FCC PART 15 Subpart C

EMI MEASUREMENT AND TEST REPORT

FOR

TECOM CO., LTD.

No. 23, R & D Rd. 2, Science-Based Industrial Park, Hsin-Chu, Taiwan, R. O. C.

FCC ID: D6XMF3770

July 28, 2000

This Report Concerns: Original Report		Equipment Type: 2.4GHz Cordless Phone Base and 2.4GHz Cordless Phone with handset – Household Devices
Test Engineer:	Edward Yan	
Test Date:	July 12, 2000	
Reviewed By:	John V. Chan Engineering Manager	
Prepared By:	Bay Area Compliance Laboratory Corporation 230 Commercial Street, Suite 2 Sunnyvale, CA 94086 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This report may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	. 4
1.2 OBJECTIVE	4
1.4 TEST METHODOLOGY	4
1.5 TEST FACILITY	. 5
1.6 TEST EQUIPMENT LIST	5
1.7 EQUIPMENT UNDER TEST (EUT) 1.8 SLIPPORT FOUIPMENT (FOR BASE ONLY)	0 6
1.9 EXTERNAL I/O CABLING	6
2 - SYSTEM TEST CONFIGURATION	7
2.1 DESCRIPTION OF TEST CONFIGURATION	. 7
2.2 CONFIGURATION OF TEST SYSTEM (BASE UNIT)	8
2.3 CONFIGURATION OF TEST SYSTEM (HANDSET UNIT)	9
2.5TEST SETUP BLOCK DIAGRAM (HANDSET UNIT)	11
2.6 Equipment Modifications	12
3 - SUMMARY OF TEST RESULTS	13
4 - OUTPUT POWER MEASUREMENT	14
4.1 STANDARD APPLICABLE	14
4.2 MEASUREMENT PROCEDURE	14
4.5 MEASUREMENT RESULT	15
5 - CHANNEL BANDWIDTH	22
5.1 STANDARD APPLICABLE	22
5.3 MEASUREMENT DATA.	22
6 - NUMBER OF HOPPING FREQUENCY USED	29
6.1 Standard Applicable	29
6.2 MEASUREMENT PROCEDURE.	29
7 - HOPPING CHANNEL SEPARATION	32
7 1 STANDARD APPI ICARI E	32
7.2 MEASUREMENT PROCEDURE.	32
7.3 Test Results	32
8 - 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT	39
8.1 STANDARD APPLICABLE	39
8.2 MEASUREMENT PROCEDURE	39 39
9 - DWELL TIME ON EACH CHANNEL	45
9.1 Standard Applicable	45
9.2 Measurement Procedure	45
9.3 TEST RESULTS	45
10 - ANTENNA REQUIREMENT	59
10.1 STANDARD APPLICABLE	59 59
11 – RF SAFETY REOUIREMENTS TO 2.1091	60
	(1
12 – SPUKIOUS KADIA IED EMISSION DATA	01

12.1 Measurement Uncertainty	61
12.2 EUT Setup	61
12.3 Spectrum Analyzer Setup	61
12.4 Test Procedure	
12.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	62
12.6 SUMMARY OF TEST RESULTS	62
13 - CONDUCTED EMISSIONS TEST DATA	69
13.1 Measurement Uncertainty	69
13.2 EUT Setup	69
13.3 Spectrum Analyzer Setup	69
13.4 Test Procedure	70
13.5 SUMMARY OF TEST RESULTS	70
13.6 Conducted Emissions Test Data	70
13.7 Plot of Conducted Emissions Test Data	70
14 - FCC PRODUCT LABELING AND WARNING STATEMENT	71
14.1 FCC ID Label	71
14.2 PROPOSED LABEL LOCATION ON EUT	71
14.3 FCC WARNING STATEMENT	71
APPENDIX A – PLOT OF CONDUCTED EMISSION TEST DATA	73
APPENDIX B – AGENT AUTHORIZATION LETTER	75
APPENDIX C – EUT SECURITY CODE	77

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

*The TECOM CO., LTD.'s MF3770*or the "EUT" as referred to in this report is a 2.4 GHz 2 Line Phone with Speaker Phone, Cordless Handset, and Caller ID. The EUT was composed of three parts: one is a Base which measured 9.58"Lx7.5"Wx4.5"H, the Handset which measured 8.0" L x 1.75" W x 1.625"H, and the other is a cordless handset which measures 7.0"L x 2.0"W x 1.5"H.

