

FCC ID: 2ARRB-02736 Report No.: T210722W03-RP1 IC: 20353-02736

Page: 1 / 88 Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 RSS-247 issue 2 and RSS-GEN issue 5
Product name	Wireless Car Adapter for Android Auto
Brand Name	Motorola
Model No.	MA1
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Komil Tson

Kevin Tsai Deputy Manager

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is at http://www.sgs.com.tw/Terms-and-Conditions and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw www.ccsrf.com

Page: 2 / 88 Rev.: 00

Revision History

Rev.	lssue Date	Revisions	Effect Page	Revised By
00	October 14, 2021	Initial Issue	ALL	Doris Chu

Page: 3 / 88 Rev.: 00

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	INFORMATION ABOUT THE FHSS CHARACTERISTICS	. 5
1.3	EUT CHANNEL INFORMATION	. 6
	ANTENNA INFORMATION	-
	MEASUREMENT UNCERTAINTY	
	FACILITIES AND TEST LOCATION	
	INSTRUMENT CALIBRATION	-
	SUPPORT AND EUT ACCESSORIES EQUIPMENT	
	TEST METHODOLOGY AND APPLIED STANDARDS	
	TEST SUMMARY	
	DESCRIPTION OF TEST MODES	
3.1	THE WORST MODE OF OPERATING CONDITION	12
	THE WORST MODE OF MEASUREMENT	
	EUT DUTY CYCLE	
	TEST RESULT	
	AC POWER LINE CONDUCTED EMISSION	
	20DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	
4.3	OUTPUT POWER MEASUREMENT	29
	FREQUENCY SEPARATION	
4.5	NUMBER OF HOPPING	37
	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	
4.7	TIME OF OCCUPANCY (DWELL TIME)	49
4.8	RADIATION BANDEDGE AND SPURIOUS EMISSION	54
AP	PENDIX 1 - PHOTOGRAPHS OF EUT	

Page: 4 / 88 Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Meizhou Guo Wei Electronics Co., Ltd. AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China.
Manufacturer	GOLDTEK TECHNOLOGY CO., Ltd. 16F., No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan
Equipment	Wireless Car Adapter for Android Auto
Model No.	MA1
Model Discrepancy	N/A
Trade Name	Motorola
Received Date	July 22, 2021
Date of Test	August 4 ~ 10, 2021
Power Supply	Power from host device via USB.
HW Version	PVT(V2.0)
SW Version	build175-0.8.2.211953522
EUT Serial #	706655E754F6
Domark	

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Page: 5 / 88 Rev.: 00

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

RSS-247, 5.1 (a): The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Page: 6 / 88 Rev.: 00

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.4 ANTENNA INFORMATION

Antenna Type	🛛 PIFA 🗌 PCB 🗌 Dipole 🗌 Coils
Antenna Brand / Model	WIESON / ARY196-1757-099-00
Antenna Gain	Gain :1.84 dBi
Antenna Connector	N/A

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

Page: 7 / 88 Rev.: 00

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 8 / 88 Rev.: 00

Report No.: T210722W03-RP1

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.) CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Jack Chen	-
Radiation	Ray Li	-
RF Conducted	Jack Chen	-

Remark: The lab has been recognized as the FCC accredited lad under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309"

1.7 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	05/25/2021	05/24/2022
Power Meter	Anritsu	ML2495A	1149001	05/24/2021	05/23/2022
Power Seneor	Anritsu	MA2491A	030982	05/24/2021	05/23/2022
Software	Radio Test Software Ver.21				

	Conducted Emission Room					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
CABLE	EMCI	CFD300-NL	CERF	06/28/2021	06/27/2022	
EMI Test Receiver	R&S	ESCI	100064	07/05/2021	07/04/2022	
LISN	SCHAFFNER	NNB 41	03/10013	02/02/2021	02/01/2022	
Software	EZ-EMC(CCS-3A1-CE-wugu)					

Page: 9 / 88 Rev.: 00

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due
Bilog Antenna	Sunol Sciences	JB3	A030105	07/19/2021	07/18/2022
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/24/2021	02/23/2022
Coaxial Cable	EMCI	EMC105	190914+327109/4	09/19/2020	09/18/2021
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/06/2021	01/05/2022
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/30/2020	09/29/2021
High Pass Filters	MICRO TRONICS	HPM13195	003	02/08/2021	02/07/2022
Horn Antenna	ETS LINDGREN	3116	00026370	12/11/2020	12/10/2021
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	12/09/2020	12/08/2021
K Type Cable	Huber+Suhner	SUCOFLEX 102	22470/2	12/09/2020	12/08/2021
Pre-Amplifier	EMEC	EM330	060609	02/24/2021	02/23/2022
Pre-Amplifier	HP	8449B	3008A00965	02/25/2021	02/24/2022
Pre-Amplifier	MITEQ	AMF-6F-18004000-37-8P	985646	09/02/2020	09/01/2021
Signal Analyzer	R&S	FSV 40	101073	09/17/2020	09/16/2021
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Software	e3 6.11-20180419c				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 10 / 88 Rev.: 00

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

	Support Equipment					
No.	No. Equipment Brand Model Series No. FCC ID IC					IC
1	NB(J)	TOSHIBA	PT345T-00L002	N/A	PD97260H	1000M-7260H

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5.

Page: 11 / 88 Rev.: 00

Report No.: T210722W03-RP1

2. TEST SUMMARY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	RSS-Gen 6.8	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.1)(a)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Spurious Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

Page: 12 / 88 Rev.: 00

Report No.: T210722W03-RP1

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) π/4-DQPSK for EDR-2Mbps (2DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz π/4-DQPSK for EDR-2Mbps (2DH5) 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2441MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. For EDR-2/3Mbps, because the characteristics are the same, so choose the high power as a hopping test.

Page: 13 / 88 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission				
Test Condition	Test Condition AC Power line conducted emission for line and neutral			
Power supply Mode Mode 1: EUT power by USB				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Radiated Emission Measurement Above 1G			
Test Condition	Test Condition Radiated Emission Above 1G		
Power supply Mode Mode 1: EUT power by USB			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			
Worst PositionPlaced in fixed position.Worst PositionPlaced in fixed position at X-Plane (E2-PlanePlaced in fixed position at Y-Plane (E1-Plane)			

Radiated Emission Measurement Below 1G				
Test Condition	Test Condition Radiated Emission Below 1G			
Power supply Mode Mode 1: EUT power by USB				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in two axis ,X,Y and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report

3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 14 / 88 Rev.: 00

3.3 EUT DUTY CYCLE

Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

For GFSK (1Mbps)

PACKET TYPE	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)
DH1	30.80	5.11	2.60	3.00
DH3	65.60	1.83	0.61	1.00
DH5	77.20	1.12	0.35	1.00

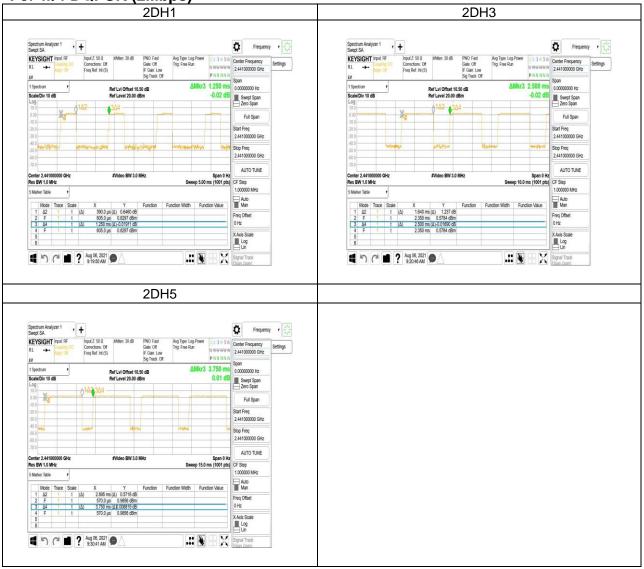
For π/4 DQPSK (2Mbps)

PACKET TYPE	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)
2DH1	31.20	5.06	2.56	3.00
2DH3	65.60	1.83	0.61	1.00
2DH5	77.20	1.12	0.35	1.00

For 8-DPSK (3Mbps)

PACKET TYPE	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)
3DH1	31.20	5.06	2.56	3.00
3DH3	65.60	1.83	0.61	1.00
3DH5	77.20	1.12	0.35	1.00

Page: 15 / 88 Rev.: 00


For GFSK (1Mbps)

Page: 16 / 88 Rev.: 00

For π/4 DQPSK (2Mbps)

Page: 17 / 88 Rev.: 00

For 8-DPSK (3Mbps)

Page: 18 / 88 Rev.: 00

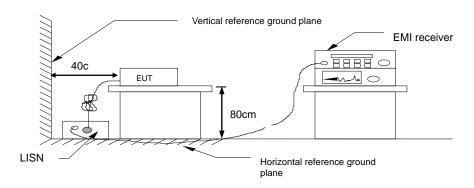
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

