

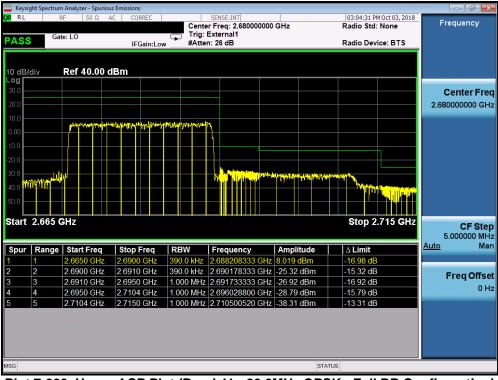
Plot 7-215. Lower ACP Plot at 2496 MHz (Band 41 - 10.0MHz QPSK - Full RB Configuration)

Plot 7-216. Upper ACP Plot (Band 41 - 10.0MHz QPSK - Full RB Configuration)


FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 130 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of the part o

Plot 7-217. Lower ACP Plot at 2496 MHz (Band 41 - 15.0MHz QPSK - Full RB Configuration)


Plot 7-218. Upper ACP Plot (Band 41 - 15.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 131 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Plot 7-219. Lower ACP Plot at 2496 MHz (Band 41 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-220. Upper ACP Plot (Band 41 - 20.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 132 of 185
2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

7.5 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

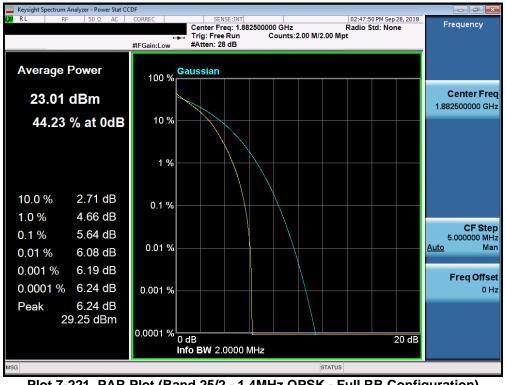
KDB 971168 D01 v03r01 - Section 5.7.1

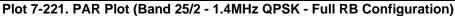
Test Settings

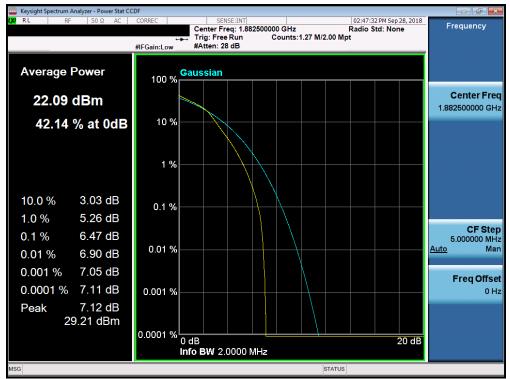
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Setup

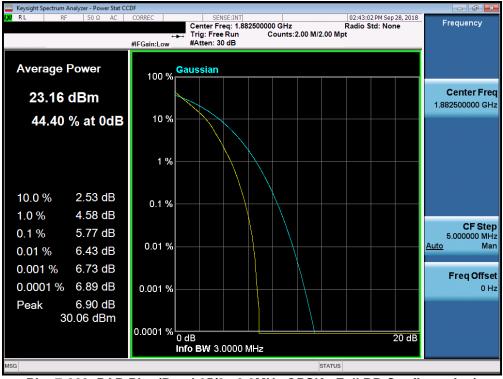
The EUT and measurement equipment were set up as shown in the diagram below.

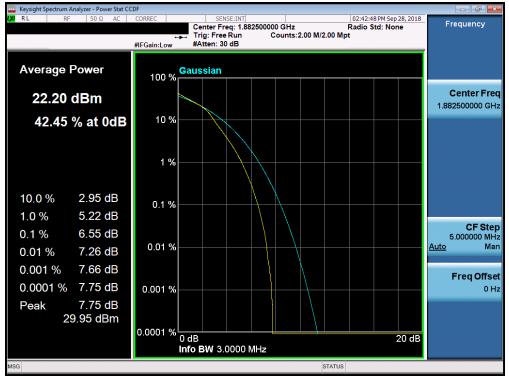

Figure 7-4. Test Instrument & Measurement Setup


Test Notes

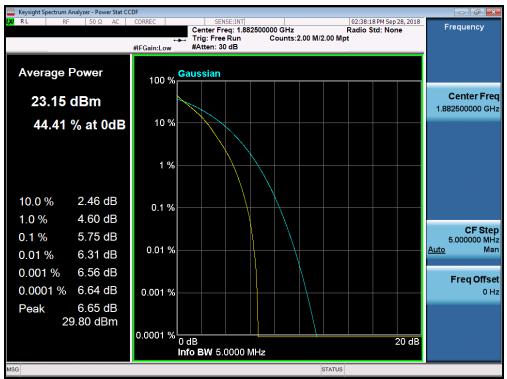

None.

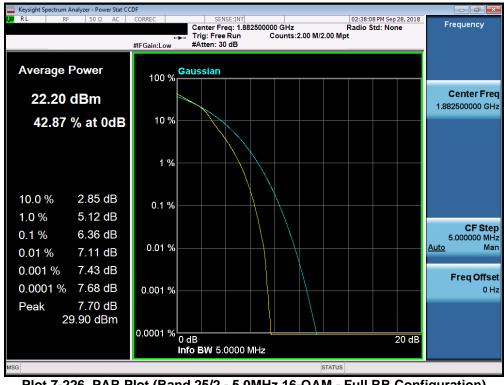
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 133 of 185
2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018



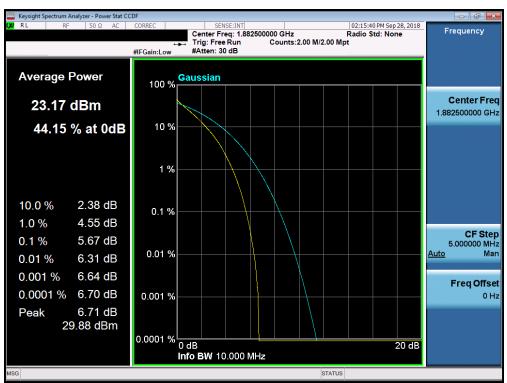

Plot 7-222. PAR Plot (Band 25/2 - 1.4MHz 16-QAM - Full RB Configuration)

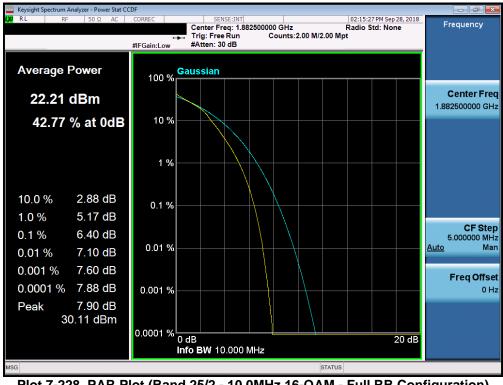
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 134 of 185
2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018


Plot 7-223. PAR Plot (Band 25/2 - 3.0MHz QPSK - Full RB Configuration)


Plot 7-224. PAR Plot (Band 25/2 - 3.0MHz 16-QAM - Full RB Configuration)

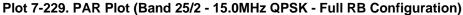
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 125 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 135 of 185
0 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

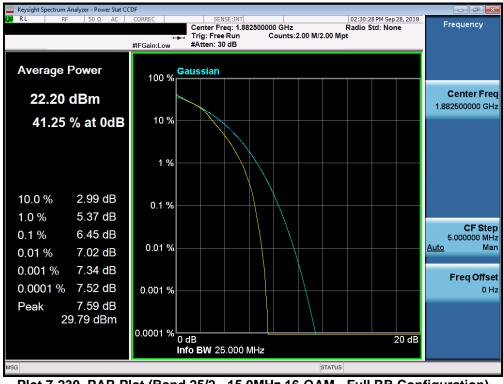



Plot 7-226. PAR Plot (Band 25/2 - 5.0MHz 16-QAM - Full RB Configuration)

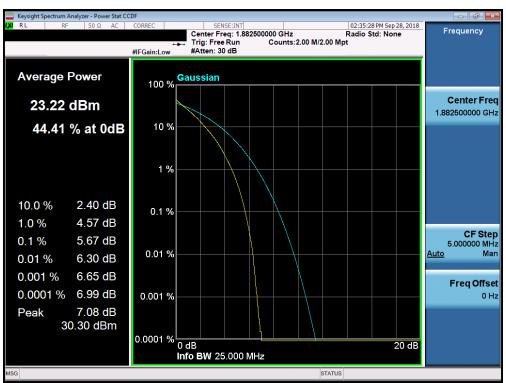
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 126 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 136 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018



