Page 1 of 36 JQA File No. : KL80140075 Issue Date : June 23, 2014 # TEST REPORT (SAR EVALUATION) Applicant : Sharp Corporation, Communication Systems Division Address : 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan **Products** : Cellular Phone Model No. : 305SH Serial No. : 004401/11/514865/8 FCC ID : APYHRO00210 **Test Standard** : CFR 47 FCC Rules and Regulations Part 2 Test Results : Passed **Date of Test** : June $3 \sim 5$, 2014 dem Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan - The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan, National Institute of Information and Communications Technology (NICT) of Japan, and Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland. - The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant. - The test results presented in this report relate only to the offered test sample. - The contents of this test report cannot be used for the purposes, such as advertisement for consumers. - This test report shall not be reproduced except in full without the written approval of JQA. - VLAC does not approve, certify or warrant the product by this test report. JQA File No. : KL80140075 Model No. : 305SH FCC ID Standard : CFR 47 FCC Rules and Regulations Part 2 Page 2 of 36 Issue Date : June 23, 2014 : APYHRO00210 # TABLE OF CONTENTS | | | Page | |----|--|------| | 1 | Description of the Device Under Test (DUT) | 3 | | 2 | Summary of Test Results | 4 | | 3 | Test Procedure | 5 | | 4 | Test Location | 5 | | 5 | Recognition of Test Laboratory | 5 | | 6 | Measurement System Diagram | 6 | | 7 | System Components | 7 | | 8 | Measurement Process. | 10 | | 9 | Measurement Uncertainties | 11 | | 10 | Test Arrangement | 13 | | 11 | Tissue Verification | 16 | | 12 | System Performance Check | 19 | | 13 | RF Output Power Measurements. | 21 | | 14 | SAR Measurements | 24 | | 15 | Test Setup Photographs | 30 | | 16 | Test Instruments | 35 | | 17 | Appendix | 36 | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 3 of 36 ### 1 Description of the Device Under Test (DUT) 1. Manufacturer : Sharp Corporation, Communication Systems Division 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan 2. Products : Cellular Phone 3. Model No. : 305SH 4. Serial No. : 004401/11/514865/8 5. Product Type : Pre-production6. Date of Manufacture : April, 2014 7. Transmitting Frequency : PCS 1900 (1850 MHz – 1910 MHz) WLAN 2.4 GHz (DTS: 2412 MHz - 2462 MHz) Bluetooth (2402 MHz - 2480 MHz) 8. Battery Option : Lithium-ion Battery Pack UBATIA246AFN1 (2040mAh) 9. Power Rating : 4.0VDC 10. EUT Grounding : None 11. Device Category : Portable Device (§2.1093) 12. Exposure Category : General Population/Uncontrolled Exposure 13. FCC Rule Part(s) 14. EUT Authorization 15. Received Date of DUT 24(E), 15.247 Certification June 2, 2014 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 4 of 36 ### 2 Summary of Test Results Applied Standard \div CFR 47 FCC Rules and Regulations Part 2 – Frequency Allocations and Radio Treaty Matters; General Rules and Regulations | The LCC of the | Rep | Reported 1 g SAR (W/kg) | | | | | | |---------------------------|----------|-------------------------|-------|--------------|--|--|--| | Test Configuration | Licensed | DTS | U-NII | Limit (W/kg) | | | | | Head | 0.35 | < 0.10 | N/A | | | | | | Body-worn Accessory | 0.35 | < 0.10 | N/A | 1.0 | | | | | Wireless Router (Hotspot) | 0.35 | < 0.10 | N/A | 1.6 | | | | | Simultaneous Transmission | 0.41 | 0.41 | N/A | | | | | The test results are passed for exposure limits specified in ANSI/IEEE Std. C95.1–1991. In the approval of test results, - Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. - No deviations were employed from the applied standard. - No modifications were conducted by JQA to achieve compliance to the limitations. Reviewed by: Shigeru Kinoshita Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch Tested by: Yasuhisa Sakai Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch Standard : CFR 47 FCC Rules and Regulations Part 2 Page 5 of 36 #### 3 Test Procedure The tests documented in this report were performed in accordance with CFR 47 FCC Parts 1 and 2, IEEE Std.1528–2013 and the following KDB Procedures. # 248227 D01 SAR meas for 802 11 a b g v01r02 # 447498 D01 General RF