

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Rev: A

FCC/ISED Test Report

Prepared for: TORO Company

Address:

8111 Lyndale Ave S, Bloomington Minnesota, USA

Product:

Nova Gen. 2

Test Report No:

Approved by:

all ane

R20241011-73-E4

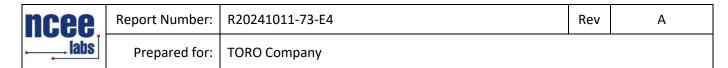
Fox Lane, EMC Test Engineer

DATE:

February 5, 2025

Total Pages:

22


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

REVISION PAGE

Rev. No.	Date	Description
0	2 January 2025	Issued by FLane Prepared by FLane / ESchmidt
A	5 February 2025	Updated Company Name – FL

CONTENTS

Revi	sion Pa	ge
1.0	Sum	imary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Labo	oratory and General Test Description6
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment7
	3.4	General Test Procedure and Setup for Radio Measuremnts
4.0	Res	ults
	4.3	Duty Cycle
	4.4	Radiated emissions12
	4.6	Band edges
Арр	endix A	: Sample Calculation19
Арр	endix B	- Measurement Uncertainty
Арр	endix C	– Graphs and Tables
REP		ID22

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following standard(s)/section(s):

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.35	Duty Cycle	Pass			
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Spurious Emissions	Pass			
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass			

2.0 **EUT DESCRIPTION**

2.1 **EQUIPMENT UNDER TEST**

Summary and Operating Condition:

EUT	Nova Gen. 2
IC	3575A-NVG2
FCC ID	OF7-NVG2
EUT Received	2 December 2024
EUT Tested	2 December 2024- 26 December 2024
Serial No.	324000100
Operating Band	2400 – 5850 MHz
Device Type	⊠ GMSK □ GFSK ⊠ BT LE ⊠ BT EDR 2MB ⊠ BT EDR 3MB ⊠ 802.11x
Power Supply / Voltage	Powered by 12VDC Marine Battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 **DESCRIPTION OF TEST MODES**

The operating range of the EUT is dependent on the device type found in section 2.1:

For BTBR Transmissions:				
Channel	Frequency			
Low	2402 MHz			
Mid	2440 MHz			
High	2480 MHz			

отоо т

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

DESCRIPTION OF SUPPORT UNITS 2.3

None

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)4740 Discovery DriveLincoln, NE 68521A2LA Certificate Number:1953.01FCC Accredited Test Site Designation No:US1060Industry Canada Test Site Registration No:4294ANCC CAB Identification No:US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

Rev

А

3.2	TEST	PERSONNEL
0.2		LINGONALE

No.	PERSONNEL	TITLE	ROLE
1	Fox Lane	Test Engineer	Review/Testing and Report
2	Ethan Schmidt	Test Engineer	Testing and Report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

3.3 TEST EQUIPMENT
Prepared for: TORO Company

Rev

А

MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2024	July 18, 2026
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2024	July 18, 2026
SunAR RF Motion	JB1	A082918-1	July 17, 2024	July 17, 2025
EMCO Horn Antenna	3117	29616	June 12, 2024	June 12, 2025
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cables (3m Ant. to Control room Bulkhead)	MFR-57500	1E3874	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

Measurement type presented in this report (Please see the checked box below):

Conducted

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Rev

А

Figure 1 - Bandwidth Measurements Test Setup

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

Radiated \boxtimes

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

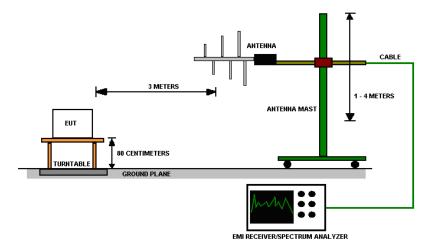
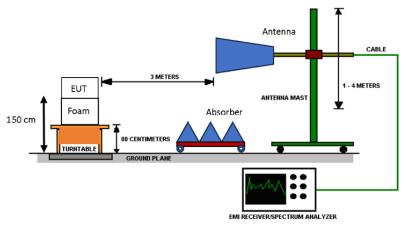
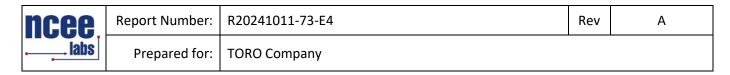


Figure 2 - Radiated Emissions Test Setup




Figure 3 - Radiated Emissions Test Setup

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

4.0 RESULTS

	Radiated Peak Restricted Band-Edge												
CHANNEL	NEL Mode /Measurement Frequency (MHz)		easurement (dBuV/m @ Type (dBuV/m @		Margin (dB)	Result							
Low	BTBR	2390	54.336	Peak	73.98	19.644	PASS						
High BTBR 2483.5		54.039	Peak	73.98	19.941	PASS							
*Limit shown	is the peak lim	it taken from FCC Part	15.209										