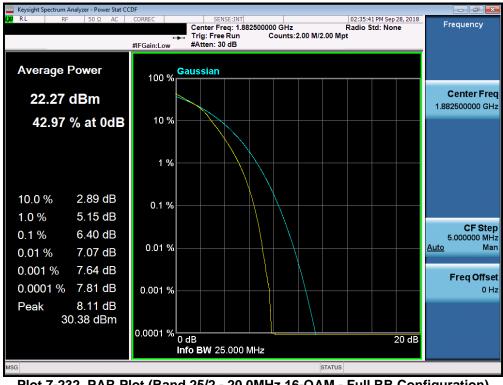



Plot 7-228. PAR Plot (Band 25/2 - 10.0MHz 16-QAM - Full RB Configuration)

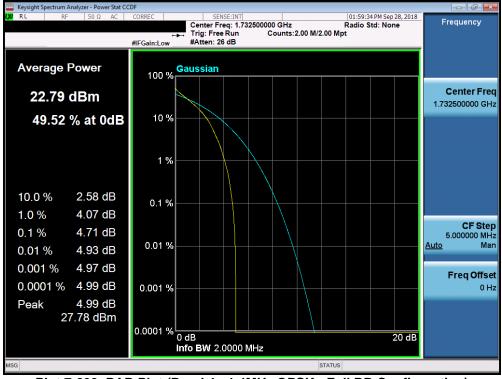
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 127 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 137 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018



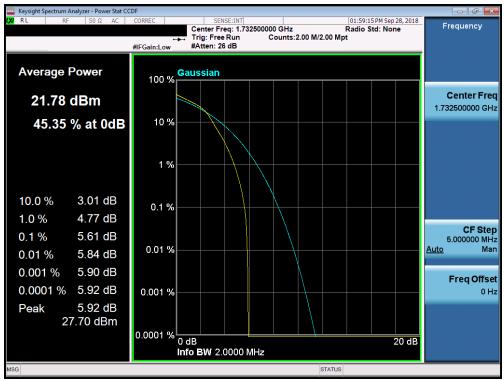
Plot 7-230. PAR Plot (Band 25/2 - 15.0MHz 16-QAM - Full RB Configuration)


FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 129 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 138 of 185
0 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

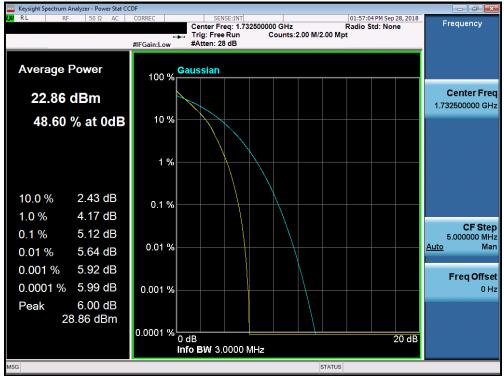
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of the part

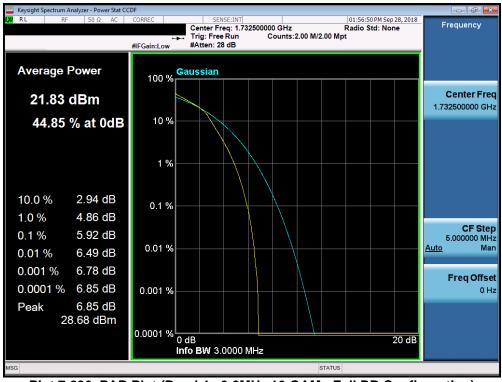


Plot 7-232. PAR Plot (Band 25/2 - 20.0MHz 16-QAM - Full RB Configuration)

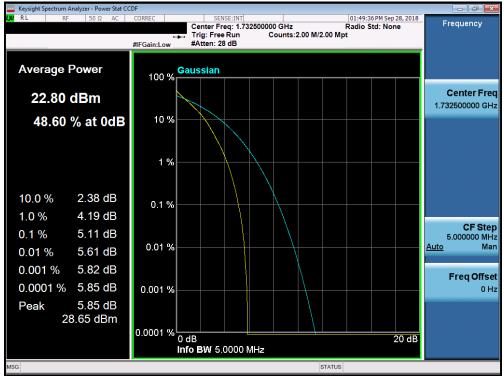

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 120 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 139 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

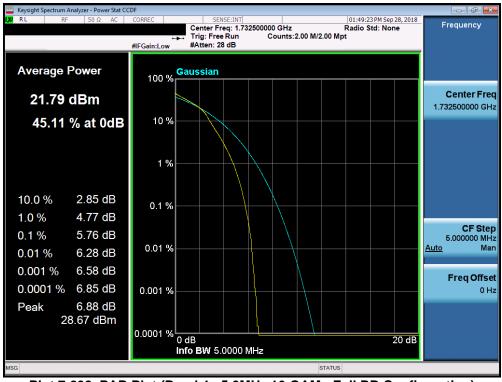
Band 4



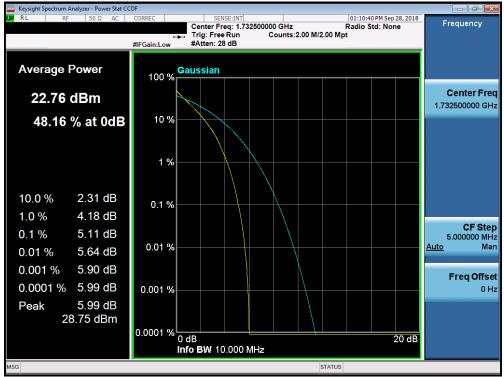

Plot 7-234. PAR Plot (Band 4 - 1.4MHz 16-QAM - Full RB Configuration)

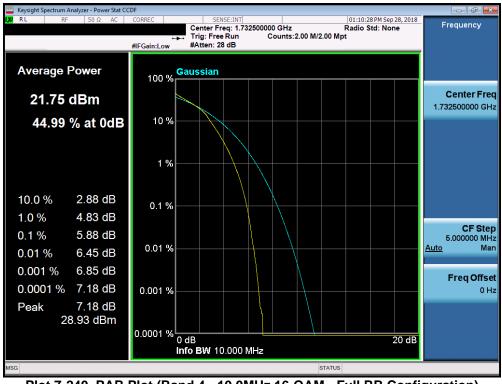
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 440 af 405
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 140 of 185
2018 PCTEST Engineering Laboratory. Inc.				V 8.5 08/29/2018



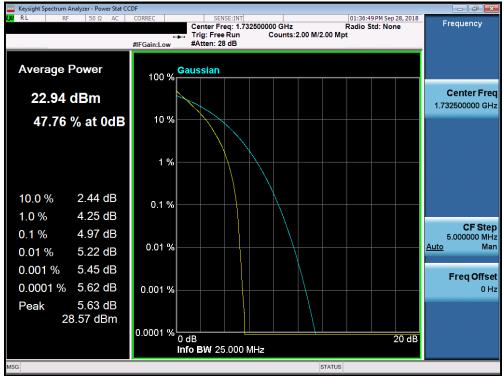

Plot 7-236. PAR Plot (Band 4 - 3.0MHz 16-QAM - Full RB Configuration)

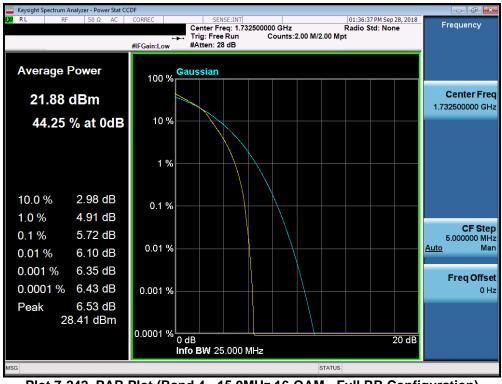
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 141 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 141 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018



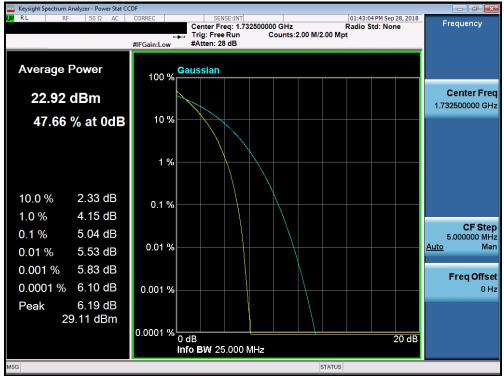

Plot 7-238. PAR Plot (Band 4 - 5.0MHz 16-QAM - Full RB Configuration)

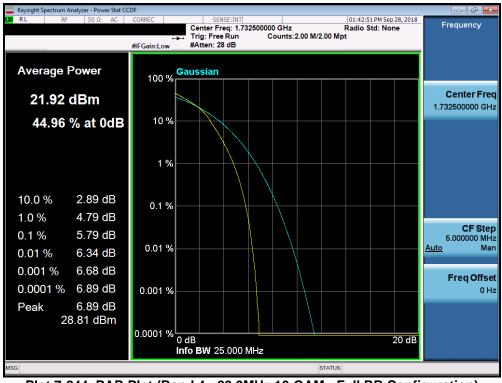
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 140 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 142 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			




Plot 7-240. PAR Plot (Band 4 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 142 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 143 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			




Plot 7-242. PAR Plot (Band 4 - 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 111 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 144 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Plot 7-244. PAR Plot (Band 4 - 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 145 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 145 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