1.2 Objective

This type approval report is prepared on behalf of *TECOM CO., LTD.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for Output Power, Antenna Requirement, Hopping Channel Separation, Number of Hopping Frequency Used, Channel Bandwidth, Dwell Time on Each Channel, Band Edge, 100 kHz Bandwidth of Band Edges Measurement, Spurious Emission, and Conducted and Radiated Emission.

1.3 Related Submittal(s)/Grant(s)

No Related Submittals

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4–1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Suite 2, Sunnyvale, California, USA.

Test sites at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-674 and R-657. The test sites has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1993, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

Manufacturer	Description	Model	Serial Number	Cal. Due Data
HP	Spectrum	8566B	2610A02165	12/6/00
	Analyzer			
HP	Spectrum	8593B	2919A00242	12/20/00
	Analyzer			
HP	Amplifier	8349B	2644A02662	12/20/00
HP	Quasi-Peak	85650A	917059	12/6/00
	Adapter			
HP	Amplifier	8447E	1937A01046	12/6/00
A.H. System	Horn Antenna	SAS0200/571	261	12/27/00
Com-Power	Log Periodic	AL-100	16005	11/2/00
	Antenna			
Com-Power	Biconical	AB-100	14012	11/2/00
	Antenna			
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/00
Com-Power	LISN	LI-200	12208	12/20/00
Com-Power	LISN	LI-200	12005	12/20/00
PACI	Data Entry	DES1	0001	12/20/00
DACL	Software	DEST	0001	12/20/00
Rohde & Schwarz	Signal Generator	SMIQ03B	1125.5555.03	7/10/2002
Rohde & Schwarz	I/Q Modulation Generator	AMIQ	1110.2003.02	8/10/2002

1.6 Test Equipment List

1.7 Equipment Under Test (EUT)

Manufacturer	Description	Model	Serial Number	FCC ID
TECOM CO., LTD.	2.4GHz Cordless Phone Base and 2.4GHz Cordless Phone with handset	MF-3770	None	D6XMF3770

1.8 Support Equipment (for Base Only)

Manufacturer	Description	Model	Serial Number	FCC ID
TELTONE	Line Simulator	TLS-3B-01	80071	N/A
STARPLUS	Phone	SP7314-71	TJ904106	N/A

1.9 External I/O Cabling

For Base:

Cable Description	Length (M)	Port/From	То
Unshielded RJ11 Cable x 1	3	EUT	Simulator
Unshielded RJ11 Cable x 1	3	simulator	Phone

2 - SYSTEM TEST CONFIGURATION

2.1 Description of Test Configuration

The EUT was configured for testing in a typical fashion (as normally used by a typical user).

Handset Being tested: The 2.4GHz Cordless Phone Base and 2.4GHz Cordless Phone with handset – Handset, Model MF3770(EUT) was placed on the wooden table and tested in three orthogonal axis. The handset was connected to the headset via its headset port. The Low, middle, and high channels were tested. The handset was transmitting to and receiving from the Base unit. The EUT was investigated for emissions while off hook. The radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the 2.5.

Base being tested: The 2.4GHz Cordless Phone Base and 2.4GHz Cordless Phone with handset – Base, Model MF3770(EUT) was placed on the wooden table. The Low, middle, and high channels were tested. The base was connected to the line simulator and an AC adapter via its Tel Line and power ports, respectively. The base was transmitting and receiving from the 2.4 GHz Analog Cordless Phone – Handset. The conducted as well as radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the 2.4.

