




# **RADIO TEST REPORT**

Report No: STS1511011F01

Issued for

# UNNECTO HOLDING LIMITED

13/F HARBOUR COMMERCIAL BUILDING 122-124 CONNAUGHT ROAD CENTRAL SHEUNG WAN HK

| Product Name:  | 2G Mobile Phone      |
|----------------|----------------------|
| Brand Name:    | unnecto ™            |
| Model No.:     | U150                 |
| Series Model:  | N/A                  |
| FCC ID:        | 2ADR3U150            |
| Test Standard: | FCC Part 22H and 24E |



Any reproduction of this document must be done in full. No single part of this document nay be represented in this report is only applicable to presented Test sample



Report No.: STS1511011F01

# **TEST RESULT CERTIFICATION**

|                              | UNNECTO HOLDING LIMITED                                                                           |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Address                      | 13/F HARBOUR COMMERCIAL BUILDING<br>122-124 CONNAUGHT ROAD CENTRAL SHEUNG WAN HK                  |  |  |
| Manufacture's Name           | IMG TECHNOLOGY CO.,LTD                                                                            |  |  |
| Address                      | 1108,Tower B,Tian'an High-Tech Plaza Phase 1,Tian'an Cyber<br>Park,Futian District,ShenZhen China |  |  |
| Product name:                | 2G Mobile Phone                                                                                   |  |  |
| Brand name                   | unnecto ™                                                                                         |  |  |
| Model and/or type reference: | U150                                                                                              |  |  |
| Standards                    | FCC Part 22H and 24E                                                                              |  |  |
| Test procedure               | . TIA 603 C                                                                                       |  |  |

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date of performance of tests .......... 03 Nov. 2015 ~08 Nov. 2015

Date of Issue ...... 09 Nov. 2015

Test Result ..... Pass

| Testing Engineer :     | Finning      |          |
|------------------------|--------------|----------|
|                        | (Jin Ming)   | · CONSUL |
| Technical Manager :    |              | ROVAL    |
|                        | (Vita Li)    | · NOIN   |
| Authorized Signatory : | Boney Yoney  |          |
|                        | (Bovey Yang) |          |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1511011F01

| TABLE OF CONTENTS                              | Page |
|------------------------------------------------|------|
| 1. SUMMARY OF TEST RESULTS                     | 6    |
| 1.1 TEST FACTORY                               | 6    |
| 1.2 MEASUREMENT UNCERTAINTY                    | 6    |
| 2. GENERAL INFORMATION                         | 7    |
| 2.1 PRODUCT DESCRIPTION                        | 7    |
| 2.2 RELATED SUBMITTAL(S) / GRANT (S)           | 8    |
| 2.3 SPECIAL ACCESSORIES                        | 8    |
| 2.4 EUT CONFIGURATION                          | 8    |
| 2.5 EUT EXERCISE                               | 8    |
| 2.6 CONFIGURATION OF EUT SYSTEM                | 8    |
| 2.7 MEASUREMENT INSTRUMENTS                    | 9    |
| 3. DESCRIPTION OF TEST MODES                   | 10   |
| 4. OUTPUT POWER                                | 11   |
| 4.1 CONDUCTED OUTPUT POWER                     | 11   |
| 4.2 PEAK-TO-AVERAGE RADIO (PAR) OF TRANSMITTER | 14   |
| 4.3 RADIATED OUTPUT POWER                      | 17   |
| 5. SPURIOUS EMISSION                           | 20   |
| 5.1 SPURIOUS EMISSION                          | 20   |
| 5.2 RADIATED SPURIOUS EMISSION                 | 22   |
| 6. FREQUENCY STABILITY                         | 26   |
| 6.1 MEASUREMENT METHOD                         | 26   |
| 6.2 PROVISIONS APPLICABLE                      | 27   |
| 6.3 MEASUREMENT RESULT                         | 28   |
| 7. OCCUPIED BANDWIDTH                          | 30   |
| 7.1 MEASUREMENT METHOD                         | 30   |
| 7.2 PROVISIONS APPLICABLE                      | 30   |
| 7.3 MEASUREMENT RESULT                         | 30   |
| 8. EMISSION BANDWIDTH                          | 31   |
| 8.1 MEASUREMENT METHOD                         | 31   |
| 8.2 PROVISIONS APPLICABLE                      | 31   |
| 8.3 MEASUREMENT RESULT                         | 31   |
| 9. BAND EDGE                                   | 32   |
| 9.1 MEASUREMENT METHOD                         | 32   |

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail:sts@stsapp.com



|                                                     | 4 of 55         | Report No.: STS1511011F01 |
|-----------------------------------------------------|-----------------|---------------------------|
| 9.2 PROVISIONS APPLICABLE<br>9.3 MEASUREMENT RESULT |                 | 32<br>32                  |
| APPENDIX I                                          |                 | 33                        |
| TEST PLOTS FOR CONDUCTED SPL                        | JRIOUS EMISSION | 33                        |
| APPENDIX II                                         |                 | 43                        |
| TEST PLOTS FOR OCCUPIED BAND                        | WIDTH (99%)     | 43                        |
| EMISSION BANDWIDTH (-26DBC)                         |                 | 43                        |
| APPENDIX III                                        |                 | 51                        |
| TEST PLOTS FOR BAND EDGES                           |                 | 51                        |
| APPENDIX IV                                         |                 | 55                        |
| PHOTOS OF TEST SETUP                                |                 | 55                        |
|                                                     |                 |                           |



1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1511011F01

# **Revision History**

| Rev. | Issue Date   | Report NO.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 09 Nov. 2015 | STS1511011F01 | ALL         | Initial Issue |
|      |              |               |             |               |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ansi C63.10: 2009; TIA 603 C and fcc cfr 47 rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057

| Item Number | Item Description                |                            | FCC Rules                |
|-------------|---------------------------------|----------------------------|--------------------------|
| 1           | Output                          | Conducted output power     | 22.042(a) / 24.222(b)    |
| I           | Power                           | Radiated output power      | 22.913(a) / 24.232 (b)   |
|             | 2<br>Spurious<br>Emission       | Conducted                  |                          |
| 2           |                                 | spurious emission          | 2.1051 / 22.917 / 24.238 |
|             | ETHISSION                       | Radiated spurious emission |                          |
| 3           | Frequency S                     | Stability                  | 2.1055 /24.235           |
| 4           | Occupied Ba                     | andwidth                   | 2.1049 (h)(i)            |
| 5           | Emission Bandwidth<br>Band Edge |                            | 22.917(b) / 24.238 (b)   |
| 6           |                                 |                            | 22.917(b) / 24.238 (b)   |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

# 1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649;

FCC Registration No.: 842334; IC Registration No.: 12108A-1

# **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

| No. | Item                                       | Uncertainty |
|-----|--------------------------------------------|-------------|
| 1   | Conducted Emission (9KHz-150KHz)           | ±2.88dB     |
| 2   | Conducted Emission (150KHz-30MHz)          | ±2.67dB     |
| 3   | RF power, conducted                        | ±0.70dB     |
| 4   | Spurious emissions, conducted              | ±1.19dB     |
| 5   | All emissions,radiated(<1G) 30MHz-200MHz   | ±2.83dB     |
| 6   | All emissions,radiated(<1G) 200MHz-1000MHz | ±2.94dB     |
| 7   | All emissions, radiated (>1G)              | ±3.03dB     |
| 8   | Temperature                                | ±0.5°C      |
| 9   | Humidity                                   | ±2%         |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1511011F01

# 2. GENERAL INFORMATION

# 2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

| Product Designation:                                                                                                                                 | 2G Mobile Phone                                                                                                                                                                                                                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Hardware version:                                                                                                                                    | V5.08                                                                                                                                                                                                                                  |  |  |
| Software version:                                                                                                                                    | U150NA_FP1OM_1023                                                                                                                                                                                                                      |  |  |
| FCC ID:                                                                                                                                              | 2ADR3U150                                                                                                                                                                                                                              |  |  |
| Frequency Bands:                                                                                                                                     | □GSM 850       □PCS 1900 (U.S. Bands)         □GSM 900       □DCS 1800 (Non-U.S. Bands)         U.S. Bands:       □UMTS FDD Band II         □UMTS FDD Bands:       □UMTS FDD Band I         □UMTS FDD Band I       □UMTS FDD Band VIII |  |  |
| Max RF Output Power:                                                                                                                                 | GSM850:30.21 dBm,GSM1900:27.79dBm                                                                                                                                                                                                      |  |  |
| Type of Emission:                                                                                                                                    | GSM(850):248KGXW: GSM(1900):246KGXW<br>GPRS(850):249KGXW; GPRS(1900):246KGXW                                                                                                                                                           |  |  |
| Description test modes<br>(worst case)                                                                                                               | Support single SIM card                                                                                                                                                                                                                |  |  |
| Antenna:                                                                                                                                             | PIFA Antenna                                                                                                                                                                                                                           |  |  |
| Antenna gain:                                                                                                                                        | 0 dBi                                                                                                                                                                                                                                  |  |  |
| Power Supply:                                                                                                                                        | DC 3.7V by battery or DC 5.0V supplied by adapter                                                                                                                                                                                      |  |  |
| Battery parameter:                                                                                                                                   | Capacitance: 800mA, Rated Voltage: 3.7V                                                                                                                                                                                                |  |  |
| Adapter Input:                                                                                                                                       | AC100-240V, 50-60Hz, 150mA                                                                                                                                                                                                             |  |  |
| Adapter Output:                                                                                                                                      | DC 5.0V, 500mA                                                                                                                                                                                                                         |  |  |
| GPRS Class                                                                                                                                           | Multi-Class12                                                                                                                                                                                                                          |  |  |
| Extreme Vol. Limits:                                                                                                                                 | DC3.5V to 4.2 V (Nominal DC3.7V)                                                                                                                                                                                                       |  |  |
| Extreme Temp. Tolerance                                                                                                                              | ce -20℃ to +55℃                                                                                                                                                                                                                        |  |  |
| ** Note: The High Voltage 4.2V and Low Voltage 3.5V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage. |                                                                                                                                                                                                                                        |  |  |



# 2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2ADR3U150 filing to comply with the fcc part 22H&24E.

# 2.3 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with eut intended for fcc grant together.

#### 2.4 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 2.5 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

# 2.6 CONFIGURATION OF EUT SYSTEM

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.



# Table 2-1 Equipment Used in EUT System

| ltem | Equipment       | Model No. | ID or Specification | Note |
|------|-----------------|-----------|---------------------|------|
| 1    | 2G Mobile Phone | U150      | FCC ID: 2ADR3U150   | EUT  |
|      |                 |           |                     |      |
|      |                 |           |                     |      |

Note: All the accessories have been used during the test. the following "EUT" in setup diagram means EUT system.



# 2.7 MEASUREMENT INSTRUMENTS

The radiated emission testing was performed according to the procedures of ansi 2009; TIA 603C and fcc cfr 47 rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

| Kind of Equipment    | Manufacturer | Type No.            | Serial No. | Last Calibration | Calibrated Until |
|----------------------|--------------|---------------------|------------|------------------|------------------|
| Spectrum Analyzer    | Agilent      | E4407B              | MY50140340 | 2015.10.25       | 2016.10.24       |
| Test Receiver        | R&S          | ESCI                | 101427     | 2015.10.25       | 2016.10.24       |
| Communication Tester | Agilent      | 8960                | MY48360751 | 2014.11.20       | 2015.11.19       |
| Communication Tester | R&S          | CMU200              | 112012     | 2015.10.25       | 2016.10.24       |
| Test Receiver        | R&S          | ESCI                | 102086     | 2015.10.25       | 2016.10.24       |
| Bilog Antenna        | TESEQ        | CBL6111D            | 34678      | 2014.11.25       | 2015.11.24       |
| Horn Antenna         | Schwarzbeck  | BBHA<br>9120D(1201) | 9120D-1343 | 2015.03.06       | 2016.03.05       |



Shenzhen STS Test Services Co., Ltd.