Exposure Guidance v05r02 # 648474 D04 SAR Handset SAR v01r02 # 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 #865664 D02 RF Exposure Reporting v01r01 # 941225 D03 SAR Test Reduction GSM GPRS EDGE v01 # 941225 D06 Hot Spot Mode SAR v01r01 #### 4 Test Location Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan #### 5 Recognition of Test Laboratory JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies. VLAC Accreditation No. : VLAC-001-2 (Expiry date : March 30, 2016) VCCI Registration No. : A-0002 (Expiry date : March 30, 2016) BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006 (Expiry date: September 14, 2016) IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 20, 2014) Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2016) JQA File No. : KL80140075 Issue Date : June 23, 2014 Model No. : 305SH FCC ID : APYHRO00210 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 6 of 36 ### 6 Measurement System Diagram These measurements are performed using the DASY5 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY5 measurement server, personal computer with DASY5 software, data acquisition electronic (DAE) circuit, the Electro-optical converter (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY5 measurement server. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 7 of 36 ### 7 System Components #### 7.1 Probe Specification ET3DV6 Construction : Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static changes PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Calibration : In air form 10 MHz to 2.3 GHz In head tissue simulating liquid (HSL) and muscle tissue simulating liquid 835 MHz (accuracy \pm 12.0%; k=2) 900 MHz (accuracy \pm 12.0%; k=2) 1450 MHz (accuracy \pm 12.0%; k=2) 1750 MHz (accuracy \pm 12.0%; k=2) 1900 MHz (accuracy \pm 12.0%; k=2) 1950 MHz (accuracy \pm 12.0%; k=2) Frequency : 10 MHz to 2.3 GHz Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 2.3 GHz) Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis) \pm 0.4 dB in HSL (rotation normal to probe axis) Dynamic Range \div 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB Surface Detection : ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions : Overall length 337 mm Tip length 16 mm Body diameter 12 mm Tip diameter 6.8 mm Distance from probe tip to dipole centers 2.7 mm Standard : CFR 47 FCC Rules and Regulations Part 2 Page 8 of 36 # 7.2 Probe Specification EX3DV4 Construction : Symmetrical design with triangular core Built-in shielding against static changes PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Calibration : In air form 10 MHz to 6 GHz In head tissue simulating liquid (HSL) and muscle tissue simulating liquid 2450 MHz (accuracy \pm 12.0%; k=2) 2600 MHz (accuracy \pm 13.1%; k=2) 5200 MHz (accuracy \pm 13.1%; k=2) 5300 MHz (accuracy \pm 13.1%; k=2) 5500 MHz (accuracy \pm 13.1%; k=2) 5600 MHz (accuracy \pm 13.1%; k=2) 5800 MHz (accuracy \pm 13.1%; k=2) Frequency : 10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz) Directivity $\pm 0.3 \text{ dB}$ in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) Dynamic Range : $10 \mu \text{W/g}$ to >100 mW/g; Linearity: $\pm 0.2 \text{ dB}$ (noise: typically < $1 \mu \text{W/g}$) Dimensions : Overall length 337 mm Tip length 20 mm Body diameter 12 mm Tip diameter 2.5 mm Distance from probe tip to dipole centers 1 mm Standard : CFR 47 FCC Rules and Regulations Part 2 Page 9 of 36 #### 7.3 Twin SAM Phantom The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and
measurement grids by teaching three points with the robot. Shell Thickness : 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm Filling Volume : Volume Approx. 25 liters Dimensions : $810 \times 1000 \times 500 \text{ mm} (H \times L \times W)$ #### 7.4 ELI4 Flat Phantom Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. Shell Thickness : 2 ± 0.2 mm (sagging: <1%) Filling Volume : Volume Approx. 30 liters Dimensions : Major ellipse axis : 600 mm Minor axis : 400 mm # 7.5 Mounting Device for Transmitters In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat point). Standard : CFR 47 FCC Rules and Regulations Part 2 Page 10 of 36 #### 8 Measurement Process #### Step 1: Power Reference Measurement The power reference job measures the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The minimum distance of probe sensors to surface set to 4 mm for an ET3DV6 probe, or 2 mm for EX3DV4 probe. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### Step 2: Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. If only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maxima within 2 dB of the maximum SAR value are detected, the number of zoom scans has to be increased accordingly. #### Step 3: Zoom Scan Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The zoom scan measures points specified in standards within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. ### Step 4: Z Scan The Z scan measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction. ### Step 5: Power Drift Measurement The power drift measurement measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The power drift measurement gives the field difference in dB from the reading conducted within the last power reference measurement. The power reference measurement and power drift measurement are for monitoring the power drift of the device under test in the batch process. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 11 of 36 ### 9 Measurement Uncertainties ### 9.1 300 MHz to 3 GHz | Uncertainty Component | Tol. (± %) | Prob.
Dist. | Div. | (1g) | (10g) | Std. Unc. (± %) | | v i | |---|------------|----------------|------------|------|-------|-----------------|------|----------| | | (± /0) | Dist. | | (1g) | (10g) | 1g | 10g | | | Measurement System | | | | | | | | | | Probe calibration | 6.0 | N | 1 | 1 | 1 | 6.0 | 6.0 | × × | | Axial isotropy | 4.7 | R | √3 | 0.7 | 0.7 | 1.9 | 1.9 | × | | Hemispherical isotropy | 9.6 | R | √3 | 0.7 | 0.7 | 3.9 | 3.9 | - oo | | Boundary effects | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | × × | | Linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | × | | System detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | × × | | Modulation response | 2.4 | R | √3 | 1 | 1 | 1.4 | 1.4 | - oo | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | oc | | Response time | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | - oo | | Integration time | 2.6 | R | √3 | 1 | 1 | 1.5 | 1.5 | - oo | | RF ambient conditions – noise | 3.0 | R | √3 | 1 | 1 | 1.7 | 1.7 | oc | | RF ambient conditions – reflections | 3.0 | R | √3 | 1 | 1 | 1.7 | 1.7 | - oo | | Probe positioner mechanical tolerance | 0.4 | R | √3 | 1 | 1 | 0.2 | 0.2 | × | | Probe positioning with respect to phantom shell | 2.9 | R | √3 | 1 | 1 | 1.7 | 1.7 | - oo | | Extrapolation, interpolation and integration | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | oc | | algorithms for max. SAR evaluation | | | | | | | | | | Test Sample Related | | | | | | | | | | Device holder uncertainty | 2.9 | N | 1 | 1 | 1 | 2.9 | 2.9 | 5 | | Test sample positioning | 3.4 | N | 1 | 1 | 1 | 3.4 | 3.4 | 23 | | Output power variation – SAR drift measurement | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | - oo | | Power Scaling | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | × | | Phantom and Tissue Parameters | | | | | | | | | | Phantom uncertainty | 6.1 | R | √3 | 1 | 1 | 3.5 | 3.5 | - x | | Algorithms for correcting SAR for deviations | 1.9 | R | √3 | 1 | 0.84 | 1.1 | 0.9 | - oo | | Liquid Conductivity – measurement uncertainty | 3.2 | N | 1 | 0.78 | 0.71 | 2.5 | 2.3 | 5 | | Liquid Permittivity – measurement uncertainty | 3.0 | N | 1 | 0.26 | 0.26 | 0.8 | 0.8 | 5 | | Liquid Conductivity – temperature uncertainty | 5.2 | R | √3 | 0.78 | 0.71 | 2.3 | 2.1 | ∞ | | Liquid Permittivity – temperature uncertainty | 0.8 | R | √3 | 0.23 | 0.26 | 0.1 | 0.1 | ∞ | | Combined Standard Uncertainty | | RSS | | | | 11.5 | 11.4 | | | Expanded Uncertainty (95% Confidence Interval) | | k=2 | | | | 22.9 | 22.7 | 1 | #### NOTES Tol.: tolerance in influence quantity Prob. Dist.: probability distributions 3. N, R : normal, rectanglar 4. Div. : divisor used to obtain standard uncertainty 5. $c_{\,i}$: sensitivity coefficient $6.\ \mathrm{Std}.\ \mathrm{Unc.}$: standard uncertainty 7. Measurement uncertainties are according to IEEE Std.1528 and IEC 62209-1. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 12 of 36 ### 9.2 3 GHz to 6 GHz | Uncertainty Component | Tol. (± %) | Prob.