7.6 Additional Maximum Power Reduction (A-MPR) §2.1046

Test Overview

A-MPR is implemented in this device when operating at Power Class 2 in LTE Band 41 per the A-MPR specification in 3GPP TS 36.101. The conducted powers are shown herein to cover the different A-MPR levels specified in the standard. Measurement equipment was set up with triggering/gating on the spectrum analyzer such that powers were measured only during the on-time of the signal.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 5.2.2

Test Settings

- 1. Span = $2 \times OBW$ to $3 \times OBW$
- 2. RBW = 1% to 5% of the OBW
- 3. Number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$
- 4. Sweep = auto-couple (less than transmission burst duration)
- 5. Detector = RMS (power)
- 6. Trigger was set to enable power measurements only on full power bursts
- 7. Trace was allowed to stabilize
- 8. Spectrum analyzer's "Channel Power" function was used to compute the power by integrating the spectrum across the OBW of the signal

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 146 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 146 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of the part

Test Case	NS	мсс	MNC	Channel BW [MHz]	Channel Number	Channel Frequency [MHz]	Modulation	RB Size	RB Offset	MPR [dB]	A-MPR [dB]	Measured Power [dBm]	Lowest Typical Power [dBm]	Delta [dB]
1				5	39675	2498.5	QPSK	1	0	0	≤3	24.36	23.7	0.66
				5	03070	2430.3	16-QAM		0	≤ 1	30	23.58	22.7	0.88
2				5	39675	2498.5	QPSK	1	9	0	0	27.36	26.7	0.66
				0	00070	2100.0	16-QAM	-		≤ 1	Ŭ	26.57	25.7	0.87
3				10	39700	2501	QPSK	1	0	0	≤ 5	22.47	21.7	0.77
					00100	2001	16-QAM	1	0	≤ 1		21.71	20.7	1.01
4				10	39700	2501	QPSK	20	0	0	≤ 2	24.45	23.7	0.75
							16-QAM	20	0	≤ 1		23.35	22.7	0.65
5				10	39700	2501	QPSK	50	0	0	≤3	23.53	22.7	0.83
					00100	2001	16-QAM	50	0	≤ 1		22.56	21.7	0.86
6				10	39700	2501	QPSK	25	20	0	≤ 1	25.52	24.7	0.82
							16-QAM	25	20	≤ 1	-	24.57	23.7	0.87
7				10	39700	2501	QPSK	1	36	0	0	27.43	26.7	0.73
							16-QAM	1	36	≤ 1	-	26.66	25.7	0.96
8				15	39725	2503.5	QPSK	1	0	0	≤ 5	22.53	21.7	0.83
					00.20	200010	16-QAM	1	0	≤ 1		21.76	20.7	1.06
9	01	312	530	15	39725	2503.5	QPSK	20	0	0	≤ 2	24.53	23.7	0.83
-							16-QAM	20	0	≤ 1		23.43	22.7	0.73
10				15	39725	2503.5	QPSK	75	0	0	≤ 4	22.57	21.7	0.87
							16-QAM	75	0	≤ 1		21.58	20.7	0.88
11				15	39725	2503.5	QPSK	50	15	0	≤3	23.59	22.7	0.89
							16-QAM	50	15	≤ 1		22.62	21.7	0.92
12				15	39725	2503.5	QPSK	1	60	0	0	27.46	26.7	0.76
							16-QAM	1	60	≤ 1		26.66	25.7	0.96
13				20	39750	2506	QPSK	1	0	0	≤ 5	22.65	21.7	0.95
							16-QAM	1	0	≤ 1		21.85	20.7	1.15
14				20	39750	2506	QPSK	20	0	0	≤ 2	24.58	23.7	0.88
							16-QAM	20	0	≤ 1		23.49	22.7	0.79
15				20	39750	2506	QPSK 10.00M	100	0	0	≤ 4	22.63	21.7	0.93
							16-QAM	100	0	≤ 1		21.64	20.7	0.94
16				20	39750	2506	QPSK	75 75	24 24	0 ≤1	≤3	23.75 22.77	22.7	1.05
<u> </u>							16-QAM	-	24			22.77	21.7	1.07
17				20	39750	2506	QPSK	1		0	0		26.7	0.77
<u> </u>							16-QAM	1	77	≤ 1		26.66	25.7	0.96
18	01	310	120	5	39675	2498.5	QPSK 16 QAM	1	0	0	≤3	24.37	23.7	0.67
<u> </u>							16-QAM QPSK			≤ 1 0		23.6 27.28	22.7 26.7	0.90 0.58
19	01	001	01	5	39675	2498.5	16-QAM	1	0	 ≤ 1	0	27.28	26.7	0.58
L			l	Į	Į	ļ	IVIAQ-01			51		20.40	20.7	0.70

Table 7-3. A-MPR Conducted Power Measurements

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 147 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 147 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

7.7 Radiated Power (ERP/EIRP)

Test Overview

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized tuned broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 149 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 148 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

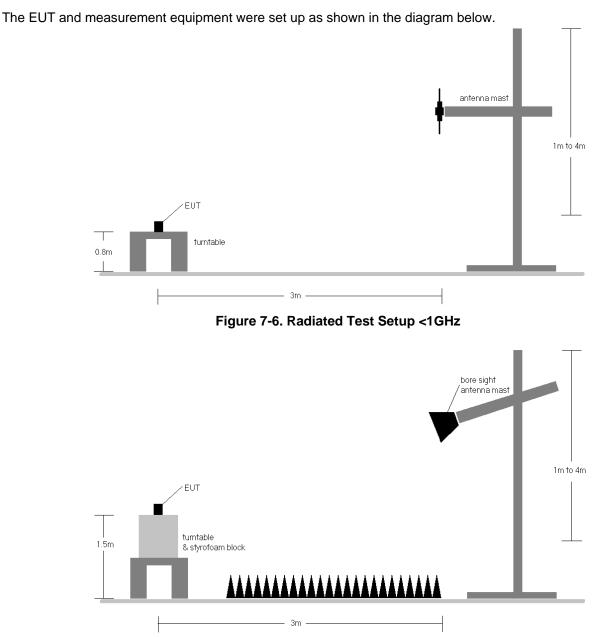


Figure 7-7. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 149 of 185
© 2018 PCTEST Engineering Lab		may be reproduced or utilized in any part, form or by any means, electronic or	machanical	V 8.5 08/29/2018

Radiated Power (ERP/EIRP)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
699.70	1.4	QPSK	V	150	81	1 / 5	19.84	1.40	19.09	0.081	34.77	-15.68	21.24	0.133	36.99	-15.75
707.50	1.4	QPSK	V	150	80	3 / 2	20.40	1.43	19.68	0.093	34.77	-15.09	21.83	0.152	36.99	-15.16
715.30	1.4	QPSK	V	150	78	1/0	20.70	1.46	20.01	0.100	34.77	-14.76	22.16	0.165	36.99	-14.82
715.30	1.4	16-QAM	V	150	78	3 / 2	19.77	1.46	19.08	0.081	34.77	-15.69	21.23	0.133	36.99	-15.75
700.50	3	QPSK	V	150	88	1 / 14	19.93	1.40	19.18	0.083	34.77	-15.59	21.33	0.136	36.99	-15.66
707.50	3	QPSK	V	150	82	1 / 14	20.34	1.43	19.62	0.092	34.77	-15.15	21.77	0.150	36.99	-15.22
714.50	3	QPSK	V	150	80	1 / 14	20.84	1.46	20.15	0.104	34.77	-14.62	22.30	0.170	36.99	-14.69
714.50	3	16-QAM	V	150	80	1 / 14	19.60	1.46	18.91	0.078	34.77	-15.86	21.06	0.128	36.99	-15.93
701.50	5	QPSK	V	150	77	1 / 24	19.91	1.41	19.17	0.083	34.77	-15.60	21.32	0.135	36.99	-15.67
707.50	5	QPSK	V	150	80	1/0	20.04	1.43	19.32	0.086	34.77	-15.45	21.47	0.140	36.99	-15.52
713.50	5	QPSK	V	150	87	1/0	20.19	1.46	19.50	0.089	34.77	-15.27	21.65	0.146	36.99	-15.34
713.50	5	16-QAM	V	150	87	1 / 24	19.51	1.46	18.82	0.076	34.77	-15.95	20.97	0.125	36.99	-16.02
704.00	10	QPSK	V	150	86	1 / 49	20.27	1.42	19.54	0.090	34.77	-15.23	21.69	0.147	36.99	-15.30
707.50	10	QPSK	V	150	77	1 / 49	20.13	1.43	19.41	0.087	34.77	-15.36	21.56	0.143	36.99	-15.43
711.00	10	QPSK	V	150	72	1 / 49	20.52	1.45	19.82	0.096	34.77	-14.95	21.97	0.157	36.99	-15.02
704.00	10	16-QAM	V	150	86	1 / 49	19.57	1.42	18.84	0.077	34.77	-15.93	20.99	0.126	36.99	-16.00
714.50	3	QPSK	Н	150	250	1 / 14	20.14	1.46	19.45	0.088	34.77	-15.32	21.60	0.145	36.99	-15.39

