

FCC SAR Test Report

Applicant	: Anker Innovations Limited
Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Product Name	: Smart Display E10
Report Date	: Apr. 18, 2025

Contents

1. Statement of Compliance	
2. General Information	7
2.1. Client Information	7
2.2. Description of Equipment Under Test (EUT)	7
2.3. Device Category and SAR Limits	7
2.4. Applied Standard	8
2.5. Environment of Test Site	
2.6. Test Configuration	
2.7. Disclaimer	
2.8. Description of Test Facility	9
3. Specific Absorption Rate (SAR)	
3.1. Introduction	
3.2. SAR Definition	
4. SAR Measurement System	
4.1. E-Field Probe	
4.2. Data Acquisition Electronics (DAE)	
4.3. Robot	13
4.4. Measurement Server	14
4.5. Phantom	
4.6. Device Holder	15
4.7. Data Storage and Evaluation	
5. Test Equipment List	
6. Tissue Simulating Liquids	19
7. System Verification Procedures	21
8. EUT Testing Position	23
8.1. Body Position	
9. Measurement Procedures	
9.1. Spatial Peak SAR Evaluation	24
9.2. Power Reference Measurement	
9.3. Area Scan Procedures	
9.4. Zoom Scan Procedures	
9.5. Volume Scan Procedures	27
9.6. Power Drift Monitoring	27
10. Conducted Power	
11. Antenna Location	
12. SAR Test Results Summary	
12.1. Body-worn SAR Results	
Shenzhen Anbotek Compliance Laboratory Limited	国家の知

13. Simultaneous Transmission Analysis	
14. Measurement Uncertainty	
Appendix A. Plots of SAR System Check	
Appendix B. Plots of SAR Test Data	44
Appendix C. DASY System Calibration Certificate	49

Shenzhen Anbotek Compliance Laboratory Limited

TEST REPORT

Applicant	:	Anker Innovations Limited
Manufacturer	:	Anker Innovations Limited
Product Name	:	Smart Display E10
Model No.	:	T87A0
Trade Mark	:	eufy
Rating(s)	:	INPUT:100-240V~50/60Hz 0.35A MAX OUTPUT:5V=2A

Test Standard(s) : IEC/IEEE 62209-1528:2020; FCC 47 CFR Part 2.1093; ANSI/IEEE C95.1:2019; Reference FCC KDB 447498 D01 v06; KDB 248227 D01 v02;

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC/IEEE 62209-1528:2020, FCC 47 CFR Part 2.1093, IEEE Std C95.1-2019 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Date of Test

Prepared By

Test Engineer

Nov. 08, 2024 Nov. 08, 2024 to Apr. 18, 2025

Biangfei Yang

(Qiangfei Yang)

kiong fei Yong

(Qiangfei Yang)

× `

Approved & Authorized Signer

(Yufan Xie)

Version

Version No.	Date	Description
R00	Apr. 18, 2025	Original

Shenzhen Anbotek Compliance Laboratory Limited

1. Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2.1093 and IEEE Std C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEC/IEEE 62209-1528:2020. The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Frequency Bond	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit
Frequency Band	Body-worn (0mm)	(W/Kg)
WIFI 2.4G	1.108	
WIFI 5.2G	1.252	
WIFI 5.3G	0.744	1.6
WIFI 5.6G	0.932	
WIFI 5.8G	0.835	
Test Result	PASS	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2.1093 and IEEE Std C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEC/IEEE 62209-1528:2020.

2. General Information

2.1. Client Information

Applicant	:	Anker Innovations Limited	
Address :		Init 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong	
		Kong	
Manufacturer	:	Anker Innovations Limited	
Address		Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong	
Address		Kong	

2.2. Description of Equipment Under Test (EUT)

Product Name	:	Smart Display E10	
Model No.	:	T87A0	
Trade Mark	:	eufy	
Test Power Supply	:	N/A	
Test Sample No.	:	1-2-1(Engineering Sample)	
Tx Frequency	:	2.4GWIFI:2412-2472MHz 5.2GWIFI:5180-5240MHz 5.3GWIFI:5260-5320MHz 5.6GWIFI:5510-5700MHz 5.8GWIFI:5745-5825MHz	
Type of Modulation	:	WIFI2.4G:BPSK,QPSK,16QAM,64QAM 5GWIFI:BPSK, QPSK, 16QAM, 64QAM, 256QAM	
Category of device	:	Portable device	
Bomark:		·	

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · FCC 47 CFR Part 2.1093
- · IEEE Std C95.1-2019
- · IEC/IEEE 62209-1528:2020
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- · KDB 865664 D02 RF Exposure Reporting v01r02
- · KDB 447498 D01 General RF Exposure Guidance v06
- · KDB 248227 D01 802 11 Wi-Fi SAR v02r02

2.5. Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.6. Test Configuration

For WIFI2.4G and WIIF5G SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

2.7. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5.Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6.The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ).The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

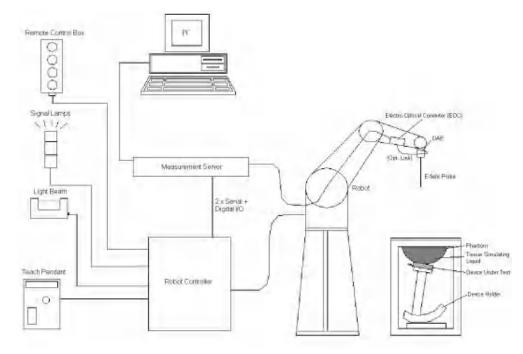
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	 ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) 	
Dynamic Range	10 μ W/g to 100 W/kg; Linearity: ± 0.2 dB (noise: typically< 1 μ W/g)	Photo of EX3DV4
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

4.3. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

SAM IWIN Phantom	>		
Shell Thickness	2 ± 0.2 mm;		
	Center ear point: 6 ± 0.2 mm		
Filling Volume	Approx. 25 liters		
Dimensions	Length: 1000 mm; Width: 500 mm;		
	Height: adjustable feet		
Measurement	Left Hand, Right Hand, Flat		
Areas	Phantom		

4.5. Phantom

<SAM Twin Phantom>

Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Shenzhen Anbotek Compliance Laboratory Limited

4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters	:- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i,(i= x, y, z) Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz]

 E_i = electric field strength of channel iin V/m

 H_i = magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2 + E_y^2 + E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

5. Test Equipment List

Monufacturar	Nome of Equipment	Ture/Medel	Carial Number	Calib	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 11,2024	Jun. 10,2027		
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2024	Oct. 01, 2027		
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.02,2024	Sept.01,2025		
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2024	May 05,2025		
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2024	Oct.25, 2025		
SPEAG	DAK	DAK-3.5	1226	NCR	NCR		
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR		
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR		
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR		
Agilent	Power Meter	N1914A	MY50001102	Oct.26, 2024	Oct.25, 2025		
Agilent	Power Sensor	E9323A	US40410647	Jan. 23, 2024	Jan. 22, 2025		
Agilent	Power Sensor	E9323A	MY53100007	Jan. 23, 2024	Jan. 22, 2025		
CDKMV	Attenuator	6610	6610-1	Oct.20, 2024	Oct.19, 2025		
CDKMV	Attenuator	6606	6606-1	Oct.20, 2024	Oct.19, 2025		
Agilent	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2024	Oct.25, 2025		
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2024	Oct.25, 2025		
Worken	Directional Coupler	0110A05601O- 10	COM5BNW1A 2	Oct.26, 2024	Oct.25, 2025		

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it.

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

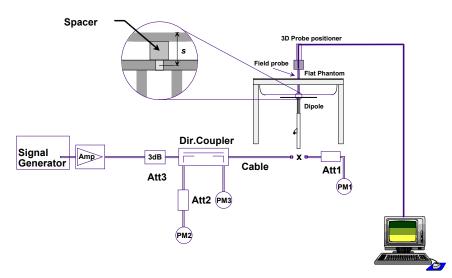
					51			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ɛr)
	For Head							
2450	55.0	0	0	0	0	45.0	1.80	39.20
5200	65.5	0	17.2	0	17.3	0	4.66	36.00
5300	65.3	0	17.3	0	17.2	0	4.76	35.90
5600	65.4	0	17.2	0	17.3	0	5.07	35.50
5800	65.4	0	17.3	0	17.3	0	5.27	35.30

The following table gives the recipes for tissue simulating liquid.

	Measure	d Tissue	Targe	t Tissue		ev. %)		
Measured Frequency (MHz)	Conduc tivity (σ)	Permitti vity (εr)	Cond uctivi ty Targe t (σ)	Permitt ivity Target (εr)	Delta (σ) (%)	Delta (ɛr) (%)	Liquid Temp.	Test Date
2412	1.76	39.25	1.78	39.30	-1.12	-0.13	22.6	Nov.11,2024
2450	1.83	39.21	1.80	39.20	1.67	0.03	22.6	Nov.11,2024
5200	4.62	36.52	4.66	36.00	-0.86	1.44	22.6	Apr.18,2025
5230	4.66	35.94	4.67	35.95	-0.21	-0.03	22.6	Apr.18,2025
5300	4.79	35.83	4.76	35.90	0.63	-0.19	22.6	Apr.18,2025
5320	4.72	35.75	4.77	35.80	-1.05	-0.14	22.6	Apr.18,2025
5580	5.12	35.61	5.05	35.70	1.39	-0.25	22.6	Apr.18,2025
5600	5.02	36.48	5.07	35.50	-0.99	2.76	22.6	Apr.18,2025
5800	5.28	35.12	5.27	35.30	0.19	-0.51	22.6	Apr.18,2025
5825	5.335	35.16	5.30	35.29	0.66	-0.37	22.6	Apr.18,2025

The following table shows the measuring results for simulating liquid.