2.2 Configuration of Test System (Base Unit)

2.3 Configuration of Test System (Handset Unit)

2.4 Test Setup Block Diagram (Base Unit)

2.5Test Setup Block Diagram (Handset Unit)

2.6 Equipment Modifications

There were no modification(s) to the EUT were made to comply with the applicable limits.

3 - SUMMARY OF TEST RESULTS

FCC RULE	DESCRIPTION OF TEST	RESULT
§15.107 (a)	Conducted Emission	Pass
§15.109 (a)	Radiated Emission	Pass
§15.203	Antenna Requirement	Pass
§15.247 (a) (1)	Hopping Channel Separation	Pass
§15.247 (a) (1) (ii)	Number of Hopping Frequencies Used	Pass
§15.247 (a) (1) (ii)	Hopping Channel Bandwidth	Pass
§15.247 (a) (1) (ii)	Dwell Time of Each Frequency within a 30 Second Period	Pass
§15.247 (b)	Output Power	Pass
§ 15.247 ©	100 kHz Bandwidth of Frequency Band Edges	Pass
§ 2.1091	RF Safety Requirements	Don't need

4 - OUTPUT POWER MEASUREMENT

4.1 Standard Applicable

For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in 613 that the directional gain of the antenna exceeds 6dBi.

For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in 613 that the directional gain of the antenna exceeds 6dBi.

4.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via 8 low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz and VBW to 1 MHz.
- 4. Measure the highest amplitude appearing on spectral display and record the level to calculate result data.
- 5. Repeat above procedures until all frequencies measured were complete.

4.3 Measurement Result

Refer to the attached to the following plots:

BASE

Peak Output Power		
Low Channel	Page 16	
Middle Channel	Page 17	
High Channel	Page 18	

HANDSET

Peak Output Power			
Low Channel	Page 19		
Middle Channel	Page 20		
High Channel	Page 21		

5 - CHANNEL BANDWIDTH

5.1 Standard Applicable

According to \$15.247(a)(1)(ii), for frequency hopping system operating in the 2400-2483.5 MHz and *5725-5850* MHz bands, the maximum 20dB bandwidth of the hopping channel is 1MHz.

5.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

5.3 Measurement Data

Included are plots of Hopping Channel Bandwidth for low, middle and high channel.

BASE

Hopping Channel Bandwidth		
Low Channel	Page 23	
Middle Channel	Page 24	
High Channel	Page 25	

HANDSET

Hopping Channel Bandwidth		
Low Channel	Page 28	
Middle Channel	Page 27	
High Channel	Page 26	

6 - NUMBER OF HOPPING FREQUENCY USED

6.1 Standard Applicable

According to \$15.247(a)(1)(ii), for frequency hopping system operating in the 2400-2483.5 MHz and *5725-5850* MHz bands shall use at least 75 hopping frequencies.

6.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

6.3 Measurement Procedure

There were 75 hopping frequencies in a hopping sequence.

Base	Page 30
Handset	Page 31

TECOM MF-377Ø REF 77.Ø dBµV

1Ø dB/

4

 6Hz 100

2.441 7 RES BW

CENTER

							SPAN 90.0 MHz SWP 27.0 msec
					3		
.662)							 Ň
B MF-1				-			100 K
ne Ø/		ALL NUN					VBW
(MF-37 ATTE		 A A A A A					х Т Х
							6Hz 100
F 97.6		C E N N O	S N S T S T S T S S S S S S S S S S S S S S		A.		2.440 g HES BW
te <i>hj</i> a re	1Ø dB/						CENTER

7 - HOPPING CHANNEL SEPARATION

7.1 Standard Applicable

According to \$15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

Figure 4: Emission bandwidth measurement configuration.

