Test Report No : F431003

Schmid & Partner Engineering AG

S e aq p

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003 Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	38.2	$\pm 5\%$
Conductivity	1.89 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue:

55.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue:

25.0 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.158 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$\operatorname{Re}\{Z\} = 52.5 \Omega$
	Im $\{Z\} = 3.6 \Omega$
Return Loss at 2450 MHz	-27.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **body simulating solution** of the following electrical parameters at 2450 MHz:

Relative Dielectricity	50.8	$\pm 5\%$
Conductivity	2.03 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	56.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	25.8 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 48.7 \Omega$
	Im $\{Z\} = 4.8 \Omega$
Return Loss at 2450 MHz	-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Test Report No : F431003

Page 1 of 1 Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_M2456_270803.da4

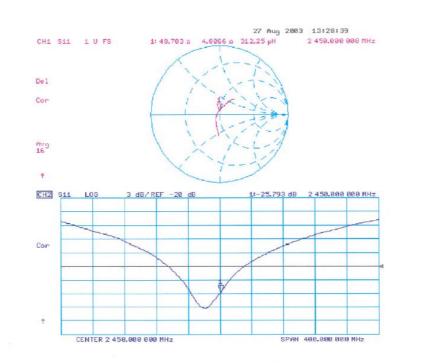
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz (σ = 2.03 mho/m, ϵ_r = 50.75, ρ = 1000 kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Maximum value of SAR = 16 mW/g

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm dz=5mm Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/g Reference Value = 91 V/m Power Drift = -0.02 dB

dB = 16 mW/g

Test Report No : F431003

-

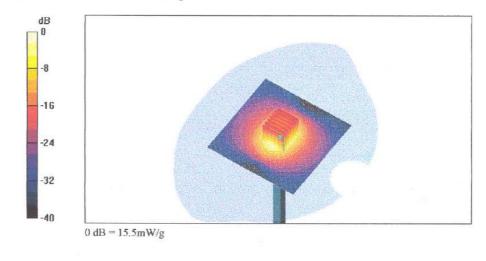
Test Report No : F431003

Page 1 of 1 Date/Time: 08/27/03 11:42:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: <u>SN736_SN3013_HSL2450_270803.da4</u>

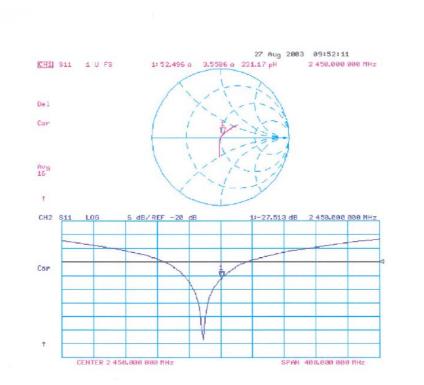
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz (σ = 1.89 mho/m, ϵ_r = 38.19, ρ = 1000 kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- · Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.3 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/g

Reference Value = 91.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.5 mW/g

Test Report No : F431003

F

Test Report No : F431003

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

Dbject(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	cedure for dosimetric E-field probe	95
calibration date:	August 29, 200	33	
Condition of the calibrated item	In Tolerance (according to the specific calibration	n document)
7025 international standard.	d in the closed laborato	used in the calibration procedures and conformity of ry facility: environment temperature 22 +/- 2 degrees	
Nodel Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
	The second second		
ower sensor E4412A ower sensor HP 8481A ower meter EPM E4419B letwork Analyzer HP 8753E	US3842U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B letwork Analyzer HP 8753E luke Process Calibrator Type 702	MY41495277 MY41092180 GB41293874 US37390585	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101)	Apr-04 Sep-03 Apr-04 In house check: Oct 03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B letwork Analyzer HP 8753E Puke Process Calibrator Type 702 Calibrated by:	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
R generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Hetwork Analyzer HP 8753E Ruke Process Calibrator Type 702 Calibrated by:	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nico Vetterti	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function Technician	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03