Dist. | Div. | (1g) | c _i (10g) | Std. Unc. (± %) | | v i | |---|------------|----------------|------------|------|----------------------|-----------------|------|----------| | | (± /0) | Dist. | | (1g) | (10g) | 1g | 10g | | | Measurement System | | | | | | | | | | Probe calibration | 6.6 | N | 1 | 1 | 1 | 6.6 | 6.6 | ∞ | | Axial isotropy | 4.7 | R | √3 | 0.7 | 0.7 | 1.9 | 1.9 | ∞ | | Hemispherical isotropy | 9.6 | R | √3 | 0.7 | 0.7 | 3.9 | 3.9 | ∞ | | Boundary effects | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | ∞ | | Linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | ∞ | | System detection limits | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | Modulation response | 2.4 | R | $\sqrt{3}$ | 1 | 1 | 1.4 | 1.4 | × | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response time | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | ∞ | | Integration time | 2.6 | R | √3 | 1 | 1 | 1.5 | 1.5 | ∞ | | RF ambient conditions – noise | 3.0 | R | √3 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF ambient conditions – reflections | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | ∞ | | Probe positioner mechanical tolerance | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | ∞ | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | ∞ | | Extrapolation, interpolation and integration | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | ∞ | | algorithms for max. SAR evaluation | | | | | | | | | | Test Sample Related | | | | | | | | | | Device holder uncertainty | 2.9 | N | 1 | 1 | 1 | 2.9 | 2.9 | 5 | | Test sample positioning | 3.4 | N | 1 | 1 | 1 | 3.4 | 3.4 | 23 | | Output power variation – SAR drift measurement | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | ∞ | | Power Scaling | 0.0 | R | $\sqrt{3}$ | 1 | 1 | 0.0 | 0.0 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | Phantom uncertainty | 6.6 | R | √3 | 1 | 1 | 3.8 | 3.8 | ∞ | | Algorithms for correcting SAR for deviations | 1.9 | R | √3 | 1 | 0.84 | 1.1 | 0.9 | ∞ | | Liquid Conductivity – measurement uncertainty | 3.2 | N | 1 | 0.78 | 0.71 | 2.5 | 2.3 | 5 | | Liquid Permittivity – measurement uncertainty | 3.0 | N | 1 | 0.26 | 0.26 | 0.8 | 0.8 | 5 | | Liquid Conductivity – temperature uncertainty | 3.4 | R | √3 | 0.78 | 0.71 | 1.5 | 1.4 | ∞ | | Liquid Permittivity – temperature uncertainty | | R | √3 | 0.23 | 0.26 | 0.1 | 0.1 | ∞ | | Combined Standard Uncertainty | | RSS | | | | 12.5 | 12.4 | | | Expanded Uncertainty (95% Confidence Interval) | | k=2 | | | | 24.9 | 24.8 | 1 | #### NOTES 1. Tol. \vdots tolerance in influence quantity 2. Prob. Dist. \vdots probability distributions 3. N, R: normal, rectanglar 4. Div. : divisor used to obtain
standard uncertainty 5. c_i : sensitivity coefficient 6. Std. Unc.: standard uncertainty 7. Measurement uncertainties are according to IEEE Std.1528 and IEC 62209-1. JQA File No. : KL80140075 Issue Date : June 23, 2014 Model No. : 305SH FCC ID : APYHRO00210 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 13 of 36 Horizontal Mobile phone box #### 10 Test Arrangement #### 10.1 Head Exposure Conditions #### 10.1.1 Cheek-Touch Position - 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom. - 