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

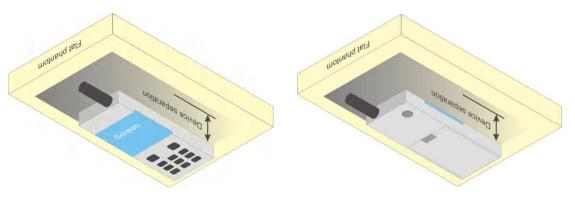
Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
Apr/14/2025	2450	250	52.4	12.81	51.24	-2.21
Apr/14/2025	5200	100	80.7	7.82	78.2	-3.10
Apr/14/2025	5300	100	82.7	7.99	79.9	-3.39
Apr/14/2025	5600	100	87.0	8.06	80.6	-7.36
Apr/14/2025	5800	100	78.3	7.53	75.3	-3.83

Target and Measurement SAR after Normalized



8. EUT Testing Position

8.1. Body Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body Worn Position

Shenzhen Anbotek Compliance Laboratory Limited

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g

9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5\pm1~\text{mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

9.4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	≤2 GHz: ≤8 mm 2 - 3 GHz: ≤5 mm [*]	$3-4$ GHz: ≤ 5 mm [*] $4-6$ GHz: ≤ 4 mm [*]
Maximum zoom scan spatial resolution. normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	3 – 4 GHz: ≤4 mm 4 – 5 GHz: ≤3 mm 5 – 6 GHz: ≤2 mm
	$\Delta z_{Zoom}(1)$; between 1 st two points closest to phantom surface graded		\leq 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
	grid	∆z _{Zoom} (n>1): between subsequent points	≤ 1 -5·Δ	z _{Zoom} (n-1)
Minimum zoom scan volume	x, y, z		\geq 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

10. Conducted Power

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Tune-up power(dBm)
	1	2412	22.16	22.50
802.11b	6	2437	21.62	22.00
	11	2462	20.67	21.00
	1	2412	19.89	20.00
802.11g	6	2437	19.87	20.00
	11	2462	19.50	20.00
	1	2412	18.80	19.00
802.11n20	6	2437	18.74	19.00
	11	2462	18.50	19.00
	3	2422	19.39	19.50
802.11n40	6	2437	19.69	20.00
	9	2452	19.21	19.50
	1	2412	18.96	19.00
802.11AX20	6	2437	19.07	19.50
	11	2462	18.77	19.00
	3	2422	19.70	20.00
802.11AX40	6	2437	19.99	20.00
	9	2452	19.41	19.50

<WLAN 5GHz Conducted Power>

Band1

Mode	Channel Frequency	Conducted Output	Tune-up
Mode	(MHz)	Power(dBm)	power(dBm)
	5180	16.28	16.50
802.11a	5200	16.33	16.50
	5240	16.07	16.50
	5180	16.45	16.50
802.11n 20	5200	17.07	17.50
20	5240	16.65	17.00
802.11n	5190	16.47	16.50
40	5230	16.60	17.00
	5180	16.44	16.50
802.11ac 20	5200	16.59	17.00
20	5240	16.65	17.00
802.11ac	5210	16.32	16.50
40	5230	16.29	16.50
	5180	16.79	17.00
802.11AX 20	5200	16.97	17.00
20	5240	17.00	17.50
802.11AX	5190	16.30	16.50
40	5230	16.33	16.50

Band 2

Mode	Channel Frequency	Conducted Output	Tune-up
wode	(MHz)	Power(dBm)	power(dBm)
	5260	16.51	17.00
802.11a	5300	16.39	16.50
	5320	17.15	17.50
	5260	16.60	17.00
802.11n 20	5300	16.91	17.00
20	5320	17.18	17.50
802.11n	5270	16.10	16.50
40	5310	16.59	17.00
	5260	16.67	17.00
802.11ac 20	5300	16.99	17.00
20	5320	16.21	16.50
802.11ac	5270	16.07	16.50
40	5310	16.29	16.50

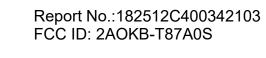
Shenzhen Anbotek Compliance Laboratory Limited

Page 30 of 95

802.11AX 20	5260	16.82	17.00
	5300	16.46	16.50
	5320	16.58	17.00
802.11AX	5270	16.27	16.50
40	5310	16.61	17.00

Band 3

Mode	Channel Frequency	Conducted Output	Tune-up
wode	(MHz)	Power(dBm)	power(dBm)
	5500	16.95	17.00
802.11a	5580	17.24	17.50
	5700	16.53	17.00
	5500	17.27	17.50
802.11n 20	5580	16.84	17.00
20	5700	16.07	16.50
802.11n	5550	16.76	17.00
40	5670	16.04	16.50
	5500	17.29	17.50
802.11ac 20	5580	16.78	17.00
20	5700	16.11	16.50
802.11ac	5550	17.25	17.50
40	5670	16.69	17.00
	5500	17.61	18.00
802.11AX 20	5580	16.49	16.50
20	5700	16.30	16.50
802.11AX	5550	17.01	17.50
40	5670	16.17	16.50


Band 4

Mode	Channel Frequency (MHz)	Conducted Output Power(dBm)	Tune-up power(dBm)		
	5745	16.26	16.50		
802.11a	5785	16.26	16.50		
	5825	16.21	16.50		
	5745	16.20	16.50		
802.11n 20	5785	16.33	16.50		
20	5825	16.46	16.50		
802.11n	5755	16.40	16.50		
40	5795	17.08	17.50		

Shenzhen Anbotek Compliance Laboratory Limited

Page 31 of 95

	5745	16.13	16.50
802.11ac 20	5785	16.40	16.50
20	5825	16.35	16.50
802.11ac	5755	16.23	16.50
40	5795	16.66	17.00
	5745	16.31	16.50
802.11AX 20	5785	16.11	16.50
20	5825	16.93	17.00
802.11AX	5755	16.60	17.00
40	5795	16.42	16.50

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

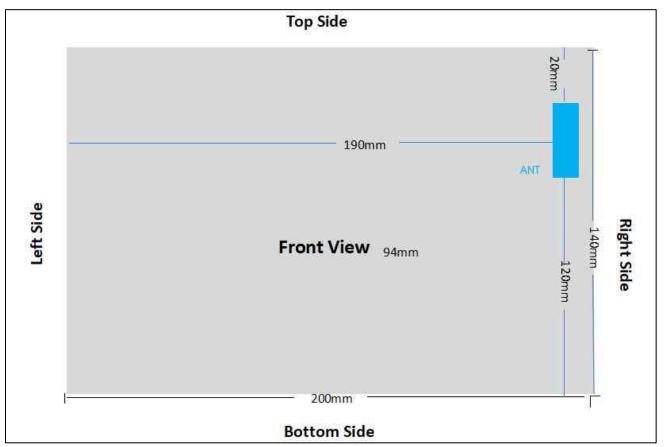
The result is rounded to one decimal place for comparison

2. Base on the result of note1, RF exposure evaluation of 2.4G/5.2G/5.3G/5.4G/5.8G WIFI mode is required.

3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.

4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.


2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

11. Antenna Location

Distance of The Antenna to the EUT surface and edge												
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side											
WIFI ANT	<25mm	<25mm	<25mm	>25mm	>25mm	<25mm						

12. SAR Test Results Summary

General Note:

1.Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

2.Per KDB 447498 D01v06, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

12.1. Body-worn SAR Results

<WIFI 2.4G>

Dist				Gap	Freq.			Scalin		Measure	•	
Plot No.	Band	Mode	Test Position		Ch.	(MHz	e Power	p Limit	g	r Drift	d SAR _{1g}	d SAR _{1g}
				m))	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	WIFI2.4G	802.11b	Left	0	1	2412	22.16	22.50	1.081	0.06	0.059	0.064
	WIFI2.4G	802.11b	Right	0	1	2412	22.16	22.50	1.081	0.05	0.537	0.581
	WIFI2.4G	802.11b	Тор	0	1	2412	22.16	22.50	1.081	-0.03	0.689	0.745
	WIFI2.4G	802.11b	Bottom	0	1	2412	22.16	22.50	1.081	-0.10	0.126	0.136
#1	WIFI2.4G	802.11b	Front	0	1	2412	22.16	22.50	1.081	0.11	1.025	1.108
	WIFI2.4G	802.11b	Back	0	1	2412	22.16	22.50	1.081	0.03	0.564	0.610

<WIFI 5G>

Band 1

Plot No.	Band	Mode	Test Position	Gap (m m)	Ch.	Freq. (MHz)	е	p Limit	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
	WIFI5.2G	802.11ax20	Left	0	48	5240	17.00	17.50	1.122	0.01	0.132	0.148
	WIFI5.2G	802.11ax20	Right	0	48	5240	17.00	17.50	1.122	0.04	0.305	0.342
	WIFI5.2G	802.11ax20	Тор	0	48	5240	17.00	17.50	1.122	-0.05	0.266	0.298
	WIFI5.2G	802.11ax20	Bottom	0	48	5240	17.00	17.50	1.122	-0.11	0.005	0.006
#2	WIFI5.2G	802.11ax20	Front	0	48	5240	17.00	17.50	1.122	0.12	1.116	1.252
	WIFI5.2G	802.11ax20	Back	0	48	5240	17.00	17.50	1.122	0.11	0.132	0.148

Shenzhen Anbotek Compliance Laboratory Limited

Page 34 of 95

Band	2
Dana	_

Plot No.	Band	Mode	Test Position	Gap (m m)		Freq. (MHz)	e	Tune-U p Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
	WIFI5.3G	802.11n20	Left	0	64	5320	17.18	17.50	1.076	0.05	0.409	0.440
	WIFI5.3G	802.11n20	Right	0	64	5320	17.18	17.50	1.076	0.07	0.172	0.185
	WIFI5.3G	802.11n20	Тор	0	64	5320	17.18	17.50	1.076	-0.04	0.264	0.284
	WIFI5.3G	802.11n20	Bottom	0	64	5320	17.18	17.50	1.076	-0.02	0.228	0.245
#3	WIFI5.3G	802.11n20	Front	0	64	5320	17.18	17.50	1.076	0.01	0.691	0.744
	WIFI5.3G	802.11n20	Back	0	64	5320	17.18	17.50	1.076	0.06	0.112	0.121