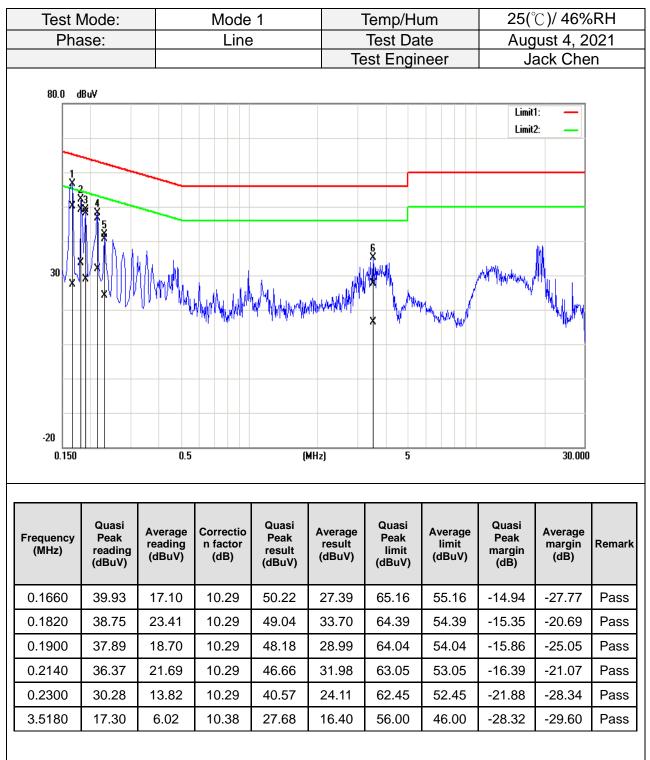

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

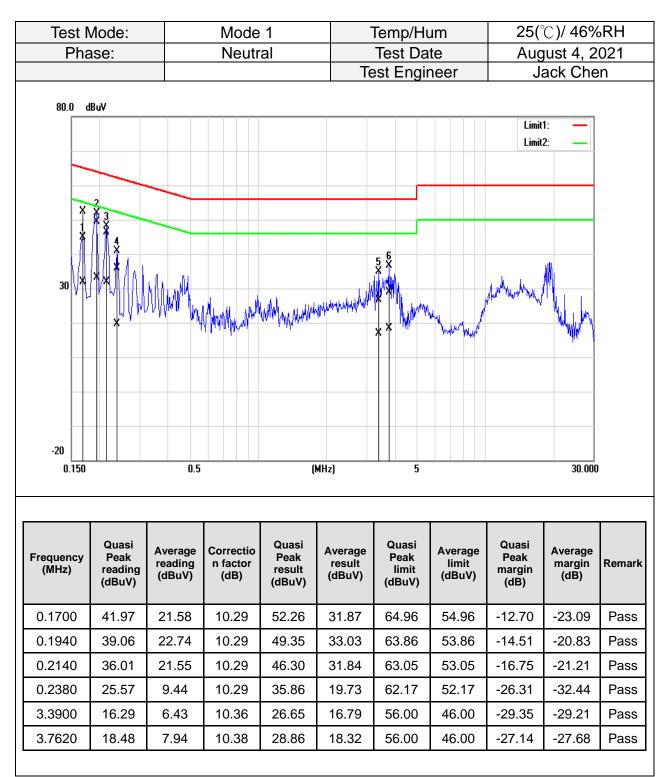
- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result PASS

Page: 19 / 88 Rev.: 00


Test Data

Note: Correction factor = LISN loss + Cable loss.

Page: 20 / 88 Rev.: 00

Note: Correction factor = LISN loss + Cable loss.

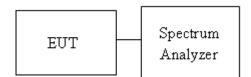
Page: 21 / 88 Rev.: 00

4.220dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.7,

<u>20 dB Bandwidth</u> : For reporting purposes only.


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 1% ~ 5% OBW, VBW ≥3*RBW and Detector = Peak, to measurement 20 dB Bandwidth.
- SA set RBW = 1% ~ 5% OBW, VBW ≥ three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

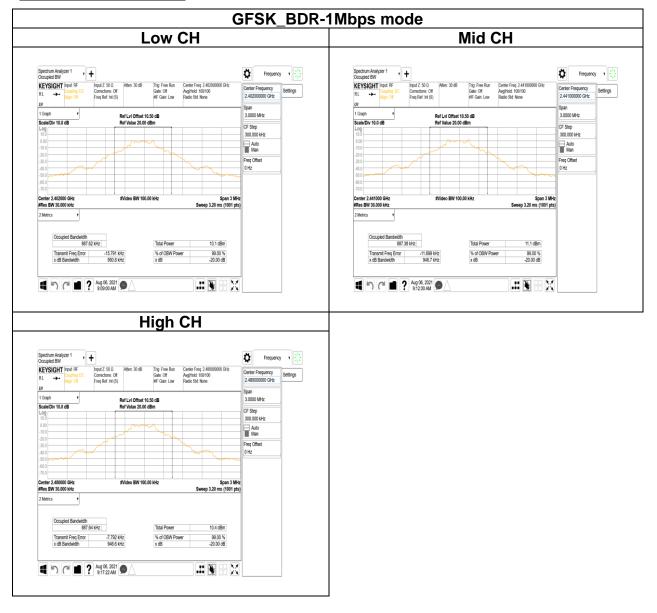
Page: 22 / 88 Rev.: 00

4.2.4 Test Result

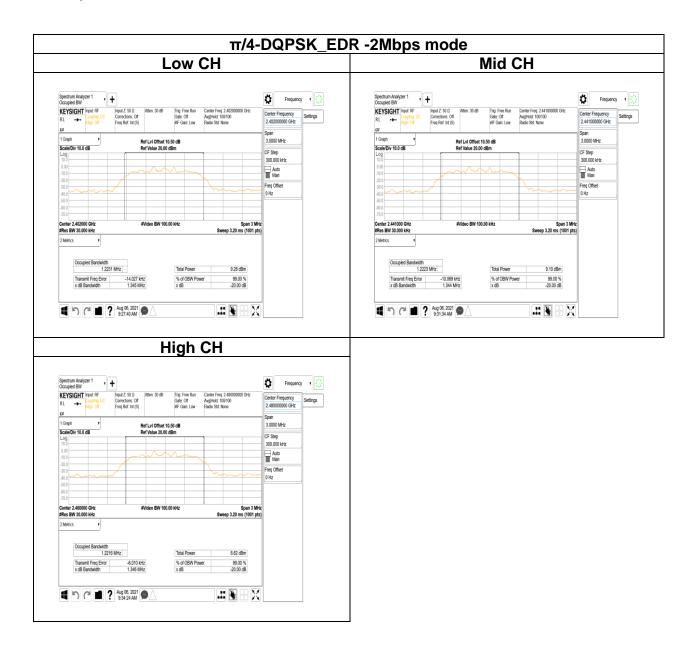
Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	2402	0.88628	0.9508		
Mid	2441	0.88686	0.9487		
High	2480	0.88802	0.9466		

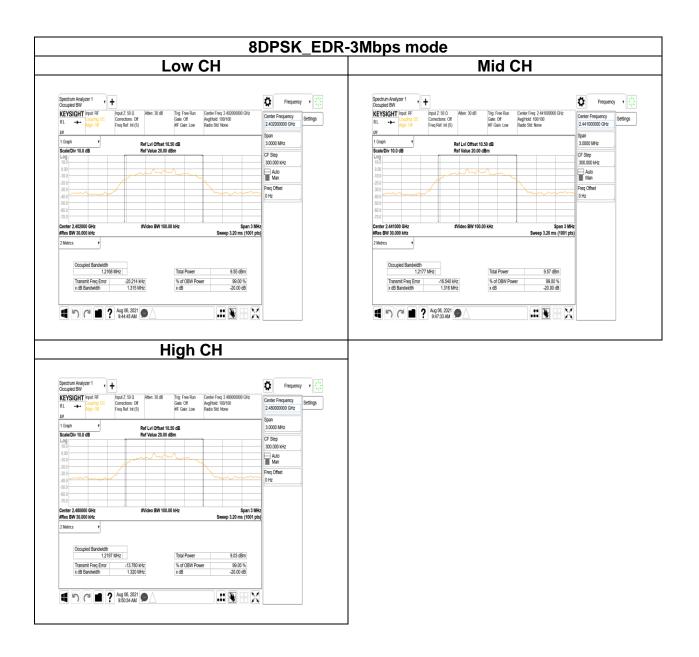
Test mode: π/4-DQPSK_EDR -2Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	2402	1.2101	1.345		
Mid	2441	1.2095	1.344		
High	2480	1.2101	1.346		


Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	2402	1.2075	1.315		
Mid	2441	1.2083	1.316		
High	2480	1.2093	1.320		

Page: 23 / 88 Rev.: 00

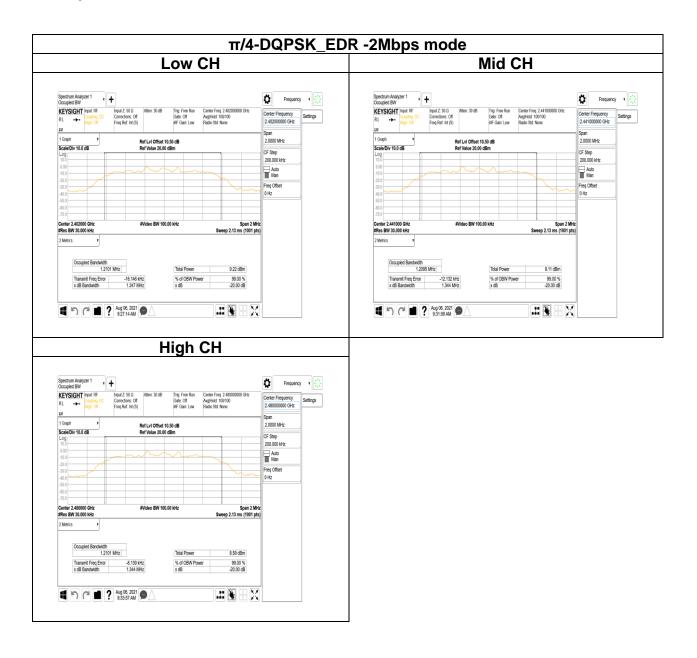

<u>Test Data</u>

20dB BANDWIDTH



Page: 24 / 88 Rev.: 00

Page: 25 / 88 Rev.: 00


Page: 26 / 88 Rev.: 00

Test Data BANDWIDTH 99%

Page: 27 / 88 Rev.: 00

Page: 28 / 88 Rev.: 00

Page: 29 / 88 Rev.: 00

Report No.: T210722W03-RP1

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.4(b)

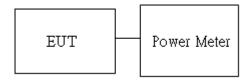
Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

<u>IC</u>

According to RSS-247 section 5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).