Test Report No : F431003

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

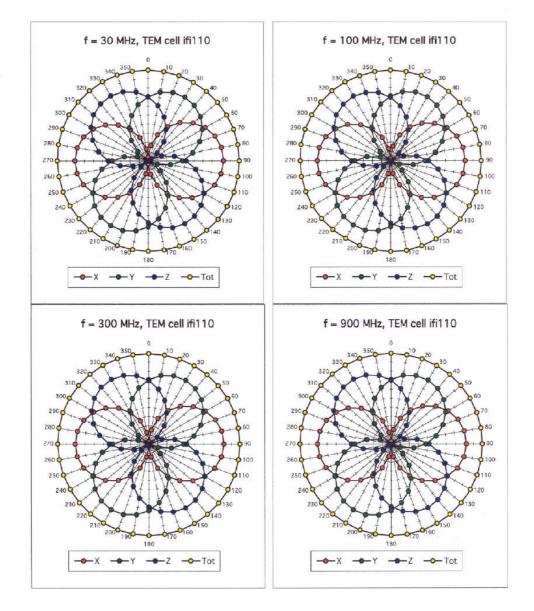
SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

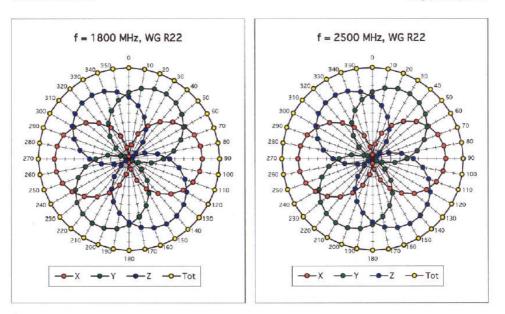
Page 1 of 10


August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788

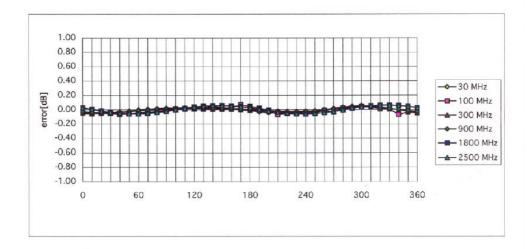
Sensitiv	Sensitivity in Free Space			Diode Compression		'n		
	NormX	1.6	58 μV/(V/ι	m) ²		DCP X	95	mV
	NormY	1.6	52 μV/(V/	m) ²		DCP Y	95	mV
	NormZ		71 μV/(V/			DCP Z	95	mV
0		O'mulat						
Head	ty in Tissue) MHz	•	a इ.= 41.5 ± 5%	a:	• 0.97 ± 5%	mbo/m	
		CARGONIA CONTRACTOR		ng Liquid accordir				
	ConvF X		6 ± 9.5%			Boundary ef		
	ConvF Y		6 ± 9.5%	. ,		Alpha	0.34	
	ConvF Z	6.	6 ± 9.5%	(k=2)		Depth	2.48	
Head	1800) MHz		$\epsilon_r = 40.0 \pm 5\%$	σ:	= 1.40 ± 5%	mho/m	
				ting Liquid accord				
	ConvF X	5.	3 ± 9.5%	(k=2)		Boundary ef	fect:	
	ConvF Y	5.	3 ± 9.5%	(k=2)		Alpha	0.43	
	ConvF Z	5.	.3 ± 9.5%	(k=2)		Depth	2.80	
Boundar	y Effect							
Head	90	0 MHz	Typical	SAR gradient:	5 % per mm			
	Probe Tip to i	Roundary				1 mm	2 mm	
	SAR _{be} [%]	Without Co	prrection Ale	aorithm		8.7	5.0	
	SAR _{be} [%]	With Corre	(10) - 17.57 - 1			0.3	0.5	
Head	180	0 MHz	Typical	SAR gradient:	10 % per mm			
	Probe Tip to I	Boundary				1 mm	2 mm	
	SAR _{be} [%]	Without Co	prrection Alg	gorithm		12.8	8.9	
	SAR _{bs} [%]	With Corre	ction Algori	ithm		0.3	0.1	
						4		
Sensor	Offset							
	Probe Tip to S	Sensor Cente	er		2.7		mm	
	Optical Surfac	ce Detection			1.6 ± 0.2		mm	