7.3 Test Results

Refer to the attached Plots

BASE

CHANNEL SEPARATION				
Low Channel	Page 33			
Middle Channel	Page 34			
High Channel	Page 35			

HANDSET

CHANNEL SEPARATION				
Low Channel	Page 36			
Middle Channel	Page 37			
High Channel	Page 38			

Report # test report

8 - 100 kHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable

According to \$15.247(c), if *any* 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in \$15.209(a), whichever results in the lesser attenuation.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 Test Results

- a) Lower Band Edge: All emissions in this 100kHz bandwidth are attenuated more than 20 dB from the carrier.
- b) Upper Band Edge: All emissions in this 100kHz bandwidth are attenuated more than 20 dB from the carrier.

BASE

Band Edge							
Low Channel	Page 42						
High Channel	Page 41						

HANDSET

Band Edge								
Low Channel	Page 43							
High Channel	Page 44							

FCC Part 15 Subpart C Test Report

9 - DWELL TIME ON EACH CHANNEL

9.1 Standard Applicable

According to \$15.247 (a)(1)(ii), for frequency hopping system operating in the 2400-2483.5 MHz and 5725 - 5850 MHz bands, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 30-second period.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

9.3 Test Results

Please see the next page for summary.

Base	Low	206.4 ms	Page 47, 48
	Middle	199.2 ms	Page 49, 50
	High	204.0 ms	Page 51, 52

Handset	Low	196.8 ms	Page 53, 54
	Middle	199.2 ms	Page 55, 56
	High	199.2 ms	Page 57, 58

Explanation, in normal operation, there is 2 transmission per 500mS, and the duration is 1.72 ms per transmission. Therefore, the dwell time is $1.72 \times 120 = 206.4$ ms.

10 - ANTENNA REQUIREMENT

10.1 Standard Applicable

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1)), if transmitting antennas of directional gain greater than 6 dBi are used₁ the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

10.2 Antenna Connected Construction

The directional gain of antenna used for transmitting is 0 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

11 – RF SAFETY REQUIREMENTS TO 2.1091

According to section 3 of Supplement C to OET Bulleting 65, Part 15 Transmitters are categorically excluded from Routine Environmental Evaluation by measurement or precise computations unless otherwise required by the Commissions.

The unit under evaluation has an external antenna of 0 dBi gain with a measured output power of 0.018 Watts at the antenna terminals.

Due to the low power of the EUT, environmental evaluation should be deemed unnecessary since the EUT's operational frequency range is 2.4-2.4835 GHz and the ERP is considerably less than 3 Watts.

12 – SPURIOUS RADIATED EMISSION DATA

12.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

12.2 EUT Setup

The radiated emission tests were performed in the open area 3 meter test site, using the setup in accordance with the ANSI C63.4 - 1992. The specification used was the FCC 15 Subpart C limits.

The EUT was connected to a 110 VAC / 60 Hz power source and it was placed center and the back edge of the test table. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.

The spacing between the peripherals was 10 centimeters.

Input / Output cables were draped over edge of the test table and bundle when necessary.

12.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), since the clock was 2.4 GHz, the system was tested to 24000 MHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency	30 MHz
Stop Frequency	24000 MHz
Sweep Speed	Auto
IF Bandwidth	1 MHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

12.4 Test Procedure

For the radiated emissions test, both the EUT and all support equipment power cords was connected to the AC floor outlet since the power supply (U120020D) used in the EUT did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (less than -4 dB μ V), and are distinguished with a "**Qp**" in the data table.

12.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

12.6 Summary of Test Results

According to the data in section 11.7, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section</u> 15.205, 15.207, and 15.247, and had the worst margin of:

For Base:

- **5.2 dBµV** at **163.00 MHz** in the **Vertical** polarization at Low Channel, 30 to 24000MHz, 3 meters.

- 6.4 dBµV at 163.00 MHz in the Vertical polarization at Middle Channel, 30 to 24000MHz, 3 meters.

- 5.7 dBµV at 163.00 MHz in the Vertical polarization at Middle Channel, 30 to 24000MHz, 3 meters.

For Handset:

- **6.2 dBµV** at **120.06 MHz** in the **Horizontal** polarization at Low Channel, 30 to 24000MHz, 3 meters.