	Radiated Average Restricted Band-Edge											
СН	Mode	Band edge /Measurement Frequency (MHz)	Raw Avg out of band level (dBuV/m @ 3m)	DCCF	Corrected Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin (dB)	Result			
Low	BTBR	2390	42.732	2.225	44.957	Average	53.98	9.023	PASS			
High	High BTBR 2483.5 42.230 2.225 44.455 Average 53.98 9.525 PASS											
Highes	Limit shown is the average limit taken from FCC Part 15.209 Highest out of band level = Raw peak out of band level - DCCF (as per C63.10 Sec. 11.12.2.5.2) *See section 4.1 for more information regarding Duty DCCF											

4.3 DUTY CYCLE

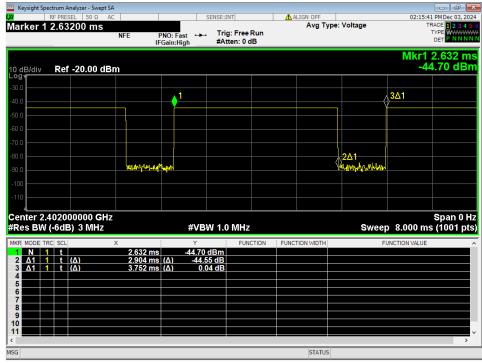


Figure 4 – Duty Cycle, GMSK

The following duty cycle and duty cycle correction factors (DCCF) were used where applicable.

Duty Cycle correction factor (for emissions) = $20 \times \log(1 / \text{Duty cycle})$ Duty Cycle correction factor (for power) = $10 \times \log(1 / \text{Duty Cycle})$

Duty Cycle for BTBR:0.774Duty Cycle correction factor (for emissions) for BTBR:2.225dBDuty Cycle correction factor (for power) for BTBR:1.113dB

TORO Company

А

Rev

4.4 RADIATED EMISSIONS

Prepared for:

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30.0	30	3			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

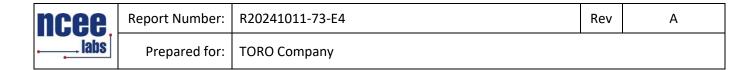
TORO Company

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.


d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

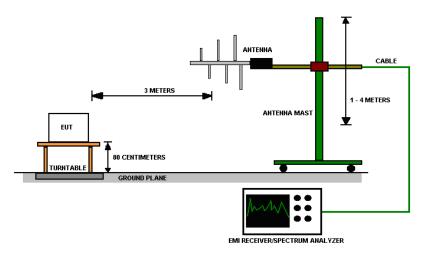
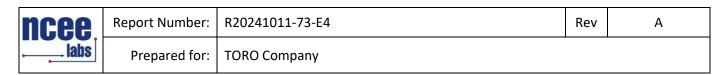
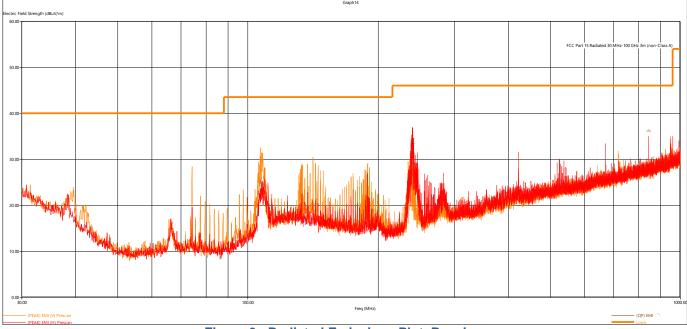


Figure 5 - Radiated Emissions Test Setup

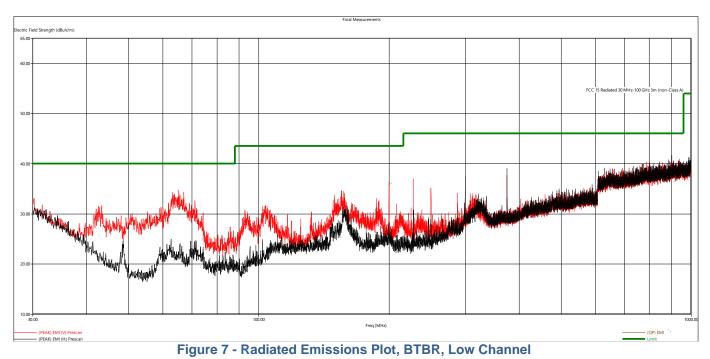
NOTE:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.


Deviations from test standard: No deviation.