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE. - 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear. - 4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost. Vertical #### 10.1.2 Ear-Tilt Position - 1. Position the device in the "Cheek-Touch Position". - 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost. JQA File No. : KL80140075 Issue Date : June 23, 2014 Model No. : 305SH FCC ID : APYHRO00210 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 14 of 36 ### 10.2 Body-worn Accessory Exposure Conditions Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Both the physical spacing to the body of the user as dictated by the accessory and the materials used in an accessory affect the SAR produced by the transmitting device. For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the surface of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. #### 10.3 Hotspot Mode Exposure Conditions For cell phones that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm × 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface). Standard : CFR 47 FCC Rules and Regulations Part 2 Page 15 of 36 # 10.4 RF Exposure Conditions Handsets are tested for SAR compliance in head, body-worn accessory and other use configurations according to the procedures described in KDB 648474 D04. # 10.4.1 Head Exposure Conditions | Test Position | SAR
Required | Note | |------------------|-----------------|------| | Left Touch | YES | | | Left Tilt (15°) | YES | | | Right Touch | YES | | | Right Tilt (15°) | YES | | # 10.4.2 Body-worn Accessory Exposure Conditions | Test Position | SAR
Required | Note | |---------------|-----------------|------| | Rear | YES | | | Front | YES | | ### 10.4.3 Hotspot Mode Exposure Conditions #### For WWAN | Test Position | Antenna-to-
edge/surface | SAR
Required | Note | |---------------|-----------------------------|-----------------|---| | Rear | < 25 mm | YES | | | Front | < 25 mm | YES | | | Top Edge | 123.2 mm | NO | SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06. | | Bottom Edge | 1.5 mm | YES | | | Left Edge | 47.7 mm | NO | SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06. | | Right Edge | 1.5 mm | YES | | ### For WLAN and Bluetooth | tor White the Brecoom | | | | | | | |-----------------------|-----------------------------|-----------------|---|--|--|--| | Test Position | Antenna-to-
edge/surface | SAR
Required | Note | | | | | Rear | < 25 mm | YES | | | | | | Front | < 25 mm | YES | | | | | | Top Edge | 1.5 mm | YES | | | | | | Bottom Edge | 111.9 mm | NO | SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06. | | | | | Left Edge | 1.5 mm | YES | | | | | | Right Edge | 48.0 mm | NO | SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06. | | | | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 16 of 36 #### 11 Tissue Verification #### 11.1 Tissue Verification Measurement Condition The tissue dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use, or earlier if dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series. The temperature of the tissue-equivalent medium used during measurement must be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized. It is