- **5.7 dBµV** at **120.06 MHz** in the **Horizontal** polarization at Middle Channel, 30 to 24000MHz, 3 meters.

- 6.4 $dB\mu V$ at 120.06 MHz in the Horizontal polarization at High Channel, 30 to 24000MHz, 3 meters.

	Indicated		Table	Ante	nna	Correction Factor			Corrected Amplitude	CorrectedFCC 15AmplitudeSubpart C	
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2482.86	107.0		0	1.0	V	28.1	3.4	22.0	116.5		
2482.30	102.5		270	1.9	Н	28.1	3.4	22.0	112.0		
163.00	40.5		100	1.0	V	13.2	1.6	21.0	34.3	40.0	-5.7
163.00	39.0		90	2.2	Н	13.2	1.6	21.0	32.8	40.0	-7.2
4965.06	31.0	Ave	45	1.1	V	32.5	4.9	22.0	46.4	54.0	-7.6
4965.06	30.0	Ave	225	1.5	Н	32.5	4.9	22.0	45.4	54.0	-8.6
7447.56	26.3	Ave	180	1.5	Н	35.1	5.6	22.0	45.0	54.0	-9.0
115.21	37.0		280	2.2	Н	11.9	1.8	19.8	30.9	40.0	-9.1
7447.56	26.0	Ave	315	1.8	V	35.1	5.6	22.0	44.7	54.0	-9.3
137.49	36.8		270	2.2	Н	12.9	1.8	21.6	29.9	40.0	-10.1
115.21	35.6		200	1.0	V	11.9	1.8	19.8	29.5	40.0	-10.5
7447.56	41.4	peak	315	1.8	V	35.1	5.6	22.0	60.1	74.0	-13.9
4965.06	42.3	peak	225	1.5	Н	32.5	4.9	22.0	57.7	74.0	-16.3
7447.56	38.5	peak	180	1.5	Н	35.1	5.6	22.0	57.2	74.0	-16.8
4965.06	41.0	peak	45	1.1	V	32.5	4.9	22.0	56.4	74.0	-17.6

12.7.3.a Final Scan, Base, High Channel.

12.7.3.b Final Scan, Base, Middle Channel.

	Indicated			Ante	nna	Correction Factor			Corrected Amplitude	Corrected FCC 15 Amplitude Subpart C	
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2439.42	103.4		270	1.3	Н	28.1	3.4	22.0	112.9		
2439.66	106.5		0	1.1	V	28.1	3.4	22.0	116.0		
163.00	39.8		100	1.1	V	13.2	1.6	21.0	33.6	40.0	-6.4
4879.06	31.3	Ave	45	1.4	Н	32.5	4.9	22.0	46.7	54.0	-7.3
163.00	38.6		90	2.2	Н	13.2	1.6	21.0	32.4	40.0	-7.6
4879.06	30.5	Ave	270	1.2	V	32.5	4.9	22.0	45.9	54.0	-8.1
7318.62	27.0	Ave	135	1.1	Н	35.1	5.6	22.0	45.7	54.0	-8.3
115.21	37.8		280	2.2	Н	11.9	1.8	19.8	31.7	40.0	-8.3
7318.62	26.5	Ave	0	1.5	V	35.1	5.6	22.0	45.2	54.0	-8.8
137.49	38.0		270	2.2	Н	12.9	1.8	21.6	31.1	40.0	-8.9
115.21	35.0		200	1.1	V	11.9	1.8	19.8	28.9	40.0	-11.1
7318.62	42.5	peak	0	1.5	V	35.1	5.6	22.0	61.2	74.0	-12.8
7318.62	41.2	peak	135	1.1	Н	35.1	5.6	22.0	59.9	74.0	-14.1
4879.06	41.6	peak	270	1.2	V	32.5	4.9	22.0	57.0	74.0	-17.0
4879.06	40.0	peak	45	1.4	Н	32.5	4.9	22.0	55.4	74.0	-18.6