Band 3

Plot No.	Band	Mode	Test Position	Gap (m m)		Freq. (MHz)	e	Tune-U p Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
	WIFI5.6G	802.11ax20	Left	0	100	5500	17.61	18.00	1.094	0.01	0.019	0.021
	WIFI5.6G	802.11ax20	Right	0	100	5500	17.61	18.00	1.094	0.02	0.116	0.127
	WIFI5.6G	802.11ax20	Тор	0	100	5500	17.61	18.00	1.094	-0.06	0.326	0.357
	WIFI5.6G	802.11ax20	Bottom	0	100	5500	17.61	18.00	1.094	-0.04	0.218	0.238
#4	WIFI5.6G	802.11ax20	Front	0	100	5500	17.61	18.00	1.094	0.03	0.852	0.932
	WIFI5.6G	802.11ax20	Back	0	100	5500	17.61	18.00	1.094	0.02	0.035	0.038

Band 4

Plot No.	Band	Mode	Test Position	Gap (m m)	Ch.	Freq. (MHz)	e	Tune-U p Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
	WIFI5.8G	802.11n40	Left	0	159	5795	17.08	17.50	1.102	0.02	0.021	0.023
	WIFI5.8G	802.11n40	Right	0	159	5795	17.08	17.50	1.102	0.01	0.341	0.376
	WIFI5.8G	802.11n40	Тор	0	159	5795	17.08	17.50	1.102	-0.09	0.264	0.291
	WIFI5.8G	802.11n40	Bottom	0	159	5795	17.08	17.50	1.102	-0.12	0.118	0.130
#5	WIFI5.8G	802.11n40	Front	0	159	5795	17.08	17.50	1.102	0.06	0.758	0.835
	WIFI5.8G	802.11n40	Back	0	159	5795	17.08	17.50	1.102	0.08	0.113	0.124

Shenzhen Anbotek Compliance Laboratory Limited

Note:

1. Per KDB 865664 D01V01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.

2. Per KDB 865664 D01V01,if the ratio of largest to smallest SAR for the original and first repeated measurement is≤1.2and the measured SAR<1.45W/Kg, only one repeated measurement is required.

3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is>1.20 or when the original or repeated measurement is ≥ 1.45W/Kg

4. The ratio is the difference in percentage between original and repeated measured SAR.

Shenzhen Anbotek Compliance Laboratory Limited

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

- No. Applicable Simultaneous Transmission
- 1. N/A

Shenzhen Anbotek Compliance Laboratory Limited

14. Measurement Uncertainty

NO	Source	Uncert. ai(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)		Stand.U ncert. ui (10g)	Vefl
1	Repeat	0.4	Ν	1	1	1	0. 4	0. 4	9
		1	Instr	ument	i		I		
2	Probe calibration	7	Ν	2	1	1	3.5	3.5	∞
3	Axial isotropy	4.7	R	√3	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.4	R	√3	0.7	0.7	3.9	3.9	8
5	Boundary effect	1.0	R	√3	1	1	0.6	0.6	∞
6	Linearity	4.7	R	√3	1	1	2.7	2.7	∞
7	Detection limits	1.0	R	√3	1	1	0.6	0.6	ø
8	Readout electronics	0.3	Ν	1	1	1	0.3	0.3	∞
9	Response time	0.8	R	√3	1	1	0.5	0.5	ø
10	Integration time	2.6	R	√3	1	1	1.5	1.5	ø
11	Ambient noise	3.0	R	√3	1	1	1.7	1.7	ø
12	Ambient reflections	3.0	R	√3	1	1	1.7	1.7	ø
13	Probe positioner mech. restrictions	0.4	R	√3	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	√3	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	ø

Page 38 of 95

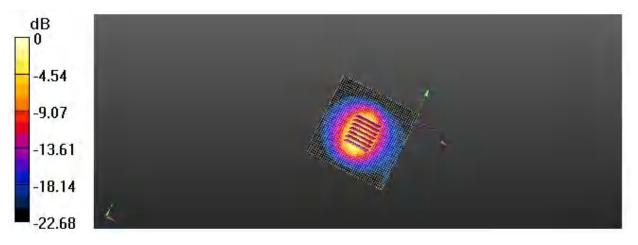
			Test samp	ole rel	ated				
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99
17	Device holder	5.1	N	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	√3	1	1	2.9	2.9	∞
Phantom and set-up									
19	Phantom uncertainty	4.0	R	√3	1	1	2.3	2.3	ø
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	ø
22	Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.5	∞
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	ø
Combined standard			RSS	$U_{c} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}^{2}}$		11.4%	11.3%	236	
unce	Expanded ertainty(P=95%)		L	ן = <i>k</i> נ	/ ,k=	2	22.8%	22.6%	
	neasurement uncertainty					-			
inis	uncertainty represents an	•	uncertainty ng a coverag	-			nately the	95% CONTIGE	ince ievel

Shenzhen Anbotek Compliance Laboratory Limited

Appendix A. Plots of SAR System Check

2450MHz Body System Check

Date:Nov/11/2024


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.83S/m; ϵ r = 39.21; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May 06, 2024; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02.2024; Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

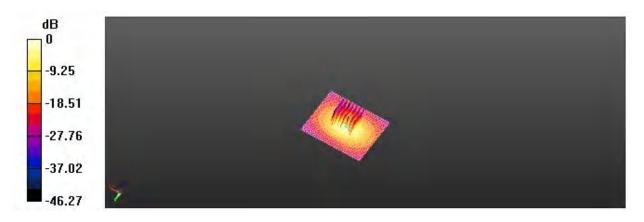
Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 19.521 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.336 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.223 W/kg SAR(1 g) = 12.81 W/kg; SAR(10 g) = 6.21 W/kg Maximum value of SAR (measured) = 19.52W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Date: Apr/18/2025

5200MHz Body System Check

DUT: Dipole 5200 MHz; Type: D5GHZV2; Serial:D5GHzV2 - SN:1160


Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5200 MHz; σ = 4.62S/m; ϵ r = 36.52; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

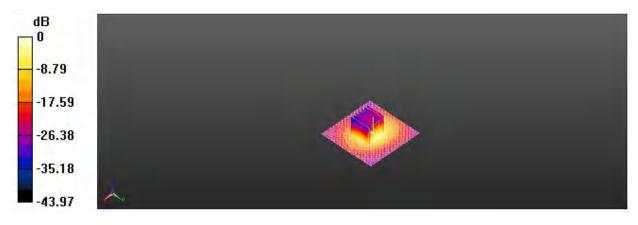
Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May 06, 2024; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02.2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=1.00 mm, dy=1.00 mm Maximum value of SAR (interpolated) =21.5 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.231 V/m; Power Drift = 0.06dB Peak SAR (extrapolated) = 35.61 W/kg SAR(1 g) =7.82 W/kg; SAR(10 g) = 3.41 W/kg Maximum value of SAR (measured) = 11.63W/kg

Shenzhen Anbotek Compliance Laboratory Limited

5300MHz Body System Check

DUT: Dipole 5300 MHz; Type: D5GHZV2; Serial:D5GHzV2 - SN:1160


Communication System: CW; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f =5300 MHz; σ =4.79 S/m; ϵ r =35.83; ρ =1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May,06.2024; Sensor-Surface:1. 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02.2024; Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.6 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 91.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.881 W/kg SAR(1 g) =7.99 W/kg; SAR(10 g) = 2.68 W/kg

Maximum value of SAR (measured) = 12.32 W/kg

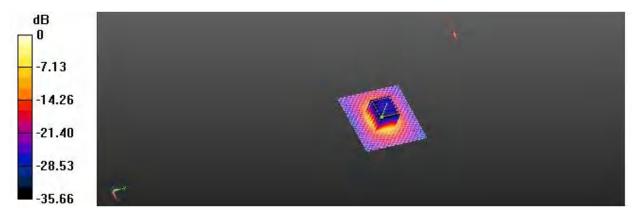
Shenzhen Anbotek Compliance Laboratory Limited

Date: Apr/18/2025

5600MHz Head System Check

Date: Apr/18/2025

DUT: Dipole 5600 MHz; Type: D5GHZV2; Serial:D5GHzV2 - SN:1160


Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f =5600 MHz; σ =5.02S/m; ϵ r =36.486; ρ =1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(4.89, 4.89, 4.89); Calibrated: May,06.2024; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02.2024; Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

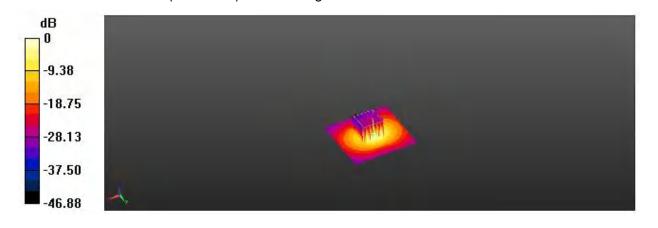
Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.5 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 93.45 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 15.612 W/kg SAR(1 g) =8.06W/kg; SAR(10 g) = 3.28 W/kg

Maximum value of SAR (measured) = 12.3 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Page 43 of 95

5800MHz Body System Check


DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 5.28 S/m; ϵ_r = 35.12; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.92, 4.92, 4.92); Calibrated: May 06, 2024; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 02, 2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.3 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.32 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 35.66 W/kg SAR(1 g) = 7.53W/kg; SAR(10 g) = 3.26 W/kg Maximum value of SAR (measured) = 12.24W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Date:Apr/18/2025