verified by using the dielectric probe and the network analyzer. #### 11.2 Tissue Dielectric Properties The tissue dielectric properties are specified in KDB 865664 D01. | Target Frequency | H | ead | В | ody | |------------------|--------------------------------|------------------|--------------------------------|------------------| | [MHz] | Permittivity (e _r) | Conductivity (o) | Permittivity (e _r) | Conductivity (o) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800 - 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | For tissue dielectric properties at other frequencies within the range, a linear interpolation method shall be used. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 17 of 36 ### 11.3 Composition of Ingredients for the Tissue Material Used in the SAR Tests The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | T 1' t . | Frequency (MHz) | | | | | | | | | | | | |---------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | Ingredients (% by weight) | 450 | | 835 | | 915 | | 1900 | | 2450 | | | | | (% by weight) | Head | Body | | | | Water | 38.56 | 51.16 | 41.45 | 52.40 | 41.05 | 56.00 | 54.9 | 40.40 | 62.70 | 73.20 | | | | Salt (NaCl) | 3.95 | 1.49 | 1.45 | 1.40 | 1.35 | 0.76 | 0.18 | 0.50 | 0.50 | 0.04 | | | | Sugar | 56.32 | 46.78 | 56.00 | 45.00 | 56.50 | 41.76 | 0.00 | 58.00 | 0.00 | 0.00 | | | | HEC | 0.98 | 0.52 | 1.00 | 1.00 | 1.00 | 1.21 | 0.00 | 1.00 | 0.00 | 0.00 | | | | Bactericide | 0.19 | 0.04 | 0.10 | 0.10 | 0.10 | 0.27 | 0.00 | 0.10 | 0.00 | 0.00 | | | | Triton X-100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.80 | 0.00 | | | | DGBE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 44.92 | 0.00 | 0.00 | 26.70 | | | Salt : 99+% Pure Sodium Chloride Sugar : 98+% Pure Sucrose Water : De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC : Hydroxyethyl Cellulose DGBE : 99+% Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton
X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbuthyl)phenyl]ether HBBL 3500-5800 (Head Liquids for 3-6 GHz) | Item | Head Broad Band Tissue Simulation Liquids HBBL 3500-5800 | |--------------------------|--| | Water | 50-65 % | | Mineral oil | 10 – 30 % | | Emulsifiers | 8-25~% | | Sodium salt | 0 - 1.5 % | | Safety relevant ingredie | nts according to EU directives: | | EINECS-No 203-489-0 | 1.0-2.8% 2-Methyl-pentane-2,4-diol (Hexylene Glycol): | | CAS-No 107-41-5 | (Xi irritant, R36/38 irritant for eyes and skin) | MBBL 3500-5800 (Body Liquids for 3-6 GHz) | Item | Muscle Broad Band Tissue Simulation Liquids MBBL 3500-5800 | | | | | |--|--|--|--|--|--| | Water | 60 – 80 % | | | | | | Esters, Emulsifiers, | 20 - 40 % | | | | | | Inhibitors | | | | | | | Sodium salt | 0-1.5~% | | | | | | Safety relevant ingredier | nts according to EU directives: none | | | | | | Safety relevant ingredients according to other directives: | | | | | | | CAS-No 26399-02-0 | 10 – 28 % Oleic acid, alkylester | | | | | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 18 of 36 # 11.4 Tissue Verification Results Tissue dielectric parameters are measured at the low, middle and high frequency of each operating frequency range of the test device. | Date | Liquid | Frequency [MHz] | Parameters | Target | Measured | Deviation [%] | Limit