Indicated			Table	Antenna Correction Factor			Corrected Amplitude	CorrectedFCC 15AmplitudeSubpart C			
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2404.73	103.0		90	2.7	Н	28.1	3.4	22.0	112.5		
2404.73	106.0		45	1.6	V	28.1	3.4	22.0	115.5		
163.00	41.0		100	1.1	V	13.2	1.6	21.0	34.8	40.0	-5.2
4809.52	32.0	Ave	45	1.6	V	32.5	4.9	22.0	47.4	54.0	-6.6
163.00	39.5		90	2.2	Н	13.2	1.6	21.0	33.3	40.0	-6.7
4809.52	31.2	Ave	0	2.0	Н	32.5	4.9	22.0	46.6	54.0	-7.4
115.21	38.0		280	2.2	Н	11.9	1.8	19.8	31.9	40.0	-8.1
7214.16	27.0	Ave	0	1.7	V	35.1	5.6	22.0	45.7	54.0	-8.3
7214.17	26.5	Ave	180	1.7	Н	35.1	5.6	22.0	45.2	54.0	-8.8
137.49	37.0		270	2.2	Н	12.9	1.8	21.6	30.1	40.0	-9.9
115.21	35.0		200	1.1	V	11.9	1.8	19.8	28.9	40.0	-11.1
7214.16	39.0	peak	0	1.7	V	35.1	5.6	22.0	57.7	74.0	-16.3
4809.52	41.0	peak	0	2.0	Н	32.5	4.9	22.0	56.4	74.0	-17.6
4809.52	40.0	peak	45	1.6	V	32.5	4.9	22.0	55.4	74.0	-18.6
7214.17	36.5	peak	180	1.7	Н	35.1	5.6	22.0	55.2	74.0	-18.8

12.7.3.c Final Scan, Base, Low Channel.

12.7.3. d	Final	Scan,	Handset,	High	Channel.
-----------	-------	-------	----------	------	----------

	Indicated		Table	Antenna Correction Factor				CorrectedFCC 15AmplitudeSubpart C			
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2482.19	106.1		0	1.5	Н	28.1	3.4	22.0	115.6		
2482.19	107.1		0	1.4	V	28.1	3.4	22.0	116.6		
120.06	42.3		90	1.9	Н	12.1	2.2	19.5	37.1	43.5	-6.4
4963.98	51.2	peak	0	1.6	V	32.5	4.9	22.0	66.6	74.0	-7.4
4963.98	31.2	Ave	0	1.6	V	32.5	4.9	22.0	46.6	54.0	-7.4
245.00	45.6		225	2.3	Н	12.6	2.3	22.5	38.0	46.0	-8.0
7445.98	27.0	Ave	0	1.4	V	35.1	5.6	22.0	45.7	54.0	-8.3
4964.76	50.0	peak	0	1.5	Н	32.5	4.9	22.0	65.4	74.0	-8.6
4964.76	30.0	Ave	0	1.5	Н	32.5	4.9	22.0	45.4	54.0	-8.6
120.04	39.8		100	1.1	V	12.1	2.2	19.5	34.6	43.5	-8.9
7445.94	26.2	Ave	225	1.3	Н	35.1	5.6	22.0	44.9	54.0	-9.1
245.00	43.6		180	1.2	V	12.6	2.3	22.5	36.0	46.0	-10.0
325.30	38.7		180	2.5	Н	15.5	2.8	22.1	34.9	46.0	-11.1
156.80	36.4		225	1.2	V	13.0	2.0	20.4	31.0	43.5	-12.5
7445.98	41.8	peak	0	1.4	V	35.1	5.6	22.0	60.5	74.0	-13.5
7445.94	40.0	peak	225	1.3	Н	35.1	5.6	22.0	58.7	74.0	-15.3
260.14	34.6		270	2.5	Н	13.3	4.9	22.8	30.0	46.0	-16.0
260.14	33.6		135	1.2	V	13.3	4.9	22.8	29.0	46.0	-17.0

12.7.3.e	Final Scan,	Handset,	, Middle	Channel.
----------	-------------	----------	----------	----------