Antenna not exceed 6 dBi : 21dBm
 Antenna with DG greater than 6 dBi : 21dBm [Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 30 / 88 Rev.: 00

4.3.4 Test Result

Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

Peak output power :

1M BR mode (Peak):

СН	Freq. (MHz)	Power set			Limit (mW)
Low	2402	default	9.20	8.318	125
Mid	2441	default	9.81	9.572	125
High	2480	default	9.62	9.162	125

2M EDR mode (Peak):

СН	Freq. (MHz)	Power set			Limit (mW)
Low	2402	default 7.62		5.781	125
Mid	2441	default	7.07	5.093	125
High	2480	default	6.48	4.446	125

3M EDR mode (Peak):

СН	Freq. (MHz)	Power Output set Power (dBm)		Output Power (mW)	Limit (mW)
Low	2402	default	7.69	5.875	125
Mid	2441	default	7.20	5.248	125
High	2480	default	7.59	5.741	125

Page: 31 / 88 Rev.: 00

Average output power :

1M BR mode (Average):

СН	Freq. (MHz)	Power set	Max. Avg.Output include tune up tolerance Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	default	8.23	6.645	125
Mid	2441	default	8.97	7.880	125
High	2480	default	8.87	7.700	125

2M EDR mode (Average):

СН	Freq. (MHz)	Power set	Max. Avg.Output include tune up tolerance Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	default	4.16	2.603	125
Mid	2441	default	4.21	2.633	125
High	2480	default	4.27	2.670	125

3M EDR mode (Average):

СН	Freq. (MHz)	Power set	Max. Avg.Output include tune up tolerance Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	default	4.65	2.914	125
Mid	2441	default	4.55	2.848	125
High	2480	default	4.61	2.887	125

Page: 32 / 88 Rev.: 00

EIRP power :

1M BR mode EIRP

Channel	Frequency (MHz)	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	default	8.23	1.84	10.151	4000
Mid	2441	default	8.97	1.84	12.037	4000
High	2480	default	8.87	1.84	11.763	4000

2M EDR mode EIRP

Channel	Frequency (MHz)	Power set	Max. Avg.Output include tune up tolerance Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	default	4.16	1.84	3.977	4000
Mid	2441	default	4.21	1.84	4.023	4000
High	2480	default	4.27	1.84	4.079	4000

3M EDR mode EIRP

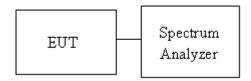
Channel	Frequency (MHz)	Power set	Max. Avg.Output include tune up tolerance Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	default	4.65	1.84	4.452	4000
Mid	2441	default	4.55	1.84	4.350	4000
High	2480	default	4.61	1.84	4.411	4000

Page: 33 / 88 Rev.: 00

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

4.4.2 Test Procedure

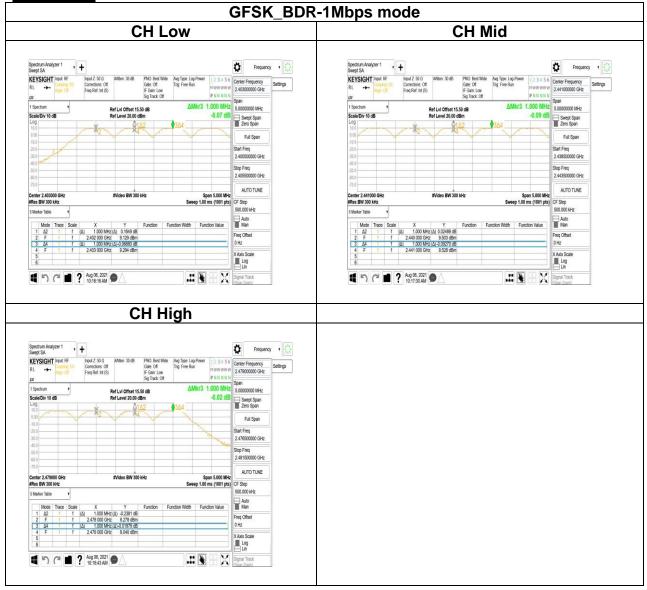
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 300kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup

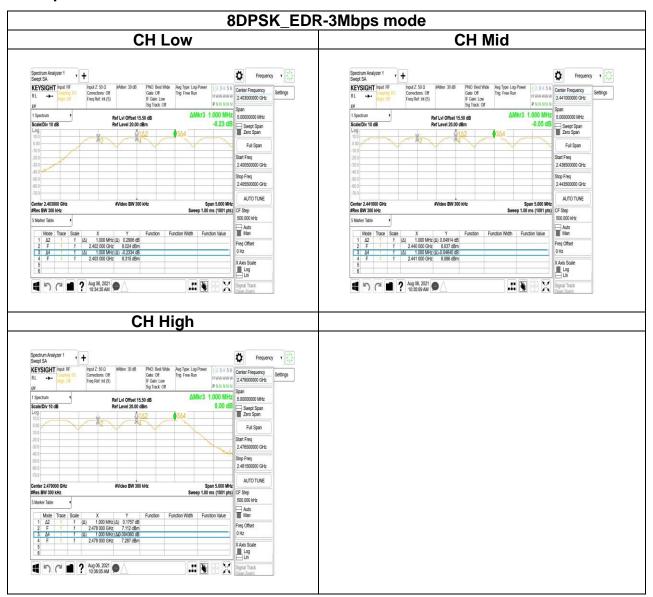
Page: 34 / 88 Rev.: 00

4.4.4 Test Result

Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021


Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	1.000	0.63	PASS	
Mid	2441	1.000	0.63	PASS	
High	2480	1.000	0.63	PASS	

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	1.000	0.88	PASS	
Mid	2441	1.000	0.88	PASS	
High	2480	1.000	0.88	PASS	


Page: 35 / 88 Rev.: 00

Test Data

Page: 36 / 88 Rev.: 00

Page: 37 / 88 Rev.: 00

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

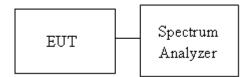
According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

1. Place the EUT on the table and set it in transmitting mode.


2. EUT RF output port connected to the SA by RF cable.

3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2441 MHz for Low range,

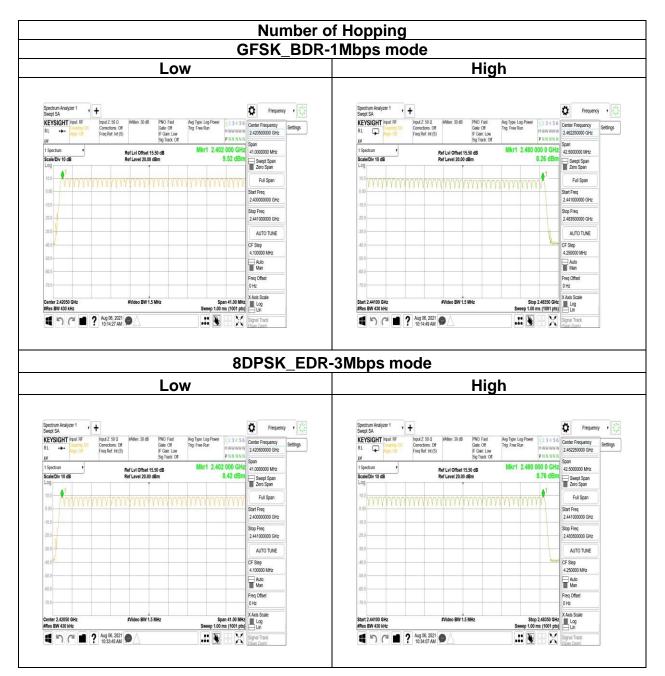
Start Freq. = 2441 MHz, Stop Freq. = 2483.5 MHz for High range ; RBW=430KHz, VBW = 1.5MHz.

4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

Page: 38 / 88 Rev.: 00

4.5.4 Test Result


Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

Number of Hopping								
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result				
BDR-1Mbps	2402-2480	79	15	Deee				
EDR-3Mbps	2402-2480	79	15	Pass				

Page: 39 / 88 Rev.: 00

Test Data

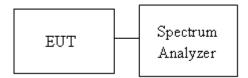
Page: 40 / 88 Rev.: 00

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

Limit	-20 dBc
-------	---------


4.6.2 Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

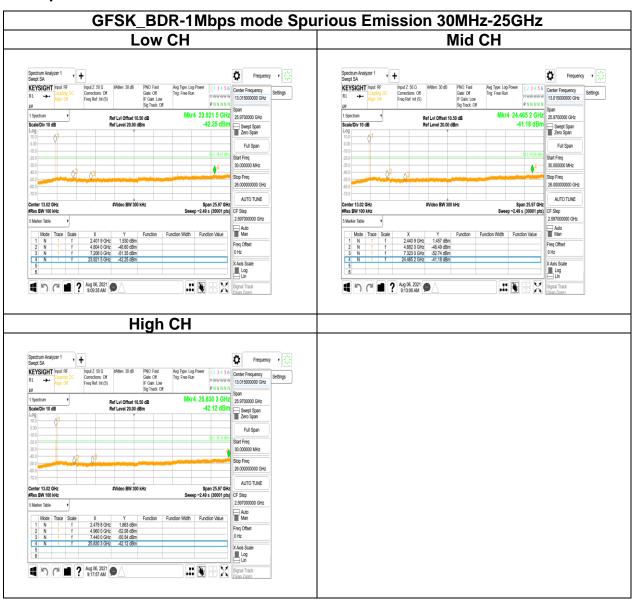
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with both hopping "ON" and "OFF" modes ".