Table 7-4. ERP/EIRP Data (Band 12)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
779.50	5	QPSK	н	150	272	1 / 0	23.10	1.32	22.27	0.169	34.77	-12.50	24.42	0.277	36.99	-12.57
782.00	5	QPSK	н	150	276	1 / 24	22.67	1.33	21.85	0.153	34.77	-12.92	24.00	0.251	36.99	-12.99
784.50	5	QPSK	н	150	281	1/0	22.79	1.34	21.98	0.158	34.77	-12.79	24.13	0.259	36.99	-12.86
784.50	5	16-QAM	н	150	281	1 / 24	22.12	1.34	21.31	0.135	34.77	-13.46	23.46	0.222	36.99	-13.53
782.00	10	QPSK	н	150	284	1/0	23.13	1.33	22.31	0.170	34.77	-12.46	24.46	0.279	36.99	-12.53
782.00	10	16-QAM	н	150	284	1 / 49	22.14	1.33	21.32	0.135	34.77	-13.45	23.47	0.222	36.99	-13.52
782.00	10	QPSK	v	150	274	1 / 0	22.87	1.33	22.05	0.160	34.77	-12.72	24.20	0.263	36.99	-12.79

Table 7-5. ERP/EIRP Data (Band 13)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		De
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 150 of 185
© 2018 PCTEST Engineering Lab	oratory. Inc.	•		V 8.5 08/29/2018

PCT	EST															
ENGINEERING L	ABORATORY, INC.															
Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
824.70	1.4	QPSK	н	150	150	1 / 5	15.30	6.75	19.90	0.098	38.45	-18.55	22.05	0.160	40.61	-18.56
836.50	1.4	QPSK	н	150	150	1 / 0	15.33	6.78	19.96	0.099	38.45	-18.50	22.11	0.162	40.61	-18.50
848.30	1.4	QPSK	Н	150	3	1 / 5	15.62	6.80	20.27	0.106	38.45	-18.18	22.42	0.175	40.61	-18.19
848.30	1.4	16-QAM	н	150	3	1/5	14.83	6.80	19.48	0.089	38.45	-18.97	21.63	0.146	40.61	-18.98
825.50	3	QPSK	Н	150	3	1 / 14	15.41	6.75	20.01	0.100	38.45	-18.44	22.16	0.165	40.61	-18.44
836.50	3	QPSK	Н	150	1	1 / 0	15.37	6.78	20.00	0.100	38.45	-18.46	22.15	0.164	40.61	-18.46
847.50	3	QPSK	Н	150	3	1 / 14	13.27	6.80	17.92	0.062	38.45	-20.53	20.07	0.102	40.61	-20.54
847.50	3	16-QAM	н	150	3	1 / 14	14.81	6.80	19.46	0.088	38.45	-18.99	21.61	0.145	40.61	-19.00
826.50	5	QPSK	н	150	0	1 / 24	15.38	6.76	19.99	0.100	38.45	-18.47	22.14	0.164	40.61	-18.47
836.50	5	QPSK	н	150	357	1 / 0	15.23	6.78	19.86	0.097	38.45	-18.60	22.01	0.159	40.61	-18.60
846.50	5	QPSK	н	150	1	1 / 24	15.58	6.80	20.23	0.105	38.45	-18.23	22.38	0.173	40.61	-18.23
846.50	5	16-QAM	н	150	1	1 / 24	14.80	6.80	19.45	0.088	38.45	-19.01	21.60	0.144	40.61	-19.01
829.00	10	QPSK	н	150	2	1 / 49	14.38	6.76	18.99	0.079	38.45	-19.46	21.14	0.130	40.61	-19.47
836.50	10	QPSK	н	150	1	1/0	15.42	6.78	20.05	0.101	38.45	-18.41	22.20	0.166	40.61	-18.41
844.00	10	QPSK	н	150	359	1 / 49	15.74	6.79	20.38	0.109	38.45	-18.07	22.53	0.179	40.61	-18.08
844.00	10	16-QAM	н	150	359	1 / 49	14.88	6.79	19.52	0.090	38.45	-18.93	21.67	0.147	40.61	-18.94
844.00	10	QPSK	V	150	105	1 / 49	12.31	6.80	16.96	0.050	38.45	-21.49	19.11	0.081	40.61	-21.50
					Tab				ata (D	and 26	////					

Table 7-6. ERP/EIRP Data (Band 26/5)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
831.50	15	QPSK	н	150	357	1 / 0	15.48	6.77	20.10	0.102	38.45	-18.36	22.25	0.168	40.61	-18.36
836.50	15	QPSK	н	150	2	1 / 0	15.59	6.78	20.22	0.105	38.45	-18.24	22.37	0.172	40.61	-18.24
841.50	15	QPSK	н	150	359	1 / 74	15.73	6.79	20.37	0.109	38.45	-18.09	22.52	0.178	40.61	-18.09
841.50	15	16-QAM	Н	150	359	1 / 74	14.77	6.79	19.41	0.087	38.45	-19.05	21.56	0.143	40.61	-19.05

Table 7-7. ERP/EIRP Data (Band 26)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 151 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 151 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1710.70	1.4	QPSK	Н	214	173	1 / 0	11.90	8.16	20.06	0.101	30.00	-9.94
1732.50	1.4	QPSK	Н	132	209	1 / 0	11.90	8.18	20.08	0.102	30.00	-9.92
1754.30	1.4	QPSK	Н	186	173	1 / 0	10.18	8.21	18.39	0.069	30.00	-11.61
1732.50	1.4	16-QAM	Н	132	209	1 / 0	11.83	8.18	20.01	0.100	30.00	-9.99
1711.50	3	QPSK	Н	210	173	1 / 14	12.39	8.16	20.55	0.113	30.00	-9.45
1732.50	3	QPSK	Н	123	201	1 / 0	12.09	8.18	20.27	0.106	30.00	-9.73
1753.50	3	QPSK	Н	153	177	1 / 0	11.81	8.21	20.02	0.100	30.00	-9.98
1732.50	3	16-QAM	Н	123	201	1 / 0	11.97	8.18	20.15	0.104	30.00	-9.85
1712.50	5	QPSK	Н	144	37	1 / 0	11.90	8.16	20.06	0.101	30.00	-9.94
1732.50	5	QPSK	Н	113	196	1 / 0	12.37	8.18	20.55	0.114	30.00	-9.45
1752.50	5	QPSK	Н	185	172	1 / 24	12.55	8.20	20.75	0.119	30.00	-9.25
1732.50	5	16-QAM	Н	113	196	1 / 0	12.24	8.18	20.42	0.110	30.00	-9.58
1715.00	10	QPSK	Н	111	197	1 / 49	13.62	8.16	21.78	0.151	30.00	-8.22
1732.50	10	QPSK	Н	115	226	1 / 0	12.72	8.18	20.90	0.123	30.00	-9.10
1750.00	10	QPSK	Н	101	202	1 / 49	12.82	8.20	21.02	0.126	30.00	-8.98
1715.00	10	16-QAM	н	111	197	1 / 49	12.58	8.16	20.74	0.119	30.00	-9.26
1717.50	15	QPSK	Н	111	204	1 / 74	14.27	8.16	22.43	0.175	30.00	-7.57
1732.50	15	QPSK	Н	113	209	1 / 0	12.91	8.18	21.09	0.129	30.00	-8.91
1747.50	15	QPSK	Н	365	194	1 / 0	12.83	8.20	21.03	0.127	30.00	-8.97
1732.50	15	16-QAM	Н	113	209	1 / 0	13.98	8.18	22.16	0.164	30.00	-7.84
1720.00	20	QPSK	Н	106	200	1 / 99	13.63	8.17	21.80	0.151	30.00	-8.20
1732.50	20	QPSK	Н	118	204	1 / 0	12.99	8.18	21.17	0.131	30.00	-8.83
1745.00	20	QPSK	Н	155	201	1 / 0	13.44	8.19	21.63	0.146	30.00	-8.37
1732.50	20	16-QAM	Н	118	204	1 / 0	13.04	8.18	21.22	0.132	30.00	-8.78
1717.50	15	QPSK	V	100	150	1 / 74	10.45	8.16	18.61	0.073	30.00	-11.39