Page 2 of 10


August 29, 2003

Receiving Pattern (ϕ), θ = 0°

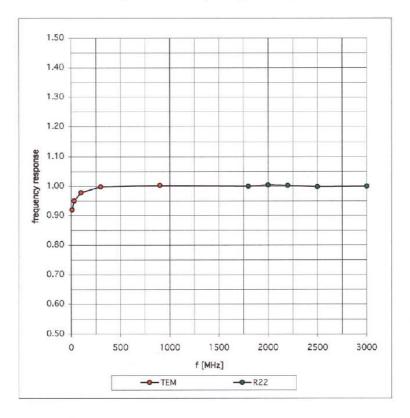
Page 3 of 10


Test Report No : F431003

ET3DV6 SN:1788

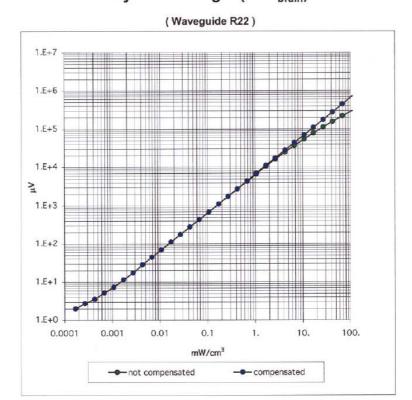
August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

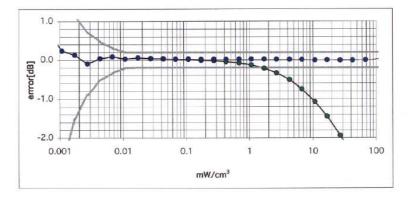


Page 4 of 10

August 29, 2003

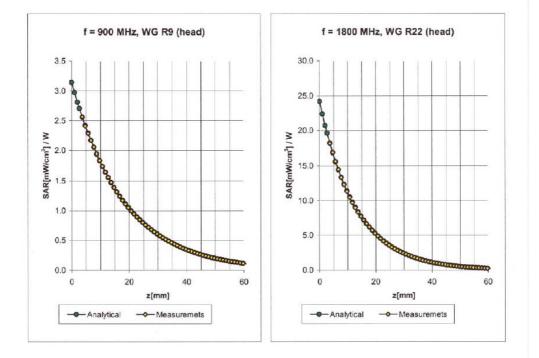

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)



Page 5 of 10

August 29, 2003

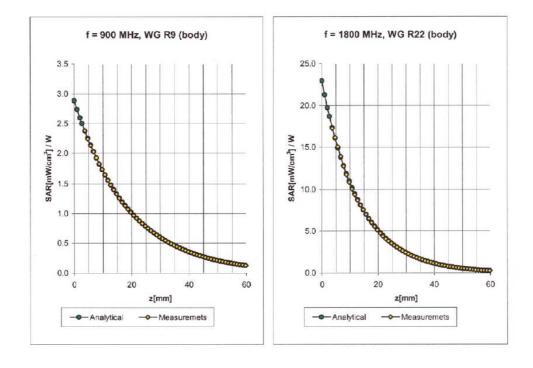


Dynamic Range f(SAR_{brain})

