible Exposure in compliance with 47 Code of Federal Regulations 2.1091. The evaluation was in accordance with methodology as referenced in FCC Bulletin OET 65C (rev 01-01) along with KDB 447498 D01 General RF Exposure Guidance. This report serves as the additional technical analysis of the Cisco radio modules

This study addresses the addition of an additional pair of transmitters using the data derived in the afore mentioned report #

2.4GHz DTS report EDCS-1550039

5GHz UNII-1 report EDCS-1550042, 1550800

5GHz UNII-2 report EDCS- 1550228, 1550804

5GHz UNII-2ext reports EDCS-1550437, 1550808

5GHz UNII-3 report EDCS-1550258, 1550815

The limits used for this evaluation are in line with the recommendations of the World Health Organizations (WHO) International Committee on Non Ionizing Radiation Protection (ICNIRP) as well as the American National Standards Institute (ANSI) C95.1.

The limits chosen are of General Population/Uncontrolled Exposure.

the following case scenarios were used:

2.4GHz WLAN 5GHz WLAN 5GHz XOR WLAN

This device must be installed to provide a separation distance of at least 30 cm from all persons. Installers must be provided with antenna installation and transmitter operating conditions for satisfying RF exposure compliance.

Based on the study this case scenario, the General Population/Uncontrolled Exposure and the minimum recommended distance is around 30cm (12 inches) from the antenna.

