Maximum Permissible Exposure Report #### **Product Information** | FCC ID: | 2ADXC17WD388 | |------------------------------|---| | Product name | Wireless Extender | | Model number | LKV388Dongle, LKV688Dongle, LKV398Dongle, LKV388DGP, LKV688DGP, LKV398DGP, LKV388DM | | Power supply | DC 5.0V adapter from AC 120V/60Hz | | Modulation Type | IEEE 802.11ac: OFDM | | Antenna Type | Internal Antenna | | Antenna Gain | 5.00 dBi (maximum) | | Hardware version | -/- | | Software version | -/- | | WLAN FCC Operation frequency | 5180.00-5240.00MHz/5745.00-5825.00MHz | | Extreme temp. Tolerance | -20°C to +55°C | | Exposure category | General population/uncontrolled environment | | EUT Type | Production Unit | | Device Type | Mobile Device | ### 2. Evaluation Method Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with. In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance. ## 3. Limit #### 3. 1 Refer evaluation method <u>ANSI C95.1–1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies. FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits. FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices ### 3. 2 Limit Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure | | Frequency
Range(MHz) | Electric Field
Strength(V/m) | Magnetic Field
Strength(A/m) | | | |---------------|-------------------------|---------------------------------|---------------------------------|------------------------|---| | | , , | , | | | | | 0.3 – 3.0 614 | | 1.63 | (100) * | 6 | | | | 3.0 – 30 1842/f | | 4.89/f | (900/f ²)* | 6 | | | 30 – 300 61.4 | | 0.163 | ` 1.0 ´ | 6 | | 300 – 1500 / | | / | f/300 | 6 | | | | 1500 – 100,000 / | | / | 5 | 6 | Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure | Frequency | Electric Field | Magnetic Field | Power Density | Averaging Time | |----------------|----------------|--------------------|------------------------|----------------| | Range(MHz) | Strength(V/m) | Strength(A/m) | Strength(A/m) (mW/cm²) | | | | Limits for Oc | cupational/Control | led Exposure | | | 0.3 – 3.0 614 | | 1.63 | (100) * | 30 | | 3.0 - 30 | 3.0 – 30 824/f | | (180/f ²)* | 30 | | 30 – 300 27.5 | | 0.073 | 0.2 | 30 | | 300 – 1500 | / | / | f/1500 | 30 | | 1500 – 100,000 | | | 1.0 | 30 | F=frequency in MHz ### 4. MPE Calculation Method Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01 S=PG/4πR² Where: S=power density P=power input to antenna G=power gain of the antenna in the direction of interest relative to an isotropic radiator R=distance to the center of radiation of the antenna ## 5. Antenna Information LKV388Dongle can only use antennas certificated as follows provided by manufacturer; | Internal Identification | Antenna type and antenna number | Operate frequency band | Maximum antenna gain | |-------------------------|---------------------------------|------------------------|----------------------| | Antenna 0 | Internal Antenna | 5000 MHz – 6000 MHz | 5.00 dBi | ## 6. Conducted Power | Test Mode | Channel | Frequency
(MHz) | Measured AVG Output Power (dBm) | |---------------------|---------|--------------------|---------------------------------| | | 36 | 5180 | 13.62 | | IEEE 802.11ac VHT20 | 40 | 5200 | 13.09 | | | 48 | 5240 | 13.36 | | | 149 | 5745 | 13.44 | | IEEE 802.11ac VHT20 | 157 | 5785 | 13.29 | | | 165 | 5825 | 13.47 | ^{*=}Plane-wave equivalent power density ## 7. Manufacturing Tolerance ### **5GWLAN** | IEEE 802.11ac VHT20 (Average) | | | | | | | | |---|------------|------------|------------|--|--|--|--| | Channel | Channel 36 | Channel 40 | Channel 48 | | | | | | Target (dBm) | 13.0 | 13.0 | 13.0 | | | | | | Tolerance ±(dB) | 1.0 | 1.0 | 1.0 | | | | | | IEEE 802.11ac VHT20 (Average) | | | | | | | | | Channel Channel 149 Channel 157 Channel | | | | | | | | | Target (dBm) | 13.0 | 13.0 | 13.0 | | | | | | Tolerance ±(dB) | 1.0 | 1.0 | 1.0 | | | | | ### 8. Measurement Results #### 8.1 Standalone MPE As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained. #### Antenna 0 #### Band 1 | Modulation Type | Output
dBm | power | Antenna
Gain | Antenna Duty Gain Cycle | MPE
(mW/cm ²) | MPE
Limits | | |---------------------|---------------|---------|-----------------|-------------------------|------------------------------|---------------|-----------------------| | | G | | (dBi) | (linear) | 0,0.0 | () | (mW/cm ²) | | IEEE 802.11ac VHT20 | 14.00 | 25.1189 | 5.000 | 3.1623 | 100% | 0.0158 | 1.0000 | #### Band 3 | | Output | power | Antenna | Antenna | Б. | MDE | MPE | |---------------------|--------|---------|---------------|------------------|---------------|------------------------------|---------------------------------| | Modulation Type | dBm | mW | Gain
(dBi) | Gain
(linear) | Duty
Cycle | MPE
(mW/cm ²) | Limits
(mW/cm ²) | | IEEE 802.11ac VHT20 | 14.00 | 25.1189 | 5.000 | 3.1623 | 100% | 0.0158 | 1.0000 | #### Remark: - 1. Output power including tune-up tolerance; - 2. MPE evaluate distance is 20cm from user manual provide by manufacturer; #### 8.2 Simultaneous Transmission MPE The sample only support one WLAN modular and one antenna, no need consider simultaneous transmission; ## 9. Conclusion The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device. -----THE END OF REPORT-----