[%] | |----------|--------|-----------------|--------------------------------|--------|----------|---------------|--------------| | | | 1070 | Permittivity (ε _r) | 40.0 | 39.47 | -1.33 | ± 5 | | | | 1850 | Conductivity (o) | 1.40 | 1.373 | -1.93 | ± 5 | | 0/4/0014 | 77 1 | 1000 | Permittivity (ε _r) | 40.0 | 39.24 | -1.90 | ± 5 | | 6/4/2014 | Head | 1900 | Conductivity (o) | 1.40 | 1.426 | +1.86 | ± 5 | | | | 1010 | Permittivity (ε _r) | 40.0 | 39.18 | -2.05 | ± 5 | | | | 1910 | Conductivity (o) | 1.40 | 1.439 | +2.79 | ± 5 | | | | 1070 | Permittivity (ε _r) | 53.3 | 52.49 | -1.52 | ± 5 | | | | 1850 | Conductivity (o) | 1.52 | 1.508 | -0.79 | ± 5 | | 0/4/9014 | Body | 1900 | Permittivity (ε _r) | 53.3 | 52.32 | -1.84 | ± 5 | | 6/4/2014 | | 1900 | Conductivity (o) | 1.52 | 1.567 | +3.09 | ± 5 | | | | 1910 | Permittivity (e _r) | 53.3 | 52.29 | -1.89 | ± 5 | | | | | Conductivity (o) | 1.52 | 1.580 | +3.95 | ± 5 | | | | 0.410 | Permittivity (e _r) | 39.3 | 39.57 | +0.69 | ± 5 | | | | 2410 | Conductivity (o) | 1.76 | 1.814 | +3.07 | ± 5 | | 6/5/2014 | Head | 2450 | Permittivity (e _r) | 39.2 | 39.53 | +0.84 | ± 5 | | 6/3/2014 | пеаа | 2400 | Conductivity (o) | 1.80 | 1.867 | +3.72 | ± 5 | | | | 9465 | Permittivity (ε _r) | 39.2 | 39.48 | +0.71 | ± 5 | | | | 2465 | Conductivity (o) | 1.82 | 1.885 | +3.57 | ± 5 | | | | 0.410 | Permittivity (ε _r) | 52.8 | 51.84 | -1.82 | ± 5 | | | | 2410 | Conductivity (o) | 1.91 | 1.921 | +0.58 | ± 5 | | 0/5/9014 | D. J. | 9450 | Permittivity (ε _r) | 52.7 | 51.68 | -1.94 | ± 5 | | 6/5/2014 | Body | 2450 | Conductivity (o) | 1.95 | 1.973 | +1.18 | ± 5 | | | | 2.40 | Permittivity (ε _r) | 52.7 | 51.61 | -2.07 | ± 5 | | | | 2465 | Conductivity (o) | 1.97 | 1.998 | +1.42 | ± 5 | JQA File No. : KL80140075 Issue Date : June 23, 2014 Model No. : 305SH FCC ID : APYHRO00210 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 19 of 36 ### 12 System Performance Check #### 12.1 System Performance Check Measurement Condition The power meter PM1 (including Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole. #### 12.2 Target SAR Values for System Performance Check The target SAR values can be obtained from the calibration certificate of system validation dipoles. | System Dipole | | C I D / | Frequency | Target SAR Values [W/kg] | | | | |---------------|------------------|------------|-----------|--------------------------|------|------|--| | Type | Serial | Cal. Date | [MHz] | 1g/10g | Head | Body | | | D1000V9 | F J1110 | 8/22/2013 | 1000 | 1g | 40.6 | 41.1 | | | D1900V2 | 1900V2 5d112 8/2 | | 1900 | 10g | 21.3 | 21.8 | | | DOAFOVO | 714 | 11/14/0010 | 0.450 | 1g | 52.8 | 49.8 | | | D2450V2 | 714 | 11/14/2013 | 2450 | 10g | 24.6 | 23.3 | | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 20 of 36 # 12.3 System Performance Check Results The SAR measured with a system validation dipole, using the required tissue-equivalent medium at the test frequency, must be within 10 % of the manufacturer calibrated dipole SAR target. | Date | System I
Type | Dipole
Serial | Liquid | Measured SAR [W/kg]
(Normalized to 1 W) | | Target | Deviation [%] | Limit