Date: Nov/11/2024

Appendix B. Plots of SAR Test Data

#1

WIFI 2.4G_802.11b_Body Back _Ch1

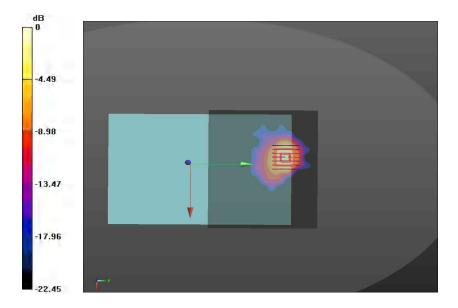
Communication System: UID 0, wifi (fcc) (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412MHz; σ = 1.76 S/m; ϵ_r = 39.25; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May 06,2024; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02,2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x161x1): Measurement grid: dx=1.200mm, dy=1.200mm

Maximum value of SAR (measured) = 1.625 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.331 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.733 W/kg

SAR(1 g) = 1.025 W/kg; SAR(10 g) = 0.624 W/kg

Maximum value of SAR (measured) = 1.211 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

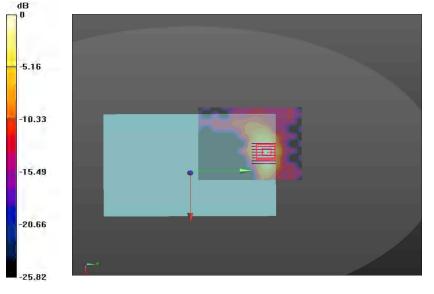
Page 45 of 95

#2

Date: Apr/18/2025

WIFI 5.2G_802.11n40_Body Back _Ch46

Communication System: UID 0, wifi (fcc) (0); Frequency: 5230 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5230MHz; σ = 4.74 S/m; ϵ_r = 35.72; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May 06,2024; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02,2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x161x1): Measurement grid: dx=1.200mm, dy=1.200mm

Maximum value of SAR (measured) = 1.733 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.483 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.864 W/kg **SAR(1 g) =1.116 W/kg; SAR(10 g) = 0.846W/kg**

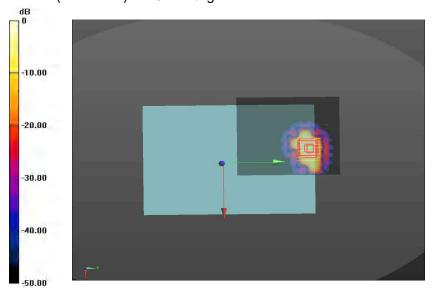
Maximum value of SAR (measured) =1.126W/kg

Shenzhen Anbotek Compliance Laboratory Limited

#3

Date:Apr/18/2025

WIFI 5.3G_802.11n20_Body Back _Ch64


Communication System: UID 0, wifi (fcc) (0); Frequency: 5320 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5320MHz; σ = 4.82S/m; ϵ_r = 35.76; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May 06,2024; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02,2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x161x1): Measurement grid: dx=1.200mm, dy=1.200mm Maximum value of SAR (measured) = 1.664 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.601 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.685 W/kg SAR(1 g) =0.691W/kg; SAR(10 g) = 0.328W/kg

Maximum value of SAR (measured) = 1.314 W/kg

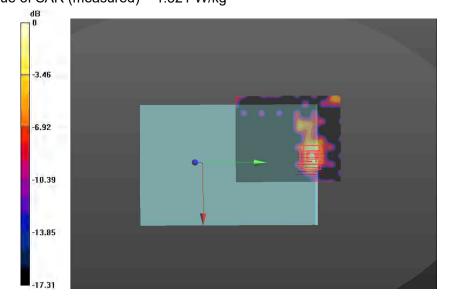
Shenzhen Anbotek Compliance Laboratory Limited

Page 47 of 95

#4

Date: Apr/18/2025

WIFI 5.6G_802.11ac20_Body Back _Ch116


Communication System: UID 0, wifi (fcc) (0); Frequency: 5580 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5580MHz; σ = 5.12 S/m; ϵ_r = 35.61; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(4.89, 4.89, 4.89); Calibrated: May 06,2024; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02,2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x161x1): Measurement grid: dx=1.200mm, dy=1.200mm

Maximum value of SAR (measured) = 1.732W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.546 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.856 W/kg **SAR(1 g) = 0.852W/kg; SAR(10 g) = 0.245W/kg** Maximum value of SAR (measured) = 1.321 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

#5

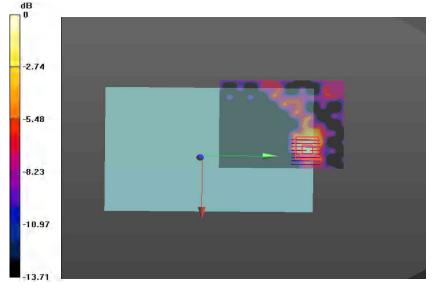
Date: Apr/18/2025

WIFI 5.8G_802.11b_Body Back _Ch165

Communication System: UID 0, wifi (fcc) (0); Frequency: 5825 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5825MHz; σ =5.33 S/m; ϵ_r = 35.16; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(4.92, 4.92,4.92); Calibrated: May 06,2024; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.02,2024 Phantom: ELI4; Type: QDOVA004AA; Serial:2058; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)


Area Scan (91x161x1): Measurement grid: dx=1.200mm, dy=1.200mm

Maximum value of SAR (measured) = 1.813 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.660 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.821 W/kg

SAR(1 g) =0.758 W/kg; SAR(10 g) = 0.236W/kg

Maximum value of SAR (measured) = 1.123 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Appendix C. DASY System Calibration Certificate

Add: No.51 Xueyana Road, Hi Tely-86-10-62304633-2079 E-mail: ettl@chimatit.com Client Anbotek (Aude CALIBRATION CERTIF Object Calibration Procedure(s) Calibration Procedure(s) Calibration date: This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of	FICATE D1750V2 - SN: 1021 FD-Z11-2-003-01 Calibration Procedures for dipole validation Jun 11, 2024 hts the traceability to national standards, v ints and the uncertainties with confidence pr ited in the closed laboratory facility: environment critical for calibration)	which realize the physical units of robability are given on the following ironment temperature(22±3)'C and
Client Anbotek (Aude CALIBRATION CERTIF Dbject Calibration Procedure(s) Calibration date: This calibration Certificate documer neasurements(SI). The measureme bages and are part of the certificate. All calibrations have been conduc numidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	en) Certificate N FICATE D1750V2 - SN: 1021 FD-Z11-2-003-01 Calibration Procedures for dipole validation Jun 11, 2024 Ints the traceability to national standards, with its and the uncertainties with confidence pre- sted in the closed laboratory facility: environment critical for calibration)	which realize the physical units of robability are given on the following ironment temperature(22±3)'C and
CALIBRATION CERTIF Object Calibration Procedure(s) Calibration date: This calibration Certificate documer measurements(SI). The measureme bages and are part of the certificate. All calibrations have been conduc numidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	FICATE D1750V2 - SN: 1021 FD-Z11-2-003-01 Calibration Procedures for dipole validation Jun 11, 2024 hts the traceability to national standards, v ints and the uncertainties with confidence pr ited in the closed laboratory facility: environment critical for calibration)	which realize the physical units of robability are given on the following ironment temperature(22±3)'C and
Object Calibration Procedure(s) Calibration date: This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	D1750V2 - SN: 1021 FD-Z11-2-003-01 Calibration Procedures for dipole validation Jun 11, 2024 hts the traceability to national standards, v ints and the uncertainties with confidence pr ted in the closed laboratory facility: environment critical for calibration)	which realize the physical units of obability are given on the following ironment temperature(22±3)°C and
Calibration Procedure(s) Calibration date: This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	FD-Z11-2-003-01 Calibration Procedures for dipole validation Jun 11, 2024 Ints the traceability to national standards, v ints and the uncertainties with confidence pr ited in the closed laboratory facility: environment critical for calibration)	which realize the physical units of obability are given on the following ironment temperature(22±3)°C and
Calibration date: This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	Calibration Procedures for dipole validation Jun 11, 2024 Ints the traceability to national standards, with ints and the uncertainties with confidence pre- sted in the closed laboratory facility: environment critical for calibration)	which realize the physical units of obability are given on the following ironment temperature(22±3)°C and
This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	Calibration Procedures for dipole validation Jun 11, 2024 Ints the traceability to national standards, with ints and the uncertainties with confidence pre- sted in the closed laboratory facility: environment critical for calibration)	which realize the physical units of obability are given on the following ironment temperature(22±3)°C and
This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	Jun 11, 2024 Its the traceability to national standards, with ints and the uncertainties with confidence pr ited in the closed laboratory facility: environment critical for calibration)	which realize the physical units of obability are given on the following ironment temperature(22±3)°C and
This calibration Certificate documer measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID #	nts the traceability to national standards, with sand the uncertainties with confidence protect in the closed laboratory facility: envious critical for calibration)	robability are given on the following ironment temperature(22±3) ¹ C and
measurements(SI). The measureme pages and are part of the certificate. All calibrations have been conduc humidity<70%. Calibration Equipment used (M&TE of Primary Standards ID#	nts and the uncertainties with confidence pr ted in the closed laboratory facility: envi critical for calibration)	robability are given on the following ironment temperature(22±3) ¹ C and
Power Meter NRP2 101919 Power sensor NRP-Z91 101543 Reference Probe EX3DV4 SN 730	7 1-Jul-23(CTTL, No.J23X04256) 07 19-Feb-24(SPEAG,No.EX3-7307_F	Jun-24 Jun-24 Feb 24) Feb-25
DAE4 SN 77	1 02-Feb-24(CTTL-SPEAG,No.Z24-9	97011) Feb-25
Secondary Standards ID #	Cal Date(Calibrated by, Certi ficate	No.) Scheduled Calibration
Signal Generator E4438C MY490	071430 01-Feb-24(CTTL, No.J24X00893)	
Network Analyzer E5071C MY461	10673 26-Jan-24 (CTTL, No.J24X00894)	Jan-25
Name	Function	Signature
Calibrated by: Zhao Ji	ng SAR Test Engineer	川南
		& 2J
Reviewed by: Qi Dian	yuan SAR Project Leader	AR
Approved by:	song Deputy Director of the labora	ita int

