

802.1	802.11n-HT40 Power Spectral Density - Ant 9 / Ant 8 + 9							
Channel 151 (5755MHz)	Channel 159 (5795MHz	.)					
Spectrum Analyzer 1 Spectrum Analyzer 2 Cocaped BW Second BW KEYSIGHT I Instit IB Content Analyzer 2 Content	Ang Type: Power (IRAS) 2 3 4 3 6 Angenetic troot to Tag Frie Run Mkr1 5.749 96 GHz 0.383 dBm Next Pickarn Next Pickarn Nex	Spectrum Analyzer 1 Spectrum Analyzer 2 + Cocapied BW Spectrum Analyzer 2 + KEVSIGHT Provide RF 	Marker Marker 5 Gelect Marker 6 Gelect Marker 7 Marker 1 8 Marker 1 9 Marker 2 9 Peak Search Peak 9 Next Pic Right Properties Next Pic Left Marker - Marker 1 Marker -					
30	Signa 10 00 Microsoft and Signa 10 Microsoft and S	200 300 400 400 400 400 400 400 4	Nuc PL-PX Search Counter Marker Detta MirOF Mir-Ref Lvi Search Search Search					

	802.11ac-VHT40 Power Spectral Density - Ant 9 / Ant 8 + 9							
	Channel 151	(5755MHz)			Channel 159	9 (5795MHz)		
Spectrum Analyzer 1 Coopied BW KEYSIGHT mean Re Coupied Rate Coupied Rate Coupied Rate Scate/Otv 10 dB Coupied Rate Coupied Rate Coup	Induttan Analyser 2 Input 2 50 0 Constitute of the Def C off off off off off off off off off	Aug Type: Power (BMS) 2 3 4 5 0 Aug Type: Inovice (BT Files Rink) Mkr1 5.750 60 GHz 1.030 dBm	Marker Processor Bielect Marker Select Marker Select Marker Marker 1 Select Marker Select Marker Sociococo Cell Select Marker Select Marker Peak Search Presents Select Marker Next Prevail Properties Select Marker Next Prevail Properties Marker - Pre-Prevail Marker Detail Marker Detail Marker Detail MorGF MorGF MorGF MorGF	Spectrum Analyzer 1 Coupled BW KEYSLET Insul R: Coupled BW I Spectrum I Spec	Specifican Analyzer 2 Swept SA Ingul Z SO 0 Controlline (M Net C V Official 23:50 dB Ref Level 50.00 dBn	Aug Type Fower (BMS) 2 3 4 3 G Aug Type Fower (BMS) 2 3 4 3 G Auw uww Might Fig Tree (Might) Auw uww Mikrt 5.789 96 GHz 1.149 dBm	Marker Select Marker Marker 1 Marker 1 Marker Proguency S. 7100620000 GHz Peak Search Next Pk Right Next Pk Right Next Pk Right Mermum Peak Pk-Pk Search Marker Delta McrCF	Reak Seatch Progenes Marker- Propenes Marker- Counter
Center 5.75500 GHz #Res BW 100 kHz	#Video BW 300 kHz*	Span 80.00 MHz Sweep 3.80 ms (1001 pts)	Continuous Peak Search On Off	Center 5.79500 GHz #Res BW 100 kHz	#Video BW 300 kHz* P Dec 04, 2019 Dec 04, 2019	Span 80.00 MHz Sweep 3.80 ms (1001 pts)	Continuous Peak Search On Off	

7.7. Frequency Stability Measurement

7.7.1.Test Limit

Manufactures of NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

7.7.2.Test Procedure Used

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

7.7.3.Test Setup

7.7.4.Test Result

Product	FastMile 4G Gateway	Temperature	0 ~ 45°C
Test Engineer	David Lv	Relative Humidity	48 ~ 55%RH
Test Site	TR3	Test Data	2019/12/15
Test Mode	5500MHz (Carrier Mode)		

Voltage (%)	Power (VAC)	Temp (°C)	Frequency Tolerance (ppm)
		0	4.44
		+ 10	-0.43
4000/	120	+ 20 (Ref)	-4.88
100%		+ 30	-5.94
		+ 40	-6.10
		+ 45	-5.77
115%	138	+ 20	-4.44
85%	102	+ 20	-4.14

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} $*10^{6}$.