Page 6 of 10

August 29, 2003

Conversion Factor Assessment


Head	900 MHz		ϵ_r = 41.5 ± 5%	σ = 0.97 ± 5% n	nho/m
Valid for	f=800-1000 MHz with	Head Tissue	Simulating Liquid according to	EN 50361, P1528-200	x
	ConvF X	6.6	± 9.5% (k=2)	Boundary effe	ct:
	ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	±9.5% (k=2)	Depth	2.48
Head	1800 N	1Hz	ϵ_r = 40.0 ± 5%	σ=1.40±5%/n	nho/m
Valid for	f=1710-1910 MHz wit	th Head Tissu	ue Simulating Liquid according t	o EN 50361, P1528-20	ox
	ConvF X	5.3	± 9.5% (k=2)	Boundary effe	ct:
	ConvF Y	5.3	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)	Depth	2.80

Page 7 of 10

©2003 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

August 29, 2003

Conversion Factor Assessment

 Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

 ConvF X
 6.5
 ± 9.5% (k=2)
 Boundary effect:

 ConvF Y
 6.5
 ± 9.5% (k=2)
 Alpha
 0.31

 ConvF Z
 6.5
 ± 9.5% (k=2)
 Depth
 2.92

 $\varepsilon_r = 55.0 \pm 5\%$

Body

Body

1800 MHz

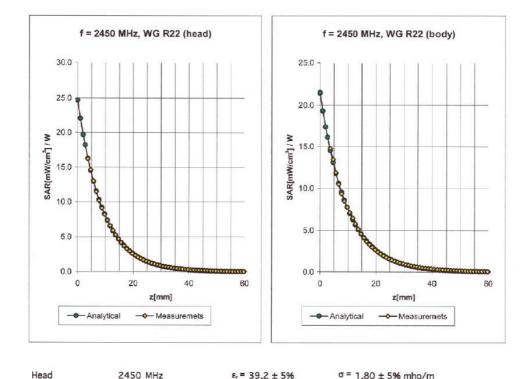
900 MHz

 $\epsilon_r = 53.3 \pm 5\%$

6 σ = 1.52 ± 5% mho/m

 $\sigma = 1.05 \pm 5\%$ mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	5.0 ± 9.5% (k=2)	Boundary effe	ect:
ConvF Y	5.0 ± 9.5% (k=2)	Alpha	0.51
ConvF Z	5.0 ± 9.5% (k=2)	Depth	2.78

Page 8 of 10

©2003 SPORTON International Inc..SAR Testing Lab

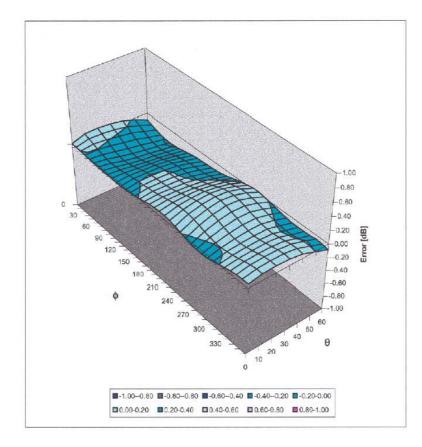
This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

August 29, 2003

Conversion Factor Assessment

Head	2450 M	HZ Er = 39.2 ± 5%	0 - 1.80 ± 5%	mho/m
Valid for	f=2400-2500 MHz wi	th Head Tissue Simulating Liquid according t	to EN 50361, P1528-20	xox
	ConvF X	4.7 ± 8.9% (k=2)	Boundary effe	ect:
	ConvF Y	4.7 ±8.9% (k=2)	Alpha	0.99
	ConvF Z	4.7 ± 8.9% (k=2)	Depth	1.81
Body	2450 M	1Hz ε _r = 52.7 ± 5%	σ = 1.95 ± 5% r	mho/m
Valid for	f=2400-2500 MHz wi	th Body Tissue Simulating Liquid according t	to OET 65 Suppl. C	
	ConvF X	4.5 ± 8.9% (k=2)	Boundary effe	ect:
	ConvF Y	4.5 ± 8.9% (k=2)	Alpha	1.01
	ConvF Z	4.5 ± 8.9% (k=2)	Depth	1.74

Page 9 of 10


Test Report No : F431003

ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ, ϕ) , f = 900 MHz

Page 10 of 10