(c

Table 7-8. EIRP Data (Band 4)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 152 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 152 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1850.70	1.4	QPSK		150	358	1/0	16.22	8.37	24.59	0.288	33.01	-8.42
1882.50	1.4	QPSK	н	150	359	1/0	15.18	8.42	23.60	0.229	33.01	-9.41
1914.30	1.4	QPSK	н	150	359	1 / 0	15.28	8.47	23.75	0.237	33.01	-9.26
1850.70	1.4	16-QAM	Н	150	358	1 / 0	15.34	8.37	23.71	0.235	33.01	-9.30
1851.50	3	QPSK	н	150	358	1 / 0	15.97	8.37	24.34	0.272	33.01	-8.67
1882.50	3	QPSK	Н	150	358	1/0	15.40	8.42	23.82	0.241	33.01	-9.19
1913.50	3	QPSK	Н	150	358	1/0	15.37	8.47	23.84	0.242	33.01	-9.17
1851.50	3	16-QAM	Н	150	358	1 / 0	15.14	8.37	23.51	0.224	33.01	-9.50
1852.50	5	QPSK	н	150	2	1/0	15.20	8.37	23.57	0.228	33.01	-9.44
1882.50	5	QPSK	Н	150	2	1 / 0	13.99	8.42	22.41	0.174	33.01	-10.60
1912.50	5	QPSK	Н	150	360	1 / 0	13.80	8.47	22.27	0.168	33.01	-10.74
1852.50	5	16-QAM	Н	150	2	1 / 0	14.09	8.37	22.46	0.176	33.01	-10.55
1855.00	10	QPSK	н	150	359	1 / 0	15.40	8.37	23.77	0.238	33.01	-9.24
1882.50	10	QPSK	Н	150	359	1 / 0	14.37	8.42	22.79	0.190	33.01	-10.22
1910.00	10	QPSK	Н	150	359	1 / 0	13.62	8.46	22.08	0.162	33.01	-10.93
1855.00	10	16-QAM	Н	150	359	1 / 0	14.08	8.37	22.45	0.176	33.01	-10.56
1857.50	15	QPSK	Н	150	1	1 / 0	16.21	8.38	24.59	0.288	33.01	-8.42
1882.50	15	QPSK	Н	150	360	1 / 0	14.20	8.42	22.62	0.183	33.01	-10.39
1907.50	15	QPSK	Н	150	1	1 / 0	14.83	8.46	23.29	0.213	33.01	-9.72
1857.50	15	16-QAM	Н	150	1	1 / 0	15.09	8.38	23.47	0.222	33.01	-9.54
1860.00	20	QPSK	Н	150	356	1/0	15.19	8.38	23.57	0.228	33.01	-9.44
1882.50	20	QPSK	Н	150	360	1/0	15.79	8.42	24.21	0.264	33.01	-8.80
1905.00	20	QPSK	Н	150	358	1 / 0	15.05	8.45	23.50	0.224	33.01	-9.51
1860.00	20	16-QAM	Н	150	356	1 / 0	15.13	8.38	23.51	0.225	33.01	-9.50
1857.50	15	QPSK	V	150	99	1 / 0	14.36	8.38	22.74	0.188	33.01	-10.27

Table 7-9. EIRP Data (Band 25/2)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 152 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 153 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

	PCTEST° engineering Laboratory, inc.											
Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
2498.50	5	QPSK	Н	150	14	1 / 24	18.57	5.73	24.30	0.269	33.01	-8.71
2593.00	5	QPSK	Н	150	14	1 / 24	18.19	6.07	24.26	0.267	33.01	-8.75
2687.50	5	QPSK	Н	150	12	1 / 0	17.39	6.48	23.87	0.244	33.01	-9.14
2687.50	5	16-QAM	н	150	12	1 / 24	16.95	6.48	23.43	0.221	33.01	-9.58
2501.00	10	QPSK	н	150	93	1 / 49	17.77	5.73	23.50	0.224	33.01	-9.51
2593.00	10	QPSK	Н	150	78	1 / 49	17.52	6.07	23.59	0.229	33.01	-9.42
2685.00	10	QPSK	Н	150	89	1 / 49	14.97	6.47	21.44	0.139	33.01	-11.57
2593.00	10	16-QAM	Н	150	78	1 / 49	15.97	6.07	22.04	0.160	33.01	-10.97
2503.50	15	QPSK	Н	150	94	1 / 0	19.08	5.74	24.82	0.304	33.01	-8.19
2593.00	15	QPSK	Н	150	89	1 / 0	17.42	6.07	23.49	0.223	33.01	-9.52
2682.50	15	QPSK	Н	150	80	1 / 0	16.08	6.46	22.54	0.180	33.01	-10.47
2593.00	15	16-QAM	Н	150	89	1 / 0	17.78	6.07	23.85	0.243	33.01	-9.16
2506.00	20	QPSK	Н	150	84	1 / 99	17.34	5.75	23.09	0.204	33.01	-9.92
2593.00	20	QPSK	Н	150	77	1 / 99	16.54	6.07	22.61	0.183	33.01	-10.40
2680.00	20	QPSK	Н	150	87	1/0	14.96	6.45	21.41	0.138	33.01	-11.60
2506.00	20	16-QAM	Н	150	84	1 / 99	16.95	5.75	22.70	0.186	33.01	-10.31
2503.50	15	QPSK	V	150	29	1 / 0	18.55	5.74	24.29	0.269	33.01	-8.72

Table 7-10. EIRP Data (Band 41), PC2

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
2503.50	15	QPSK	Н	150	263	1 / 74	15.54	5.74	21.28	0.134	33.01	-11.73
2503.50	15	16-QAM	Н	150	263	1 / 74	14.50	5.74	20.24	0.106	33.01	-12.77

Table 7-11. EIRP Data (Band 41), PC3

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 154 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 154 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

7.8 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

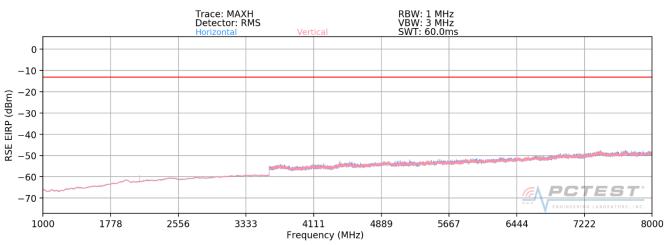
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 155 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 155 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

bore sight antenna mast I .5m Uurntable & styrofoam block 3m

The EUT and measurement equipment were set up as shown in the diagram below.

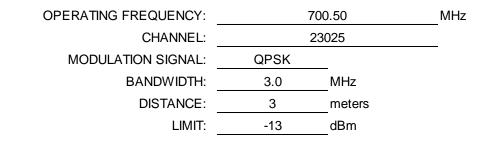
Figure 7-8. Test Instrument & Measurement Setup

Test Notes


- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

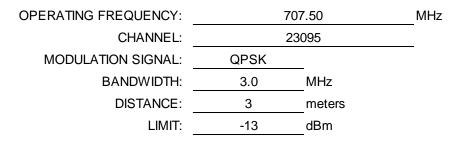
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 450 at 405
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 156 of 185
© 2018 PCTEST Engineering Lat	V 8.5 08/29/2018			

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



Radiated Spurious Emissions Measurements

Band 12



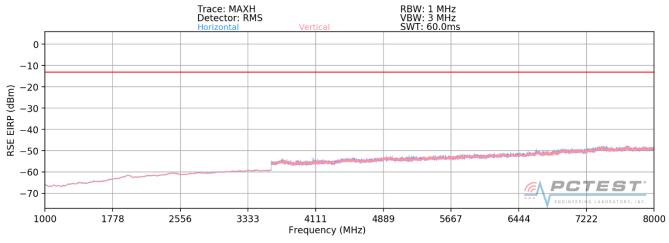
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1401.00	V	230	281	-68.57	2.63	-65.94	-52.9
2101.50	V	101	334	-62.97	3.56	-59.41	-46.4
2802.00	V	-	-	-67.39	4.93	-62.46	-49.5

Table 7-12. Radiated Spurious Data (Band 12 – Low Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 157 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 157 of 185
© 2018 PCTEST Engineering Lab	oratory, Inc.	·		V 8.5 08/29/2018

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1415.00	V	231	237	-68.94	2.80	-66.14	-53.1
2122.50	V	140	324	-63.85	3.57	-60.27	-47.3
2830.00	V	-	-	-67.28	5.02	-62.25	-49.3

Table 7-13. Radiated Spurious Data (Band 12 – Mid Channel)


OPERATING FREQUENCY:	714.50		MHz
CHANNEL:	2	3165	
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	3.0	MHz	
DISTANCE:	3	meters	
LIMIT:	<u>-13</u> dBm		

F	requency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
	1429.00	V	206	304	-69.31	2.96	-66.35	-53.3
	2143.50	V	120	345	-65.52	3.59	-61.93	-48.9
	2858.00	V	-	-	-67.46	5.11	-62.35	-49.4

Table 7-14. Radiated Spurious Data (Band 12 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 150 of 105
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 158 of 185
© 2018 PCTEST Engineering Lal	poratory, Inc.	•		V 8.5 08/29/2018

Plot 7-246. Radiated Spurious Plot above 1GHz (Band 13)

782.00	MH	łz
23230		
QPSK		
10.0	MHz	
3	meters	
-13	_dBm	
	23230 QPSK 10.0 3	23230 QPSK 10.0 MHz 3 meters

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2346.00	V	112	62	-77.37	9.43	-67.94	-54.9

Table 7-15. Radiated Spurious Data (Band 13 – Mid Channel)