7.8. Radiated Spurious Emission Measurement

7.8.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency	Field Strength	Measured Distance				
[MHz]	[uV/m]	[Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

7.8.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.8.3.Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW		
9 ~ 150 kHz	200 ~ 300 Hz		
0.15 ~ 30 MHz	9 ~ 10 kHz		
30 ~ 1000 MHz	100 ~ 120 kHz		
> 1000MHz	1MHz		

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- If the EUT duty cycle is < 98%, set VBW \ge 1/T. T is the minimum transmission duration.
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.8.4.Test Setup

Below 1GHz Test Setup:

7.8.5.Test Result

Product	GigaSpire	Temperature	25°C			
Test Engineer	Dillon Diao	Relative Humidity	52%			
Test Site	AC1	Test Date	2019/12/03			
Test Mode:	802.11a - Ant 8	Test Channel:	36			
Remark:	1. Average measurement was no	t performed if peak l	level lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7332.5	35.7	11.7	47.4	74.0	-26.6	Peak	Horizontal
	8199.5	35.4	12.4	47.8	74.0	-26.2	Peak	Horizontal
*	8786.0	34.9	14.1	49.0	68.2	-19.2	Peak	Horizontal
*	9602.0	35.7	16.2	51.9	68.2	-16.3	Peak	Horizontal
	7536.5	36.2	11.8	48.0	74.0	-26.0	Peak	Vertical
	8242.0	37.5	12.2	49.7	74.0	-24.3	Peak	Vertical
*	8692.5	35.6	14.0	49.6	68.2	-18.6	Peak	Vertical
*	9993.0	36.6	16.7	53.3	68.2	-14.9	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	GigaSpire	Temperature	25°C			
Test Engineer	Dillon Diao	Relative Humidity	52%			
Test Site	AC1	Test Date	2019/12/03			
Test Mode:	802.11a - Ant 8	Test Channel:	44			
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	35.3	11.8	47.1	74.0	-26.9	Peak	Horizontal
	8191.0	36.0	12.4	48.4	74.0	-25.6	Peak	Horizontal
*	8769.0	35.2	14.2	49.4	68.2	-18.8	Peak	Horizontal
*	10214.0	35.8	17.0	52.8	68.2	-15.4	Peak	Horizontal
	7443.0	37.8	12.1	49.9	74.0	-24.1	Peak	Vertical
	8157.0	36.7	12.5	49.2	74.0	-24.8	Peak	Vertical
*	8692.5	36.2	14.0	50.2	68.2	-18.0	Peak	Vertical
*	10001.5	35.9	16.8	52.7	68.2	-15.5	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ıg a "convers ⁱ	ion" factor of 98	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	: Measure Le	vel (dBµV/m)	= Readinç	J Level (dBµ∖	/) + Factor (dB))		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	6)	

Product	GigaSpire	Temperature	25°C			
Test Engineer	Dillon Diao	Relative Humidity	52%			
Test Site	AC1	Test Date	2019/12/03			
Test Mode:	802.11a - Ant 8	Test Channel:	48			
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	35.6	11.9	47.5	74.0	-26.5	Peak	Horizontal
	8361.0	36.4	12.4	48.8	74.0	-25.2	Peak	Horizontal
*	8658.5	35.1	13.7	48.8	68.2	-19.4	Peak	Horizontal
*	9857.0	34.8	16.8	51.6	68.2	-16.6	Peak	Horizontal
	7553.5	35.3	11.7	47.0	74.0	-27.0	Peak	Vertical
	8165.5	35.7	12.4	48.1	74.0	-25.9	Peak	Vertical
*	8811.5	34.9	14.3	49.2	68.2	-19.0	Peak	Vertical
*	9967.5	36.5	16.7	53.2	68.2	-15.0	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "convers	ion" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)							
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB)	

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	52					
Remark:	1. Average measurement was not p	performed if peak level low	wer than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7451.5	37.5	12.0	49.5	74.0	-24.5	Peak	Horizontal
	8199.5	37.1	12.4	49.5	74.0	-24.5	Peak	Horizontal
*	8692.5	36.3	14.0	50.3	68.2	-17.9	Peak	Horizontal
*	10197.0	36.2	17.1	53.3	68.2	-14.9	Peak	Horizontal
	7570.5	35.5	11.7	47.2	74.0	-26.8	Peak	Vertical
	8429.0	35.3	12.7	48.0	74.0	-26.0	Peak	Vertical
*	8769.0	34.9	14.2	49.1	68.2	-19.1	Peak	Vertical
*	10086.5	34.3	16.8	51.1	68.2	-17.1	Peak	Vertical
Noto 1	. "*" ic not in r	actricted ban	dite limiti	c 27dBm/ML	Jz Ata dictore	o of 2 mo	tore the f	ield strongth