	Indicated		Table	Ante	nna	Corre	ection Fac	ctor	Corrected Amplitude	FC Sub	CC 15 part C
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2439.12	106.0		0	1.8	V	28.1	3.4	22.0	115.5		
2439.44	108.6		0	1.5	Н	28.1	3.4	22.0	118.1		
120.06	43.0		90	2.0	Н	12.1	2.2	19.5	37.8	43.5	-5.7
7318.04	27.0	Ave	0	1.4	Н	35.1	5.6	22.0	45.7	54.0	-8.3
4877.89	50.0	peak	0	1.5	V	32.5	4.9	22.0	65.4	74.0	-8.6
4877.89	30.0	Ave	0	1.5	V	32.5	4.9	22.0	45.4	54.0	-8.6
120.04	40.0		90	1.0	V	12.1	2.2	19.5	34.8	43.5	-8.7
245.00	44.6		250	2.3	Н	12.6	2.3	22.5	37.0	46.0	-9.0
7318.04	26.0	Ave	0	1.5	V	35.1	5.6	22.0	44.7	54.0	-9.3
4877.89	29.0	Ave	0	1.4	Н	32.5	4.9	22.0	44.4	54.0	-9.6
4877.89	48.2	peak	0	1.4	Н	32.5	4.9	22.0	63.6	74.0	-10.4
245.00	43.0		180	1.5	V	12.6	2.3	22.5	35.4	46.0	-10.6
7318.04	44.4	peak	0	1.4	Н	35.1	5.6	22.0	63.1	74.0	-10.9
7318.04	43.9	peak	0	1.5	V	35.1	5.6	22.0	62.6	74.0	-11.4
325.30	36.8		180	2.5	Н	15.5	2.8	22.1	33.0	46.0	-13.0
156.80	35.0		225	1.0	V	13.0	2.0	20.4	29.6	43.5	-13.9
260.14	36.0		270	2.5	Н	13.3	4.9	22.8	31.4	46.0	-14.6
260.14	34.0		135	1.0	V	13.3	4.9	22.8	29.4	46.0	-16.6

12.7.3.f	Final Scan,	Handset,	Low	Channel.
----------	-------------	----------	-----	----------

Indicated		Table	Ante	nna	Correction Factor			Corrected Amplitude	FCC 15 Subpart C		
Freqency	Ampl.	Mode	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m		Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
2404.34	108.8		0	1.5	V	28.1	3.4	22.0	118.3		
2404.40	107.8		0	1.5	Н	28.1	3.4	22.0	117.3		
120.06	42.5		90	2.0	Н	12.1	2.2	19.5	37.3	43.5	-6.2
4877.89	51.3	peak	0	1.5	V	32.5	4.9	22.0	66.7	74.0	-7.3
7318.04	27.0	Ave	0	1.5	V	35.1	5.6	22.0	45.7	54.0	-8.3
120.04	40.0		90	1.0	V	12.1	2.2	19.5	34.8	43.5	-8.7
4877.89	29.5	Ave	0	1.5	V	32.5	4.9	22.0	44.9	54.0	-9.1
7318.04	26.1	Ave	0	1.4	Н	35.1	5.6	22.0	44.8	54.0	-9.2
4877.89	28.0	Ave	0	1.4	Н	32.5	4.9	22.0	43.4	54.0	-10.6
245.00	43.0		250	2.3	Н	12.6	2.3	22.5	35.4	46.0	-10.6
245.00	42.3		180	1.5	V	12.6	2.3	22.5	34.7	46.0	-11.3
7318.04	43.5	peak	45	1.7	V	35.1	5.6	22.0	62.2	74.0	-11.8
7318.04	43.0	peak	0	1.5	Н	35.1	5.6	22.0	61.7	74.0	-12.3
4877.89	46.0	peak	0	1.4	Н	32.5	4.9	22.0	61.4	74.0	-12.6
156.80	35.3		225	1.0	V	13.0	2.0	20.4	29.9	43.5	-13.6
325.30	36.0		180	2.5	Н	15.5	2.8	22.1	32.2	46.0	-13.8
260.14	35.6		270	2.5	Н	13.3	4.9	22.8	31.0	46.0	-15.0
260.14	35.0		135	1.0	V	13.3	4.9	22.8	30.4	46.0	-15.6

13 - CONDUCTED EMISSIONS TEST DATA

13.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

13.2 EUT Setup

The measurement was performed at the Open Area Test Site, using the same setup per ANSI C63.4 - 1992 measurement procedure. The specification used was with FCC Class B limits.