# 3. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GPRS850 and GPRS1900 frequency band.

Note: GSM/GPRS850, GSM/GPRS1900 modes have been tested during the test.

the worst condition (GPRS 850) be recorded in the test report if no other modes test data.



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### 4. OUTPUT POWER

4.1 CONDUCTED OUTPUT POWER

#### 4.1.1 MEASUREMENT METHOD

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM/GPRS 850, GSM/GPRS1900) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

#### 4.1.2 MEASUREMENT RESULT

GSM 850:

| Mode     | Frequency (MHz) | Peak Power | AVG Power |
|----------|-----------------|------------|-----------|
|          | 824.2           | 29.90      | 29.52     |
| GSM850   | 836.6           | 30.10      | 29.70     |
|          | 848.8           | 30.19      | 29.87     |
|          | 824.2           | 29.93      | 29.59     |
| GPRS850  | 836.6           | 30.12      | 29.77     |
| (1 Slot) | 848.8           | 30.21      | 29.90     |
| 0000050  | 824.2           | 28.83      | 28.55     |
| GPRS850  | 836.6           | 29.06      | 28.68     |
| (2 Slot) | 848.8           | 29.04      | 28.79     |
|          | 824.2           | 26.64      | 26.29     |
| GPRS850  | 836.6           | 26.90      | 26.52     |
| (3 Slot) | 848.8           | 27.02      | 26.70     |
| 0000050  | 824.2           | 25.63      | 25.28     |
| GPRS850  | 836.6           | 25.73      | 25.36     |
| (4 Slot) | 848.8           | 25.87      | 25.58     |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



12 of 55 Report No.: STS1511011F01

PCS 1900:

| Mode                 | Frequency (MHz) | Peak Power | AVG Power |
|----------------------|-----------------|------------|-----------|
|                      | 1850.2          | 27.51      | 27.21     |
| GSM1900              | 1880            | 27.16      | 27.01     |
|                      | 1909.8          | 27.79      | 27.47     |
| 00004000             | 1850.2          | 27.50      | 27.21     |
| GPRS1900<br>(1 Slot) | 1880            | 27.14      | 27.00     |
| (1 300)              | 1909.8          | 27.77      | 27.45     |
| 00004000             | 1850.2          | 26.40      | 26.04     |
| GPRS1900<br>(2 Slot) | 1880            | 26.01      | 25.64     |
| (2 3101)             | 1909.8          | 26.72      | 26.35     |
| 00004000             | 1850.2          | 24.25      | 23.95     |
| GPRS1900<br>(3 Slot) | 1880            | 23.94      | 23.71     |
|                      | 1909.8          | 24.52      | 24.16     |
| 00004000             | 1850.2          | 23.22      | 22.87     |
| GPRS1900<br>(4 Slot) | 1880            | 22.90      | 22.60     |
| (+ 0101)             | 1909.8          | 23.48      | 23.13     |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

| UE Transmit Channel Configuration    | CM(db)      | MPR(db)     |
|--------------------------------------|-------------|-------------|
| For all combinations of ,DPDCH,DPCCH | 0≤ CM≤3.5   | MAX(CM-1,0) |
| HS-DPDCH, E-DPDCH and E-DPCCH        | 02 010125.5 |             |
| HS-DPDCH,E-DPDCH and E-DPCCH         |             |             |

Note: CM=1 for  $\beta_{d}/\beta_{d}=12/15$ ,  $\beta_{hs}/\beta_{c}=24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the GSM/GPRSsignal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

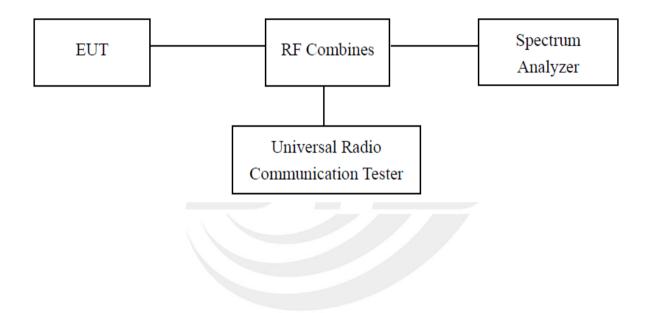
The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX\_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Shenzhen STS Test Services Co., Ltd.



## 4.2 PEAK-TO-AVERAGE RADIO (PAR) OF TRANSMITTER


#### 4.2.1 STANDARD APPLICABLE

According to §24.232(d), Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

#### 4.2.2 TEST PROCEDURE

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 30kHz and the peak-to-average ratio (PAR) of the transmission was recorded.

Test Configuration for the emission bandwidth testing:





Report No.: STS1511011F01

# 4.2.3 SUMMARY OF TEST RESULTS

#### GSM 850:

| Mode                | Frequency (MHz) | Peak Power | AVG Power | PAR  | Limit |
|---------------------|-----------------|------------|-----------|------|-------|
|                     | 824.20          | 29.90      | 29.52     | 0.38 | 13.00 |
| GSM850              | 836.60          | 30.10      | 29.70     | 0.40 | 13.00 |
|                     | 848.80          | 30.19      | 29.87     | 0.32 | 13.00 |
| 0000050             | 824.20          | 29.93      | 29.59     | 0.34 | 13.00 |
| GPRS850<br>(1 Slot) | 836.60          | 30.12      | 29.77     | 0.35 | 13.00 |
| (1 000)             | 848.80          | 30.21      | 29.90     | 0.31 | 13.00 |
| 0000050             | 824.20          | 28.83      | 28.55     | 0.28 | 13.00 |
| GPRS850<br>(2 Slot) | 836.60          | 29.06      | 28.68     | 0.38 | 13.00 |
| (2 300)             | 848.80          | 29.04      | 28.79     | 0.25 | 13.00 |
| 0000050             | 824.20          | 26.64      | 26.29     | 0.35 | 13.00 |
| GPRS850<br>(3 Slot) | 836.60          | 26.90      | 26.52     | 0.38 | 13.00 |
| (3 300)             | 848.80          | 27.02      | 26.70     | 0.32 | 13.00 |
| 0000050             | 824.20          | 25.63      | 25.28     | 0.35 | 13.00 |
| GPRS850<br>(4 Slot) | 836.60          | 25.73      | 25.36     | 0.37 | 13.00 |
| (4 300)             | 848.80          | 25.87      | 25.58     | 0.29 | 13.00 |

Shenzhen STS Test Services Co., Ltd.



Report No.: STS1511011F01

#### PCS 1900:

| Mode                 | Frequency (MHz) | Peak Power | AVG Power | PAR  | Limit |
|----------------------|-----------------|------------|-----------|------|-------|
|                      | 1850.20         | 27.51      | 27.21     | 0.30 | 13.00 |
| GSM1900              | 1880.00         | 27.16      | 27.01     | 0.15 | 13.00 |
|                      | 1909.80         | 27.79      | 27.47     | 0.32 | 13.00 |
| 00004000             | 1850.20         | 27.50      | 27.21     | 0.29 | 13.00 |
| GPRS1900<br>(1 Slot) | 1880.00         | 27.14      | 27.00     | 0.14 | 13.00 |
| (1 300)              | 1909.80         | 27.77      | 27.45     | 0.32 | 13.00 |
| 00004000             | 1850.20         | 26.4       | 26.04     | 0.36 | 13.00 |
| GPRS1900<br>(2 Slot) | 1880.00         | 26.01      | 25.64     | 0.37 | 13.00 |
| (2 0101)             | 1909.80         | 26.72      | 26.35     | 0.37 | 13.00 |
| 00004000             | 1850.20         | 24.25      | 23.95     | 0.30 | 13.00 |
| GPRS1900<br>(3 Slot) | 1880.00         | 23.94      | 23.71     | 0.23 | 13.00 |
| (3 3101)             | 1909.80         | 24.52      | 24.16     | 0.36 | 13.00 |
| 00004000             | 1850.20         | 23.22      | 22.87     | 0.35 | 13.00 |
| GPRS1900<br>(4 Slot) | 1880.00         | 22.90      | 22.60     | 0.30 | 13.00 |
| (4 0101)             | 1909.80         | 23.48      | 23.13     | 0.35 | 13.00 |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 4.3 RADIATED OUTPUT POWER

#### 4.3.1 MEASUREMENT METHOD

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM/GPRS850, GSM/GPRS1900) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

The measurements procedures specified in TIA-603C-2009 were applied.

- 1.In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 3. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 5. The EUT is then put into continuously transmitting mode at its maximum power level.
- 6.Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 8.ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi..
  9.Both Horizontal And Vertical Antenna Polarities Were Tested And Performed Pretest To Three Orthogonal Axis. The Worst Case Emissions Were Reported

#### 4.3.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

| Mode     | Nominal Peak Power |  |
|----------|--------------------|--|
| GSM 850  | <=38.45 dBm (7W)   |  |
| PCS 1900 | <=33 dBm (2W)      |  |



# 4.3.3 MEASUREMENT RESULT

| Radiated Power (ERP) for GSM 850 MHZ |           |                         |             |            |  |  |
|--------------------------------------|-----------|-------------------------|-------------|------------|--|--|
|                                      | F         |                         | sult        |            |  |  |
| Mode                                 | Frequency | Frequency Max. Peak ERP |             | Conclusion |  |  |
|                                      |           | (dBm)                   | Of Max. ERP |            |  |  |
|                                      | 824.2     | 24.92                   | Horizontal  | Pass       |  |  |
|                                      | 824.2     | 26.97                   | Vertical    | Pass       |  |  |
| GSM850                               | 836.6     | 24.93                   | Horizontal  | Pass       |  |  |
| GSIVIODU                             | 836.6     | 27.06                   | Vertical    | Pass       |  |  |
| -                                    | 848.8     | 24.92                   | Horizontal  | Pass       |  |  |
|                                      | 848.8     | 27.01                   | Vertical    | Pass       |  |  |

| Radiated Power (ERP) for GPRS 850 MHZ |           |                         |             |            |  |  |
|---------------------------------------|-----------|-------------------------|-------------|------------|--|--|
|                                       |           | Res                     | Result      |            |  |  |
| Mode                                  | Frequency | Frequency Max. Peak ERP |             | Conclusion |  |  |
|                                       |           | (dBm)                   | Of Max. ERP |            |  |  |
|                                       | 824.2     | 25.04                   | Horizontal  | Pass       |  |  |
|                                       | 824.2     | 27.04                   | Vertical    | Pass       |  |  |
| GPRS850 -                             | 836.6     | 24.94                   | Horizontal  | Pass       |  |  |
| GFR3030                               | 836.6     | 27.08                   | Vertical    | Pass       |  |  |
|                                       | 848.8     | 24.96                   | Horizontal  | Pass       |  |  |
|                                       | 848.8     | 26.98                   | Vertical    | Pass       |  |  |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1511011F01

| Radiated Power (EIRP) for PCS 1900 MHZ |           |                     |                  |            |  |  |
|----------------------------------------|-----------|---------------------|------------------|------------|--|--|
|                                        |           | Re                  |                  |            |  |  |
| Mode                                   | Frequency | Frequency Max. Peak |                  | Conclusion |  |  |
|                                        |           | E.I.R.P.(dBm)       | Of Max. E.I.R.P. |            |  |  |
|                                        | 1850.2    | 22.08               | Horizontal       | Pass       |  |  |
|                                        | 1850.2    | 24.23               | Vertical         | Pass       |  |  |
| PCS1900 -                              | 1880.0    | 22.08               | Horizontal       | Pass       |  |  |
| PC31900                                | 1880.0    | 24.13               | Vertical         | Pass       |  |  |
| -                                      | 1909.8    | 22.12               | Horizontal       | Pass       |  |  |
|                                        | 1909.8    | 24.24               | Vertical         | Pass       |  |  |

| Radiated Power (EIRP) for GPRS 1900 MHZ |           |                     |                  |            |  |  |
|-----------------------------------------|-----------|---------------------|------------------|------------|--|--|
|                                         | Res       |                     | sult             |            |  |  |
| Mode                                    | Frequency | Frequency Max. Peak |                  | Conclusion |  |  |
|                                         |           | E.I.R.P.(dBm)       | Of Max. E.I.R.P. |            |  |  |
|                                         | 1850.2    | 22.13               | Horizontal       | Pass       |  |  |
|                                         | 1850.2    | 24.18               | Vertical         | Pass       |  |  |
| GPRS 1900 -                             | 1880.0    | 22.12               | Horizontal       | Pass       |  |  |
| GFK3 1900                               | 1880.0    | 24.05               | Vertical         | Pass       |  |  |
|                                         | 1909.8    | 22.01               | Horizontal       | Pass       |  |  |
|                                         | 1909.8    | 24.20               | Vertical         | Pass       |  |  |



#### 5. SPURIOUS EMISSION

#### 5.1 SPURIOUS EMISSION

5.1.1 MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT. 1.Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 20 GHz.