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	60					
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	35.5	11.8	47.3	74.0	-26.7	Peak	Horizontal
	8250.5	36.6	12.2	48.8	74.0	-25.2	Peak	Horizontal
*	8837.0	34.5	14.3	48.8	68.2	-19.4	Peak	Horizontal
*	9831.5	34.6	16.9	51.5	68.2	-16.7	Peak	Horizontal
	7621.5	36.4	11.6	48.0	74.0	-26.0	Peak	Vertical
	8199.5	35.6	12.4	48.0	74.0	-26.0	Peak	Vertical
*	8701.0	35.0	14.0	49.0	68.2	-19.2	Peak	Vertical
*	9670.0	36.5	16.6	53.1	68.2	-15.1	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ıg a "convers ⁱ	ion" factor of 9!	5.2dB to t	the EIRP I	imit of
-27dBm	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Readinç	J Level (dBµ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) +	Antenna F	actor (dB/m)	- Pre_Amplifier	Gain (dB	\$)	

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	64					
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	36.1	11.9	48.0	74.0	-26.0	Peak	Horizontal
	8369.5	37.1	12.3	49.4	74.0	-24.6	Peak	Horizontal
*	8854.0	36.5	14.4	50.9	68.2	-17.3	Peak	Horizontal
*	9823.0	37.1	16.9	54.0	68.2	-14.2	Peak	Horizontal
	7460.0	36.5	11.9	48.4	74.0	-25.6	Peak	Vertical
	8310.0	36.0	12.2	48.2	74.0	-25.8	Peak	Vertical
*	8675.5	35.4	13.8	49.2	68.2	-19.0	Peak	Vertical
*	9933.5	34.9	16.9	51.8	68.2	-16.4	Peak	Vertical
Note 1:	. "*" is not in r	estricted band	d, its limit i	s -27dBm/Mł	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBn	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)							
Factor	(dB) = Cable	Loss (dB) + /	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	100					
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average					
	limit.	limit.						
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7621.5	36.4	11.6	48.0	74.0	-26.0	Peak	Horizontal	
	8233.5	36.3	12.3	48.6	74.0	-25.4	Peak	Horizontal	
*	8888.0	35.7	14.2	49.9	68.2	-18.3	Peak	Horizontal	
*	9993.0	34.5	16.7	51.2	68.2	-17.0	Peak	Horizontal	
	7502.5	35.5	11.9	47.4	74.0	-26.6	Peak	Vertical	
	8386.5	35.0	12.4	47.4	74.0	-26.6	Peak	Vertical	
*	8735.0	34.7	14.0	48.7	68.2	-19.5	Peak	Vertical	
*	10010.0	35.2	16.8	52.0	68.2	-16.2	Peak	Vertical	
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength	
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	ion" factor of 9	5.2dB to t	the EIRP I	imit of	
-27dBm	27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	: Measure Le	vel (dBµV/m)	= Reading	J Level (dBµ∖	/) + Factor (dB)			

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	120					
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	37.2	11.8	49.0	74.0	-25.0	Peak	Horizontal
	8327.0	36.3	12.2	48.5	74.0	-25.5	Peak	Horizontal
*	8854.0	35.1	14.4	49.5	68.2	-18.7	Peak	Horizontal
*	9636.0	36.4	16.2	52.6	68.2	-15.6	Peak	Horizontal
	7366.5	36.0	11.9	47.9	74.0	-26.1	Peak	Vertical
	8208.0	35.9	12.3	48.2	74.0	-25.8	Peak	Vertical
*	8692.5	34.7	14.0	48.7	68.2	-19.5	Peak	Vertical
*	9976.0	35.4	16.6	52.0	68.2	-16.2	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ıg a "conversi	on" factor of 9	5.2dB to t	the EIRP I	imit of
-27dBn	27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	ι Level (dBμ∖	/) + Factor (dB)		