13.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency	450 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	100 kHz
Video Bandwidth	100 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

13.4 Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (less than -4 dB μ V). Quasi-peak readings are distinguished with a "Qp".

13.5 Summary of Test Results

According to the data in section 12.6, the EUT <u>complied with the FCC</u> Conducted margin for a Class B device and these test results is deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations, with the *worst* margin reading of:

-6.6 dBµV at 0.630 MHz in the Neutral mode.

13.6 Conducted Emissions Test Data

12.6.1 Test Data, 0.45 - 30 MHz.

	LINE CON	FCC CLASS B			
Frequency	Amplitude	Detector	Detector Phase Limit		Margin
MHz	dBµV	Qp/Ave/Peak	Line/Neutral	dBµV	dB
0.630	41.4	QP	Neutral	48	-6.6
9.460	39.5	QP	Neutral	48	-8.5
14.220	35.4	QP	Neutral	48	-12.6
28.550	35.2	QP	Line	48	-12.8
24.980	34.1	QP	Line	48	-13.9
14.220	32.7	QP	Line	48	-15.3

13.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following Appendix of this report as reference.

14 – FCC PRODUCT LABELING AND WARNING STATEMENT

14.1 FCC ID Label

<u>Specifications</u>: Text is black or white in color and is left justified. Labels are silk-screened and shall be "permanently affixed" at a conspicuous location on the EUT.

14.2 Proposed Label Location on EUT

14.3 FCC Warning Statement

The users manual or instruction manual for an intentional or unintentional radiator shall caution the use that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio / TV technician for help
Appendix A – PLOT OF CONDUCTED EMISSION TEST DATA

Tecom Co., LTD

Appendix B – AGENT AUTHORIZATION LETTER

TECOM CO. LTD. 23. R 5 0 R040 2

HSIN-CHU TAIWAN R.O.C.

SCIENCE-BASED INDUSTRIAL PARK

TELEPHONE. 886-85-775141

18 Jul 2000

Federal Communications Commission 7435 Oakland Mills Road Columbia, Maryland, 21046

Sir/Madam,

Reg: FCC grand for MF-3770

This letter is an authorization to accept Bay Area Compliance Lab. Corporation as an agent for (TECOM CO.,LTD. 23,R&D Road 2 Science-Based Industrial Park Hsin-Chu Taiwan), to sign applications before the Commission on our behalf, to make representations to you on our behalf, and to receive and exchange data between our company and the commission in connection with certification of the following (CASIO) COMMUNICATIONS, INC.) product:

2-Line Multiple-Handset Cordless Telephone, Model No.: MF-3770

Under FCC docket number 20780 and general docket number 80-284 pursuant to part 15, FCC rules and regulations.

Sincerely,

Sheng Joh Lon Sheng Yih Lin

Safety Engineer

Appendix C – EUT SECURITY CODE

TECOM CO. LTD.

23. R & O ROAD 2 SCIENCE-BASED INDUSTRIAL PARK HSIN-CHU TAIWAN R.O.C. TELEPHONE. 886-85-775141 FAX: 886-35-778855

FCC ID: D6XMF3770

DIGITAL SECURITY CODE:

The model MIF-3770 has the circuitry for digital security code to provide protection against uninventional access. For each model, one of 7529536 kinds of digital security code is randomly selected and fixed in each telephone as it is manufactured.

Sincerely

Here Efek Im

Sheng Yih Lin Safety Engineer