2. Determine EUT transmit frequencies: the following typical channels were chosen to conducted emissions testing.

| Typical Channels for testing of GSM/GPRS 850 MHz |       |  |  |  |  |
|--------------------------------------------------|-------|--|--|--|--|
| Channel Frequency (MHz)                          |       |  |  |  |  |
| 128                                              | 824.2 |  |  |  |  |
| 190                                              | 836.6 |  |  |  |  |
| 251 848.8                                        |       |  |  |  |  |

| Typical Channels for testing of PCS/ GPRS 1900 MHz |        |  |  |  |
|----------------------------------------------------|--------|--|--|--|
| Channel Frequency (MHz)                            |        |  |  |  |
| 512                                                | 1850.2 |  |  |  |
| 661                                                | 1880.0 |  |  |  |
| 810                                                | 1909.8 |  |  |  |

Report No.: STS1511011F01



# 5.1.2 PROVISIONS APPLICABLE

On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

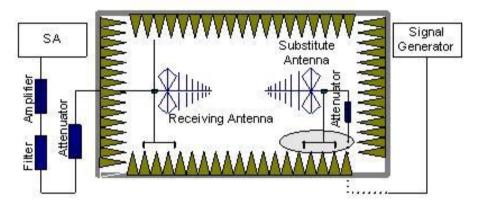
# 5.1.3 MEASUREMENT RESULT

PLEASE REFER TO : APPENDIX I TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION Note: 1. Below 30MHZ no Spurious found and The GSM modes is the worst condition.

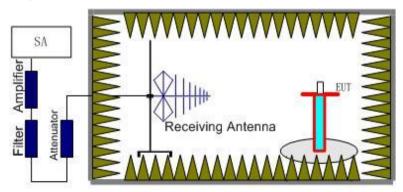
2. As no emission found in standby or receive mode, no recording in this report.



Shenzhen STS Test Services Co., Ltd.




# 5.2 RADIATED SPURIOUS EMISSION 5.2.1 MEASUREMENT METHOD


The measurements procedures specified in TIA-603C-2009 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GSM/GPRS850, GSM/GPRS1900) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx (dBuV) +CL (dB) +SA (dB) +Gain (dBi) -107 (dBuV to dBm) The SA is calibrated using following setup.



b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.



Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS 1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz),GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the  $A_{Rpl}$  is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=P<sub>Mea</sub>+A<sub>Rpl</sub>

# 5.2.2 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. Note: only result the worst condition of each test mode.



Report No.: STS1511011F01

# 5.2.3 MEASUREMENT RESULT

GSM 850:

|                | The        | Worst Test R | esults Channe          | el 128/824.2 MHz |             |            |
|----------------|------------|--------------|------------------------|------------------|-------------|------------|
| Frequency(MHz) | Power(dBm) | ARpl         | Р <sub>меа</sub> (dBm) | Limit (dBm)      | Margin(dBm) | Polarity   |
| 1648.521       | -35.57     | -4.65        | -40.22                 | -13              | -27.22      | Horizontal |
| 2472.565       | -36.33     | -2.21        | -38.54                 | -13              | -25.54      | Horizontal |
| 3296.676       | -31.69     | 0.21         | -31.48                 | -13              | -18.48      | Horizontal |
| 1648.272       | -38.36     | -4.65        | -43.01                 | -13              | -30.01      | Vertical   |
| 2472.654       | -41.45     | -2.21        | -43.66                 | -13              | -30.66      | Vertical   |
| 3296.425       | -42.34     | 0.21         | -42.55                 | -13              | -29.55      | Vertical   |
|                | The        | Worst Test R | esults Channe          | el 190/836.6 MHz |             |            |
| Frequency(MHz) | Power(dBm) | ARpl         | Р <sub>меа</sub> (dBm) | Limit (dBm)      | Margin(dBm) | Polarity   |
| 1673.331       | -36.65     | -4.65        | -41.3                  | -13              | -28.3       | Horizontal |
| 2509.769       | -42.66     | -2.21        | -44.87                 | -13              | -31.87      | Horizontal |
| 3346.357       | -38.74     | 0.21         | -38.53                 | -13              | -25.53      | Horizontal |
| 1673.685       | -37.86     | -4.65        | -42.51                 | -13              | -29.51      | Vertical   |
| 2509.396       | -31.67     | -2.21        | -33.88                 | -13              | -20.88      | Vertical   |
| 3346.426       | -36.79     | 0.21         | -36.58                 | -13              | -23.58      | Vertical   |
|                | The        | Worst Test R | esults Channe          | el 251/848.8 MHz |             |            |
| Frequency(MHz) | Power(dBm) | ARpl         | Р <sub>меа</sub> (dBm) | Limit (dBm)      | Margin(dBm) | Polarity   |
| 1697.665       | -35.72     | -4.65        | -40.37                 | -13              | -27.37      | Horizontal |
| 2546.334       | -43.33     | -2.21        | -45.54                 | -13              | -32.54      | Horizontal |
| 3395.378       | -42.65     | 0.21         | -42.44                 | -13              | -29.44      | Horizontal |
| 1697.664       | -35.57     | -4.65        | -40.22                 | -13              | -27.22      | Vertical   |
| 2546.526       | -41.29     | -2.21        | -43.5                  | -13              | -30.5       | Vertical   |
| 3395.265       | -37.95     | 0.21         | -37.74                 | -13              | -24.74      | Vertical   |

Note: Below 30MHZ no Spurious found and The GSM modes is the worst condition.



Report No.: STS1511011F01

PCS 1900:

|                | The Worst Test Results for Channel 512/1850.2MHz |                |                        |                |             |            |
|----------------|--------------------------------------------------|----------------|------------------------|----------------|-------------|------------|
| Frequency(MHz) | Power(dBm)                                       | ARpl           | Р <sub>меа</sub> (dBm) | Limit (dBm)    | Margin(dBm) | Polarity   |
| 3700.437       | -33.41                                           | 0.33           | -33.08                 | -13            | -20.08      | Horizontal |
| 5550.687       | -35.87                                           | 4.01           | -31.86                 | -13            | -18.86      | Horizontal |
| 7400.638       | -42.46                                           | 10.7           | -31.76                 | -13            | -18.76      | Horizontal |
| 3700.586       | -34.52                                           | 0.33           | -34.19                 | -13            | -21.19      | Vertical   |
| 5550.242       | -35.61                                           | 4.01           | -31.6                  | -13            | -18.6       | Vertical   |
| 7400.461       | -41.83                                           | 10.7           | -31.13                 | -13            | -18.13      | Vertical   |
|                | The V                                            | Vorst Test Res | sults for Chann        | el 661/1880.0M | Hz          |            |
| Frequency(MHz) | Power(dBm)                                       | ARpl           | Р <sub>меа</sub> (dBm) | Limit (dBm)    | Margin(dBm) | Polarity   |
| 3760.361       | -36.52                                           | 0.33           | -36.19                 | -13            | -23.19      | Horizontal |
| 5640.234       | -32.76                                           | 4.01           | -28.75                 | -13            | -15.75      | Horizontal |
| 7520.412       | -42.62                                           | 10.7           | -31.92                 | -13            | -18.92      | Horizontal |
| 3760.637       | -31.29                                           | 0.33           | -30.96                 | -13            | -17.96      | Vertical   |
| 5640.422       | -36.33                                           | 4.01           | -32.32                 | -13            | -19.32      | Vertical   |
| 7520.694       | -37.43                                           | 10.7           | -26.73                 | -13            | -13.73      | Vertical   |
|                | The V                                            | Vorst Test Res | sults for Chann        | el 810/1909.8M | Hz          |            |
| Frequency(MHz) | Power(dBm)                                       | ARpl           | Р <sub>меа</sub> (dBm) | Limit (dBm)    | Margin(dBm) | Polarity   |
| 3819.591       | -32.37                                           | 0.33           | -32.04                 | -13            | -19.04      | Horizontal |
| 5729.646       | -35.62                                           | 4.01           | -31.61                 | -13            | -18.61      | Horizontal |
| 7639.763       | -37.69                                           | 10.7           | -26.99                 | -13            | -13.99      | Horizontal |
| 3819.451       | -32.43                                           | 0.33           | -32.1                  | -13            | -19.1       | Vertical   |
| 5729.793       | -41.54                                           | 4.01           | -37.53                 | -13            | -24.53      | Vertical   |
| 7639.316       | -38.25                                           | 10.7           | -27.55                 | -13            | -14.55      | Vertical   |

Note: Below 30MHZ no Spurious found and The GSM modes is the worst condition.



#### 6. FREQUENCY STABILITY

#### 6.1 MEASUREMENT METHOD

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

26 of 55

Note: only result the worst condition of each test mode.

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIG-ITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30°C.

3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 band , channel 190 for GSM 850 band measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at  $10^{\circ}$ C increments from  $-20^{\circ}$ C to  $+50^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

6. Subject the EUT to overnight soak at +50 °C.

7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at  $10^{\circ}$  increments from  $+50^{\circ}$  to  $-30^{\circ}$ . Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

.At all temperature levels hold the temperature to +/-  $0.5^{\circ}$ C during the measurement procedure.





## 6.2 PROVISIONS APPLICABLE

#### 6.2.1 FOR HAND CARRIED BATTERY POWERED EQUIPMENT

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.3VDC and 4.2VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

# 6.2.2 FOR EQUIPMENT POWERED BY PRIMARY SUPPLY VOLTAGE

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is 200C.