Product	FastMile 4G Gateway	Temperature	25°C					
Test Engineer	Cloud Guo	Relative Humidity	52%					
Test Site	AC2	Test Date	2019/12/03					
Test Mode:	802.11a - Ant 8	Test Channel:	140					
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	36.9	11.9	48.8	74.0	-25.2	Peak	Horizontal
	8250.5	36.7	12.2	48.9	74.0	-25.1	Peak	Horizontal
*	8692.5	36.8	14.0	50.8	68.2	-17.4	Peak	Horizontal
*	9993.0	36.3	16.7	53.0	68.2	-15.2	Peak	Horizontal
	7468.5	37.1	11.8	48.9	74.0	-25.1	Peak	Vertical
	8199.5	37.2	12.4	49.6	74.0	-24.4	Peak	Vertical
*	8828.5	35.6	14.3	49.9	68.2	-18.3	Peak	Vertical
*	10010.0	34.7	16.8	51.5	68.2	-16.7	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ıg a "convers ⁱ	ion" factor of 9	5.2dB to t	the EIRP I	imit of
-27dBn	27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Readinç	J Level (dBµ\	/) + Factor (dB)		

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11a - Ant 8	Test Channel:	144
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7502.5	35.6	11.9	47.5	74.0	-26.5	Peak	Horizontal	
	8327.0	35.1	12.2	47.3	74.0	-26.7	Peak	Horizontal	
*	8811.5	34.5	14.3	48.8	68.2	-19.4	Peak	Horizontal	
*	9976.0	36.4	16.6	53.0	68.2	-15.2	Peak	Horizontal	
	7689.5	37.9	11.6	49.5	74.0	-24.5	Peak	Vertical	
	8310.0	35.3	12.2	47.5	74.0	-26.5	Peak	Vertical	
*	8743.5	34.7	14.1	48.8	68.2	-19.4	Peak	Vertical	
*	9950.5	35.0	16.9	51.9	68.2	-16.3	Peak	Vertical	
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength	
limit in	limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of								
-27dBn	27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	: Measure Le	vel (dBµV/m)	= Reading	, Level (dBμ∖	/) + Factor (dB)			