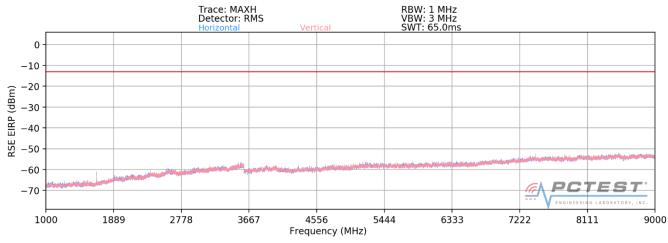
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 150 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 159 of 185
© 2018 PCTEST Engineering Lat	oratory, Inc.	•		V 8.5 08/29/2018

 MODULATION SIGNAL:
 QPSK

 BANDWIDTH:
 10.00
 MHz

 DISTANCE:
 3
 meters

 NARROWBAND EMISSION LIMIT:
 -50
 dBm

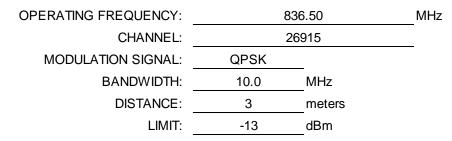

 WIDEBAND EMISSION LIMIT:
 -40
 dBm/MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1564.00	V	112	62	-75.07	8.53	-66.54	-26.5

Table 7-16. Radiated Spurious Data (Band 13 - 1559-1610MHz Band)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 160 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 160 of 185
© 2018 PCTEST Engineering Lab	oratory, Inc.	•		V 8.5 08/29/2018

Plot 7-247. Radiated Spurious Plot above 1GHz (Band 26/5)


MHz	829.00			OPERATING FREQUENCY:
_		26840		CHANNEL:
			QPSK	MODULATION SIGNAL:
		MHz	10.0	BANDWIDTH:
	S	meters	3	DISTANCE:
		<u>-13</u> dBm		LIMIT:

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1658.00	Н	165	35	-68.74	3.61	-65.13	-52.1
2487.00	Н	306	32	-67.01	4.25	-62.76	-49.8
3316.00	Н	-	-	-67.39	5.83	-61.56	-48.6

Table 7-17. Radiated Spurious Data (Band 26/5 - Low Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 195	
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 161 of 185	
© 2018 PCTEST Engineering Laboratory, Inc. V 8.5 0					

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1673.00	Н	209	23	-67.59	3.62	-63.97	-51.0
2509.50	Н	365	50	-67.19	4.33	-62.86	-49.9
3346.00	Н	-	-	-66.93	5.92	-61.01	-48.0

Table 7-18. Radiated Spurious Data (Band 26/5 - Mid Channel)

OPERATING FREQUENCY:	84	14.00	MHz
CHANNEL:	20	6990	_
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

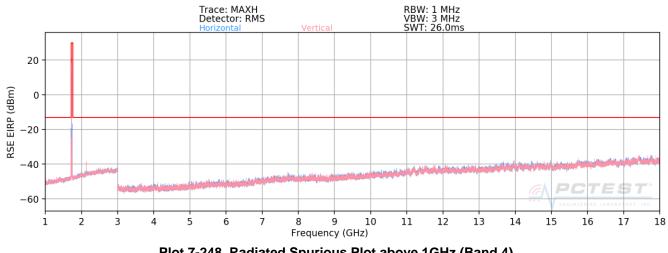
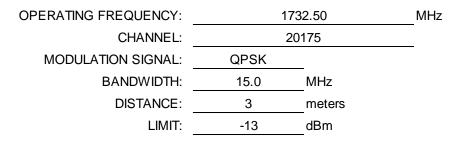

Freque [MHz		Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1688.	.00	Н	391	24	-68.79	3.63	-65.16	-52.2
2532.	.00	Н	125	18	-67.06	4.47	-62.59	-49.6
3376.	.00	Н	-	-	-67.28	6.05	-61.23	-48.2

Table 7-19. Radiated Spurious Data (Band 26/5 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 100 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 162 of 185
© 2018 PCTEST Engineering Lat	poratory, Inc.	•		V 8.5 08/29/2018

Band 4

Plot 7-248. Radiated Spurious Plot above 1GHz (Band 4)


OPERATING FREQUENCY:	171	7.50	MHz
CHANNEL:	20	025	_
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

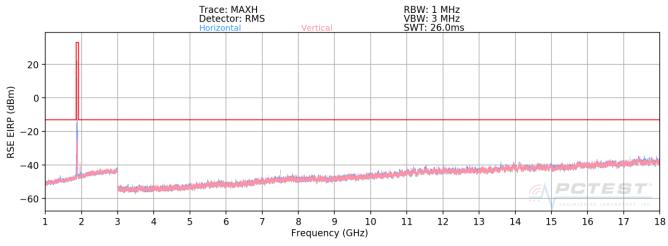
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3435.00	Н	108	339	-66.97	6.21	-60.76	-47.8
5152.50	Н	111	356	-68.25	8.67	-59.58	-46.6
6870.00	Н	-	-	-65.25	8.76	-56.49	-43.5

Table 7-20. Radiated Spurious Data (Band 4 – Low Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 162 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 163 of 185
© 2018 PCTEST Engineering Lat	poratory, Inc.	•		V 8.5 08/29/2018

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3465.00	Н	152	151	-67.13	6.27	-60.86	-47.9
5197.50	Н	322	358	-68.08	8.71	-59.36	-46.4
6930.00	Н	-	-	-64.37	8.72	-55.66	-42.7

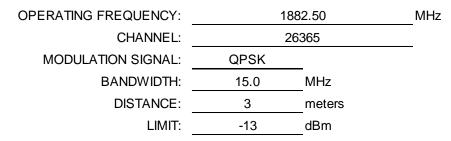
Table 7-21. Radiated Spurious Data (Band 4 – Mid Channel)


OPERATING FREQUENCY:	174	7.50 MHz
CHANNEL:	203	325
MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	15.0	MHz
DISTANCE:	3	meters
LIMIT:	-13	dBm
		-

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3495.00	Н	276	158	-67.52	6.33	-61.18	-48.2
5242.50	Н	-	-	-68.14	8.71	-59.43	-46.4

Table 7-22. Radiated Spurious Data (Band 4 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 164 of 195	
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 164 of 185	
© 2018 PCTEST Engineering Lat	V 8.5 08/29/2018				


1857.50		MHz
26115		
QPSK	_	
15.0	MHz	
3	meters	
-13	dBm	
	26 QPSK 15.0 3	26115 QPSK 15.0 MHz 3 meters

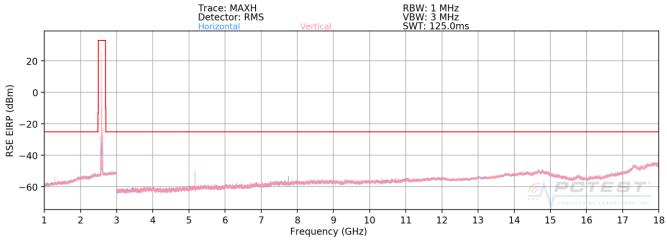
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3715.00	V	120	311	-71.25	9.53	-61.72	-48.7
5572.50	V	-	-	-72.39	10.97	-61.41	-48.4
7430.00	V	118	320	-68.56	10.98	-57.58	-44.6
9287.50	V	-	-	-69.13	11.61	-57.51	-44.5
11145.00	V	-	-	-67.94	12.73	-55.21	-42.2

Table 7-23. Radiated Spurious Data (Band 25/2 – Low Channel)

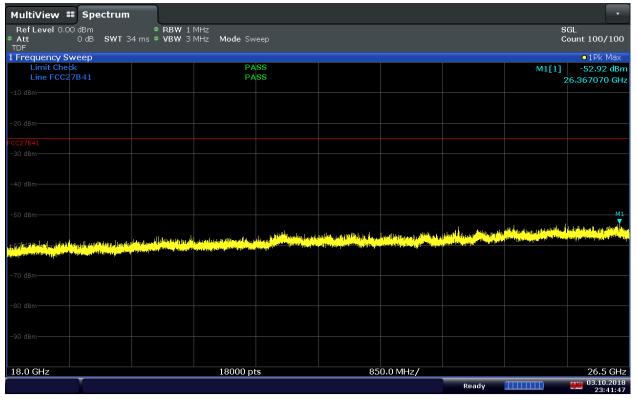
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 165 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3765.00	V	370	37	-72.35	9.36	-62.99	-50.0
5647.50	V	200	30	-72.46	11.19	-61.26	-48.3
7530.00	V	-	-	-69.74	11.13	-58.61	-45.6
9412.50	V	-	-	-68.19	11.57	-56.62	-43.6

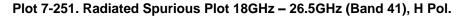
Table 7-24. Radiated Spurious Data (Band 25/2 - Mid Channel)


OPERATING FREQUENCY:	190	07.50	MHz
CHANNEL:	26	615	
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

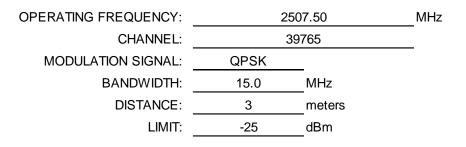
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3815.00	V	138	262	-71.87	9.30	-62.57	-49.6
5722.50	V	140	289	-72.15	11.37	-60.78	-47.8
7630.00	V	-	-	-69.16	11.31	-57.85	-44.9
9537.50	V	-	-	-68.31	11.76	-56.55	-43.5