#### 6.3 MEASUREMENT RESULT

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is  $20^{\circ}C$ 

| Frequency Error Against Voltage for GSM 850 band |                     |                      |  |
|--------------------------------------------------|---------------------|----------------------|--|
| Voltage(V)                                       | Frequency error(Hz) | Frequency error(ppm) |  |
| 3.4                                              | -21                 | -0.025               |  |
| 3.7                                              | 34                  | 0.041                |  |
| 4.2                                              | 27                  | 0.032                |  |

| Frequency Error Against Temperature for GSM 850 band |                     |                      |  |
|------------------------------------------------------|---------------------|----------------------|--|
| temperature(°C)                                      | Frequency error(Hz) | Frequency error(ppm) |  |
| -30                                                  | 19                  | 0.023                |  |
| -20                                                  | -13                 | -0.016               |  |
| -10                                                  | -35                 | -0.042               |  |
| 0                                                    | 33                  | 0.039                |  |
| 10                                                   | -16                 | -0.019               |  |
| 20                                                   | 17                  | 0.020                |  |
| 30                                                   | -26                 | -0.031               |  |
| 40                                                   | 28                  | 0.033                |  |
| 50                                                   | 27                  | 0.032                |  |

| Frequency Error Against Voltage for GPRS850 band |                     |                      |  |
|--------------------------------------------------|---------------------|----------------------|--|
| Voltage(V)                                       | Frequency error(Hz) | Frequency error(ppm) |  |
| 3.4                                              | -11                 | -0.013               |  |
| 3.7                                              | 25                  | 0.030                |  |
| 4.2                                              | 27                  | 0.032                |  |



# 29 of 55 Report No.: STS1511011F01

| Frequency Error Against Temperature for GPRS850 band |                     |                      |  |
|------------------------------------------------------|---------------------|----------------------|--|
| temperature(°C)                                      | Frequency error(Hz) | Frequency error(ppm) |  |
| -30                                                  | -11                 | -0.013               |  |
| -20                                                  | 31                  | 0.037                |  |
| -10                                                  | -13                 | -0.016               |  |
| 0                                                    | -27                 | -0.032               |  |
| 10                                                   | 16                  | 0.019                |  |
| 20                                                   | 11                  | 0.013                |  |
| 30                                                   | -28                 | -0.033               |  |
| 40                                                   | 28                  | 0.033                |  |
| 50                                                   | 19                  | 0.023                |  |

| Frequency Error Against Voltage for GSM1900 band |                     |                      |  |
|--------------------------------------------------|---------------------|----------------------|--|
| Voltage(V)                                       | Frequency error(Hz) | Frequency error(ppm) |  |
| 3.4                                              | 21                  | 0.011                |  |
| 3.7                                              | 27                  | 0.014                |  |
| 4.2                                              | 17                  | 0.009                |  |

| Frequency Error Against Temperature for GSM1900 band |                     |                      |  |
|------------------------------------------------------|---------------------|----------------------|--|
| temperature(°C)                                      | Frequency error(Hz) | Frequency error(ppm) |  |
| -30                                                  | -17                 | -0.009               |  |
| -20                                                  | -23                 | -0.012               |  |
| -10                                                  | 19                  | 0.010                |  |
| 0                                                    | 26                  | 0.014                |  |
| 10                                                   | 23                  | 0.012                |  |
| 20                                                   | 22                  | 0.012                |  |
| 30                                                   | 33                  | 0.018                |  |
| 40                                                   | -14                 | -0.007               |  |
| 50                                                   | -22                 | -0.012               |  |

| Frequency Error Against Voltage for GPRS1900 band |                     |                      |  |
|---------------------------------------------------|---------------------|----------------------|--|
| Voltage(V)                                        | Frequency error(Hz) | Frequency error(ppm) |  |
| 3.4                                               | 31                  | 0.016                |  |
| 3.7                                               | -17                 | -0.009               |  |
| 4.2                                               | 24                  | 0.013                |  |

Shenzhen STS Test Services Co., Ltd.



# 7. OCCUPIED BANDWIDTH

## 7.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

## 7.2 PROVISIONS APPLICABLE

Limits applicated report test result only.

#### 7.3 MEASUREMENT RESULT

| Occupied Bandwidth (99%) for GSM 850 band |                                            |                                |  |  |  |
|-------------------------------------------|--------------------------------------------|--------------------------------|--|--|--|
| Mode                                      | Frequency(MHz)                             | Occupied Bandwidth (99%)( kHz) |  |  |  |
| Low Channel                               | 824.2                                      | 244.89                         |  |  |  |
| Middle Channel                            | 836.6                                      | 248.04                         |  |  |  |
| High Channel                              | 848.8                                      | 244.02                         |  |  |  |
| Oc                                        | Occupied Bandwidth (99%) for GPRS 850 band |                                |  |  |  |
| Mode                                      | Frequency(MHz)                             | Occupied Bandwidth (99%)( kHz) |  |  |  |
| Low Channel                               | 824.2                                      | 247.22                         |  |  |  |
| Middle Channel                            | 836.6                                      | 248.02                         |  |  |  |
| High Channel                              | 848.8                                      | 249.44                         |  |  |  |

| Occupied Bandwidth (99%) for GSM1900 band |                                                    |                                |  |  |  |
|-------------------------------------------|----------------------------------------------------|--------------------------------|--|--|--|
| Mode                                      | Frequency(MHz)                                     | Occupied Bandwidth (99%)( kHz) |  |  |  |
| Low Channel                               | 1850.2                                             | 245.76                         |  |  |  |
| Middle Channel                            | 1880.0                                             | 242.94                         |  |  |  |
| High Channel                              | 1909.8                                             | 245.84                         |  |  |  |
| Oce                                       | Occupied Bandwidth (99%) for GPRS1900 band         |                                |  |  |  |
| Mode                                      | Mode Frequency(MHz) Occupied Bandwidth (99%)( kHz) |                                |  |  |  |
| Low Channel                               | 1850.2                                             | 245.66                         |  |  |  |
| Middle Channel                            | 1880.0                                             | 244.92                         |  |  |  |
| High Channel                              | 1909.8                                             | 245.78                         |  |  |  |



#### 8. EMISSION BANDWIDTH

#### 8.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

#### 8.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

#### 8.3 MEASUREMENT RESULT

| Emission Bandwidth (-26dBc) for GSM850 band |                                              |                                   |  |  |
|---------------------------------------------|----------------------------------------------|-----------------------------------|--|--|
| Mode                                        | Frequency(MHz)                               | Emission Bandwidth (-26dBc)( kHz) |  |  |
| Low Channel                                 | 824.2                                        | 314.4                             |  |  |
| Middle Channel                              | 836.6                                        | 314.9                             |  |  |
| High Channel                                | 848.8                                        | 313.3                             |  |  |
| Emi                                         | Emission Bandwidth (-26dBc) for GPRS850 band |                                   |  |  |
| Mode                                        | Frequency(MHz)                               | Emission Bandwidth (-26dBc)( kHz) |  |  |
| Low Channel                                 | 824.2                                        | 313.8                             |  |  |
| Middle Channel                              | 836.6                                        | 318.6                             |  |  |
| High Channel                                | 848.8                                        | 321.6                             |  |  |

| Emission Bandwidth (-26dBc) for GSM1900 band |                                               |                                   |  |  |  |
|----------------------------------------------|-----------------------------------------------|-----------------------------------|--|--|--|
| Mode                                         | Frequency(MHz)                                | Emission Bandwidth (-26dBc)( kHz) |  |  |  |
| Low Channel                                  | 1850.2                                        | 319.6                             |  |  |  |
| Middle Channel                               | 1880.0                                        | 313.3                             |  |  |  |
| High Channel                                 | 1909.8                                        | 310.0                             |  |  |  |
| Emis                                         | Emission Bandwidth (-26dBc) for GPRS1900 band |                                   |  |  |  |
| Mode                                         | Frequency(MHz)                                | Emission Bandwidth (-26dBc)( kHz) |  |  |  |
| Low Channel                                  | 1850.2                                        | 314.7                             |  |  |  |
| Middle Channel                               | 1880.0                                        | 315.6                             |  |  |  |
| High Channel                                 | 1909.8                                        | 315.6                             |  |  |  |

Shenzhen STS Test Services Co., Ltd.



# 9. BAND EDGE

9.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

## 9.2 PROVISIONS APPLICABLE

as Specified in FCC rules of 22.917(b) and 24.238(b)

## 9.3 MEASUREMENT RESULT

Please refers to Appendix III for compliance test plots for band edges



Shenzhen STS Test Services Co., Ltd.



# **APPENDIX I**

# **TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION**

CONDUCTED EMISSION IN GSM 850 BAND

Conducted Emission Transmitting Mode CH 128 30MHz - 9GHz

| Agilent Spectr        |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
|-----------------------|---------------|------------------------|---------------------------|--------------------------|---------|----------------|-------------------------|-----------------------|--------------------------------|----------------------|--|
| VI RL<br>Preamp       | RF<br>Gain 0. |                        |                           |                          | ISE:INT |                | ALIGN AUTO<br>: Log-Pwr | TRAC                  | MNov 04, 2015<br>E 1 2 3 4 5 6 | External Gain        |  |
|                       |               |                        | PNO: Fast ⊂<br>IFGain:Low | Trig: Free<br>#Atten: 36 | dB      |                |                         | DE                    | E MWWWWW<br>T P P P P P P      | ExtPreamp<br>0.00 dB |  |
| 10 dB/div             |               | set 9.5 dB<br>1.00 dBm |                           |                          |         |                | N                       |                       | i.0 MHz<br>03 dBm              |                      |  |
| 24.0                  | 1             |                        |                           |                          |         |                |                         |                       |                                | MS                   |  |
| 14.0                  |               |                        |                           |                          |         |                |                         |                       |                                | 0.00 dB              |  |
| 4.00                  |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| -6.00                 |               |                        |                           |                          |         |                |                         |                       | -13.00 dBm                     | BTS                  |  |
| -26.0                 |               |                        | _                         |                          |         | <u>^2</u>      |                         |                       |                                | 0.00 dB              |  |
| -36.0                 |               |                        |                           |                          |         | - North Street | فاحتله وليستهم والمحلح  |                       |                                |                      |  |
| -46.0                 |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| -56.0                 |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| Start 30 N<br>#Res BW |               | z                      | #VB۱                      | N 3.0 MHz                |         |                | Sweep                   | Stop 9.<br>15.5 ms (8 | .000 GHz<br>8001 pts)          |                      |  |
| MKR MODE TP           |               | ×                      |                           | Y                        |         | NCTION FUI     | NCTION WIDTH            | FUNCTIO               | N VALUE                        |                      |  |
| 1 N 1<br>2 N 1<br>3   |               |                        | 5.0 MHz<br>0 2 GHz        | 31.003 dE<br>-33.767 dE  |         |                |                         |                       |                                |                      |  |
| 4                     |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| 5<br>6<br>7           |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| 8<br>9<br>10          |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| 11                    |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| 12                    |               |                        |                           |                          |         |                |                         |                       |                                |                      |  |
| MSG                   |               |                        |                           |                          | _       |                | STATUS                  |                       |                                |                      |  |

Conducted Emission Transmitting Mode CH 190 30MHz - 9GHz

|                                |                              |         | · · · · · · · · · · · · · · · · · · · |                                 |        |            |                              |                    |                            |                 |
|--------------------------------|------------------------------|---------|---------------------------------------|---------------------------------|--------|------------|------------------------------|--------------------|----------------------------|-----------------|
| Agilent Spectr                 | um Analyzer - Sv             | wept SA |                                       |                                 |        |            |                              |                    |                            |                 |
| LXI RL                         | RF 50 \$                     | Ω AC    |                                       | SEN                             | SE:INT |            | ALIGN AUTO                   |                    | 4 Nov 04, 2015             | -               |
| Start Fre                      | q 30.0000                    |         |                                       | <b>-</b>                        | _      | Avg Typ    | e: Log-Pwr                   |                    | E <mark>1 2 3 4 5 6</mark> | Frequency       |
|                                |                              |         | NO: Fast 🔾                            | Trig: Free<br>#Atten: 36        |        |            |                              | DE                 | E MWWWWW<br>T P P P P P P  |                 |
|                                |                              | 11-1    | Gain:Low                              | #Atten: 30                      | uВ     |            |                              |                    |                            | Auto Tune       |
|                                | Ref Offset 9                 | 5 dB    |                                       |                                 |        |            | - N                          | 1kr1 837           |                            | Auto Tune       |
| 10 dB/div                      | Ref 34.00                    |         |                                       |                                 |        |            |                              | 31.23              | 33 dBm                     |                 |
| Log                            | ×1                           |         |                                       |                                 |        |            |                              |                    |                            |                 |
| 24.0                           |                              | _       |                                       |                                 |        |            |                              |                    |                            | Center Fred     |
| 14 በ                           |                              |         |                                       |                                 |        |            |                              |                    |                            | 4.515000000 GH  |
|                                |                              |         |                                       |                                 |        |            |                              |                    |                            | 4.01000000 011  |
| 4.00                           |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| -6.00                          |                              |         |                                       |                                 |        |            |                              |                    | -13.00 dBm                 |                 |
| -16.0                          |                              |         |                                       |                                 |        |            |                              |                    | -13.00 dBm                 | Start Fred      |
| -26.0                          |                              |         |                                       |                                 |        | .2         |                              |                    |                            | 30.000000 MHz   |
|                                |                              |         |                                       |                                 |        | $\wedge^2$ |                              | Sector Constraints | and shall a second         |                 |
| -36.0                          | and the second second second |         |                                       | and the second distances of the |        |            | al an Bhenn an a caracterian |                    |                            |                 |
| -46.0                          |                              |         |                                       |                                 |        |            |                              |                    |                            | Stop Fred       |
| -56.0                          |                              |         |                                       |                                 |        |            |                              |                    |                            | 9.000000000 GHz |
| 00.0                           |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| Start 30 M                     | AH7                          |         |                                       |                                 |        |            |                              | Stop 9             | .000 GHz                   |                 |
| #Res BW                        |                              |         | #VB\A                                 | ( 3.0 MHz                       |        |            | Sween                        | 15.5 ms (          |                            | CF Step         |
|                                |                              |         |                                       |                                 |        |            | · ·                          |                    |                            | 897.000000 MHz  |
| MKR MODE T                     |                              | ×       |                                       | Y                               |        | NCTION FL  | INCTION WIDTH                | FUNCTIO            | N VALUE                    | <u>Auto</u> Mar |
| 1 N 1<br>2 N 1                 | f                            |         | .3 MHz<br>1 GHz                       | 31.233 dE<br>-33.931 dE         |        |            |                              |                    |                            |                 |
| 3                              |                              | 5.577   | 1 GHZ                                 | -55.551 uE                      | 411    |            |                              |                    |                            |                 |
| 4                              |                              |         |                                       |                                 |        |            |                              |                    |                            | Freq Offse      |
| 5                              |                              |         |                                       |                                 |        |            |                              |                    |                            | 0 H:            |
| 2 N 1<br>3<br>4<br>5<br>6<br>7 |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| 8                              |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| 9                              |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| 10<br>11                       |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
| 12                             |                              |         |                                       |                                 |        |            |                              |                    |                            |                 |
|                                |                              |         |                                       |                                 |        |            | 07/7                         |                    |                            | 1               |
| MSG                            |                              |         |                                       |                                 |        |            | STATUS                       |                    |                            |                 |