Product	GigaSpire	Temperature	25°C
Test Engineer	Dillon Diao	Relative Humidity	52%
Test Site	AC1	Test Date	2019/12/03
Test Mode:	802.11a - Ant 8	Test Channel:	149
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average
	limit.		
	2. Other frequency was 20dB belo	ow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	11489.5	41.3	17.7	59.0	74.0	-15.0	Peak	Horizontal
	11489.5	30.5	17.7	48.2	54.0	-5.8	Average	Horizontal
	12220.0	37.2	17.1	54.3	74.0	-19.7	Peak	Horizontal
	12220.0	31.1	17.1	48.2	54.0	-5.8	Average	Horizontal
*	12959.5	35.7	17.9	53.6	68.2	-14.6	Peak	Horizontal
*	14039.0	35.5	19.7	55.2	68.2	-13.0	Peak	Horizontal
	7536.5	37.0	11.8	48.8	74.0	-25.2	Peak	Vertical
	8225.0	38.0	12.4	50.4	74.0	-23.6	Peak	Vertical
*	13138.0	34.9	18.0	52.9	68.2	-15.3	Peak	Vertical
*	13894.5	37.8	19.4	57.2	68.2	-11.0	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz or -17dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	GigaSpire	Temperature	25°C			
Test Engineer	Dillon Diao	Relative Humidity	52%			
Test Site	AC1	Test Date	2019/12/03			
Test Mode:	802.11a - Ant 8	Test Channel:	157			
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	11569.2	44.7	17.4	62.1	74.0	-11.9	Peak	Horizontal
	11569.2	36.0	17.4	53.4	54.0	-0.6	Average	Horizontal
	12509.0	37.4	17.0	54.4	74.0	-19.6	Peak	Horizontal
	12509.0	30.8	17.0	47.8	54.0	-6.2	Average	Horizontal
*	15220.5	35.1	19.1	54.2	68.2	-14.0	Peak	Horizontal
*	17362.5	40.5	21.2	61.7	68.2	-6.5	Peak	Horizontal
	11569.4	42.3	17.4	59.7	74.0	-14.3	Peak	Vertical
	11569.4	32.0	17.4	49.4	54.0	-4.6	Average	Vertical
	12347.5	35.9	16.9	52.8	74.0	-21.2	Peak	Vertical
*	14056.0	36.4	19.6	56.0	68.2	-12.2	Peak	Vertical
*	17354.0	41.5	20.9	62.4	68.2	-5.8	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz or -17dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	GigaSpire	Temperature	25°C			
Test Engineer	Dillon Diao	Relative Humidity	52%			
Test Site	AC1	Test Date	2019/12/03			
Test Mode:	802.11a - Ant 8	Test Channel:	165			
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	37.4	11.9	49.3	74.0	-24.7	Peak	Horizontal
	8352.5	36.1	12.3	48.4	74.0	-25.6	Peak	Horizontal
*	8828.5	35.8	14.3	50.1	68.2	-18.1	Peak	Horizontal
*	9942.0	35.4	16.9	52.3	68.2	-15.9	Peak	Horizontal
	7443.0	36.6	12.1	48.7	74.0	-25.3	Peak	Vertical
	8310.0	36.1	12.2	48.3	74.0	-25.7	Peak	Vertical
*	8769.0	35.6	14.2	49.8	68.2	-18.4	Peak	Vertical
*	9984.5	35.9	16.7	52.6	68.2	-15.6	Peak	Vertical
Note 1:	: "*" is not in r	restricted ban	d, its limit i	is -27dBm/Mł	Hz or -17dBm/N	/Hz. At a	distance	of 3 meters,
the field	d strength lim	it in dBµV/m	can be det	termined by a	adding a "conve	ersion" fa	ctor of 95.	2dB to the
EIRP li	EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2:	: Measure Le	vel (dBµV/m)	= Reading	ı Level (dBµ∖	/) + Factor (dB))		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	GigaSpire	Temperature	25°C
Test Engineer	Dillon Diao	Relative Humidity	52%
Test Site	AC1	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	36
Remark:	1. Average measurement was no	t performed if peak	level lower than average
	limit.		
	2. Other frequency was 20dB bel	ow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7596.0	36.8	11.8	48.6	74.0	-25.4	Peak	Horizontal
	8420.5	36.0	12.5	48.5	74.0	-25.5	Peak	Horizontal
*	8701.0	35.2	14.0	49.2	68.2	-19.0	Peak	Horizontal
*	10103.5	35.7	17.0	52.7	68.2	-15.5	Peak	Horizontal
	7689.5	37.1	11.6	48.7	74.0	-25.3	Peak	Vertical
	8310.0	36.1	12.2	48.3	74.0	-25.7	Peak	Vertical
*	8811.5	35.2	14.3	49.5	68.2	-18.7	Peak	Vertical
*	9763.5	35.3	16.7	52.0	68.2	-16.2	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)							
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB)	