Certificate No: Z24-97103

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tels=#86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary: TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z.24-97103

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: 486-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	36.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.94 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.8 mW /g ± 20.4 % (k=2)

Body TSL parameters

SI

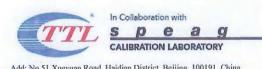
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.25 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	36.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	4.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.7 mW /g ± 20.4 % (k=2)

Certificate No: Z24-97103


Page 3 of 8


Shenzhen Anbotek Compliance Laboratory Limited

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: #86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 1.40jΩ	
Return Loss	- 33.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0Ω+ 0.61jΩ
Return Loss	- 27.5dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.318 ns
Electrical Delay (one uncoulon)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

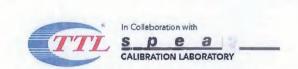
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z24-97103

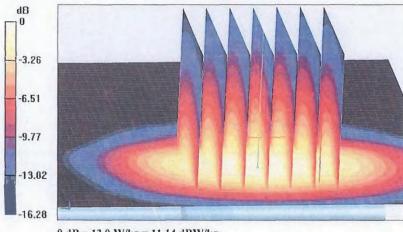
Page 4 of 8


Shenzhen Anbotek Compliance Laboratory Limited

Date: 06.11.2024

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:#486-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.362$ S/m; $\epsilon r = 40.49$; $\rho = 1000$ kg/m3 Phantom section: Center Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.Configuration:

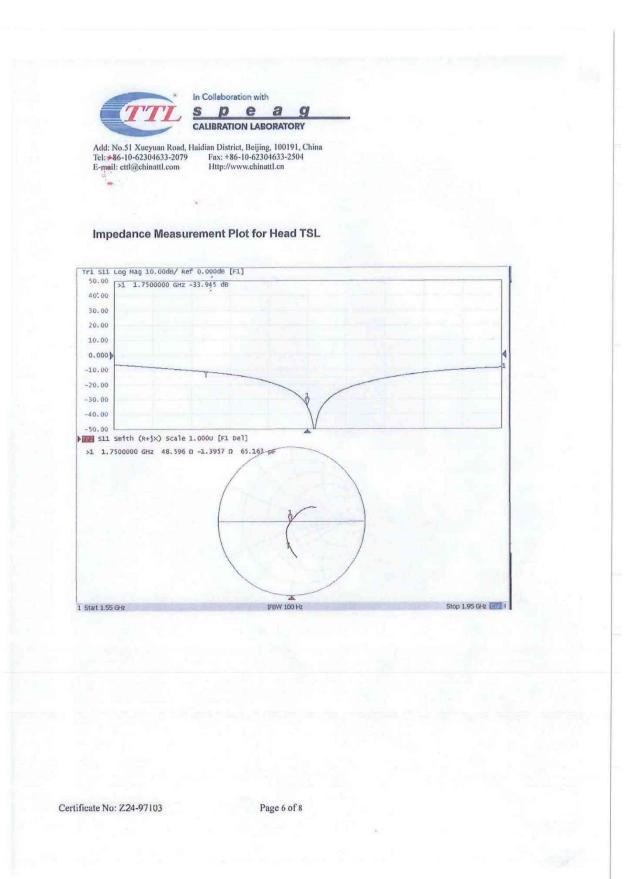
- Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2021
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.11V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.4W/kg

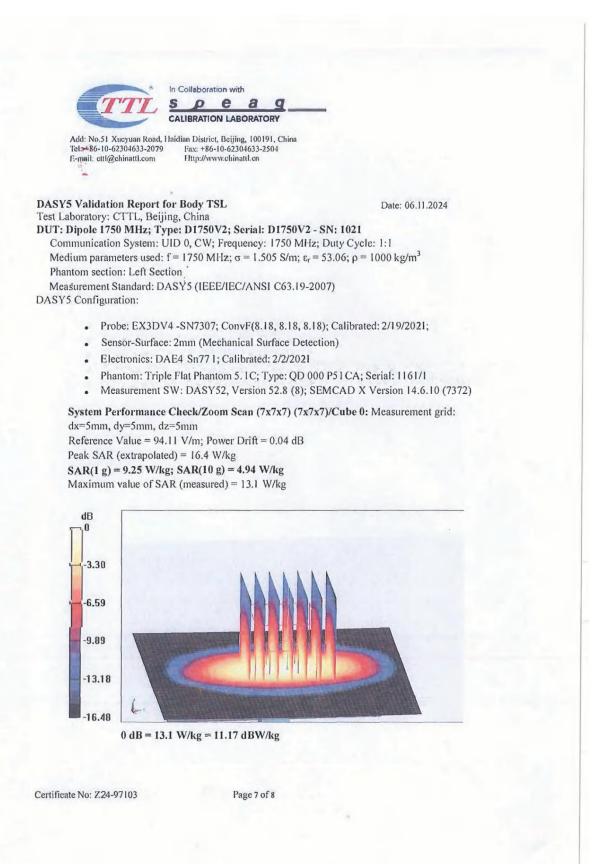
SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.94 W/kgMaximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg

Certificate No: Z24-97103


Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited



Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Page 56 of 95

TI	In Collaboration with S D CALIBRATION LABORATORY	
Tel: #86-10-623046 E-mail: cttl@chinat	.com Http://www.chinattl.cn	
Impedance N	easurement Plot for Body TSL	
	00dB/ Ref 0.000dB [F1]	
50.00 40.00	00 GHz -27.463 dB	
30.00		
20.00		
10.00		
0.000		4
-10.00		i i
-20.00	1	
-30,00	e	
-40.00		
-50.00	Scale 1.0000 [F1 De]]	
1 Start 1.55 GHz	IFBW 100 Hz	Stop 1.95 GHz 2001 1
1 Start 1.55 GHz		Stop 1.95 GHz Con I
1 Start 1.55 GHz		Stop 1.95 GHz Tool T
1 Start 1.55 GHz		Stop 1.95 GHz Con II

Shenzhen Anbotek Compliance Laboratory Limited

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://wyww.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange. The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop, Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair. Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11,12.2009

Shenzhen Anbotek Compliance Laboratory Limited

Page 58 of 95

Engineering AG (eughausstrasse 43, 8004 Zu	ory of		Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accre The Swiss Accreditation Serv Multilateral Agreement for the	vice is one of the signatories	s to the EA	n No.: SCS 0108
Client Anbotek (Au		Pupi cita	o: DAE4-387_Sep02
CALIBRATION	and the second second second	han a france	
Object	DAE4 - SD 000 D	04 BM - SN: 387	
Calibration procedure(s)	QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE)		
Calibration date:	September 02, 20	24	
The measurements and the un	certainties with confidence pr	anal standards, which realize the physical un obability are given on the following pages any facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the un All calibrations have been cond Calibration Equipment used (N	certainties with confidence producted in the closed laboratory	obability are given on the following pages a	nd are part of the certificate. C and humidity < 70%.
The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards	certainties with confidence pr ducted in the closed laboratory & TE critical for calibration)	obability are given on the following pages ar / facility: environment temperature (22 ± 3)°	nd are part of the certificate.
The measurements and the un	certainties with confidence pr ducted in the closed laboratory I&TE critical for calibration)	obability are given on the following pages and facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 15-Aug-24 (No:22092)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Aug-24
The measurements and the un All calibrations have been cond Calibration Equipment used (M <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit	certainties with confidence producted in the closed laboratory l&TE critical for calibration) ID # ID # ID # ID # SE UWS 053 AA 1001	obability are given on the following pages and facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the un All calibrations have been cond Calibration Equipment used (M <u>Primary Standards</u> Keithley Multimeter Type 2001	certainties with confidence producted in the closed laboratory I&TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following pages at / facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 15-Aug-24 (No:22092) <u>Check Date (In house)</u> 05-Jan-24 (in house check) 05-Jan-24 (in house check)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Aug-24 Scheduled Check In house check: Jan-24 In house check: Jan-24
The measurements and the un All calibrations have been cond Calibration Equipment used (M <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	certainties with confidence producted in the closed laboratory l&TE critical for calibration) ID # ID # ID # ID # SE UWS 053 AA 1001	obability are given on the following pages an (facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 15-Aug-24 (No:22092) <u>Check Date (in house)</u> 05-Jan-24 (in house check)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Aug-24 Scheduled Check In house check: Jan-24 In house check: Jan-24
The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	certainties with confidence producted in the closed laboratory I&TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following pages ar / facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 15-Aug-24 (No:22092) <u>Check Date (In house)</u> 05-Jan-24 (In house check) 05-Jan-24 (In house check) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Aug-24 Scheduled Check In house check: Jan-24 In house check: Jan-24

Certificate No: DAE4-387_Sep02

Page 1 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-387_Sep10

Page 2 of 5

Shenzhen Anbotek Compliance Laboratory Limited

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .		-1+3mV

Calibration Factors	X	Y	Z
High Range	404.489 ± 0.02% (k=2)	404.852 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)
Low Range	3.97827 ± 1.50% (k=2)	3.95875 ± 1.50% (k=2)	3.97982 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	53.0 ° ± 1 °
---	--------------

Certificate No: DAE4-387_Sep10

Page 3 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X + In	put	200032.85	-3.31	-0.00
Channel X + In	put	20007.64	1.88	0.01
Channel X - Inj	out	-20003.48	1.18	-0.01
Channel Y + In	put	200034.23	-1.43	-0.00
Channel Y + In	put	20006.60	0.91	0.00
Channel Y - Inp	out	-20004.04	0.72	-0.00
Channel Z + In	put	200035.38	-0.83	-0.00
Channel Z + In	put	20003.69	-2.11	-0.01
Channel Z - Inp	out	-20006.38	-1.59	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.63	0.08	0.00
Channel X + Input	202.29	0.70	0.35
Channel X - Input	-197.90	0.60	-0.30
Channel Y + Input	2001.33	-0.07	-0.00
Channel Y + Input	200.86	-0.60	-0.30
Channel Y - Input	-199.87	-1.23	0.62
Channel Z + Input	2001.61	0.27	0.01
Channel Z + Input	200.60	-0.70	-0.35
Channel Z - Input	-199.51	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)	
Channel X	200	13.50	11.56	
	- 200	-8.64	-11.18	
Channel Y	200	-0.81	-1.28	
	- 200	1.05	0.09	
Channel Z	200	7.17	6.91	
	- 200	-9.46	-9.01	