Table 7-25. Radiated Spurious Data (Band 25/2 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 166 of 185
© 2018 PCTEST Engineering Lab	oratory, Inc.			V 8.5 08/29/2018

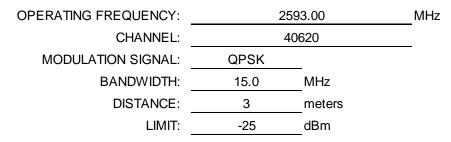


23:41:47 03.10.2018


FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Degs 167 of 195		
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 167 of 185		
© 2018 PCTEST Engineering Laboratory, Inc. V 8.5 08/2						

RefLevel 0.00 dBm Att 0 dB SWT	● RBW 1 34 ms ● VBW 3							GL ount 100/10
Att OdB SWT DF	34 ms = VBW 3	MHZ Mode Sw	reep				G	ount 100710
Frequency Sweep								●1Pk Max
Limit Check			SS				M1[1]	-52.92 dB
Line FCC27B41		PA	SS				2	6.367070 GI
0 dBm								
o uem								
								P
						ي ينغ الد	الماهيديين بالمعي	أتطلق ورجال ومناوطه
Rhold Malan Jacobi da Angel Jacobi Malan Jacobi	أنرينا والمتحلفان أطحين ارتضارت	وروا ألاو ومالك المارية أوهر بار	de la fait de la contra de		Local High Constraints and the		A state of the second s	أكارك بادراء ويرجعها الأمري إحداث
Construction of the second s Second second se Second second se Second second sec	أأنده والناز ومشتثل فانشار ومشاكلتهم وا	ومرافعا والفقائل وملاحقي ووخاره وروا	A STREET, STORE STORE STORE	مغز وكالتأمر والتكليك التنوية بين الكل التع	المراجعة المحقية المحققة			
0 dBm								
8.0 GHz		18000 pt	ts	85	0.0 MHz/			26.5 Gł

23:41:47 03.10.2018



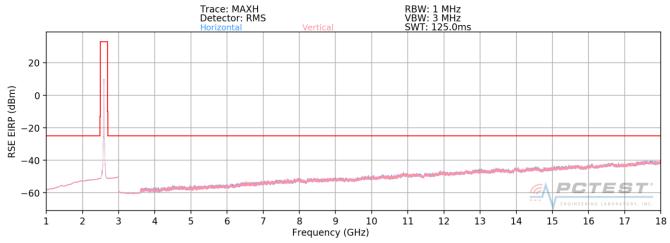
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5015.00	V	112	187	-61.54	10.90	-50.64	-25.6
7522.50	V	300	102	-62.81	11.12	-51.70	-26.7
10030.00	V	302	178	-62.06	11.99	-50.07	-25.1
12537.50	V	-	-	-66.58	13.56	-53.02	-28.0

Table 7-26. Radiated Spurious Data (Band 41 – Low Channel)

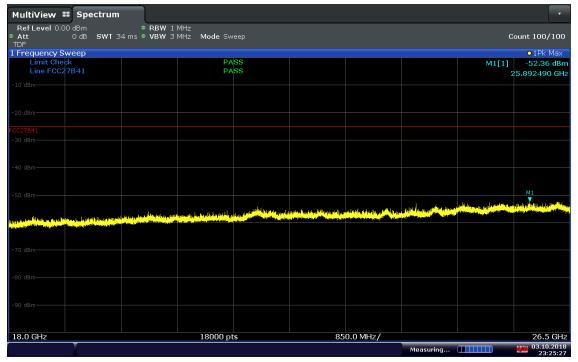
FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 169 of 195		
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 168 of 185		
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.					

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	V	196	162	-64.74	10.74	-53.99	-29.0
7779.00	V	-	-	-70.78	11.44	-59.34	-34.3

Table 7-27. Radiated Spurious Data (Band 41 – Mid Channel)

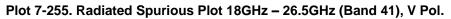

268	32.50 MH	łz
41	515	
QPSK	_	
15.0	MHz	
3	meters	
-25	_dBm	
	41 QPSK 15.0 3	41515 QPSK 15.0 MHz 3 meters

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5365.00	V	117	189	-60.31	10.69	-49.62	-24.6
8047.50	V	192	303	-62.15	11.16	-50.99	-26.0
10730.00	V	392	159	-61.15	12.60	-48.55	-23.5
13412.50	V	-	-	-65.13	12.59	-52.54	-27.5


Table 7-28. Radiated Spurious Data (Band 41 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 169 of 185
© 2018 PCTEST Engineering Lab	oratory. Inc.			V 8.5 08/29/2018

23:25:27 03.10.2018



FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 170 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

	PCTEST
\	ENGINEERING LABORATORY, INC.

	● RBW 1 SWT 34 ms ● VBW 3		eep			C	ount 100/10
DF Frequency Sweep							●1Pk Ma
Limit Check Line FCC27B41		PA PA	SS SS			M1[1]	-52.62 dl
C27B41							
50 UBM							
						M1	
ر الانتخاب مربو هم الانتخاب و و ما الانتخاب و و ما الانتخاب و و م	ومليونية القائد وسور الأطرطون وس	in the test of a grant that they		, dente e la dificie de la pr	a state in the state of the state		
	and the second	C. C					
8.0 GHz		18000 pt		05	0.0 MHz/		26.5 G

23:32:59 03.10.2018

OPERATING FREQUENCY:	2682.50		MHz
CHANNEL:	41515		
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5365.00	V	128	197	-61.98	10.69	-51.29	-26.3
8047.50	V	-	-	-67.45	11.16	-56.29	-31.3
10730.00	V	375	193	-63.88	12.60	-51.28	-26.3
13412.50	V	-	-	-65.26	12.59	-52.67	-27.7

Table 7-29. Radiated Spurious Data (Band 41 – High Channel)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 171 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 171 of 185
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.5 08/29/2018	

7.9 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24, Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 172 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 172 of 185
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.5 08/29/2018	

Band 12 Frequency Stability Measurements

OPERATING FREQUENCY:	707,500,000	Hz
CHANNEL:	23790	_
REFERENCE VOLTAGE:	4.21	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	707,499,944	-56	-0.0000079
100 %		- 30	707,499,994	-6	-0.000008
100 %		- 20	707,499,968	-32	-0.0000046
100 %		- 10	707,499,820	-180	-0.0000255
100 %		0	707,499,916	-84	-0.0000119
100 %		+ 10	707,499,932	-68	-0.0000096
100 %		+ 20	707,499,805	-195	-0.0000276
100 %		+ 30	707,499,881	-119	-0.0000169
100 %		+ 40	707,499,979	-21	-0.000030
100 %		+ 50	707,499,912	-88	-0.0000124
BATT. ENDPOINT	3.57	+ 20	707,499,822	-178	-0.0000252

 Table 7-30. Frequency Stability Data (Band 12)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 172 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 173 of 185
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.			V 8.5 08/29/2018

Band 12 Frequency Stability Measurements

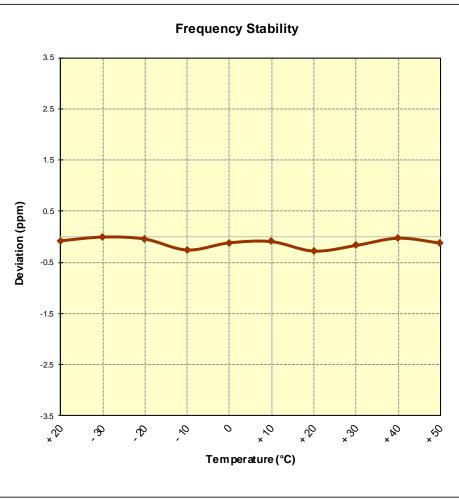


Figure 7-9. Frequency Stability Graph (Band 12)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 174 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 174 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018

Band 13 Frequency Stability Measurements

OPERATING FREQUENCY:	782,000,000	Hz
CHANNEL:	23230	_
REFERENCE VOLTAGE:	4.21	VDC

VOLTAGE (%)	POWER (VDC)	ТЕМР (°С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	781,999,810	-190	-0.0000242
100 %		- 30	781,999,927	-73	-0.0000093
100 %		- 20	781,999,825	-175	-0.0000224
100 %		- 10	781,999,862	-138	-0.0000176
100 %		0	781,999,880	-120	-0.0000154
100 %		+ 10	781,999,926	-74	-0.0000095
100 %		+ 20	781,999,887	-113	-0.0000144
100 %		+ 30	781,999,906	-94	-0.0000120
100 %		+ 40	781,999,967	-33	-0.0000042
100 %		+ 50	781,999,807	-193	-0.0000247
BATT. ENDPOINT	3.57	+ 20	781,999,909	-91	-0.0000116

 Table 7-31. Frequency Stability Data (Band 13)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 175 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 175 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 13 Frequency Stability Measurements