Product	GigaSpire	Temperature	25°C					
Test Engineer	Dillon Diao	Relative Humidity	52%					
Test Site	AC1	Test Date	2019/12/03					
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	44					
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average					
	limit.							
	2. Other frequency was 20dB bel	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7545.0	36.5	11.7	48.2	74.0	-25.8	Peak	Horizontal
	8335.5	36.5	12.2	48.7	74.0	-25.3	Peak	Horizontal
*	8862.5	35.5	14.4	49.9	68.2	-18.3	Peak	Horizontal
*	9721.0	35.5	16.7	52.2	68.2	-16.0	Peak	Horizontal
	7545.0	35.9	11.7	47.6	74.0	-26.4	Peak	Vertical
	8412.0	36.6	12.3	48.9	74.0	-25.1	Peak	Vertical
*	8692.5	35.6	14.0	49.6	68.2	-18.6	Peak	Vertical
*	9891.0	35.4	16.9	52.3	68.2	-15.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	μ Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) + /	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	GigaSpire	Temperature	25°C
Test Engineer	Dillon Diao	Relative Humidity	52%
Test Site	AC1	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	48
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average
	limit.		
	2. Other frequency was 20dB bel	ow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7485.5	36.4	11.8	48.2	74.0	-25.8	Peak	Horizontal
	8429.0	36.6	12.7	49.3	74.0	-24.7	Peak	Horizontal
*	8684.0	35.5	13.9	49.4	68.2	-18.8	Peak	Horizontal
*	9950.5	35.4	16.9	52.3	68.2	-15.9	Peak	Horizontal
	7477.0	35.8	11.7	47.5	74.0	-26.5	Peak	Vertical
	8165.5	35.5	12.4	47.9	74.0	-26.1	Peak	Vertical
*	8769.0	35.0	14.2	49.2	68.2	-19.0	Peak	Vertical
*	9831.5	33.9	16.9	50.8	68.2	-17.4	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	ion" factor of 98	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)							
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	52
Remark:	1. Average measurement was not p	performed if peak level lo	wer than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-18GH	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	35.5	11.7	47.2	74.0	-26.8	Peak	Horizontal
	8437.5	36.4	12.7	49.1	74.0	-24.9	Peak	Horizontal
*	8871.0	36.3	14.3	50.6	68.2	-17.6	Peak	Horizontal
*	10163.0	35.1	16.9	52.0	68.2	-16.2	Peak	Horizontal
	7570.5	35.7	11.7	47.4	74.0	-26.6	Peak	Vertical
	8395.0	36.0	12.4	48.4	74.0	-25.6	Peak	Vertical
*	8735.0	34.7	14.0	48.7	68.2	-19.5	Peak	Vertical
*	9593.5	34.2	16.3	50.5	68.2	-17.7	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBn	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	ι Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) + /	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	60
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	35.6	11.8	47.4	74.0	-26.6	Peak	Horizontal
	8276.0	35.9	12.3	48.2	74.0	-25.8	Peak	Horizontal
*	8786.0	34.9	14.1	49.0	68.2	-19.2	Peak	Horizontal
*	9857.0	35.1	16.8	51.9	68.2	-16.3	Peak	Horizontal
	7587.5	35.3	11.7	47.0	74.0	-27.0	Peak	Vertical
	8165.5	35.2	12.4	47.6	74.0	-26.4	Peak	Vertical
*	8735.0	35.2	14.0	49.2	68.2	-19.0	Peak	Vertical
*	9789.0	34.7	16.8	51.5	68.2	-16.7	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	μ Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) + /	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	64
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7579.0	37.2	11.6	48.8	74.0	-25.2	Peak	Horizontal	
	8225.0	36.2	12.4	48.6	74.0	-25.4	Peak	Horizontal	
*	8735.0	35.0	14.0	49.0	68.2	-19.2	Peak	Horizontal	
*	9857.0	33.7	16.8	50.5	68.2	-17.7	Peak	Horizontal	
	7400.5	36.9	11.8	48.7	74.0	-25.3	Peak	Vertical	
	8310.0	35.7	12.2	47.9	74.0	-26.1	Peak	Vertical	
*	8794.5	34.5	14.2	48.7	68.2	-19.5	Peak	Vertical	
*	9670.0	35.6	16.6	52.2	68.2	-16.0	Peak	Vertical	
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Hz. At a distanc	e of 3 me	ters, the f	ield strength	
limit in	limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of								
-27dBn	27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	: Measure Le	vel (dBµV/m)	= Reading	ι Level (dBμ∖	/) + Factor (dB)			