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-1.70	0.33
Channel Y	200	10.70	-	-0.38
Channel Z	200	7.11	7.89	-

Certificate No: DAE4-387_Sep10

Page 4 of 5

Shenzhen Anbotek Compliance Laboratory Limited

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	17466
Channel Y	15661	16162
Channel Z	15990	16190

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 M $\!\Omega$

	Average (μV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.73	-2.58	3.29	0.62
Channel Y	0.41	-0.49	1.23	0.40
Channel Z	-0.80	-1.88	0.30	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-387_Sep10

Page 5 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Page 63 of 95

	CALIBRATIO	e a g	た 大 本 た 准 CALIBRATI
Add: No.51 Xueyuar Tel: +86-10-623046 E-mail: cttl@chinatt	33-2218 Fax: +86	ct, Beijing, 100191, China -10-62304633-2209 ww.chinattl.cn	CNAS L057
Client Anb	otek (Auden)	Certificate No: Z24-	98671
CALIBRATION CE	RTIFICATE		
Dbject	EX3DV4	- SN:7396	
Calibration Procedure(s)			
	FF-Z12-0		
	Calibratic	on Procedures for Dosimetric E-field Probes	
Calibration date:	May 06, 2	2024	
numidity<70%.		e closed laboratory facility: environment t	temperature(22±3)℃ and
numidity<70%. Calibration Equipment used	(M&TE critical for		temperature(22±3)℃ and Scheduled Calibration
numidity<70%. Calibration Equipment used	(M&TE critical for	calibration)	
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical for ID # (calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical for ID # (101919	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447)	Scheduled Calibration Jun-23
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ID # (101919 101547	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447)	Scheduled Calibration Jun-23 Jun-23
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical for ID # (101919 101547 101548	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL,No.J24X01547)	Scheduled Calibration Jun-23 Jun-23 Jun-23
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL,No.J24X01547)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL,No.J24X01547) 13-Mar-24(CTTL, No.J24X01548)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG, No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical for ID # () 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID #	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG, No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG, No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical for ID # () 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID #	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG, No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG,No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776) 13-Jan-24 (CTTL, No.J24X00285) Function	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23 Jan -24
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24 (CTTL, No.J23 X07447) 13-Mar-24 (CTTL, No.J24X01547) 13-Mar-24 (CTTL, No.J24X01548) 26-Sep-23 (SPEAG, No.EX3-7433_Sep22) 13-Dec-23 (SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776) 13-Jan-24 (CTTL, No.J24X00285)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23 Jan -24
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG,No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776) 13-Jan-24 (CTTL, No.J24X00285) Function	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23 Jan -24
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24 (CTTL, No.J23 X07447) 13-Mar-24 (CTTL, No.J24 X01547) 13-Mar-24 (CTTL, No.J24 X01548) 26-Sep-23 (SPEAG, No.EX3-7433_Sep22) 13-Dec-23 (SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776) 13-Jan-24 (CTTL, No.J24X00285) Function SAR Test Engineer	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23 Jan -24
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	(M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 20-Jun-23 (CTTL, No.J23 X07447) 13-Mar-24(CTTL, No.J24X01547) 13-Mar-24(CTTL, No.J24X01548) 26-Sep-23(SPEAG, No.EX3-7433_Sep22) 13-Dec-23(SPEAG, No.DAE4-549_Dec22) Cal Date(Calibrated by, Certificate No.) 27-Jun-23 (CTTL, No.J23X04776) 13-Jan-24 (CTTL, No.J24X00285) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration Jun-23 Jun-23 Jun-23 Mar-24 Mar-24 Sep-23 Dec -23 Scheduled Calibration Jun-23 Jan -24 Signature

Shenzhen Anbotek Compliance Laboratory Limited

Page 64 of 95

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2024

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z24-98671

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	199.9	±2.4%
		Y	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z24-98671

Page 4 of 11

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218

 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com

 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z24-98671

Page 5 of 11

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	$\pm 13.3\%$
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z24-98671

Page 6 of 11

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

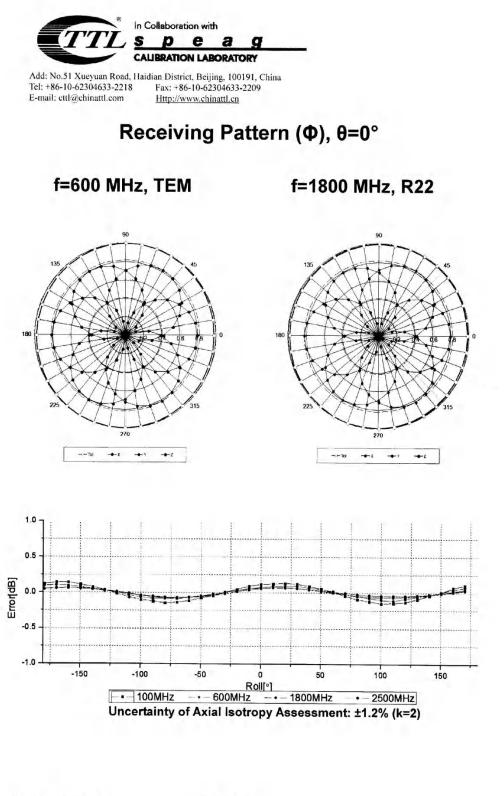
 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z24-98671

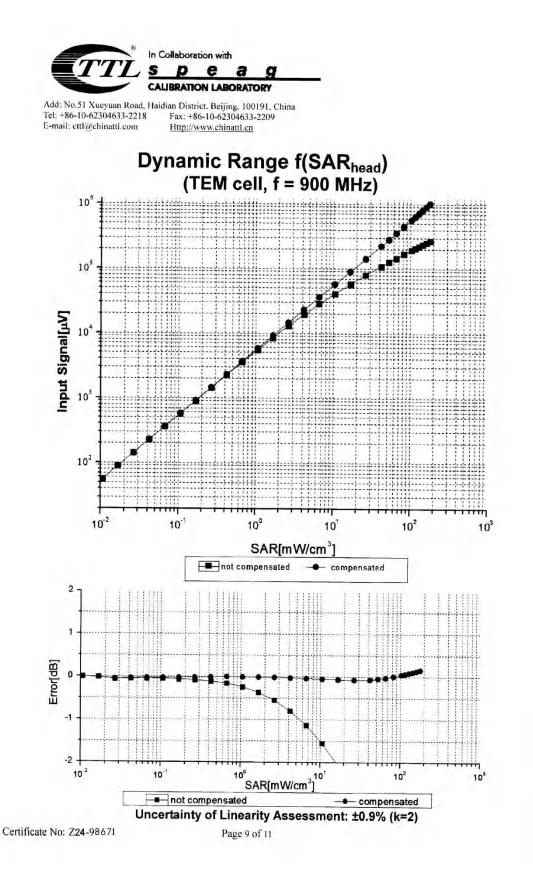
Page 7 of 11


Shenzhen Anbotek Compliance Laboratory Limited

Page 69 of 95

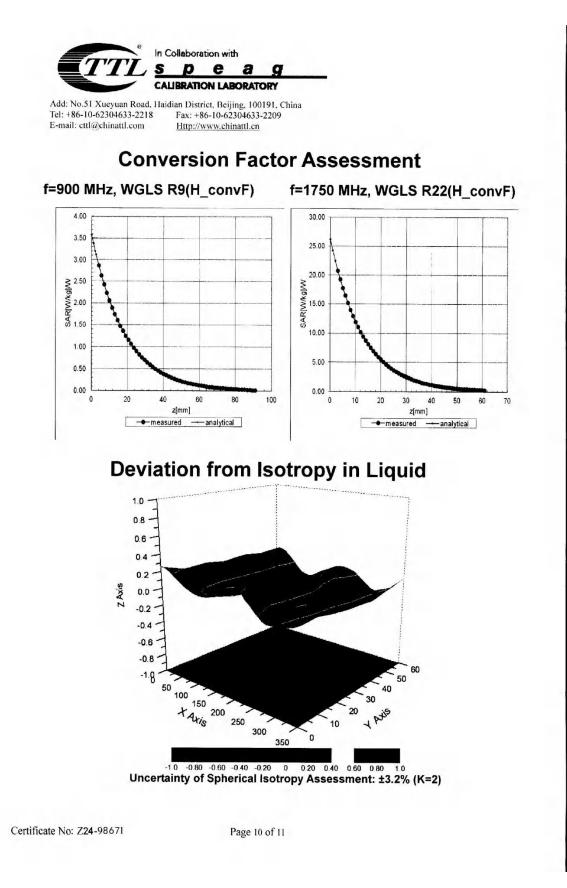
Certificate No: Z24-98671

Page 8 of 11


Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com



Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Product Safet

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z24-98671

Page 11 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Page 73 of 95

		e a g	中国认可
	CALIBRAT	TON LABORATORY	NAS 樹际互认
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +8	rict, Beijing, 100191, China 86-10-62304633-2504 www.chinattl.cn	CALIBRATION CNAS L0570
Client Anbote	k (Auden)	Certificate No: Z2	4-97091
CALIBRATION CE	RTIFICAT	E	
Object	D2450V	/2 - SN: 910	
Calibration Procedure(s)		-2-003-01 ion Procedures for dipole validation kits	
Calibration date:	Jun 11,		
All calibrations have been humidity<70%.	conducted in t	the closed laboratory facility: environment	temperature(22±3) [°] C and
Calibration Equipment used	(M&TE critical fo	or calibration)	
	(M&TE critical fo		Scheduled Calibration
		Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256)	Scheduled Calibration Jun-24
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	
Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256)	Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256)	Jun-24 Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 7307	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011)	Jun-24 Jun-24 Feb-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 SN 7307 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.)	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 7307 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011)	Jun-24 Jun-24 Feb-25 Feb-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-24 (CTTL, No.J24X00893)	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-24 (CTTL, No.J24X00893) 26-Jan-24 (CTTL, No.J24X00894)	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration Jan-25 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-24 (CTTL, No.J24X00893) 26-Jan-24 (CTTL, No.J24X00894) Function	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration Jan-25 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-24 (CTTL, No.J24X00893) 26-Jan-24 (CTTL, No.J24X00894) Function SAR Test Engineer	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration Jan-25 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan	Cal Date(Calibrated by, Certificate No.) 01-Jul-23 (CTTL, No.J23X04256) 01-Jul-23 (CTTL, No.J23X04256) 19-Feb-24 (SPEAG,No.EX3-7307_Feb24) 02-Feb-24 (CTTL-SPEAG,No.Z24-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-24 (CTTL, No.J24X00893) 26-Jan-24 (CTTL, No.J24X00894) Function SAR Test Engineer SAR Project Leader	Jun-24 Jun-24 Feb-25 Feb-25 Scheduled Calibration Jan-25 Jan-25 Signature