Shenzhen STS Test Services Co., Ltd.

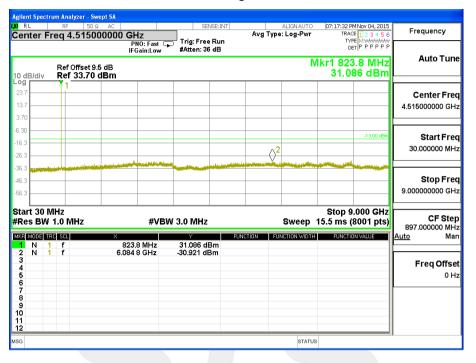
1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



| ۱L.             |                        | DΩ AC                        |                  | SENSE:                         |                | ALIGN AUTO            |                       | 1Nov 04, 2015              | Frequency                |
|-----------------|------------------------|------------------------------|------------------|--------------------------------|----------------|-----------------------|-----------------------|----------------------------|--------------------------|
| nter F          | req 4.515              | 000000 GHz<br>PNO:<br>IFGair |                  | Trig: Free Ru<br>#Atten: 36 dE | n <sup>–</sup> | Type: Log-Pwr         | TYPE                  | 123456<br>MWWWWW<br>PPPPPP | Auto Tun                 |
| dB/div          | Ref Offset<br>Ref 35.5 |                              |                  |                                |                | N                     | lkr1 848<br>31.35     | .5 MHz<br>51 dBm           | Auto Tu                  |
| .5              | 1                      |                              |                  |                                |                |                       |                       |                            | Center Fr                |
| 6               |                        |                              |                  |                                |                |                       |                       |                            | 4.515000000 G            |
| 0               |                        |                              |                  |                                |                |                       |                       |                            |                          |
| 5               |                        |                              |                  |                                |                |                       |                       | -13.00 dBm                 | Start Fr                 |
| 5               |                        |                              |                  |                                |                |                       |                       |                            | 30.000000 N              |
| 5               |                        |                              | an descenter and | والمتحدين والعر                | harring Na     | and the second second | - States - Andrews    |                            |                          |
| 5               |                        |                              |                  |                                |                |                       |                       |                            | Stop Fr<br>9.000000000 G |
| 5               |                        |                              |                  |                                |                |                       |                       |                            | 9.000000000              |
| art 30<br>es BW | MHz<br>/ 1.0 MHz       |                              | #VBW 3           | .0 MHz                         |                | Sweep                 | Stop 9.<br>15.5 ms (8 | 000 GHz<br>8001 pts)       | CF St<br>897.000000 M    |
| MODE            | TRC SCL<br>1 f         | ×<br>848.5 M                 | 1Hz :            | Y<br>31.351 dBm                | FUNCTION       | FUNCTION WIDTH        | FUNCTION              | N VALUE                    | <u>Auto</u> N            |
|                 | i f                    | 5.636 3 0                    |                  | 32.094 dBm                     |                |                       |                       |                            |                          |
|                 |                        |                              |                  |                                |                |                       |                       |                            | Freq Offs<br>0           |
|                 |                        |                              |                  |                                |                |                       |                       |                            | -                        |
|                 |                        |                              |                  |                                |                |                       |                       |                            |                          |
|                 |                        |                              |                  |                                |                |                       |                       |                            |                          |
|                 |                        |                              |                  |                                |                |                       |                       |                            |                          |

#### Conducted Emission Transmitting Mode CH 251 30MHz - 9GHz

Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### CONDUCTED EMISSION IN GPRS 850 BAND

35 of 55

#### Conducted Emission Transmitting Mode CH 128 30MHz - 9GHz



# Conducted Emission Transmitting Mode CH 190 30MHz - 9GHz

|                       | rum Analyzer -                                                                                                  |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|------------------------------|---------|---------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|
| RL                    |                                                                                                                 | DΩ AC               |                          | SENSE                        |         |         | ALIGNAUTO<br>E: Log-Pwr                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MNov 04, 2015<br>E 1 2 3 4 5 6 | Frequency                  |
|                       | req 4.515                                                                                                       |                     | PNO: Fast G<br>FGain:Low | Trig: Free R<br>#Atten: 36 d | un      | vg iype | . Log+ wi                                                                                                        | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PENWWWWWW                      |                            |
| ) dB/div              | Ref Offset<br>Ref 34.0                                                                                          |                     |                          |                              |         |         | N                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2 MHz<br>31 dBm              | Auto Tu                    |
| 4.0                   | 1                                                                                                               |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Contor Er                  |
| 10                    |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Center Fr<br>4.515000000 G |
|                       |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 4.515000000 G              |
|                       |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
|                       |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -13.00 dBm                     | Start Fr                   |
|                       |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 30.000000 N                |
| 5.0                   |                                                                                                                 | المعنفة فسلبني اللا | -                        |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
|                       | and the second secon |                     |                          |                              |         |         | and the second | and the second s |                                | Oton F                     |
| .0                    |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Stop Fr<br>9.000000000 0   |
| .0                    |                                                                                                                 | _                   | _                        |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 9.000000000                |
| art 30 [              | VIHz                                                                                                            |                     |                          |                              |         |         |                                                                                                                  | Stop 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000 GHz                       |                            |
| les BW                | 1.0 MHz                                                                                                         |                     | #VB۱                     | N 3.0 MHz                    |         |         | Sweep                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8001 pts)                      | CF St<br>897.000000 M      |
| R MODE T              | RC SCL                                                                                                          | ×                   |                          | Y                            | FUNCTIO | I FU    | NCTION WIDTH                                                                                                     | FUNCTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IN VALUE                       | Auto N                     |
|                       | f                                                                                                               |                     | 6.2 MHz                  | 31.331 dBn                   |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
| 2 N <sup>7</sup><br>3 | 1 f                                                                                                             | 7.46                | 6 1 GHz                  | -33.125 dBm                  | 1       |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Erog Off                   |
| 1<br>5                |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Freq Off                   |
| 3                     |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 0                          |
| 7                     |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
| 3                     |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
| )<br>1                |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
| 2                     |                                                                                                                 |                     |                          |                              |         |         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |
| 6                     |                                                                                                                 |                     |                          |                              |         |         | STATUS                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                              |                            |



| Frequency            | 52 PM Nov 04, 2015          |                    | ALIGN AUTO    |        | NSE:INT           | SE                       |                                     |          | = 50 s                |      | :L             |
|----------------------|-----------------------------|--------------------|---------------|--------|-------------------|--------------------------|-------------------------------------|----------|-----------------------|------|----------------|
|                      | TYPE MWMMMM<br>DET PPPPP    | TY                 | pe: Log-Pwr   | Avg '  |                   | Trig: Free<br>#Atten: 36 | <b>HZ</b><br>NO: Fast G<br>Gain:Low |          | 4.5150                | Fred | nter           |
| Auto T               | 48.5 MHz<br>.447 dBm        |                    | М             |        |                   |                          |                                     |          | f Offset 9<br>f 35.50 |      | IB/div         |
| Center F             |                             |                    |               |        |                   |                          |                                     |          | 1                     | )    | ;              |
| 4.515000000          | _                           |                    |               |        |                   |                          |                                     |          |                       |      | -              |
|                      |                             |                    |               |        |                   |                          |                                     |          |                       |      |                |
| Start F              | -13.00 dBm                  |                    |               |        |                   |                          |                                     |          |                       |      |                |
| 30.000000            | <mark>2</mark>              |                    |               |        |                   |                          |                                     |          |                       |      |                |
|                      | X.                          | all and the second |               |        | I was stratighter |                          |                                     |          |                       |      |                |
| Stop F               |                             |                    |               |        |                   |                          |                                     | <u> </u> |                       |      | ;              |
| 9.000000000          | _                           |                    |               |        |                   |                          |                                     |          |                       |      | -              |
| CF S                 | o 9.000 GHz<br>s (8001 pts) |                    | Sweep 1       |        |                   | 3.0 MHz                  | #VB                                 |          | MHz                   |      | rt 30<br>es Bi |
| 897.000000 I<br>Auto | CTION VALUE                 |                    | UNCTION WIDTH | ICTION | FL                | Y                        |                                     | ×        |                       |      | MODE           |
|                      |                             |                    |               |        |                   | 31.447 d                 | .5 MHz<br>5 GHz                     |          |                       | 1    | NN             |
| Freq Of              |                             |                    |               |        |                   |                          |                                     |          |                       |      | -              |
| (                    |                             |                    |               |        |                   |                          |                                     |          |                       |      |                |
|                      |                             |                    |               |        |                   |                          |                                     |          |                       |      |                |
|                      |                             |                    |               |        |                   |                          |                                     |          |                       |      |                |
|                      |                             |                    |               |        |                   |                          |                                     |          |                       |      |                |
|                      |                             |                    |               |        | 1                 |                          |                                     |          | 1                     |      |                |

#### Conducted Emission Transmitting Mode CH 251 30MHz - 9GHz



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### CONDUCTED EMISSION IN GSM1900 BAND

#### Conducted Emission Transmitting Mode CH 512 30MHz - 20GHz

Allenings A. ( 20 L RF 502 AC | Marker 1 1.850936250000 GHz PN0: Fast IFGain:Low 21 PM Nov 04, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P Marker Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run #Atten: 36 dB Select Marker Mkr1 1.850 9 GHz 26.204 dBm 1 Ref Offset 9.8 dB Ref 34.00 dBm 10 dB/div Log 24.0 Norma 14 f 4.00 -6.00 -13.00 d  $\langle \rangle^2$ -16.0 Delta 26.0 36.1 46.0 Fixed 56.C Start 30 MHz #Res BW 1.0 MHz Stop 12.000 GHz #VBW 3.0 MHz Sweep 20.3 ms (8001 pts) Off 
 #Resolution
 Tecl Solution