4.6.3 Test Setup

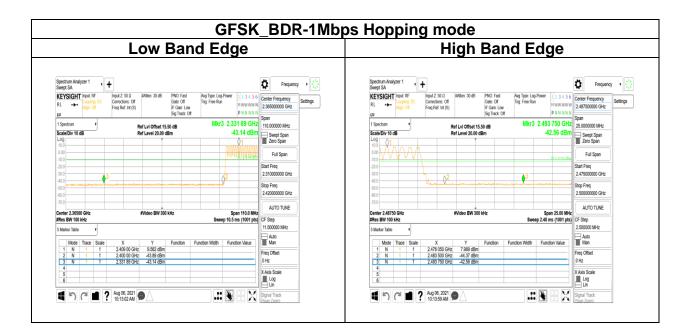
Page: 41 / 88 Rev.: 00

4.6.4 Test Result

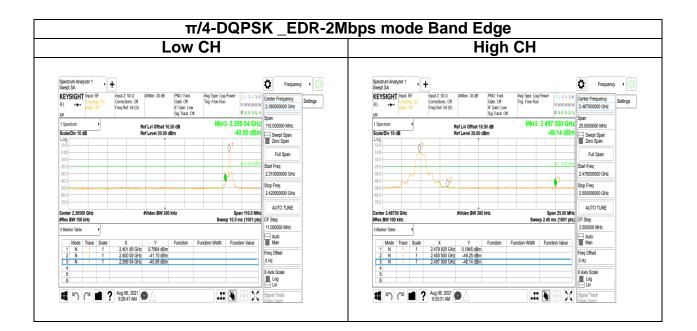

Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

Test Data

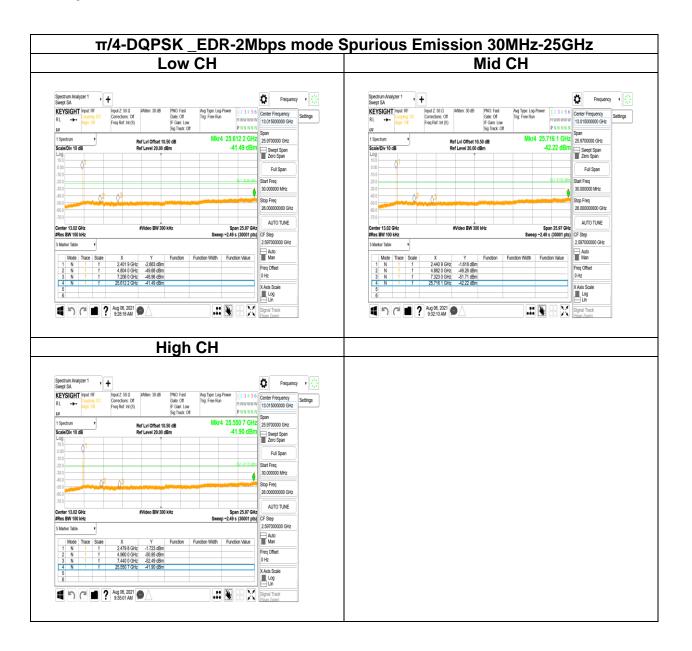
Low CH		High CH	
and the second	Center Frequency Settings	RL → Age of Ping Ref Int (S) Si F Gan Low P N N N N Stan	Frequency v transfer
1 Spectrum Ref Lvi Offset 10.50 dB Mkr3 2.315 50 GHz ScaleDiv 10 dB Ref Level 20.00 dBm -48.14 dBm	110.000000 MHz	1 Spectrum Ref Lvi Offset 10.50 dB Mkr3 2.492 075 GHz 25.0 Scale/Dv 10 dB Ref Level 20.00 dBm 47.98 dBm	000000 MHz
00 00 00 00 00 00 00 00 00 00 00 00 00	Full Span Start Freq 2.31000000 GHz Stop Freq 2.42000000 GHz	00 00 00 00 00 00 00 00 00 00	5000000 GHz
70 0 Center 2,5500 GHz Span 110.0 MHz Span 110.0 MHz Sweep 10.5 ms (1001 pb) Statute Table	AUTO TUNE OF Step 11.000000 MHz	Center 2.48750 GHz #Video BW 300 kHz Span 25.00 MHz #Res BW 100 kHz 0CF S	AUTO TUNE Nep 10000 MHz
Mode Trace Scale X Y Function Function Width Function Value 1 N 1 1 2.402.18 GHz 2.100 dBm 2.00 dBm 2.01 dBm <td>Auto Man Freq Offset 0 Hz</td> <td>Node Tace Scale X Y Function Function Width Function Value 1 N 1 2.480.150.0Ft/c 2.225.0Em Peg 2 N 1 2.483.050.0Ft/c 4.275.0Em Peg</td> <td>Offset</td>	Auto Man Freq Offset 0 Hz	Node Tace Scale X Y Function Function Width Function Value 1 N 1 2.480.150.0Ft/c 2.225.0Em Peg 2 N 1 2.483.050.0Ft/c 4.275.0Em Peg	Offset
	X Axis Scale	5 6 XAV	is Scale
■ 「 C ■ ? Aug 06, 2021 ● △	Signal Track (Sean Zoom)	■ っ c ■ ? Aug 06.2021 ● △ 🔛 🗄 🗙 📰	al Track



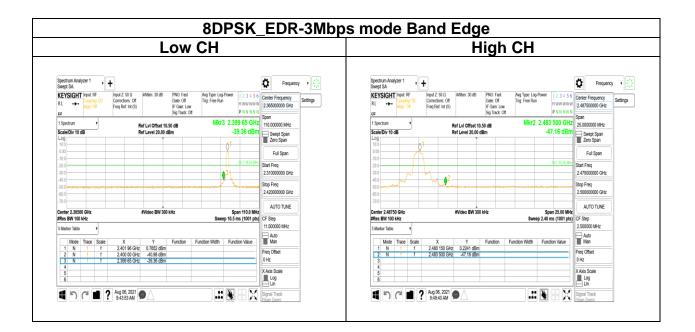
Page: 42 / 88 Rev.: 00



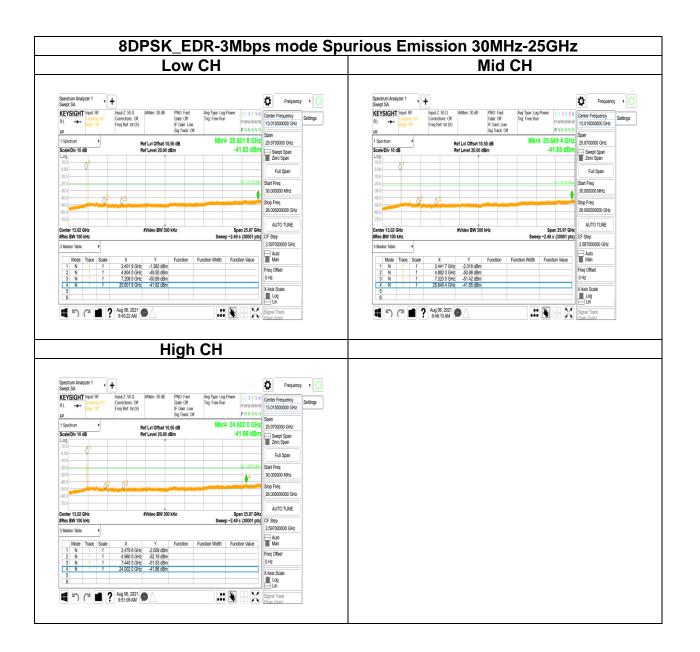
Page: 43 / 88 Rev.: 00



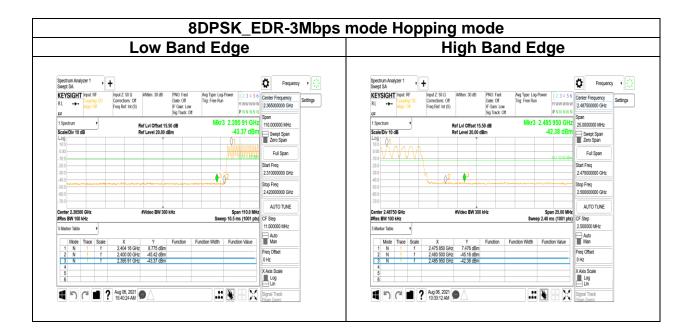
Page: 44 / 88 Rev.: 00



Page: 45 / 88 Rev.: 00



Page: 46 / 88 Rev.: 00



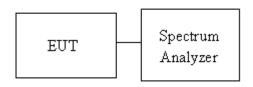
Page: 47 / 88 Rev.: 00

Page: 48 / 88 Rev.: 00

Page: 49 / 88 Rev.: 00

4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit


According to §15.247(a)(1)(iii)and RSS-247 section 5.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup

4.7.4 Test Result

Temperature:	20.7 ~ 25.5 ℃	Humidity:	43 ~ 57% RH
Tested by:	Jack Chen	Test date:	August 5 ~ 6, 2021

Page: 50 / 88 Rev.: 00

For GFSK (1Mbps)

Channe	el	PACKET TYPE		Measurement Result (ms)			Lir (m		VBW sett (kHz)	ing		
			DH1			123.20			400	ms	3.00	
Mid			DH3			262.40			400	ms	1.00	
			DH5			308.80			400	ms	1.00	
CH Mid	DH3 ti	me slot me slot me slot	= = =	0.38 1.64 2.88	0 *	(1600/2/79) (1600/4/79) (1600/6/79)	* *	31.6 31.6 31.6		123.20 262.40 307.20) (ms)	

For π/4 DQPSK (2Mbps)

Chann	el	PACKI	PACKET TYPE Measurement (ms)			Result		Lim (ms		VBW setting (kHz)	
		2[DH1			124.80			400r	ns	3.00
Mid		2[DH3		262.40 400ms		1.00				
		2[DH5			308.80			400ms		1.00
CH Mid	2DH3	time slot time slot time slot	= =	0.39 1.64 2.89	0 *	(1600/2/79) (1600/4/79) (1600/6/79)	* * *	31.6 31.6 31.6	= =	262.4	0 (ms) 0 (ms) 0 (ms)

For 8-DPSK (3Mbps)

Channe	el	PACKET TYPE		Measurement Result (ms)				Lim (ms		VBW setting (kHz)	
		31	DH1			124.80			400r	ns	3.00
Mid		31	DH3	13 262.40					400ms		1.00
		3[DH5		308.80			400ms		ns	1.00
CH Mid	3DH3	time slot time slot time slot	= = =	0.39 1.64 2.88	40 *	(1600/2/79) (1600/4/79) (1600/6/79)	* *	31.6 31.6 31.6	= = =	262.4	0 (ms) 0 (ms) 0 (ms)

Page: 51 / 88 Rev.: 00


For GFSK (1Mbps)

Page: 52 / 88 Rev.: 00

For π/4 DQPSK (2Mbps)

Page: 53 / 88 Rev.: 00

For 8-DPSK (3Mbps)

Page: 54 / 88 Rev.: 00

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 55 / 88 Rev.: 00

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

<u>RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies</u> <u>Below 30 MHz (Transmit)</u>

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Page: 56 / 88 Rev.: 00

Report No.: T210722W03-RP1

4.8.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

4. For harmonic, the worst case of output power was BDR-1Mbps. Therefore only BDR-1Mbps record in the report.

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

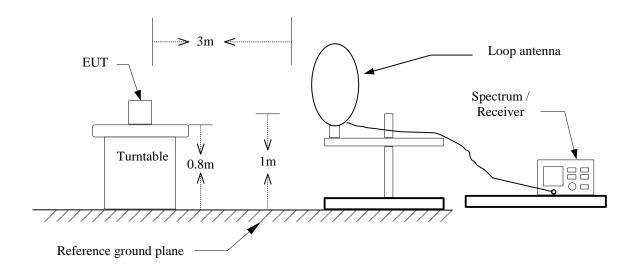
If Duty Cycle \geq 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW≥1/T.

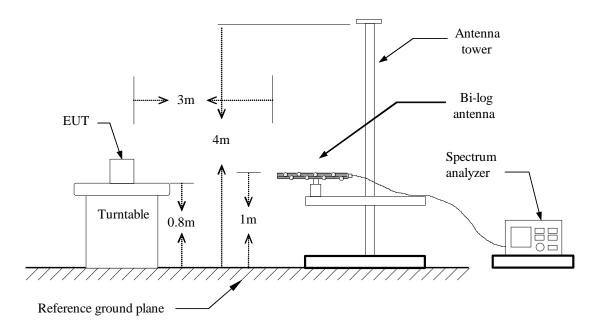
6. Data result

Actual FS=Spectrum Reading Level+Factor

Margin=Actual FS- Limit

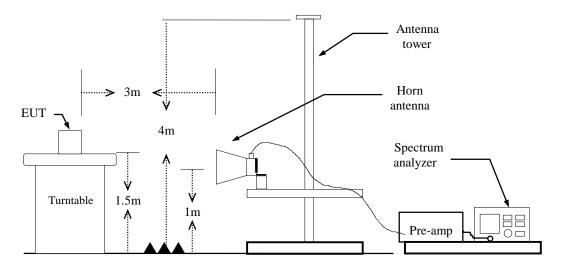


Page: 57 / 88 Rev.: 00


Report No.: T210722W03-RP1

4.8.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page: 58 / 88 Rev.: 00

Above 1 GHz

Page: 59 / 88 Rev.: 00

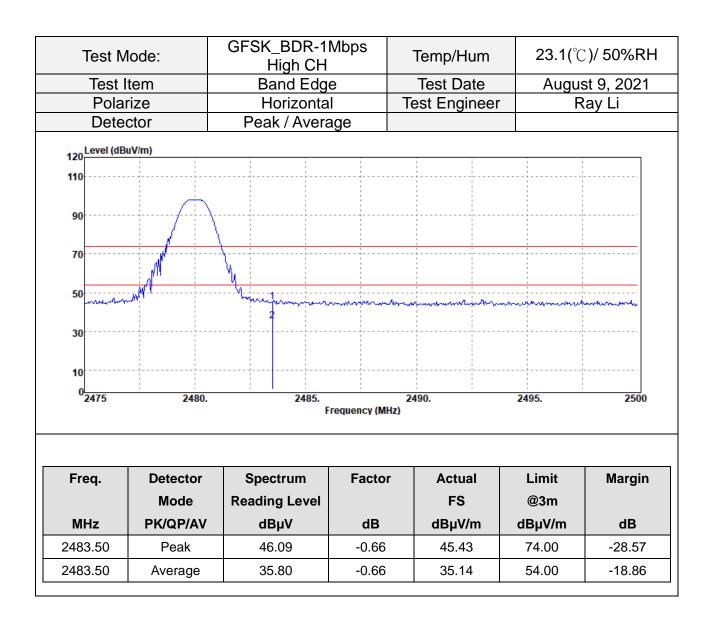
4.8.4 Test Result

Band Edge Test Data

Test M	ode:	GFSK_BDR-1M Low CH	lbps	Temp/Hum		C)/ 50%RH
Test I	tem	Band Edge	Band Edge Test Date		Augu	st 9, 2021
Polar	rize	Vertical		Test Engineer	R	Ray Li
Deteo	ctor	Peak / Averag	je			
120 Level (dBu	uV/m)					
120						
90						1
70						
50	-	mmmmmm	margan	man har man and see me		N- human
30					2	
10		I I	1			
10 0 2310	2330.	2350. Fr	equency (MI	2370. iz)	2390.	2410
0 <mark></mark> 2310		Fr		łz)		
	Detector	Fr	equency (Mi Factor	Actual	Limit	2410 Margin
02310 Freq.	Detector Mode	Fr Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
02310 Freq. MHz	Detector	Fr Spectrum Reading Level dBµV	Factor	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB
02310 Freq.	Detector Mode	Fr Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin

Page: 60 / 88 Rev.: 00

Test M		GFSK_BDR-1M Low CH		Temp/Hum		2)/ 50%RI
Test It		Band Edge		Test Date		st 9, 2021
Polar		Horizontal		Test Engineer	Ray Li	
Deteo	ctor	Peak / Averaç	ge			
120 Level (dB	uV/m)					
110						0
						A I
90						
70						
50	-marine more war	and the second second second second	mandiamantermet	man man	and an and a second	
30					2	
10						
0 <mark></mark>	2330.	2350. Fi	requency (MHz)	2370.	2390.	2410
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
rieq.		-	Factor			Maryin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
2390.00	Peak	46.74	-1.00	45.74	74.00	-28.26
	Average	34.28	-1.00	33.28	54.00	-20.72
2390.00						



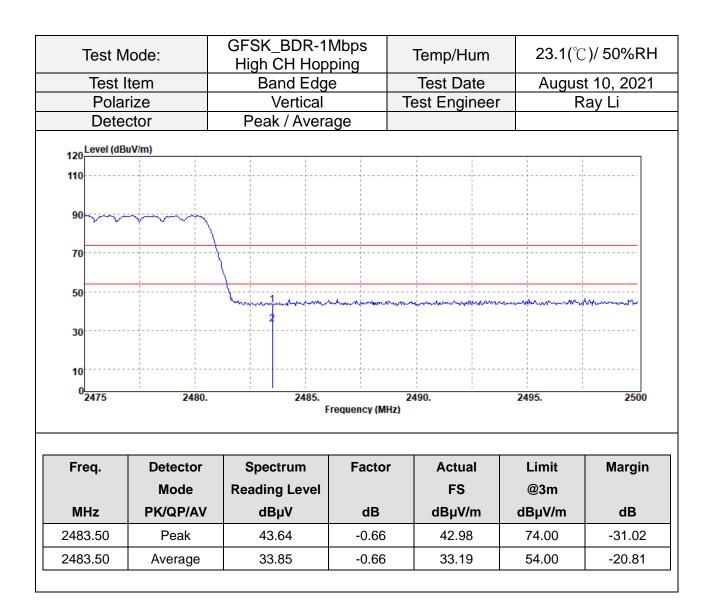
Page: 61 / 88 Rev.: 00

Test Mod	de:	GFS	SK_BDR· High C		Ten	np/Hum	23.1(° ℃)/	/ 50%RH
Test Ite	m		Band Ec		Tes	st Date	August	9, 2021
Polariz	е		Vertica	al	Test	Engineer	Ray Li	
Detecto	or	Р	eak / Ave	erage				
120 Level (dB	uV/m)							
110								
90		\wedge		 				
70		<u> </u>						
50 ////////////////////////////////////	a such fill		Munip	mm	man marine	an marine		m. have marked
30			2					
10								
0 <mark>2475</mark>	i	2480.	i I	2485.		2490.	2495.	2500
From	Dete		Speed		quency (MHz) Factor	Actual	Limit	Morain
Freq.		ector	Spectr		Factor			Margin
		de	Reading			FS	@3m	
MHz	PK/Q	P/AV	dBµ	V	dB	dBµV/m	dBµV/m	dB
2483.50	Pe	ak	45.4	2	-0.66	44.76	74.00	-29.24
2483.50	Ave	rage	33.9	0	-0.66	33.24	54.00	-20.76

