Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250MHz | Impedance, transformed to feed point | 47.0Ω- 1.42jΩ | |--------------------------------------|---------------| | Return Loss | - 29.2dB | #### Antenna Parameters with Head TSL at 5600MHz | Impedance, transformed to feed point | 53.5Ω+ 1.70jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 28.5dB | | | #### Antenna Parameters with Head TSL at 5750MHz | Impedance, transformed to feed point | 50.2Ω+ 1.97jΩ | |--------------------------------------|---------------| | Return Loss | - 34.1dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.104 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z22-60016 Date: 2022-01-25 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com htt http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1313 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.708 S/m; ϵ_r = 36.15; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.088 S/m; ϵ_r = 35.54; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.252 S/m; ϵ_r = 35.32; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(5.4, 5.4, 5.4) @ 5250 MHz; ConvF(5, 5, 5) @ 5600 MHz; ConvF(5.12, 5.12, 5.12) @ 5750 MHz; Calibrated: 2021-01-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.82 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 18.5 W/kg #### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.59 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 37.5 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 60.4% Maximum value of SAR (measured) = 19.7 W/kg Certificate No: Z22-60016 Page 6 of 8 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.01 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 37.8 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.12 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 58.8% Maximum value of SAR (measured) = 19.2 W/kg 0 dB = 19.2 W/kg = 12.83 dBW/kg Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 .com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn SGS Certificate No: J23Z60278 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1374 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: June 05, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID # | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 14-Jun-22 (CTTL, No.J22X04180) | Jun-23 | | | | | | Name **Function** Signature Calibrated by: Yu Zongying **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 09, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60278 Page 1 of 3 Tel: +86-10-62304633-2117 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: J23Z60278 Page 2 of 3 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors X | | Y | Z | | |----------------------------------|----------------------|-----------------------|-----------------------|--| | High Range 403.650 ± 0.15% (k=2) | | 403.898 ± 0.15% (k=2) | 404.181 ± 0.15% (k=2) | | | Low Range | 3.98227 ± 0.7% (k=2) | 3.96727 ± 0.7% (k=2) | 3.98929 ± 0.7% (k=2) | | ## **Connector Angle** | Connector Angle to be used in DASY system 43° ± 1 ° | Connector Angle to be used in DASY system | 43° ± 1 ° | |---|---|-----------| |---|---|-----------| Certificate No: J23Z60278 Page 3 of 3 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn SGS Client **Certificate No:** J23Z60284 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 3962 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: June 29, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# C | Cal Date(Calibrated by, Certificate No.) Scheduled | Calibration | |--------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Power sensor NRP-Z91 | 101547 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Power sensor NRP-Z91 | 101548 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Reference 10dBAttenuator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212) | Jan-25 | | Reference 20dBAttenuator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211) | Jan-25 | | Reference Probe EX3DV4 | SN 7517 | 27-Jan-23(SPEAG, No.EX-7517_Jan23) | Jan-24 | | DAE4 | SN 1555 | 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) | Aug-23 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 12-Jun-23(CTTL, No.J23X05434) | Jun-24 | | Network Analyzer E5071C | MY46110673 | 10-Jan-23(CTTL, No.J23X00104) | Jan-24 | | Reference 10dBAttenuator | BT0520 | 11-May-23(CTTL, No.J23X04061) | May-25 | | Reference 20dBAttenuator | BT0267 | 11-May-23(CTTL, No.J23X04062) | May-25 | | OCP DAK-3.5 | SN 1040 | 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jar | n23) Jan-24 | | Nar | ne | Function Signature | | Name **Function** Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: SAR Test Engineer Approved by: Lin Hao Qi Dianyuan SAR Project Leader Issued: July 04, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60284 Page 1 of 9 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.43 | 0.47 | 0.44 | ±10.0% | | DCP(mV) ^B | 102.5 | 101.7 | 95.4 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|-------|-----|------|-------|------------------| | | System Name | | dB | dΒ√μV | | dB | mV | (<i>k</i> =2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 170.4 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 174.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 164.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(<i>k</i> =2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------| | 750 | 41.9 | 0.89 | 10.33 | 10.33 | 10.33 | 0.19 | 1.22 | ±12.7% | | 835 | 41.5 | 0.90 | 9.93 | 9.93 | 9.93 | 0.18 | 1.28 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.65 | 8.65 | 8.65 | 0.27 | 0.96 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.31 | 8.31 | 8.31 | 0.33 | 0.97 | ±12.7% | | 2300 | 39.5 | 1.67 | 8.06 | 8.06 | 8.06 | 0.65 | 0.67 | ±12.7% | | 2450 | 39.2 | 1.80 | 7.80 | 7.80 | 7.80 | 0.65 | 0.70 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.64 | 7.64 | 7.64 | 0.65 | 0.73 | ±12.7% | | 5250 | 35.9 | 4.71 | 5.60 | 5.60 | 5.60 | 0.50 | 1.27 | ±13.9% | | 5600 | 35.5 | 5.07 | 5.02 | 5.02 | 5.02 | 0.45 | 1.40 | ±13.9% | | 5750 | 35.4 | 5.22 | 5.11 | 5.11 | 5.11 | 0.45 | 1.42 | ±13.9% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)