 1
 N
 1

 2
 N
 1

 4
 5
 6

 7
 8
 9

 10
 11
 1

 12
 1
 1
 FUNCTION FUNCTION WIDTH CUNCTION 1.850 9 GHz 5.551 2 GHz 26.204 dBm -18.676 dBm Properties► More 1 of 2 STATUS SG

| RL                                                                               |                           | ΩAC                   |                              | SENS                                                                                                             | SE:INT     |           | LIGNAUTO |           | M Nov 04, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency                                                            |
|----------------------------------------------------------------------------------|---------------------------|-----------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| enter F                                                                          | req 16.000                | PN                    | HZ<br>10: Fast 🕞<br>jain:Low | Trig: Free F<br>#Atten: 36                                                                                       | Run        | Avg Type: | Log-Pwr  | TYP       | CE 1 2 3 4 5 6<br>PE M WWWWW<br>ET P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |
| ) dB/div                                                                         | Ref Offset 9<br>Ref 33.70 |                       |                              |                                                                                                                  |            |           | MI       |           | 47 GHz<br>58 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auto Tui                                                             |
| 3.7                                                                              |                           |                       |                              |                                                                                                                  |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fr                                                            |
| 3.7                                                                              |                           |                       |                              |                                                                                                                  |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.00000000 G                                                        |
| 30                                                                               |                           |                       |                              |                                                                                                                  |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| .3                                                                               |                           | _                     |                              |                                                                                                                  | <u></u> 1= |           |          |           | -13.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start Fr                                                             |
| 6.3 <b></b>                                                                      |                           | and the second second |                              | and the second | ( <b>X</b> |           | -        |           | and a state of the | 12.000000000 G                                                       |
| .3                                                                               |                           |                       |                              |                                                                                                                  |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Fr                                                              |
| .3                                                                               |                           |                       |                              | +                                                                                                                |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| .3                                                                               |                           |                       |                              |                                                                                                                  |            |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
|                                                                                  | 000 GHz                   |                       |                              |                                                                                                                  |            |           |          | Stop 20   | 000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |
| art 12.0                                                                         | 000 GHz<br>/ 1.0 MHz      |                       | #VBW                         | / 3.0 MHz                                                                                                        |            |           | Sweep 2  |           | .000 GHz<br>8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.000000000 G                                                       |
| art 12.0<br>tes BW                                                               | / 1.0 MHz                 | ×<br>16.647           |                              | Y                                                                                                                | FUNCTI     |           | Sweep 3  | 20.3 ms ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.000000000 G<br>CF St<br>800.000000 M                              |
| art 12.0<br>tes BW<br>N<br>N                                                     | / 1.0 MHz<br>RC SCL       |                       | 7 GHz                        | / 3.0 MHz<br>-24.858 dBi<br>-27.654 dBi                                                                          | m          |           | · ·      | 20.3 ms ( | 8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00000000 G<br>CF St<br>800.000000 M<br><u>Auto</u> N              |
| art 12.0<br>tes BW<br>N<br>N<br>N<br>N                                           | / 1.0 MHz<br>160 Set      | 16.647                | 7 GHz                        | Y<br>-24.858 dBi                                                                                                 | m          |           | · ·      | 20.3 ms ( | 8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00000000 G<br>CF St<br>800.000000 M<br><u>Auto</u> N<br>Freq Offs |
| art 12.4<br>Res BW<br>E M009<br>N<br>2 N<br>3<br>4<br>5<br>5                     | / 1.0 MHz<br>160 Set      | 16.647                | 7 GHz                        | Y<br>-24.858 dBi                                                                                                 | m          |           | · ·      | 20.3 ms ( | 8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00000000 G<br>CF St<br>800.000000 M<br><u>Auto</u><br>Freq Offs   |
| art 12.0<br>Res BW<br>R MODE<br>N<br>2 N<br>3<br>4<br>5<br>5<br>5<br>7<br>7<br>3 | / 1.0 MHz<br>160 Set      | 16.647                | 7 GHz                        | Y<br>-24.858 dBi                                                                                                 | m          |           | · ·      | 20.3 ms ( | 8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00000000 G<br>CF St<br>800.000000 M<br><u>Auto</u> M<br>Freq Offs |
| Res BW                                                                           | / 1.0 MHz<br>160 Set      | 16.647                | 7 GHz                        | Y<br>-24.858 dBi                                                                                                 | m          |           | · ·      | 20.3 ms ( | 8001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00000000 G<br>CF Sto<br>800.000000 M                              |



#### Agilent Spectrum Anatyse U L RF SO Q AC Marker 1 1.880861250000 GHz PNO: Fast Cp IF Gain: Low 30:24 PM Nov 04, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P SENSE:INT ALIGNAUTC Avg Type: Log-Pwr Avg|Hold:>100/100 Marker Trig: Free Run #Atten: 36 dB Select Marker Mkr1 1.880 9 GHz 28.069 dBm 1 Ref Offset 9.8 dB Ref 34.00 dBm 10 dB/div Log 24.0 Norma 14.0 4.00 -6.00 Delta -16.0 -26.0 -36.0 -46 F Fixed -56.0 Start 30 MHz #Res BW 1.0 MHz Stop 12.000 GHz Sweep 20.3 ms (8001 pts) #VBW 3.0 MHz Off Mrcs JW 1.0 fr. Scut 1 N f 2 N 1 3 f 4 5 6 7 8 9 10 11 FUNCTION FUNCTION WIDTH 28.069 dBm -18.289 dBm 1.880 9 GHz 5.639 7 GHz **Properties** More 1 of 2 STATUS SG

### Conducted Emission Transmitting Mode CH 661 30MHz - 20GHz

38 of 55

| Marker        | 46 PM Nov 04, 2015<br>RACE 1 2 3 4 5 6 | TRA                     | ALIGNAUTO<br>: Log-Pwr | Avg Ty |         |                            | SHz                    | AC 000000  |                           | rer 1 16.            | R L<br>ark |
|---------------|----------------------------------------|-------------------------|------------------------|--------|---------|----------------------------|------------------------|------------|---------------------------|----------------------|------------|
| Select Marker | DET PPPPP                              | C                       |                        |        |         | Trig: Free F<br>#Atten: 36 | NO: Fast 😱<br>Gain:Low | PI<br>IFC  |                           |                      |            |
| 1             | 6.531 GHz<br>.662 dBm                  | (r1 16.)<br>-23.6       | Mł                     |        |         |                            |                        |            | f Offset 9.8<br>f 34.00 ( |                      |            |
|               |                                        |                         |                        |        |         |                            |                        |            |                           |                      | 9<br>1.0   |
| Norm          |                                        |                         |                        |        |         |                            |                        |            |                           |                      | .0         |
|               |                                        |                         |                        |        |         |                            |                        |            |                           |                      | 10         |
| Del           | -13.00 dBm                             |                         |                        |        | 1       |                            |                        |            |                           |                      | 0          |
| 20.           | Weiterstein and the later              | and the strength of the |                        |        | <u></u> | الأقامات المتأمم أردين     | والمحادثة والمحادثة    |            |                           |                      | .0         |
|               |                                        |                         |                        |        |         |                            |                        |            |                           |                      | 0          |
| Fixed         |                                        |                         |                        |        |         |                            |                        |            |                           |                      | 0.         |
|               |                                        |                         |                        |        |         |                            |                        |            |                           |                      | .0         |
| c             | 20.000 GHz<br>s (8001 pts)             |                         | Sweep 2                |        |         | 3.0 MHz                    | #VBW                   |            |                           | : 12.000 (<br>BW 1.0 |            |
|               | CTION VALUE                            | FUNCT                   | NCTION WIDTH           | TION F | FUNC    | -23.662 dB                 | 1 GHz                  | ×<br>16.53 | -                         | IODE TRC SO          |            |
|               |                                        |                         |                        |        |         | -27.122 dBi                | 8 GHz                  |            |                           | N 1 f                |            |
| Propertie     |                                        |                         |                        |        |         |                            |                        |            |                           |                      |            |
| Mc            |                                        |                         |                        |        |         |                            |                        |            |                           |                      |            |
|               |                                        |                         |                        |        |         |                            |                        |            |                           |                      |            |
| More          |                                        |                         |                        |        |         |                            |                        |            |                           |                      |            |

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### Aglient Spectrum Analyse W L RF SOΩ AC Marker 1 1.909290000000 GHz PNO: Fast C→ IFGain:Low 5:21 PM Nov 04, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P P SENSE:INT ALIGNAUTC Avg Type: Log-Pwr Avg|Hold:>100/100 Marker Trig: Free Run #Atten: 36 dB Select Marker Mkr1 1.909 3 GHz 26.593 dBm 1 Ref Offset 9.8 dB Ref 35.80 dBm 10 dB/div Log Norma 5.8 -4.20 -14.7 Delta $\langle \rangle$ -24.2 -34.0 -44 0 Fixed -54.2 Start 30 MHz #Res BW 1.0 MHz Stop 12.000 GHz Sweep 20.3 ms (8001 pts) #VBW 3.0 MHz Off Mrcs JW 1.0 fr. Scut 1 N f 2 N 1 3 f 4 5 6 7 8 9 10 11 FUNCTION FUNCTION WIDTH 26.593 dBm -22.011 dBm 1.909 3 GHz 5.729 2 GHz **Properties** More 1 of 2 STATUS SG

### Conducted Emission Transmitting Mode CH 810 30MHz - 20GHz

39 of 55

Report No.: STS1511011F01

|                                     |                                                                |                         |        |        |                        |             | Swept SA       | Analyzer - S            | nt Spectrur        |
|-------------------------------------|----------------------------------------------------------------|-------------------------|--------|--------|------------------------|-------------|----------------|-------------------------|--------------------|
| Frequency                           | 07:33:36 PM Nov 04, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWWWW | ALIGNAUTO<br>e: Log-Pwr | Avg Ty |        | Trig: Free             | PNO: Fast 😱 | Ω AC<br>000000 |                         | ter Fre            |
| Auto Tur                            | r1 16.979 GHz<br>-25.233 dBm                                   | Mk                      |        | 38     | #Atten: 36             | IFGain:Low  |                | ef Offset 9<br>ef 35.80 |                    |
| Center Fre<br>16.00000000 GH        |                                                                |                         |        |        |                        |             |                |                         |                    |
| <b>Start Fre</b><br>12.000000000 Gł | -13.00 dBm                                                     |                         | ↓1     |        |                        |             |                |                         |                    |
| <b>Stop Fre</b><br>20.000000000 Gł  |                                                                |                         |        |        |                        |             |                |                         |                    |
| CF Ste<br>800.000000 Mi<br>Auto Mi  | Stop 20.000 GHz<br>20.3 ms (8001 pts)                          | Sweep 2                 | ICTION | 73 111 | 3.0 MHz                | #VBW        | ×              | MHz                     | rt 12.00<br>s BW 1 |
| Freq Offs<br>0 H                    |                                                                |                         |        | n      | 25.233 dB<br>25.581 dB |             | 1              |                         | N 1                |
|                                     |                                                                | STATUS                  |        |        |                        |             |                |                         |                    |



### CONDUCTED EMISSION IN GPRS1900 BAND

#### Conducted Emission Transmitting Mode CH 512 30MHz - 20GHz

103 PM Nov 04, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P Frequency Start Freq 30.000000 MHz Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Fast 😱 IFGain:Low Trig: Free Run #Atten: 36 dB Mkr1 1.850 9 GHz 26.665 dBm Auto Tune Ref Offset 9.8 dB Ref 34.00 dBm 10 dB/div Log 24.0 **Center Freq** 14 f 6.015000000 GHz 4.00 -6.00 Start Freq  $\triangle^2$ -16 C 30.000000 MHz 26.0 36.1 Stop Freq 46.0 12.000000000 GHz 56.0 Start 30 MHz #Res BW 1.0 MHz Stop 12.000 GHz **CF Step** 1.197000000 GHz <u>uto</u> Man #VBW 3.0 MHz Sweep 20.3 ms (8001 pts) 
 Preces
 BW 1.0 M