Page: 62 / 88 Rev.: 00

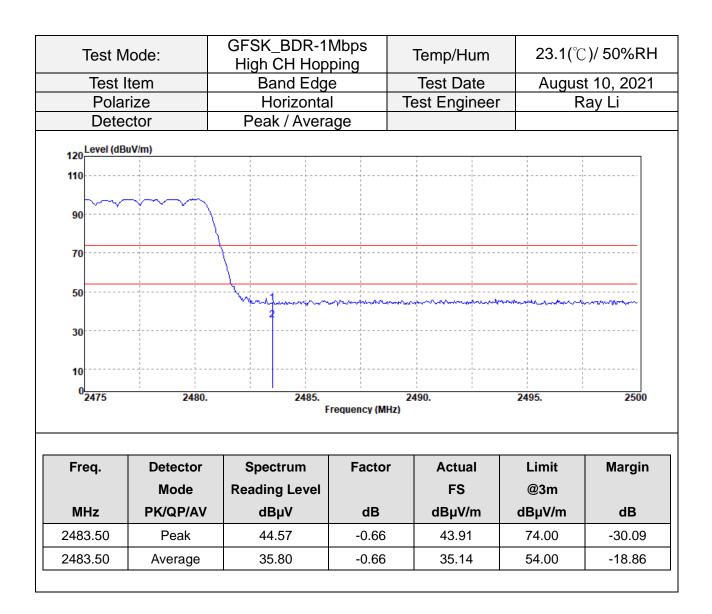
Page: 63 / 88 Rev.: 00

Test M	1ode:	GFSK_BDR-1M Low CH Hoppi		Temp/Hum	23.1(°(C)/ 50%RI	
Test	tem	Band Edge		Test Date	Augus	August 10, 202	
Pola	rize	Vertical		Test Engineer	Ray Li		
Dete	ctor	Peak / Averag	je				
120 Level (de	3uV/m)						
110							
110							
90						provene	
70					 	1 1 1 1 1	
50	mindenner		mound	main and a second	mun	}	
					2		
30							
10			1			1	
0 <mark></mark> 2310	2330.	2350.	equency (MHz)	2370.	2390.	2410	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2390.00	Peak	44.76	-1.00	43.76	74.00	-30.24	
200.00		24.00	-1.00	33.08	54.00	-20.92	
2390.00	Average	34.08	-1.00	55.00	54.00	20.52	



Page: 64 / 88 Rev.: 00

Test N	lode:	GFSK_BDR-1M Low CH Hopp		Temp/Hum	23.1(°(C)/ 50%RI
Test I	tem	Band Edge		Test Date		st 10, 202 <i>°</i>
Pola	rize	Horizontal	-	Test Engineer	F	Ray Li
Dete	ctor	Peak / Averag	ge			
120 Level (dE	BuV/m)					
110						
						among
90						
70						1
50	manunalangalin	man and a strange was a strange of the strange of t	montomenta	mp month	and the manufacture of the	ļ
					2	
30						1
10						
0 ^L 2310	2330.	2350. F	requency (MHz)	2370.	2390.	2410
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	j
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
	Peak	46.18	-1.00	45.18	74.00	-28.82
2390.00	i cuit	10.10				
2390.00 2390.00	Average	34.38	-1.00	33.38	54.00	-20.62

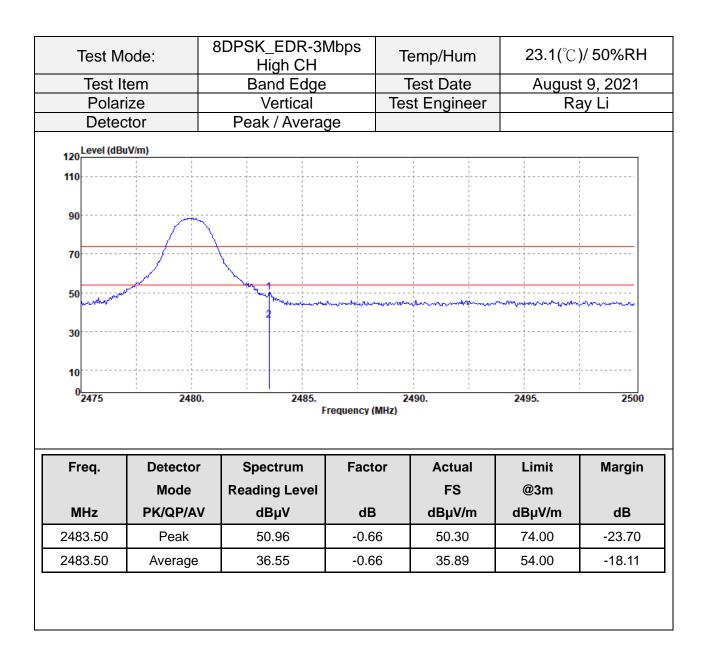


Page: 65 / 88 Rev.: 00

Page: 66 / 88 Rev.: 00

Page: 67 / 88 Rev.: 00

Test M	lode:	8DPSK_EDR-3Mbps Low CH		Temp/Hum	23.1(°C)/ 50%R	
Test I	tem	Band Edge		Test Date	Augus	t 9, 2021
Pola	rize	Vertical	Te	est Engineer	Ray Li	
Dete	ctor	Peak / Averag	ge			
120 Level (dB	uV/m)					
110						
						_
90						f) –
70						
70						
				1		
50				4		
50	rout the many and a many many			-mon	man	the
50 30	read from the second	an a	unu unu		non a farman a	the second second
marcan		an man and a second	an a		2	t.
marcan	Secolulities and the second second		,		2	
30	2330.	2350.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2370.	2 2390.	2410
30	2330.	2350. Fr	requency (MHz)	2370.	2 2390.	2410
30	2330. Detector			2370.	2 2390.	2410 Margin
30 10 0 2310		Fr	equency (MHz)			
30 10 0 2310	Detector	Fr	equency (MHz)	Actual	Limit	
30 10 0 2310 Freq.	Detector Mode	Fr Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
30 10 0 2310	Detector Mode PK/QP/AV	Fr Spectrum Reading Level dBµV	Factor dB	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB



Page: 68 / 88 Rev.: 00

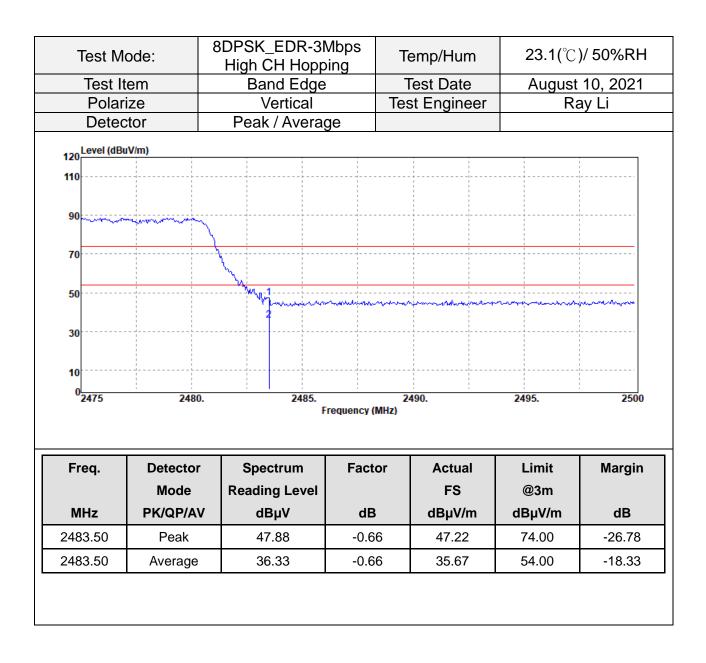
est Mode		EDR-3Mbps w CH	Temp/H	um	23.1(°C)/ 5	0%RH
Test Item	Ban	d Edge	Test Date		August 9,	2021
Polarize		izontal	Test Engineer		Ray Li	
Detector	Peak	/ Average				
120	JV/m)					
110						
						ΛΙ
90						
70						<u> </u>
						$\langle \rangle$
50						We
manne	-	and have a second	- market and a second and a sec	-	Number of the second	~
30					4	
10			· · · · · · · · · · · · · · · · · · ·			
0 <mark></mark> 2310	2330.	2350.	1	2370.	2390.	2410
			Frequency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
2390.00	Peak	44.95	-1.00	43.95	74.00	-30.05
	Average	34.18	-1.00	33.18	54.00	-20.82
2390.00	Average	• • • • •				