EUT operating conditions


Details can be found in section 2.1 of this report.

Test results:

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

Quasi-Peak Measurements, BTBR										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
65.376240	31.05	40.00	8.95	109.11	108.50	V	Low	BTBR		
200.167680	35.94	43.52	7.58	100.00	42.00	V	Low	BTBR		

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other measurements were found to be at least 6 dB below the limit.

*All measurements above 1GHz were found to be at least 6dB below the limit.

A

Prepared for: | TORO Company

4.6 BAND EDGES

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10. Restricted band edges are using Sec 6.10.5.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

А

Prepared for: TORO Company

Test results:

Pass

Comments:

1. All the band edge plots can be found in the Appendix C.

- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the antenna factor, cable factor, and subtracting the amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

 $\begin{array}{l} EIRP \ (Watts) = [Field \ Strength \ (V/m) \ x \ antenna \ distance \ (m)]^2 \ / \ 30 \\ Power \ (watts) = 10^{Power} \ (dBm)/10] \ / \ 1000 \\ Voltage \ (dB\mu V) = Power \ (dBm) \ + \ 107 \ (for \ 50\Omega \ measurement \ systems) \\ Field \ Strength \ (V/m) = 10^{Field} \ Strength \ (dB\mu V/m) \ / \ 20] \ / \ 10^{6} \\ Gain = 1 \ (numeric \ gain \ for \ isotropic \ radiator) \\ Conversion \ from \ 3m \ field \ strength \ to \ EIRP \ (d=3): \\ EIRP = [FS(V/m) \ x \ d^2]/\ 30 = FS \ [0.3] \ for \ d=3 \\ EIRP(dBm) = FS(dB\mu V/m) \ - \ 10(\log \ 10^{6}) \ + \ 10\log[0.3] = FS(dB\mu V/m) \ - \ 95.23 \\ 10\log(\ 10^{6}) \ is \ the \ conversion \ from \ micro \ to \ milli \end{array}$

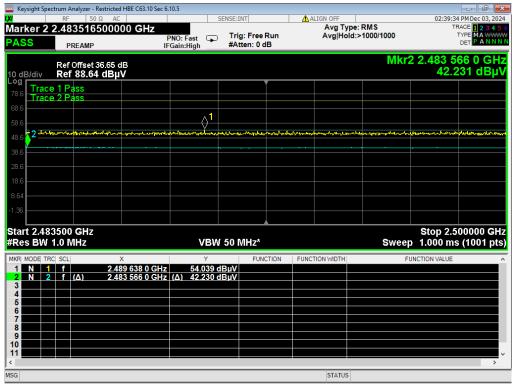
APPENDIX B – MEASUREMENT UNCERTAINTY

NCEE Labs does not add uncertainty values to measurement results

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	150kHz – 30MHz	±3.03

Expanded uncertainty values are calculated to a confidence level of 95%.


А

Prepared for: | TORO Company

APPENDIX C – GRAPHS AND TABLES

	sight Spe		Analyzer - Restr		g C63.10 Sec 6.	.10.5								
I <mark>XI</mark> Mark	cor 2	RF	50 Ω 3906000		17		SENSE:I	INT		🚹 ALIG	N OFF Avg Type:	RMS		ACE 1 2 3 4 5 6
PAS			REAMP	0000 GI		Fast ⊂ n:High		g: Free F tten: 0 d			Avg Hold:>			
		Ref	Offset 37.5	51 dB									Mkr2 2.38	9 39 GHz
10 dE Log r	3/div	Rei	f 89.50 di	ΒμV									42.7	′32 dBµV
79.5		e <u>1 P</u>												
69.5	Trac	e 2 P	ass											
59.5											/	1		
49.5	-	www.	and the section of the section	way derease	مورده المداوم وم	theretare	al allow	Marker Milly	and the second	water and and	the state of the s	and a general de la constant de la c		muning 2 ment
39.5														
29.5														
19.5														
9.50														
-0.50														
Star	t 2.38	0000	GHz									1	Stop 2.3	90000 GHz
#Res	s BW	1.0 P	٧Hz			#VE	3W 50	MHz*				Swe	ep 1.000 ms	s (1001 pts)
MKR N		C SCL		Х		Y		FUNC	TION	FUNCTIO	NWIDTH		FUNCTION VALUE	^
1	N 1 N 2	f	(A)	2.386 9	<u>4 GHz</u> 9 GHz (Δ)		<u>dBµV</u> dBuV							
3														
5														
6														
8														
9 10														
11														~
MSG											STATUS			

01 LBE Restricted, BTBR pwr8

02 HBE Restricted, BTBR pwr8

ncee.	Report Number:	R20241011-73-E4	Rev	А
labs	Prepared for:	TORO Company		

REPORT END