 1
 N
 1

 2
 N
 1

 4
 5
 6

 7
 8
 9

 10
 11
 11

 12
 N
 1
 1
 FUNCTION FUNCTION WIDTH CUNCTION Auto 1.850 9 GHz 5.551 2 GHz 26.665 dBm -19.221 dBm Freq Offset 0 Hz STATUS SG

| Frequency                | MNov 04, 2015<br>CE 1 2 3 4 5 6 |         | ALIGN AUTO   |      | SE:INT                | SEM                        |                               |                              | RF 50                   |                  | ۹L .       |
|--------------------------|---------------------------------|---------|--------------|------|-----------------------|----------------------------|-------------------------------|------------------------------|-------------------------|------------------|------------|
|                          | ET P P P P P P                  | TYP     | e: Log-Pwr   | Avgi |                       | Trig: Free<br>#Atten: 36   | GHZ<br>NO: Fast G<br>Gain:Low |                              | 16.000                  | er Fre           | nte        |
| Auto Tu                  | 19 GHz<br>73 dBm                |         | M            |      |                       |                            |                               |                              | ef Offset 9<br>ef 34.00 |                  | dB/d       |
| Center F                 |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |
| 16.00000000 0            |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |
| Start F                  | -13.00 dBm                      |         |              |      |                       |                            |                               |                              |                         |                  |            |
| 12.000000000 G           |                                 |         |              |      | <b>⊘</b> <sup>1</sup> |                            |                               |                              |                         |                  |            |
|                          |                                 |         |              |      |                       | فالإمتان والمعالم المساحية | -                             | , <sup>tana</sup> telejabete |                         | <u>مامدانامی</u> |            |
| Stop Fi<br>20.00000000 0 |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |
|                          | .000 GHz                        | Stop 20 |              |      |                       |                            |                               |                              | GHz                     | 12.000           | <br>1.rt 1 |
| CF St<br>800.000000 M    | 8001 pts)                       |         | · ·          |      |                       | 3.0 MHz                    | #VBV                          |                              |                         | BW 1.            | _          |
| Auto M                   | DN VALUE                        | FUNCTIO | NCTION WIDTH | TION | m                     | -24.973 dE                 | 19 GHz                        |                              |                         |                  | N          |
| Freq Off<br>0            |                                 |         |              |      | m                     | -28.190 dE                 | 12 GHz                        | 16.5                         |                         | 1                | N          |
|                          |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |
|                          |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |
|                          |                                 |         |              |      |                       |                            |                               |                              |                         |                  |            |



| Agilent Spectrum Analyzer - Swept SA   |                                                                                                                  |                           |                  |                        |                                     |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|------------------------|-------------------------------------|
| KF 50 Ω AC     Start Freq 30.000000 MH | z                                                                                                                |                           | e: Log-Pwr       | TRACE 1 2 3 4 5 6      | Frequency                           |
|                                        | PNO: East 🕞 Trig: F                                                                                              | reeRun Avg Hold<br>:36 dB | l:>100/100       | DET PPPPP              | Auto Tune                           |
| 10 dB/div Ref Offset 9.8 dB            |                                                                                                                  |                           |                  | 880 9 GHz<br>6.570 dBm | Auto Tulle                          |
| 24.0                                   |                                                                                                                  |                           |                  |                        | Center Freq                         |
| 4.00                                   |                                                                                                                  |                           |                  |                        | 6.015000000 GHz                     |
| -6.00                                  |                                                                                                                  | 2                         |                  | -13.00 dBm             | Otort From                          |
| -16.0                                  |                                                                                                                  | ×                         |                  | -13.00 0.011           | Start Freq<br>30.000000 MHz         |
|                                        | and the second |                           |                  |                        |                                     |
| -46.0                                  |                                                                                                                  |                           |                  |                        | <b>Stop Freq</b><br>12.00000000 GHz |
| Start 30 MHz                           |                                                                                                                  |                           | Ctor             | 12.000 GHz             |                                     |
| #Res BW 1.0 MHz                        | #VBW 3.0 MI                                                                                                      | Hz                        | Sweep 20.3 n     |                        | <b>CF Step</b><br>1.197000000 GHz   |
|                                        | .880 9 GHz 26.570                                                                                                | ) dBm                     | JNCTION WIDTH FU | NCTION VALUE           | <u>Auto</u> Man                     |
| 2 N 1 f 5<br>3 4                       | 5.639 4 GHz -19.789                                                                                              | ) dBm                     |                  |                        | Freq Offset                         |
| 5                                      |                                                                                                                  |                           |                  |                        | 0 Hz                                |
| 7<br>8<br>9                            |                                                                                                                  |                           |                  |                        |                                     |
| 10<br>11                               |                                                                                                                  |                           |                  |                        |                                     |
| 12<br>MSG                              |                                                                                                                  |                           | STATUS           |                        |                                     |
|                                        |                                                                                                                  |                           |                  |                        |                                     |

### Conducted Emission Transmitting Mode CH 661 30MHz – 20GHz

41 of 55

|                                           |               | 1.10                                   |                           |                                |    |                               |                  |                             |
|-------------------------------------------|---------------|----------------------------------------|---------------------------|--------------------------------|----|-------------------------------|------------------|-----------------------------|
| RL                                        | RF            | zer - Swept SA<br>50 Ω AC<br>000000000 | GHz                       | SENSE                          | Av | ALIGN AUTO<br>g Type: Log-Pwr | TRACE 1 2 3 4    | 5 6 Frequency               |
|                                           |               |                                        | PNO: Fast G<br>IFGain:Low | Trig: Free Ru<br>#Atten: 36 dE |    | M                             |                  | PP<br>Auto Tun              |
| ) dB/div                                  |               | ffset 9.8 dB<br>34.00 dBm              |                           |                                |    |                               | -25.038 dE       |                             |
| 24.0                                      |               |                                        |                           |                                |    |                               |                  | Center Fre                  |
| 14.0                                      |               |                                        |                           |                                |    |                               |                  | 16.00000000 GH              |
| 5.00                                      |               |                                        |                           |                                |    |                               | -13.00           | I Start Fre                 |
| 26.0                                      |               |                                        |                           |                                |    | 2                             |                  | 12.000000000 GH             |
| 6.0                                       | 1922 and 1920 | ****                                   | and the second second     |                                |    |                               |                  |                             |
| 16.0<br>56.0                              |               |                                        |                           |                                |    |                               |                  | Stop Fre<br>20.000000000 GH |
| tart 12.0                                 |               |                                        |                           |                                |    |                               | Stop 20.000 G    |                             |
| Res BW                                    |               |                                        | #VB                       | N 3.0 MHz                      |    |                               | 20.3 ms (8001 p  | 800.000000 MH               |
| Krimode ti<br><mark>1</mark> N 1<br>2 N 1 | f             |                                        | 6.621 GHz<br>7.032 GHz    | -25.038 dBm<br>-28.558 dBm     |    | FUNCTION WIDTH                | H FUNCTION VALUE | Auto Ma                     |
| 3                                         |               | •                                      | 1.002 0112                | -20.000 4211                   |    |                               |                  | Freq Offs                   |
| 2 N 1<br>3<br>4<br>5<br>6<br>7<br>8<br>9  |               |                                        |                           |                                |    |                               |                  | 0 H                         |
|                                           |               |                                        |                           |                                |    |                               |                  |                             |
| 0<br>1<br>2                               |               |                                        |                           |                                |    |                               |                  |                             |
| G                                         |               |                                        |                           |                                |    | STATU                         | IS               |                             |

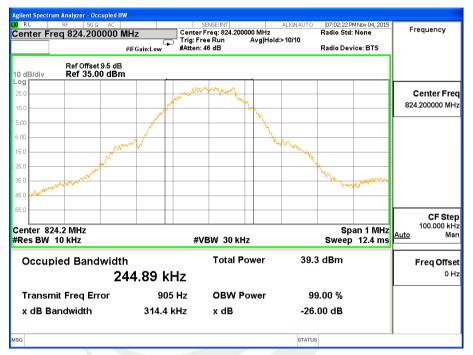


| L        | um Analyzer - S           |   |                           | SENSE:INT                       | A             | LIGNAUTO    | 07:45:49 PM N         | ov 04. 2015 |                        |
|----------|---------------------------|---|---------------------------|---------------------------------|---------------|-------------|-----------------------|-------------|------------------------|
| art Fre  | q 30.0000                 |   |                           |                                 | Avg Type:     |             | TRACE 1               | 23456       | Frequency              |
|          | •                         |   | PNO: Fast G<br>IFGain:Low | Trig: Free Run<br>#Atten: 36 dB | Avg Hold≫     | 100/100     | DET P                 | PPPPP       |                        |
| dB/div   | Ref Offset 9<br>Ref 35.80 |   |                           |                                 |               | Mk          | r1 1.909 3<br>26.610  |             | Auto Tu                |
| g<br>.8  | <b>∲</b> 1                |   |                           |                                 |               |             |                       |             | Center Fr              |
| .8       |                           |   |                           |                                 |               |             |                       |             | 6.015000000 G          |
| 30       |                           |   |                           |                                 |               |             |                       |             |                        |
| 0        |                           |   |                           |                                 |               |             |                       | -13.00 dBm  | Start Fr               |
| 2        |                           |   |                           | $\wedge^2$                      |               |             |                       |             | 30.000000 N            |
| -        |                           |   |                           |                                 |               |             | to bible the south of |             |                        |
| 2        |                           |   |                           |                                 |               |             |                       |             | Stop Fr                |
| 2        |                           |   |                           |                                 |               |             |                       |             | 12.000000000           |
| art 30 N | ЛНz                       |   |                           |                                 |               |             | Stop 12.0             | 00 GHz      |                        |
| es BW    | 1.0 MHz                   |   | #VB\                      | N 3.0 MHz                       | :             | Sweep 🕽     | 20.3 ms (80           |             | CF St<br>1.197000000 G |
| NODE TR  | RC SCL                    | × | 909 3 GHz                 | Y<br>26.610 dBm                 | FUNCTION FUNC | CTION WIDTH | FUNCTION V            | ALUE        | <u>Auto</u> N          |
| N 1      | f                         |   | 729 2 GHz                 | -22.480 dBm                     |               |             |                       |             |                        |
|          |                           |   |                           |                                 |               |             |                       |             | Freq Offs<br>0         |
|          |                           |   |                           |                                 |               |             |                       |             | 0                      |
|          |                           |   |                           |                                 |               |             |                       |             |                        |
|          |                           |   |                           |                                 |               |             |                       |             |                        |
|          |                           |   |                           |                                 |               |             |                       |             |                        |
|          |                           |   |                           |                                 |               | STATUS      |                       |             |                        |

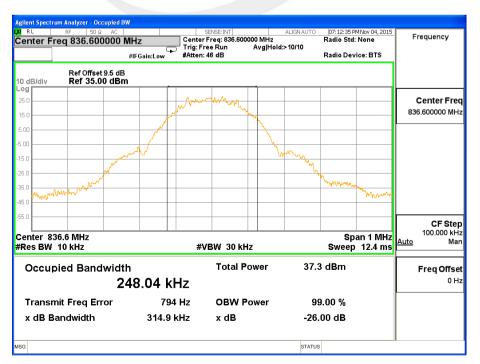
### Conducted Emission Transmitting Mode CH 810 30MHz - 20GHz