Page: 69 / 88 Rev.: 00

Page: 70 / 88 Rev.: 00

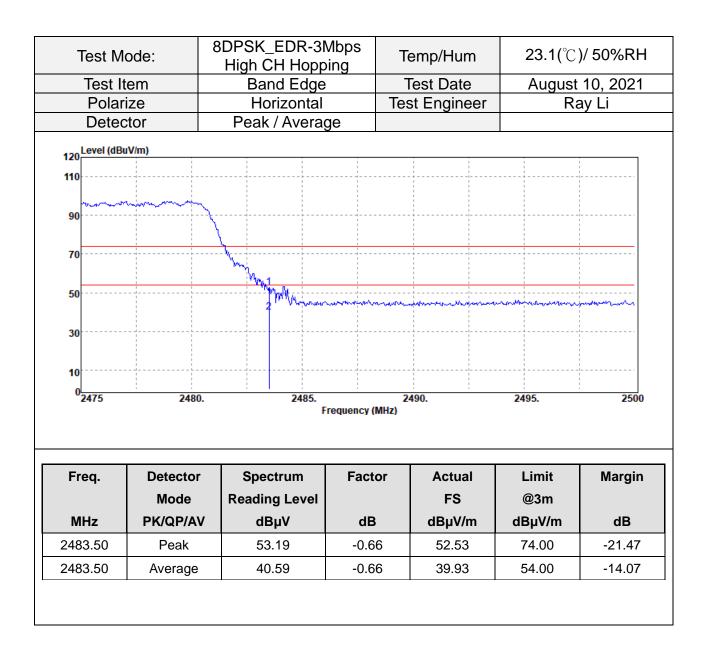
Page: 71 / 88 Rev.: 00

Test M	ode:	8DPSK_EDR-3Mbps Low CH Hopping Temp/Hum		23.1(°C)/ 50%l August 10, 20		
Test It	tem	Band Edge		Test Date	August	10, 2021
Polar	ize	Vertical	Те	st Engineer	Ray Li	
Detec	ctor	Peak / Averag	je			
120	ιV/m)					
110						
						Destado - de
90						
70						
/0			1			
	1					
50					(1 1
50 www.w~m		muhanananan	who was		union	N 1 1 1 1 1 1 1
when a sha		anany - april - and -			mourand	N
50 		www.when.ever	well management	a anto ano be de la con	2	
when a sha			met managemen		2	
30 10					2	
30	2330.	2350. Fr	requency (MHz)	2370.	2 2390.	2410
30 10	2330.			2370.	2 2390.	2410
30 10	2330. Detector			2370.	2 2 2390. Limit	2410 Margin
30 10 2310		Fr	equency (MHz)			
30 10 2310	Detector	Fr	equency (MHz)	Actual	Limit	
30 10 0 2310 Freq.	Detector Mode	Fr Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
30 10 0 2310 Freq.	Detector Mode PK/QP/AV	Fr Spectrum Reading Level dBµV	Factor dB	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB

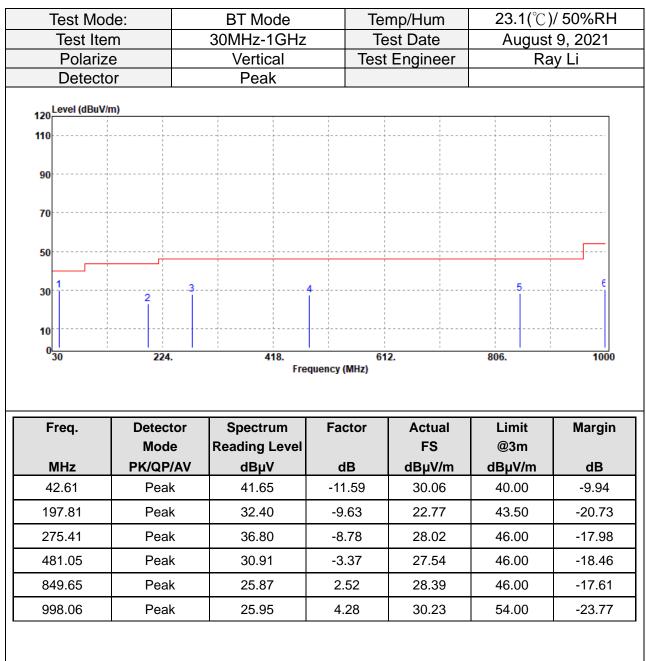


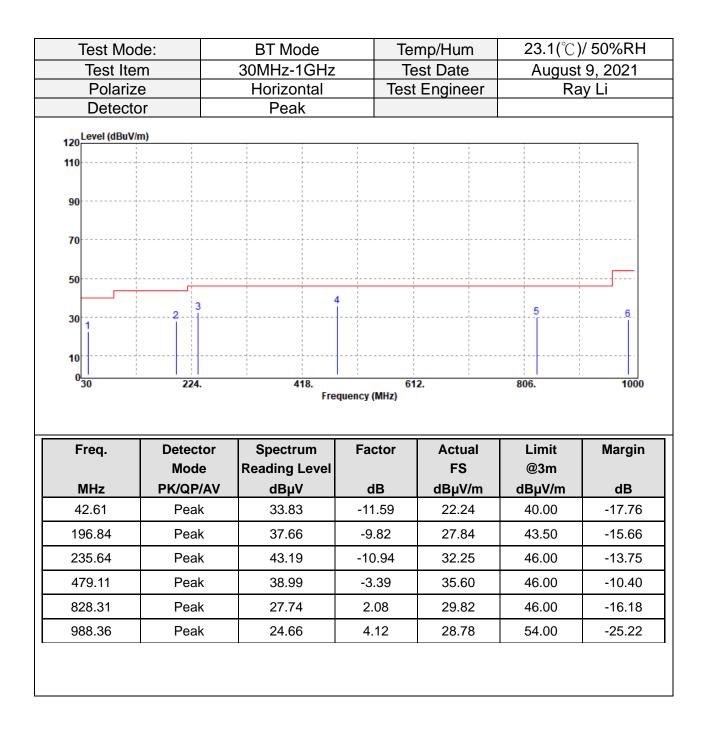
Page: 72 / 88 Rev.: 00

Test N	lode:	8DPSK_EDR-3M Low CH Hoppi		emp/Hum	23.1(℃)/ 50%RH
Test I	tem	Band Edge		Test Date	August	10, 2021
Pola	rize	Horizontal Test Engineer		st Engineer	· Ray Li	
Dete	ctor	Peak / Averag	je			
120 Level (dB	uV/m)					
110						
						mouris
90					· · · · · · · · · · · · · · · · · · ·	
70						
70						
50					į	
50	man have been have been here have been been here have been here here here here here here here h	Non-pressioner	mumm		muntanin	
30			 		2	1 1 1
50						
10						
	i i					
0						
0 <mark></mark> 2310	2330.	2350. Fr		2370.	2390.	2410
0 <mark>2310</mark>	2330.		requency (MHz)	2370.	2390.	2410
02310	2330. Detector			Actual	2390.	2410 Margin
		Fr	requency (MHz)			
	Detector	Fr	requency (MHz)	Actual	Limit	
Freq.	Detector Mode	Fr Spectrum Reading Level	Fequency (MHz)	Actual FS	Limit @3m	Margin
Freq. MHz	Detector Mode PK/QP/AV	Fr Spectrum Reading Level dBµV	Factor dB	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB

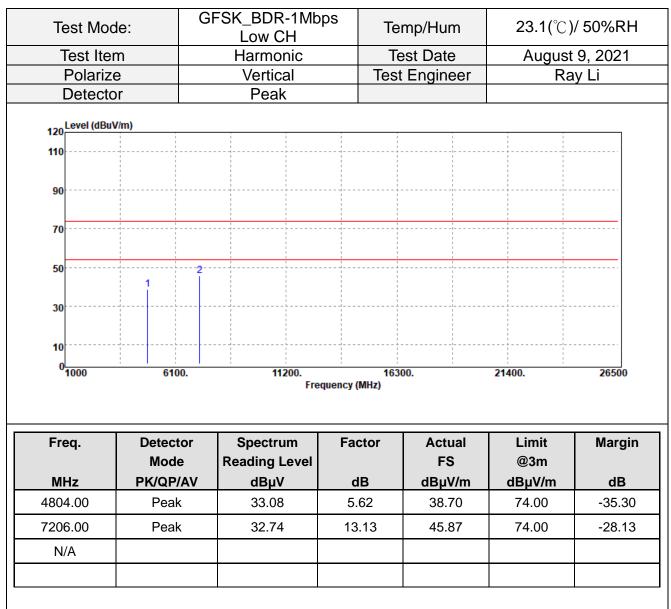


Page: 73 / 88 Rev.: 00

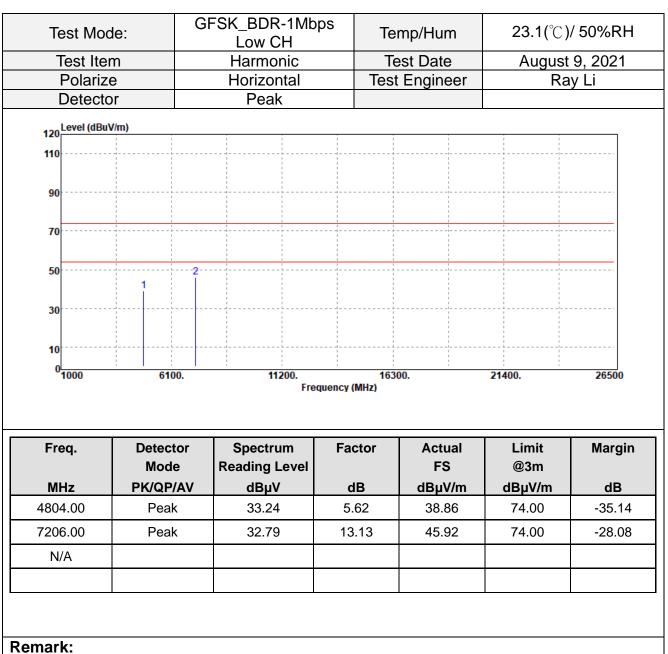

Page: 74 / 88 Rev.: 00


Page: 75 / 88 Rev.: 00

Below 1G Test Data


Page: 76 / 88 Rev.: 00

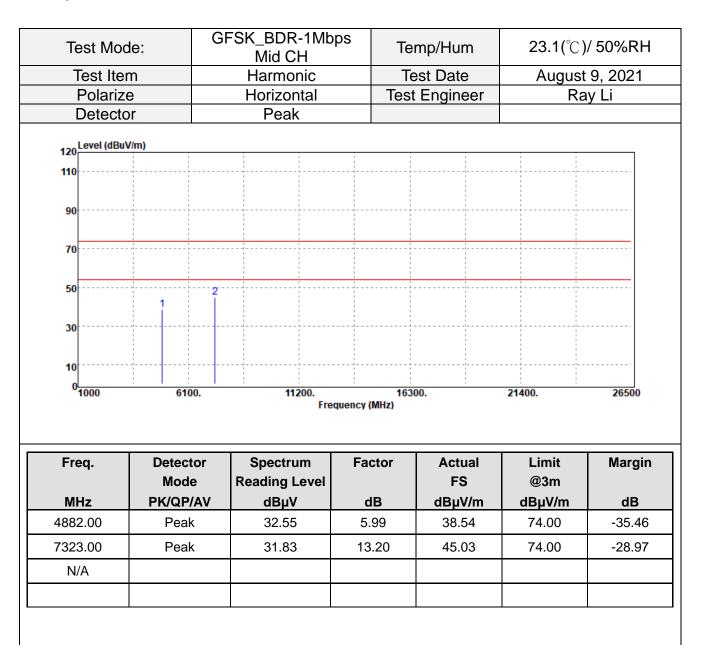
Page: 77 / 88 Rev.: 00


Above 1G Test Data

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 78 / 88 Rev.: 00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Page: 79 / 88 Rev.: 00

Test Mo	de: G	FSK_BDR-1Mb Mid CH	ps Te	mp/Hum	23.1(° ℃)	/ 50%RH
Test Ite	m	Harmonic	Т	est Date	August	9, 2021
Polariz	e	Vertical	Tes	t Engineer		ıy Li
Detecto	or	Peak				-
120 Level (dBu	V/m)					
110					· +	
90						
50						
70						
50	2			 		
30						
10			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
0	6100.	11200.	163	100	21400.	26500
1000	0100.		quency (MHz)		21400.	20000
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margir
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4882.00	Peak	32.33	5.99	38.32	74.00	-35.68
7323.00	Peak	31.76	13.20	44.96	74.00	-29.04
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 80 / 88 Rev.: 00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 81 / 88 Rev.: 00

Test Mode.		GFSK_BDR-1Mbps High CH		mp/Hum	23.1(℃)/ 50%RF	
Test Ite		Harmonic		est Date	August	9, 2021
Polariz		Vertical	Tes	t Engineer	Ra	y Li
Detect	or	Peak				
120 Level (dBu	V/m)					
110						
90						
70						
50	2					
30				 		
10						
0 ¹ 1000	6100.	11200. Free	163 quency (MHz)	600.	21400.	26500
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margir
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	32.85	6.73	39.58	74.00	-34.42
7440.00	Peak	31.32	13.13	44.45	74.00	-29.55
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 82 / 88 Rev.: 00

Test Mo	de: Gl	FSK_BDR-1Mb High CH	ps .	Temp/Hum	23.1(℃)/ 50%R	
Test Ite	m	Harmonic		Test Date	Augus	t 9, 2021
Polariz	e	Horizontal	Te	est Engineer	R	ay Li
Detecto	or	Peak				
120 Level (dBuV	//m)					
110						
90						
70						
50	1 1					
30				· · · · · · · · · · · · · · · · · · ·		
50						
10						
0 <mark></mark>	6100.	11200.	16	5300.	21400.	26500
1000			luency (MHz)		211001	2000
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	31.66	6.73	38.39	74.00	-35.61
7440.00	Peak	31.32	13.13	44.45	74.00	-29.55
N/A						

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 83 / 88 Rev.: 00

Test Mo	de 8D	PSK_EDR-3Mb Low CH	ps Te	emp/Hum	23.1(℃)/ 50%RI	
Test Ite	m	Harmonic	T	est Date	August	9, 2021
Polariz	e	Vertical	Tes	t Engineer	Ra	y Li
Detect	or	Peak				
120 Level (dBu	iV/m)					
110						
90						
70		· · · · · · · · · · · · · · · · · · ·		·		
50	2	· · · · · · · · · · · · · · · · · · ·				
30						
10						
0 ^L 1000	6100.	11200. Freq	163 Juency (MHz)	300.	21400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margir
•	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.00	Peak	33.65	5.62	39.27	74.00	-34.73
7206.00	Peak	32.90	13.13	46.03	74.00	-27.97
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 84 / 88 Rev.: 00

Test Mo	ode 8D	DPSK_EDR-3Mb Low CH	^{ops} Te	mp/Hum	23.1(℃)/ 50%RF	
Test Ite	÷m	Harmonic		est Date	August	9, 2021
Polariz	ze	Horizontal	Test	t Engineer		y Li
Detecto	or	Peak				
120 Level (dBu	JV/m)					
110						
90						
70			+ + + + + + + + + + + + + + + + + + +			
50	2			 		
	1					
30						
10						
0 1000	6100.	11200.	163	00.	21400.	26500
		The contract of the contract o	quency (MHz)			
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margir
Freq. MHz			Factor dB			Margir dB
MHz	Mode	Reading Level		FS	@3m	dB
MHz 4804.00	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	Margir dB -35.33 -27.38
MHz 4804.00	Mode PK/QP/AV Peak	Reading Level dBµV 33.05	dB 5.62	FS dBµV/m 38.67	@3m dBµV/m 74.00	dB -35.33
MHz 4804.00 7206.00	Mode PK/QP/AV Peak	Reading Level dBµV 33.05	dB 5.62	FS dBµV/m 38.67	@3m dBµV/m 74.00	dB -35.33
MHz 4804.00 7206.00	Mode PK/QP/AV Peak	Reading Level dBµV 33.05	dB 5.62	FS dBµV/m 38.67	@3m dBµV/m 74.00	dB -35.33

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 85 / 88 Rev.: 00

Test Mo	de 8D	PSK_EDR-3Mt Mid CH	ops Te	emp/Hum	23.1(℃)/ 50%Rŀ	
Test Ite	m	Harmonic		est Date	August	9, 2021
Polariz		Vertical	Tes	t Engineer	Ra	y Li
Detecto	or	Peak				
120 Level (dBu	V/m)					
110						
90						
70						
50	1 2					
30						
10						
0 <mark></mark> 1000	6100.	11200. Free	163 quency (MHz)	300.	21400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4882.00	Peak	32.76	5.99	38.75	74.00	-35.25
7323.00	Peak	32.07	13.20	45.27	74.00	-28.73
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 86 / 88 Rev.: 00

Test Mo	de 8D	PSK_EDR-3Mb Mid CH	pps Te	emp/Hum	23.1(℃)/ 50%RF	
Test Ite	m	Harmonic	Т	est Date	August	9, 2021
Polariz	e	Horizontal	Tes	t Engineer		y Li
Detecto	or	Peak				
120 Level (dBu	V/m)					
110						
90						
50						
70						
50	2	1 1 	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1					
30						
10				·		
0 <mark>1000</mark>	6100 .	11200.		300.	21400.	26500
		Free	(uency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margir
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4882.00	Peak	33.29	5.99	39.28	74.00	-34.72
7323.00	Peak	31.99	13.20	45.19	74.00	-28.81
N/A				1		
IN/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 87 / 88 Rev.: 00

Test Mo	Test Mode 8DPSK_EDR-3M High CH		Te	mp/Hum	23.1(℃)/ 50%R	
Test Ite		Harmonic		est Date		9, 2021
Polariz	e	Vertical	Tes	t Engineer	Ra	y Li
Detect	or	Peak				
120 Level (dBu	IV/m)					
110						
90						
70			+			
50	2					
30						
10						
0		44000				
1000	6100.	11200. Free	163 quency (MHz)	00.	21400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margir
	Mode	Reading Level		FS	@3m	Jan Star
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	32.15	6.73	38.88	74.00	-35.12
7440.00	Peak	31.24	13.13	44.37	74.00	-29.63
N/A						
		+				

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 88 / 88 Rev.: 00

Test Mode		PSK_EDR-3Mb High CH	· ie	emp/Hum	23.1(℃)/ 50%Rŀ	
Test Ite		Harmonic		est Date		9, 2021
Polariz		Horizontal	Tes	t Engineer	Ra	y Li
Detect	or	Peak				
120 Level (dBu	V/m)					
110						
90						
70						
50	2					
30						
10						
0 1000	6100.	11200. Fred	163 Juency (MHz)	300.	21400.	26500
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margir
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	32.94	6.73	39.67	74.00	-34.33
7440.00	Peak	31.30	13.13	44.43	74.00	-29.57
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- End of Test Report -