Certificate No: Z24-97091

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z24-97091

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

In Collaboration with S D C A G CALIBRATION LABORATORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.7 mW /g ± 20.4 % (k=2)

Certificate No: Z24-97091 Shenzhen Anbotek Compliance Laboratory Limited

Page 3 of 8

 Yule
 <th

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6Ω+ 2.77jΩ	
Return Loss	- 25.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7Ω+ 4.28jΩ	
Return Loss	- 27.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.263 ns	
----------------------------------	----------	--

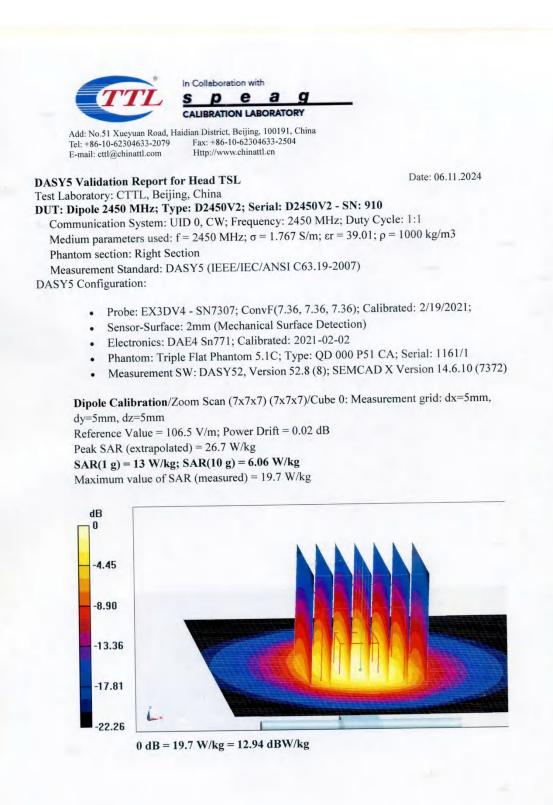
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

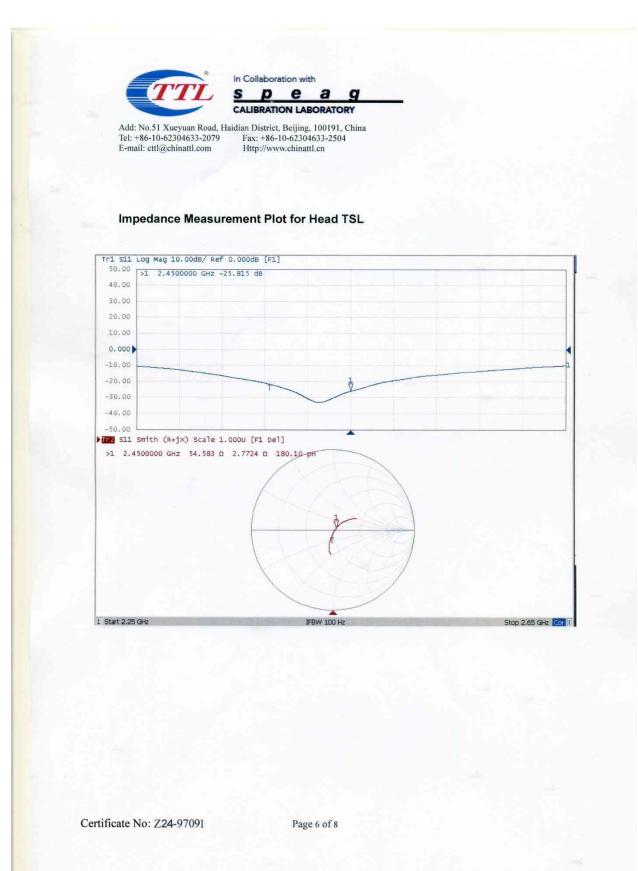
Manufactured by	SPEAG

Certificate No: Z24-97091

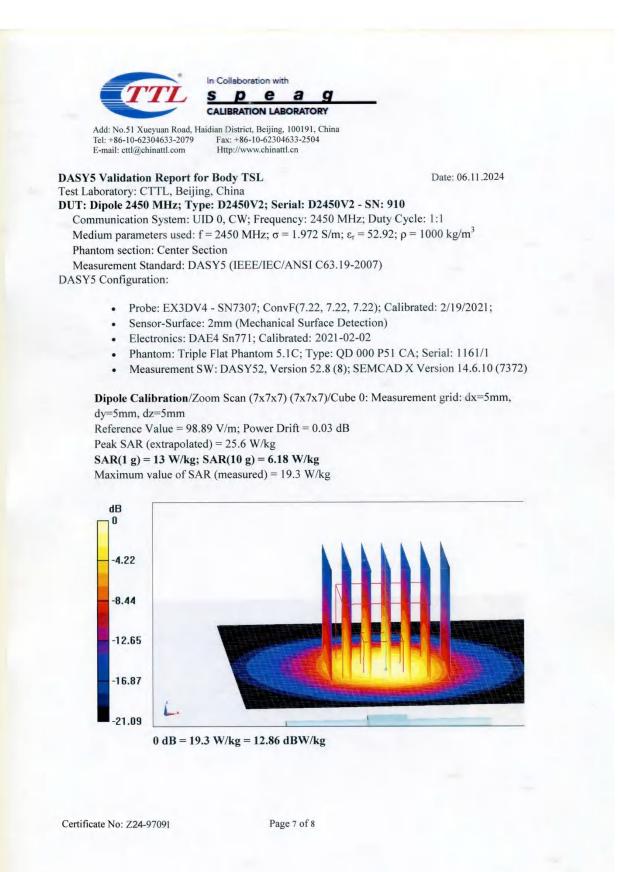

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

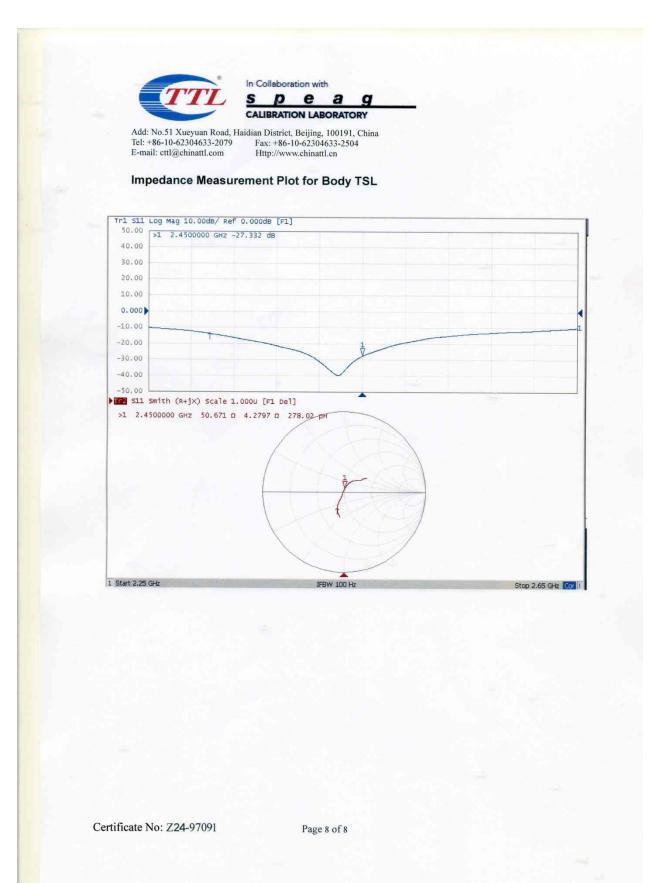
Certificate No: Z24-97091


Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Shenzhen Anbotek Compliance Laboratory Limited