Jose Aguirre

Cisco Systems Inc

Corporate Compliance and Certifications

Jose L Agrum

125 West Tasman Drive

San Jose, CA 95134

Email: joaguirr@cisco.com

2.0 EUT Description.

The Cisco Aironet 802.11ac Radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

```
802.11n/ac - Non HT/VHT20, One Antenna, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20, Two Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20, Three Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20, Four Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20 Beam Forming, Two Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20 Beam Forming, Three Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT20 Beam Forming, Four Antennas, 6 to 54 Mbps
802.11n/ac - HT/VHT20, One Antenna, M0 to M7
802.11n/ac - HT/VHT20, Two Antennas, M0 to M7
802.11n/ac - HT/VHT20, Two Antennas, M8 to M15
802.11n/ac - HT/VHT20, Three Antennas, M0 to M7
802.11n/ac - HT/VHT20, Three Antennas, M8 to M15
802.11n/ac - HT/VHT20, Three Antennas, M16 to M23
802.11n/ac - HT/VHT20, Four Antennas, M0 to M7
802.11n/ac - HT/VHT20, Four Antennas, M8 to M15
802.11n/ac - HT/VHT20, Four Antennas, M16 to M23
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15
802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7
802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15
802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M16 to M23
802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M0 to M7
802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M8 to M15
802.11n/ac - HT/VHT20 Beam Forming, Four Antennas, M16 to M23
802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7
802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7
802.11n/ac - HT/VHT20 STBC, Four Antennas, M0 to M7
802.11n/ac - Non HT/VHT40 Duplicate, One Antenna, 6 to 54 Mbps
802.11n/ac - Non HT/VHT40 Duplicate, Two Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT40 Duplicate, Three Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT40 Duplicate, Four Antennas, 6 to 54 Mbps
802.11n/ac - HT/VHT40, One Antenna, M0 to M7
802.11n/ac - HT/VHT40, Two Antennas, M0 to M7
802.11n/ac - HT/VHT40, Two Antennas, M8 to M15
802.11n/ac - HT/VHT40, Three Antennas, M0 to M7
802.11n/ac - HT/VHT40, Three Antennas, M8 to M15
802.11n/ac - HT/VHT40, Three Antennas, M16 to M23
802.11n/ac - HT/VHT40, Four Antennas, M0 to M7
802.11n/ac - HT/VHT40, Four Antennas, M8 to M15
802.11n/ac - HT/VHT40, Four Antennas, M16 to M23
```

```
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15
802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M0 to M7
802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M8 to M15
802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M16 to M23
802.11n/ac - HT/VHT40 Beam Forming, Four Antennas, M0 to M7
802.11n/ac - HT/VHT40 Beam Forming, Four Antennas, M8 to M15
802.11n/ac - HT/VHT40 Beam Forming, Four Antennas, M16 to M23
802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7
802.11n/ac - HT/VHT40 STBC, Three Antennas, M0 to M7
802.11n/ac - HT/VHT40 STBC, Four Antennas, M0 to M7
802.11n/ac - Non HT/VHT80 Duplicate, One Antenna, 6 to 54 Mbps
802.11n/ac - Non HT/VHT80 Duplicate, Two Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT80 Duplicate, Three Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT80 Duplicate, Four Antennas, 6 to 54 Mbps
802.11n/ac - HT/VHT80, One Antenna, M0 to M7
802.11n/ac - HT/VHT80, Two Antennas, M0 to M7
802.11n/ac - HT/VHT80, Two Antennas, M8 to M15
802.11n/ac - HT/VHT80, Three Antennas, M0 to M7
802.11n/ac - HT/VHT80, Three Antennas, M8 to M15
802.11n/ac - HT/VHT80, Three Antennas, M16 to M23
802.11n/ac - HT/VHT80, Four Antennas, M0 to M7
802.11n/ac - HT/VHT80, Four Antennas, M8 to M15
802.11n/ac - HT/VHT80, Four Antennas, M16 to M23
802.11n/ac - HT/VHT80 Beam Forming, Two Antennas, M0 to M7
802.11n/ac - HT/VHT80 Beam Forming, Two Antennas, M8 to M15
802.11n/ac - HT/VHT80 Beam Forming, Three Antennas, M0 to M7
802.11n/ac - HT/VHT80 Beam Forming, Three Antennas, M8 to M15
802.11n/ac - HT/VHT80 Beam Forming, Three Antennas, M16 to M23
802.11n/ac - HT/VHT80 Beam Forming, Four Antennas, M0 to M7
802.11n/ac - HT/VHT80 Beam Forming, Four Antennas, M8 to M15
802.11n/ac - HT/VHT80 Beam Forming, Four Antennas, M16 to M23
802.11n/ac - HT/VHT80 STBC, Two Antennas, M0 to M7
802.11n/ac - HT/VHT80 STBC, Three Antennas, M0 to M7
802.11n/ac - HT/VHT80 STBC, Four Antennas, M0 to M7
802.11n/ac - Non HT/VHT160 Duplicate, One Antenna, 6 to 54 Mbps
802.11n/ac - Non HT/VHT160 Duplicate, Two Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT160 Duplicate, Three Antennas, 6 to 54 Mbps
802.11n/ac - Non HT/VHT160 Duplicate, Four Antennas, 6 to 54 Mbps
802.11n/ac - HT/VHT160, One Antenna, M0 to M7
802.11n/ac - HT/VHT160, Two Antennas, M0 to M7
802.11n/ac - HT/VHT160, Two Antennas, M8 to M15
802.11n/ac - HT/VHT160, Three Antennas, M0 to M7
802.11n/ac - HT/VHT160, Three Antennas, M8 to M15
802.11n/ac - HT/VHT160, Three Antennas, M16 to M23
802.11n/ac - HT/VHT160, Four Antennas, M0 to M7
802.11n/ac - HT/VHT160, Four Antennas, M8 to M15
802.11n/ac - HT/VHT160, Four Antennas, M16 to M23
802.11n/ac - HT/VHT160 Beam Forming, Two Antennas, M0 to M7
802.11n/ac - HT/VHT160 Beam Forming, Two Antennas, M8 to M15
802.11n/ac - HT/VHT160 Beam Forming, Three Antennas, M0 to M7
802.11n/ac - HT/VHT160 Beam Forming, Three Antennas, M8 to M15
802.11n/ac - HT/VHT160 Beam Forming, Three Antennas, M16 to M23
802.11n/ac - HT/VHT160 Beam Forming, Four Antennas, M0 to M7
```

802.11 n/ac - HT/VHT160 Beam Forming, Four Antennas, M8 to M15 802.11 n/ac - HT/VHT160 Beam Forming, Four Antennas, M16 to M23

802.11n/ac - HT/VHT160 STBC, Two Antennas, M0 to M7 802.11n/ac - HT/VHT160 STBC, Three Antennas, M0 to M7 802.11n/ac - HT/VHT160 STBC, Four Antennas, M0 to M7

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
5 GHz	Internal	Directional (5G XOR)	6
2.4 / 5 GHz	Internal	Omni (2.4G XOR / 5G Dedicated)	4/5

3.0 Methodology

All calculations were made in accordance with ANSI C95.1, and FCC OET 65C.

4.0 Technical Requirements

4.1 Single Band Operation – Limits

FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz *Plane-wave equivalent power density

NOTE 1: See Section 1 for discussion of exposure categories.

NOTE 2: The averaging time for General Population/Uncontrolled exposure to fixed transmitters is not applicable for mobile and portable transmitters. See 47 CFR §§2.1091 and 2.1093 on source-based time-averaging requirements for mobile and portable transmitters.