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	100
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	34.9	11.8	46.7	74.0	-27.3	Peak	Horizontal
	8242.0	35.8	12.2	48.0	74.0	-26.0	Peak	Horizontal
*	8803.0	36.0	14.2	50.2	68.2	-18.0	Peak	Horizontal
*	10010.0	34.3	16.8	51.1	68.2	-17.1	Peak	Horizontal
	7596.0	35.2	11.8	47.0	74.0	-27.0	Peak	Vertical
	8454.5	34.9	12.6	47.5	74.0	-26.5	Peak	Vertical
*	8743.5	34.7	14.1	48.8	68.2	-19.4	Peak	Vertical
*	9899.5	34.8	16.9	51.7	68.2	-16.5	Peak	Vertical
Note 1:	"*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBn	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	g Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	120
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	35.8	11.8	47.6	74.0	-26.4	Peak	Horizontal
	8276.0	35.4	12.3	47.7	74.0	-26.3	Peak	Horizontal
*	8794.5	34.7	14.2	48.9	68.2	-19.3	Peak	Horizontal
*	10163.0	34.8	16.9	51.7	68.2	-16.5	Peak	Horizontal
	7647.0	37.1	11.4	48.5	74.0	-25.5	Peak	Vertical
	8216.5	35.5	12.3	47.8	74.0	-26.2	Peak	Vertical
*	8769.0	34.8	14.2	49.0	68.2	-19.2	Peak	Vertical
*	9942.0	34.4	16.9	51.3	68.2	-16.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBn	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	ι Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	140
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	35.4	11.9	47.3	74.0	-26.7	Peak	Horizontal
	8250.5	36.5	12.2	48.7	74.0	-25.3	Peak	Horizontal
*	8769.0	34.3	14.2	48.5	68.2	-19.7	Peak	Horizontal
*	9814.5	33.7	16.8	50.5	68.2	-17.7	Peak	Horizontal
	7536.5	35.0	11.8	46.8	74.0	-27.2	Peak	Vertical
	8242.0	35.0	12.2	47.2	74.0	-26.8	Peak	Vertical
*	8667.0	34.1	13.8	47.9	68.2	-20.3	Peak	Vertical
*	9942.0	34.8	16.9	51.7	68.2	-16.5	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	ion" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBn	-27dBm/MHz to obtain the limit for out of band spurious emissions.							
Note 2	: Measure Le	vel (dBµV/m)	= Reading	ι Level (dBμ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	FastMile 4G Gateway	Temperature	25°C
Test Engineer	Cloud Guo	Relative Humidity	52%
Test Site	AC2	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	144
Remark:	1. Average measurement was not p	performed if peak level lov	wer than average
	limit.		
	2. Other frequency was 20dB below	limit line within 1-18GHz	z, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	34.8	11.8	46.6	74.0	-27.4	Peak	Horizontal
	8276.0	35.7	12.3	48.0	74.0	-26.0	Peak	Horizontal
*	8769.0	34.9	14.2	49.1	68.2	-19.1	Peak	Horizontal
*	10027.0	35.5	16.8	52.3	68.2	-15.9	Peak	Horizontal
	7655.5	35.4	11.4	46.8	74.0	-27.2	Peak	Vertical
	8318.5	35.2	12.2	47.4	74.0	-26.6	Peak	Vertical
*	8811.5	34.7	14.3	49.0	68.2	-19.2	Peak	Vertical
*	9976.0	34.8	16.6	51.4	68.2	-16.8	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	: Measure Le	vel (dBµV/m)	= Reading	J Level (dBµ∖	/) + Factor (dB)		
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	GigaSpire	Temperature	25°C
Test Engineer	Dillon Diao	Relative Humidity	52%
Test Site	AC1	Test Date	2019/12/03
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	149
Remark:	1. Average measurement was no	t performed if peak	evel lower than average
	limit.		
	2. Other frequency was 20dB belo	ow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	10877.0	34.5	18.1	52.6	74.0	-21.4	Peak	Horizontal
	11488.7	40.9	17.7	58.6	74.0	-15.4	Peak	Horizontal
	11488.7	30.1	17.7	47.8	54.0	-6.2	Average	Horizontal
*	13078.5	33.7	17.9	51.6	68.2	-16.6	Peak	Horizontal
*	14209.0	35.0	20.3	55.3	68.2	-12.9	Peak	Horizontal
	8276.0	36.2	12.3	48.5	74.0	-25.5	Peak	Vertical
	11489.0	36.9	17.7	54.6	74.0	-19.4	Peak	Vertical
	11489.0	31.7	17.7	49.4	54.0	-4.6	Average	Vertical
*	13138.0	33.2	18.0	51.2	68.2	-17.0	Peak	Vertical
*	13869.0	34.2	19.2	53.4	68.2	-14.8	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz or -17dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	GigaSpire	Temperature	25°C					
Test Engineer	Dillon Diao	Relative Humidity	52%					
Test Site	AC1	Test Date	2019/12/03					
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	157					