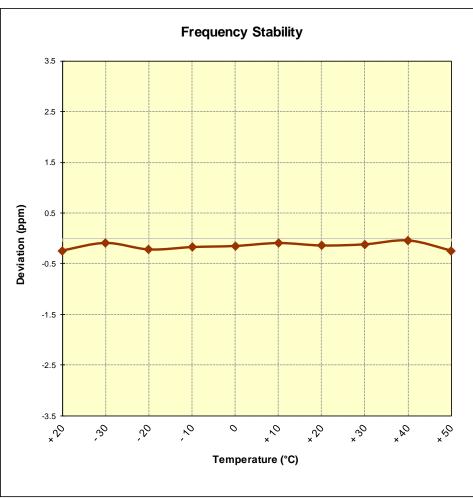


Figure 7-10. Frequency Stability Graph (Band 13)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 176 of 185
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset	able Handset	
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 26/5 Frequency Stability Measurements

 OPERATING FREQUENCY:
 831,500,000
 Hz

 CHANNEL:
 26865

 REFERENCE VOLTAGE:
 4.21
 VDC

 DEVIATION LIMIT:
 ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	831,499,993	-7	-0.0000009
100 %		- 30	831,499,880	-120	-0.0000145
100 %		- 20	831,499,810	-190	-0.0000229
100 %		- 10	831,499,841	-159	-0.0000191
100 %		0	831,499,988	-12	-0.0000015
100 %		+ 10	831,499,826	-174	-0.0000209
100 %		+ 20	831,499,959	-41	-0.0000049
100 %		+ 30	831,499,953	-47	-0.0000057
100 %		+ 40	831,499,914	-86	-0.0000103
100 %		+ 50	831,499,867	-133	-0.0000160
BATT. ENDPOINT	3.57	+ 20	831,499,953	-47	-0.0000056

Table 7-32. Frequency Stability Data (Band 26/5)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 177 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 177 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 26/5 Frequency Stability Measurements

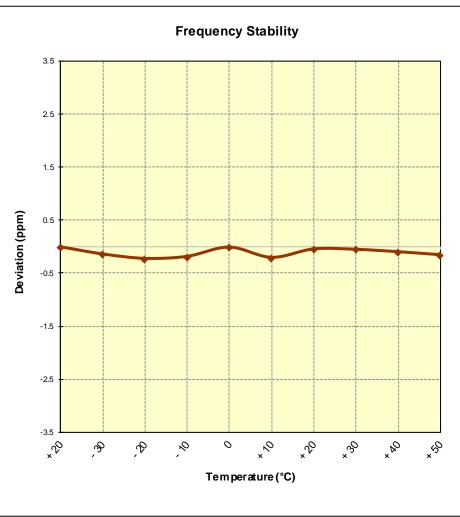


Figure 7-11. Frequency Stability Graph (Band 26/5)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 105
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 178 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 4 Frequency Stability Measurements

OPERATING FREQUENCY:	1,732,500,000	Hz
CHANNEL:	20175	_
REFERENCE VOLTAGE:	4.21	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	1,732,499,844	-156	-0.0000090
100 %		- 30	1,732,499,988	-12	-0.0000007
100 %		- 20	1,732,499,867	-133	-0.0000077
100 %		- 10	1,732,499,909	-91	-0.0000052
100 %		0	1,732,499,883	-117	-0.0000067
100 %		+ 10	1,732,499,893	-107	-0.0000062
100 %		+ 20	1,732,499,807	-193	-0.0000111
100 %		+ 30	1,732,499,944	-56	-0.000033
100 %		+ 40	1,732,499,824	-176	-0.0000101
100 %		+ 50	1,732,499,922	-78	-0.0000045
BATT. ENDPOINT	3.57	+ 20	1,732,500,000	0	0.0000000

 Table 7-33. Frequency Stability Data (Band 4)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 179 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 4 Frequency Stability Measurements

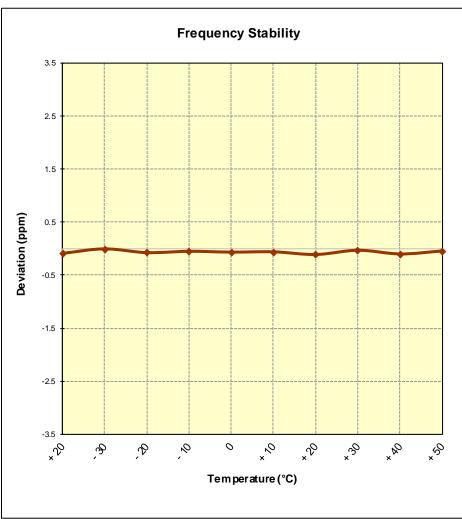
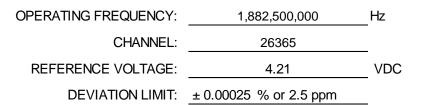



Figure 7-12. Frequency Stability Graph (Band 4)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 180 of 185
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 180 01 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 25/2 Frequency Stability Measurements

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	1,882,499,939	-61	-0.0000032
100 %		- 30	1,882,499,999	-1	-0.0000001
100 %		- 20	1,882,499,888	-112	-0.0000059
100 %		- 10	1,882,499,881	-119	-0.0000063
100 %		0	1,882,499,885	-115	-0.0000061
100 %		+ 10	1,882,499,920	-80	-0.0000042
100 %		+ 20	1,882,499,941	-59	-0.0000031
100 %		+ 30	1,882,499,960	-40	-0.0000021
100 %		+ 40	1,882,499,850	-150	-0.0000080
100 %		+ 50	1,882,499,875	-125	-0.0000066
BATT. ENDPOINT	3.57	+ 20	1,882,499,914	-86	-0.0000046

Table 7-34. Frequency Stability Data (Band 25/2)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 191 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 181 of 185
© 2018 PCTEST Engineering Lab	V 8.5 08/29/2018			

Band 25/2 Frequency Stability Measurements

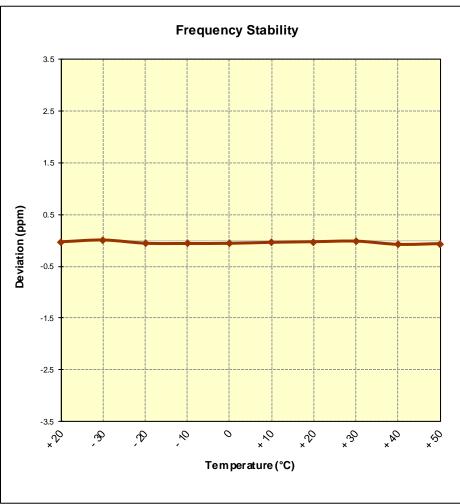


Figure 7-13. Frequency Stability Graph (Band 25/2)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 192 of 195	
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 182 of 185	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018	

Band 41 Frequency Stability Measurements

OPERATING FREQUENCY:2,593,000,000HzCHANNEL:40620REFERENCE VOLTAGE:4.21VDC

VOLTAGE (%)	POWER (VDC)	ТЕМР ([°] С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.21	+ 20 (Ref)	2,592,999,904	-96	-0.0000037
100 %		- 30	2,592,999,961	-39	-0.0000015
100 %		- 20	2,592,999,816	-184	-0.0000071
100 %		- 10	2,592,999,834	-166	-0.0000064
100 %		0	2,592,999,973	-27	-0.0000011
100 %		+ 10	2,592,999,858	-142	-0.0000055
100 %		+ 20	2,592,999,900	-100	-0.0000039
100 %		+ 30	2,592,999,855	-145	-0.0000056
100 %		+ 40	2,592,999,881	-119	-0.0000046
100 %		+ 50	2,592,999,954	-46	-0.0000018
BATT. ENDPOINT	3.57	+ 20	2,592,999,901	-99	-0.000038

 Table 7-35. Frequency Stability Data (Band 41)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 192 of 195	
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 183 of 185	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018	

Band 41 Frequency Stability Measurements

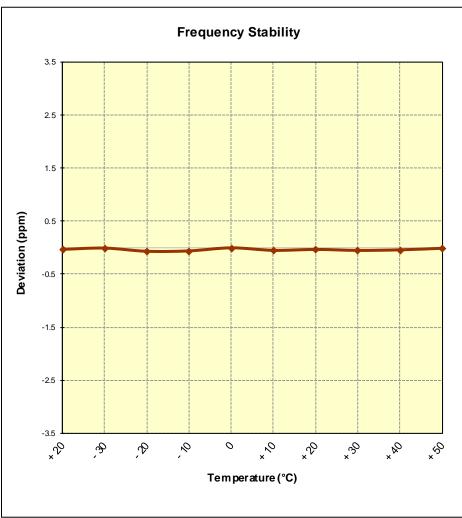


Figure 7-14. Frequency Stability Graph (Band 41)

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 194 of 195	
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 184 of 185	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018	

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the LGE Portable Handset FCC ID: ZNFX220PM complies with all the requirements of Part 22, 24, & 27 of the FCC Rules for LTE operation only.

FCC ID: ZNFX220PM		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 195 of 195
1M1809240182-05.ZNF	9/25/2018 - 10/9/2018	Portable Handset		Page 185 of 185
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.5 08/29/2018