5.0 Calculations

Given

 $E=\sqrt{(30*P*G)}/d$ and $S=E^2/3770$

where

E=Field Strength in Volts/meter

P=Power in Watts

G=Numeric Antenna Gain d=Distance in meters

S=Power Density in mW/cm^2

Combine equations and rearrange the terms to express the distance as a function of the remaining variables:

 $d=\sqrt{((30*P*G)/(3770*S))}$

Changing to units of power in mW and distance in cm, using:

P(mW)=P(W)/1000 d(cm)=100*d(m)

yields

 $d=100*\sqrt{((30*(P/1000)*G)/(3770*S))}$

 $d=0.282*\sqrt{(P*G/S)}$

where

d=Distance in cm P=Power in mW

G=Numeric Antenna Gain S=Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW)=10^{(P(dBm)/10)}$ $G(numeric)=10^{(G(dBi)/10)}$

yields

d=0.282*10^((P+G)/20)/ \sqrt{S} Equation (1)

and

 $s=((0.282*10^{(P+G)/20)})/d)^2$ Equation (2)

where

d=MPE distance in cm P=Power in dBm G=Antenna Gain in dBi

S=Power Density in mW/cm^2

6.0 Results

Equation (1) and the measured peak power are used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 30 cm even if the calculations indicate that the MPE distance may be less.

S=1mW/cm² maximum. The highest supported antenna gain is 6 dBi (12dBi with 4Tx beam forming). Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

MPE Calculations:

Band	Power Density (mW/cm^2)	Peak Transmit Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)	Limit (cm)	Margin (cm)
2.4GHz DTS	1	23.3	10*	13.04	30	16.96
5GHz UNII-1	1	25	5	8.92	30	21.08
5GHz UNII-2	1	23.9	5	7.86	30	22.14
5GHz UNII-2e	1	21.5	8*	8.42	30	21.58
5GHz UNII-3	1	23.9	11*	15.68	30	14.32
5GHz XOR UNII-1	1	23.7	12*	17.19	30	12.81
5GHz XOR UNII-2	1	22	8*	8.92	30	21.08
5GHz XOR UNII-2e	1	22	8*	8.92	30	21.08
5GHz XOR UNII-3	1	21.6	12*	13.50	30	16.50

^{*}Correlated Gain

To maintain compliance, installations will assure a separation distance of at least 30cm.

Using Equation 2, the MPE levels (s) at 30 cm are calculated as follows:

Band	MPE Distance (cm)	Peak Transmit Power (dBm)	Antenna Gain (dBi)	Power Density (mW/cm^2)	Limit (mW/cm^2)	Margin (mW/cm^2)
2.4GHz DTS	30	23.3	10*	0.19	1	0.81
5GHz UNII-1	30	25	5	0.09	1	0.91
5GHz UNII-2	30	23.9	5	0.07	1	0.93
5GHz UNII-2e	30	21.5	8*	0.08	1	0.92
5GHz UNII-3	30	23.9	11*	0.27	1	0.73
5GHz XOR UNII-1	30	23.7	12*	0.33	1	0.67
5GHz XOR UNII-2	30	22	8*	0.09	1	0.91
5GHz XOR UNII-2e	30	22	8*	0.09	1	0.91
5GHz XOR UNII-3	30	21.6	12*	0.20	1	0.80

^{*}Correlated Gain

Calculations with additional transmitters

Scenerio 1:

2.4GHz WLAN (Highest power)
5GHz only WLAN (Highest power)

$$TX1 + TX2 = \%$$
 of standard $(0.19) + (0.27) = 0.46$

D (estimate) =
$$30*\sqrt{\%}$$

D = 20.5cm which is less than 30cm recommended

The configuration above co-location calculation is for **General Population/Uncontrolled exposure**. The minimum distance recommended is **30cm** (**12 inches**) when all antennas are within 30cm of each other.

Scenerio 2:

5GHz only WLAN (Highest power) 5GHz XOR WLAN (Highest power)

$$TX2 + TX3 = \%$$
 of standard $(0.27) + (0.33) = 0.60$

D (estimate) =
$$30*\sqrt{\%}$$

D = 23.3cm which is less than 30cm recommended

The configuration above co-location calculation is for **General Population/Uncontrolled exposure**. The minimum distance recommended is **30cm** (**12 inches**) when all antennas are within 30cm of each other.

References

American National Standards Institute (ANSI), "Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1-1992 (previously issued as IEEE C95.1-1991). Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc. (IEEE), New York, N.Y. 10017. For copies contact the IEEE: 1-800-678-4333 or 1-908-981-1393.

American National Standards Institute (ANSI), "Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave". ANSI/IEEE C95.3-1992. Copyright 1992, The Institute of Electrical and Electronics Engineers, Inc. (IEEE), New York, NY 10017. For copies contact the IEEE: 1-800-678-4333 or 1-908-981-1393.

FCC OET 65C Evaluating Compliance with FCC Guidelines for Human Exposure to RF Fields from 9KHz to 40 Ghz