42 of 55

|                    |            | 12                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
|--------------------|------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------------|-------------------------|
|                    |            | er - Swept SA           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| N RL               | RF         | 50 Ω AC                 |                                                                                                                 | SENSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Ανα Τνρε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALIGNAUTO<br>E: Log-Pwr |                      | MNov 04, 2015         | Frequency               |
| Perifer I          | 164 10.    | 00000000                | PNO: Fast G                                                                                                     | Trig: Free R<br>#Atten: 36 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | un      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | TYP                  | TPPPPP                |                         |
| 0 dB/div           |            | set 9.8 dB<br>5.80 dBm  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | М                       |                      | 73 GHz<br>23 dBm      | Auto Tun                |
| .og                |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 25.8               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | Center Fre              |
| 15.8               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | 16.00000000 GH          |
| 5.80               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 4.20               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | Start Fre               |
| 14.2               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      | -13.00 dBm            | 12.000000000 GH         |
| 24.2               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | daman data.          |                       | 12.00000000 GF          |
| 34.2 <b></b>       | -          | No. of Concession, Name | and the second secon | A second s |         | and a state of the |                         |                      |                       |                         |
| 44.2               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | Stop Fre                |
| 54.2               |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | 20.00000000 GH          |
|                    |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| tart 12.<br>Res BW |            |                         | #VBN                                                                                                            | V 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep                   | Stop 20<br>20.3 ms ( | .000 GHz<br>8001 pts) | CF Ste<br>800.000000 MH |
| IKR MODE T         |            | ×                       |                                                                                                                 | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FUNCTIO | N FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NCTION WIDTH            | FUNCTIO              | IN VALUE              | Auto Ma                 |
| 1 N<br>2 N         | 1 f<br>1 f |                         | 5.473 GHz<br>5.472 GHz                                                                                          | -24.623 dBn<br>-26.602 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 3                  |            |                         |                                                                                                                 | 20.002 4211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | Freq Offs               |
| 4<br>5             |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       | 01                      |
| 5<br>6<br>7        |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 8                  |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 9                  |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 1                  |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| 12                 |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                       |                         |
| G                  |            |                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                  |                      |                       |                         |




# **APPENDIX II**


# **TEST PLOTS FOR OCCUPIED BANDWIDTH (99%)**

# **EMISSION BANDWIDTH (-26dBC)**

Occupied Bandwidth (99%) GSM 850 BAND CH 128



### Occupied Bandwidth (99%) GSM 850 BAND CH 190

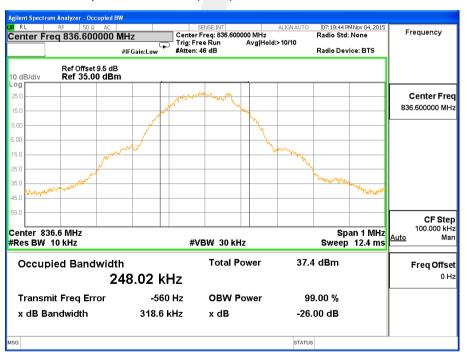


### Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



| Agilent Spectrum Analyzer - Occupied BW<br>X/ RL RF 50 Q AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | SENSE:INT   | ALIGN AUTO 07:13:09 PM Nov 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4, 2015 Frequency             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Center Freq 848.800000 MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hz Center<br>Trig: Fr<br>IFGain:Low #Atten: |             | Radio Std: None<br>d:>10/10<br>Radio Device: B <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
| Ref Offset 9.5 dB<br>10 dB/div Ref 35.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | mm h        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Freq<br>848.800000 MHz |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nn                                          |             | Monora May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 25.0<br>35.0<br>Mrunder Martine Ma |                                             |             | and the second of the second o | wert                          |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| enter 848.8 MHz<br>Res BW 10 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #V                                          | /BW 30 kHz  | Span 1<br>Sweep 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.02 kHz                                    | Total Power | 37.8 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Freq Offse<br>0 H             |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 855 Hz                                      | OBW Power   | 99.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 313.3 kHz                                   | x dB        | -26.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |             | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |


# Occupied Bandwidth (99%) GSM 850 BAND CH 251





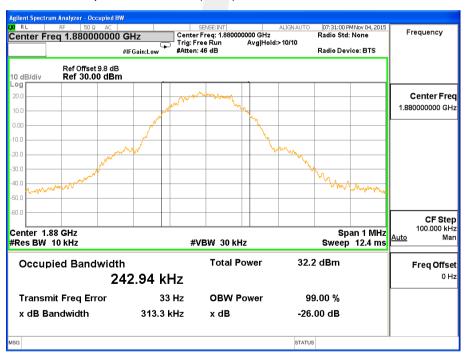
#### Occupied Bandwidth (99%) GPRS 850 BAND CH 128

#### Occupied Bandwidth (99%) GPRS 850 BAND CH 190






| RL                     | RF 50 Ω AC                        | MILL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SENSE:                         | NT<br>848.800000 MHz | ALIGN AUTO | 07:20:19 F<br>Radio Std | MNov 04, 2015       | Frequency                       |
|------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------|-------------------------|---------------------|---------------------------------|
|                        | req 848.800000                    | #IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trig: Free Ru<br>#Atten: 46 dB | n Avg Ho             | ld:>10/10  | Radio Dev               |                     |                                 |
| ) dB/div               | Ref Offset 9.5 di<br>Ref 35.00 dB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |            |                         |                     |                                 |
| <b>9</b><br>5.0<br>5.0 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                 | why have             |            |                         |                     | Center Free<br>848.800000 MH    |
| 00                     |                                   | and the second s |                                |                      | Lonn .     |                         |                     |                                 |
| i.0<br>i.0             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |            | haven                   |                     |                                 |
| .0                     | Maria                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |            |                         | When when the       |                                 |
|                        | 48.8 MHz<br>10 kHz                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW                           | 30 kHz               |            |                         | an 1 MHz<br>12.4 ms | CF Ste<br>100.000 kH<br>Auto Ma |
| Occu                   | pied Bandwid<br>2                 | <sup>th</sup><br>249.44 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                              | otal Power           | 37.2       | 2 dBm                   |                     | Freq Offse<br>0 H               |
| Transı                 | nit Freq Error                    | -644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hz O                           | BW Power             | 99         | 9.00 %                  |                     |                                 |
| x dB E                 | Bandwidth                         | 321.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kHz x                          | dB                   | -26.       | .00 dB                  |                     |                                 |


# Occupied Bandwidth (99%) GRPS 850 BAND CH 251





#### Occupied Bandwidth (99%) PCS 1900 BAND CH 512

#### Occupied Bandwidth (99%) PCS 1900 BAND CH 661





m Analyzer - Occupied B 
 Xi
 RL
 RF
 SD Q
 AC

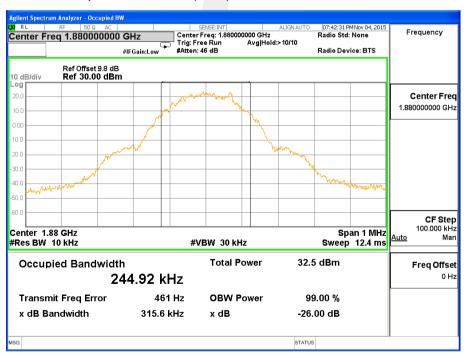
 Center Freq 1.909800000 GHz

 SENSE.INT
 ALIGNAUTO

 GHz
 Center Freg: 1.909800000 GHz
 Trig: Freg Run

 Trig: Freg Run
 Avg|Hold>10/10

 #/IFGain:Low
 #Atten: 46 dB
 07:31:35 PM Nov 04, 2015 Radio Std: None Frequency Radio Device: BTS Ref Offset 9.8 dB Ref 30.00 dBm 10 dB/div Log **Center Freq** 1.909800000 GHz on. 30 4N CF Step 100.000 kHz Man Center 1.91 GHz #Res BW 10 kHz Span 1 MHz Sweep 12.4 ms Auto #VBW 30 kHz **Occupied Bandwidth** Total Power 32.4 dBm Freq Offset 245.84 kHz 0 Hz Transmit Freg Error 893 Hz **OBW Power** 99.00 % x dB Bandwidth 310.0 kHz x dB -26.00 dB STATUS


# Occupied Bandwidth (99%) PCS 1900 BAND CH 810





#### Occupied Bandwidth (99%) GPRS 1900 BAND CH 512

# Occupied Bandwidth (99%) GPRS 1900 BAND CH 661

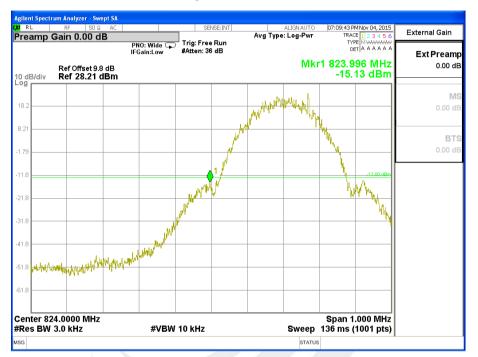




um Analyzer - Occupied BV Aglentspest minimut, are 50 Ω AC Center Freq 1.909800000 GHz 
 SENSE.INT
 ALIGNAUTO

 GHz
 Center Freg: 1.909800000 GHz
 Trig: Freg Run

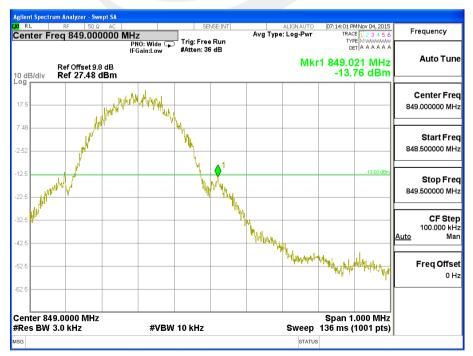
 Trig: Freg Run
 Avg|Hold>10/10


 #/IFGain:Low
 #Atten: 46 dB
 07:43:06 PM Nov 04, 2015 Radio Std: None Frequency Radio Device: BTS Ref Offset 9.8 dB Ref 30.00 dBm 10 dB/div Log **Center Freq** 1.909800000 GHz 30 40 CF Step 100.000 kHz Man Center 1.91 GHz #Res BW 10 kHz Span 1 MHz Sweep 12.4 ms Auto #VBW 30 kHz **Occupied Bandwidth** Total Power 34.9 dBm Freq Offset 245.78 kHz 0 Hz Transmit Freg Error -650 Hz **OBW Power** 99.00 % x dB Bandwidth 315.6 kHz x dB -26.00 dB STATUS

# Occupied Bandwidth (99%) GPRS 1900 BAND CH 810



# **APPENDIX III**


# **TEST PLOTS FOR BAND EDGES**



Low Band Edge GSM 850 BAND CH 128

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

#### High Band Edge GSM 850 BAND CH 251



Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.

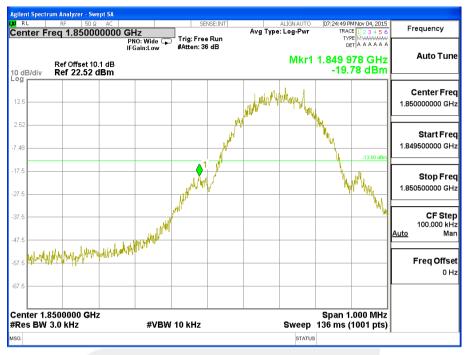
1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com







#### Low Band Edge GPRS 850 BAND CH 128


Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

#### High Band Edge GPRS 850 BAND CH 251



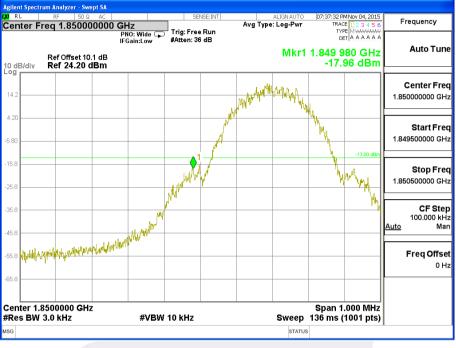
Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB





#### Low Band Edge PCS 1900 BAND CH 512

Note:Offset=Cable loss(9.8)+10log(3.2/3)=9.8+0.3=10.1 dB


#### High Band Edge PCS 1900 BAND CH 810



Note:Offset=Cable loss(9.8)+10log(3.2/3)=9.8+0.3=10.1 dB







### Low Band Edge GPRS 1900 BAND CH 512

Note:Offset=Cable loss(9.8)+10log(3.2/3)=9.8+0.3=10.1 dB

#### High Band Edge GPRS 1900 BAND CH 810



Note:Offset=Cable loss(9.8)+10log(3.2/3)=9.8+0.3=10.1 dB



# **APPENDIX IV**

# PHOTOS OF TEST SETUP

RADIATED SPURIOUS EMISSION





\* \* \* \* \* END OF THE REPORT \* \* \* \* \*

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com