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average					
	limit.							
	2. Other frequency was 20dB bel	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	10877.0	36.4	18.1	54.5	74.0	-19.5	Peak	Horizontal
	10877.0	30.9	18.1	49.0	54.0	-5.0	Average	Horizontal
	11568.5	38.9	17.3	56.2	74.0	-17.8	Peak	Horizontal
	11568.5	30.0	17.3	47.3	54.0	-6.7	Average	Horizontal
*	12849.0	35.0	17.7	52.7	68.2	-15.5	Peak	Horizontal
*	13852.0	33.8	19.2	53.0	68.2	-15.2	Peak	Horizontal
	7519.5	36.3	11.8	48.1	74.0	-25.9	Peak	Vertical
	8199.5	35.7	12.4	48.1	74.0	-25.9	Peak	Vertical
*	10188.5	36.6	17.2	53.8	68.2	-14.4	Peak	Vertical
*	13631.0	36.1	19.2	55.3	68.2	-12.9	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz or -17dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	GigaSpire	Temperature	25°C					
Test Engineer	Dillon Diao	Relative Humidity	52%					
Test Site	AC1	Test Date	2019/12/03					
Test Mode:	802.11n-HT20 - Ant 8 + 9	Test Channel:	165					
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average					
	limit.							
	2. Other frequency was 20dB bel	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	10868.5	36.2	18.1	54.3	74.0	-19.7	Peak	Horizontal
	10868.5	30.2	18.1	48.3	54.0	-5.7	Average	Horizontal
	11650.0	38.3	16.9	55.2	74.0	-18.8	Average	Horizontal
	11650.0	30.9	16.9	47.8	54.0	-6.2	Peak	Horizontal
*	12798.0	35.6	17.6	53.2	68.2	-15.0	Peak	Horizontal
*	14192.0	35.6	20.2	55.8	68.2	-12.4	Peak	Horizontal
	8199.5	36.1	12.4	48.5	74.0	-25.5	Peak	Vertical
	11633.5	37.3	17.0	54.3	74.0	-19.7	Peak	Vertical
	11633.5	32.3	17.0	49.3	54.0	-4.7	Average	Vertical
*	13078.5	35.8	17.9	53.7	68.2	-14.5	Peak	Vertical
*	14107.0	35.2	19.9	55.1	68.2	-13.1	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz or -17dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	GigaSpire	Temperature	25°C					
Test Engineer	Dillon Diao	Relative Humidity	52%					
Test Site	AC1	Test Date	2019/12/03					
Test Mode:	802.11n-HT40 - Ant 8 + 9	Test Channel:	38					
Remark:	1. Average measurement was no	t performed if peak l	evel lower than average					
	limit.							
	2. Other frequency was 20dB bel	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	35.4	11.9	47.3	74.0	-26.7	Peak	Horizontal
	8352.5	34.6	12.3	46.9	74.0	-27.1	Peak	Horizontal
*	8956.0	34.1	14.2	48.3	68.2	-19.9	Peak	Horizontal
*	10426.5	36.1	17.6	53.7	68.2	-14.5	Peak	Horizontal
	7409.0	35.2	11.8	47.0	74.0	-27.0	Peak	Vertical
	8165.5	35.9	12.4	48.3	74.0	-25.7	Peak	Vertical
*	10044.0	36.2	16.9	53.1	68.2	-15.1	Peak	Vertical
*	10350.0	34.9	17.4	52.3	68.2	-15.9	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Hz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	on" factor of 9	5.2dB to t	he EIRP I	imit of
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2	Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)							
Factor	(dB) = Cable	Loss (dB) +	Antenna Fa	actor (dB/m)	- Pre_Amplifier	Gain (dB	5)	

Product	GigaSpire	Temperature	25°C				
Test Engineer	Dillon Diao	Relative Humidity	52%				
Test Site	AC1	Test Date	2019/12/03				
Test Mode:	802.11n-HT40 - Ant 8 + 9	Test Channel:	46				
Remark:	1. Average measurement was not performed if peak level lower than average						
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization		
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)				
		(dBµV)		(dBµV/m)						
	7375.0	37.0	11.9	48.9	74.0	-25.1	Peak	Horizontal		
	8267.5	35.8	12.3	48.1	74.0	-25.9	Peak	Horizontal		
*	8854.0	36.0	14.4	50.4	68.2	-17.8	Peak	Horizontal		
*	9695.5	35.9	16.4	52.3	68.2	-15.9	Peak	Horizontal		
	7604.5	35.4	11.8	47.2	74.0	-26.8	Peak	Vertical		
	8361.0	35.6	12.4	48.0	74.0	-26.0	Peak	Vertical		
*	8752.0	34.3	14.2	48.5	68.2	-19.7	Peak	Vertical		
*	9780.5	34.7	16.7	51.4	68.2	-16.8	Peak	Vertical		
Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength										
limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of										
-27dBm/MHz to obtain the limit for out of band spurious emissions.										
Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)										
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)										