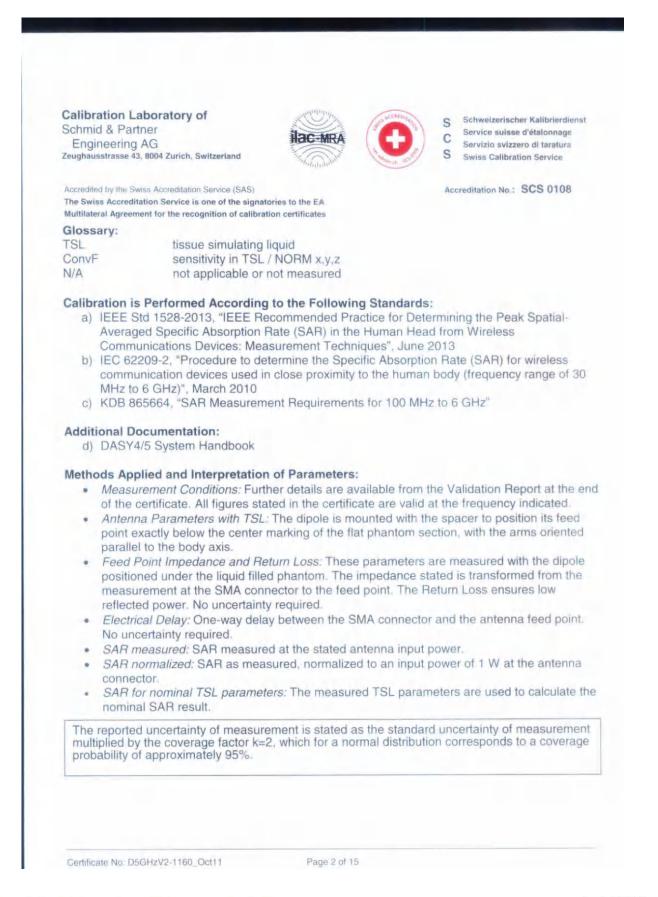
Page 79 of 95


Shenzhen Anbotek Compliance Laboratory Limited

Page 80 of 95

Shenzhen Anbotek Compliance Laboratory Limited

Page 81 of 95



Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	- + + + +	(and a

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.31 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 3 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Head TSL parameters at 5300 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		and the

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	35.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.47 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 4 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Head TSL parameters at 5800 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.26 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Oct11

Page 5 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Body TSL parameters at 5200 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7,81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg

normalized to 1W

Body TSL parameters at 5300 MHz

SAR for nominal Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	- a se parties	

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.20 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 6 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: (86) 0755-26066440 Email: service@anbotek.com

21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.30 W/kg

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.27 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)
		-
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 100 mW input power	2.20 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 7 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.1 Ω - 8.5 jΩ
Return Loss	- 21.0 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 5.2 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.8 Ω - 2.5 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.0 Ω - 3.0 μΩ
Return Loss	- 27.7 dB

Shenzhen Anbotek Compliance Laboratory Limited

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 6.8 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.0 Ω - 4.2 jΩ
Return Loss	- 27,1 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.2 Ω - 0.7 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 1.7 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 06, 2013

Shenzhen Anbotek Compliance Laboratory Limited

DASY5 Validation Report for Head TSL

Date: 24.09.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 4.57 S/m; ε_r = 36.4; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.68 S/m; ε_r = 36.2; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.03 S/m; ε_r = 35.7; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.26 S/m; ε_r = 35.3; ρ = 1000 kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

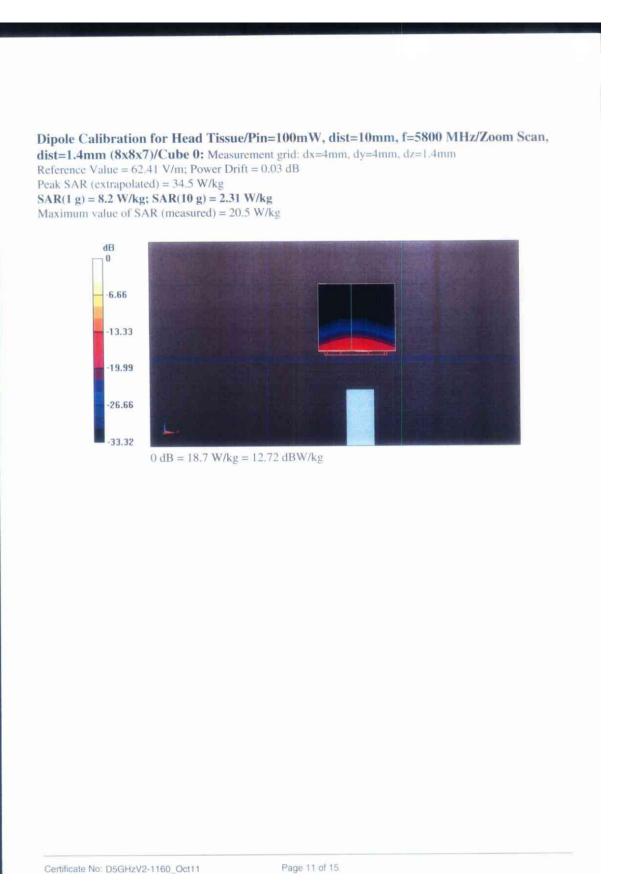
- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 10.10.2024, ConvF(5.21, 5.21, 5.21); Calibrated: 10.10.2024, ConvF(4.9, 4.9, 4.92); Calibrated: 10.10.2024, ConvF(4.9, 4.9, 4.9); Calibrated: 10.10.2024,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.41 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.31 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.34 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.47 W/kg Maximum value of SAR (measured) = 21.0 W/kg

Certificate No: D5GHzV2-1160_Oct11


Page 10 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Impedance Measurement Plot for Head TSL 1 Oct 2021 13:14:41 5 288.888 888 MHz CHI S11 1 U FS 1:48.109 0 -8.5195 0 3.5925 pF -CH1 Mankers De l 2: 50.164 d -5.2285 d 5.30000 GHz 3: 54.785 0 4: 53.006 g -2.9746 g 5.80000 GHz 1993 16 CH2 \$11 LOG 5 dB/REF -20 dB 1:-21.048 dB 5 200.000 000 MHz De l CH2 Markers 2:-25.658 dB 5.30000 GHz 3=-25.735 dB 5.60000 GHz 41-27.734 dB 5.80000 GHz 16 H1 d START 5 888.080 888 MHz STOP 6 000.000 000 MHz

Certificate No: D5GHzV2-1160_Oct11

Page 12 of 15

Shenzhen Anbotek Compliance Laboratory Limited

DASY5 Validation Report for Body TSL

Date: 05.10.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 5.35 S/m; ϵ_r = 47.9; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 5.49 S/m; ϵ_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.99 S/m; ϵ_r = 46.7; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.27 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

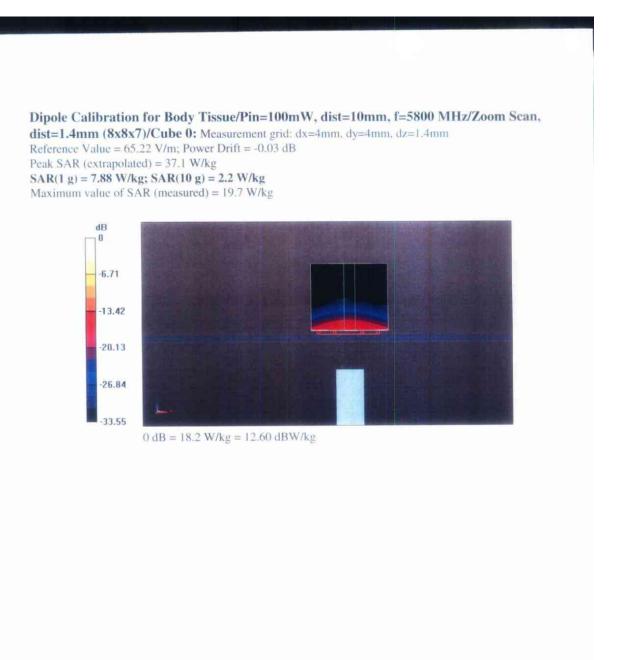
- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 10.10.2024, ConvF(4.78, 4.78, 4.78); Calibrated: 10.10.2024; ConvF(4.35, 4.35, 4.35); Calibrated: 10.10.2024, ConvF(4.32, 4.32, 4.32); Calibrated: 10.10.2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2024
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.22 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.8 W/kg

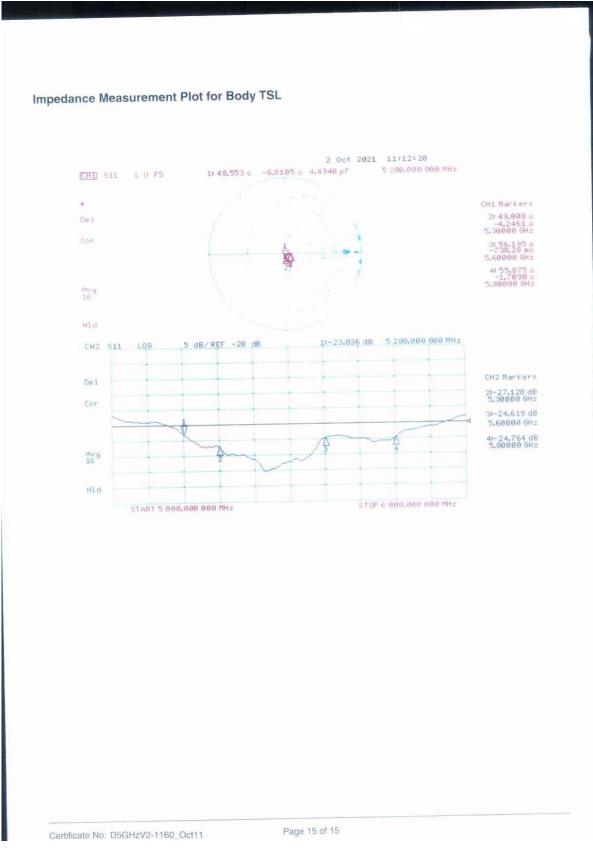
```
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 67.36 V/m; Power Drift = -0.03 dB
Peak SAR (extrapolated) = 36.6 W/kg
SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.3 W/kg
Maximum value of SAR (measured) = 20.2 W/kg
```

Certificate No: D5GHzV2-1160_Oct11


Page 13 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Certificate No: D5GHzV2-1160 Oct11


Page 14 of 15

Shenzhen Anbotek Compliance Laboratory Limited

*****END OF REPORT*****

Shenzhen Anbotek Compliance Laboratory Limited