[%] | |----------|------------------|------------------------|--------|--|-------|--------|---------------|--------------| | 6/4/2014 | D1900V2 | 5d112 | Head | 1 g | 38.80 | 40.6 | -4.43 | ± 10 | | 0/1/2011 | D100012 | 0 4 11 2 | 11044 | 10 g | 20.64 | 21.3 | -3.10 | ± 10 | | 6/4/2014 | D1900V2 | 5d112 | Body | 1 g | 41.20 | 41.1 | +0.24 | ± 10 | | 0/4/2014 | D1900V2 | 5011Z | Бойу | 10 g | 22.16 | 21.8 | +1.65 | ± 10 | | 6/5/2014 | D2450V2 | 714 | Head | 1 g | 52.00 | 52.8 | -1.52 | ± 10 | | 0/3/2014 | D2450V2 | 114 | пеац | 10 g | 24.12 | 24.6 | -1.95 | ± 10 | | 0/2/0014 | DOAFONO | 51.4 | D 1 | 1 g | 49.20 | 49.8 | -1.20 | ± 10 | | 6/5/2014 | D2450V2 | 714 | Body | 10 g | 23.24 | 23.3 | -0.26 | ± 10 | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 21 of 36 # 13 RF Output Power Measurements #### 13.1 GSM | Settings | Mode | Parameter | | | |------------------|---------------------|----------------------------|--|--| | C 1 C - + 1 ' | Band Indicator | PCS 1900 | | | | General Settings | Power Control Level | 0 (30 dBm) | | | | CDDC C :C: | Connection Type | Test Mode A | | | | GPRS Specific | Multi Slot Class | 12 (4 down / 4 up / 5 sum) | | | | Settings | Coding Scheme | CS1 (GMSK) | | | ### **PCS 1900** | | | Conducted Average Power (dBm) | | | | | | | | | |------|---------|-------------------------------|------------------------|---------|------------------------|--------------|--------|--|--|--| | Mo | Mode | | 512 ch
(1850.2 MHz) | | 661 ch
(1880.0 MHz) | | 810 ch | | | | | | | (1850.2 | Z MHZ) | (1880.0 |) MHz) | (1909.8 MHz) | | | | | | | | | Frame | Burst | Frame | Burst | Frame | | | | | GSM | Voice | 29.50 | 20.47 | 29.47 | 20.44 | 29.56 | 20.53 | | | | | | 1 slot | 29.51 | 20.48 | 29.48 | 20.45 | 29.57 | 20.54 | | | | | CDDC | 2 slots | 27.12 | 21.10 | 27.11 | 21.09 | 27.09 | 21.07 | | | | | GPRS | 3 slots | 25.35 | 21.09 | 25.30 | 21.04 | 25.42 | 21.16 | | | | | | 4 slots | 24.15 | 21.14 | 24.23 | 21.22 | 24.25 | 21.24 | | | | #### Note(s): KDB 941225 D03 – The worst-case configuration for SAR testing is determined to be as follows. - 1. Body : GPRS mode with 4 time slots, based on the output power above - 2. Head: Same mode as Body SAR testing (VoIP applicable using GPRS multi-slot) Standard : CFR 47 FCC Rules and Regulations Part 2 Page 22 of 36 # 13.2 WLAN (DTS Band) | Band | Mode | Channel | Frequency
(MHz) | Average Power (dBm) | |------------------|----------------|---------|--------------------|---------------------| | | | 1 | 2412 | 13.56 | | | 802.11b | 6 | 2437 | 13.58 | | | | 11 | 2462 | 13.48 | | 9.4 CII- | | 1 | 2412 | 11.45 | | 2.4 GHz
(DTS) | 802.11g | 6 | 2437 | 11.37 | | (D18) | | 11 | 2462 | 11.46 | | | | 1 | 2412 | 10.34 | | | 802.11n [HT20] | 6 | 2437 | 10.42 | | | | 11 | 2462 | 10.39 | ### Note(s): KDB 248227 D01 – SAR is not required for 802.11g/n channels when the maximum average output power is less than $^{1}\!\!/$ dB higher than that measured on the corresponding 802.11b channels. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 23 of 36 #### 13.3 Bluetooth Maximum tune-up tolerance limit is 8.0 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing. # 13.4 Standalone SAR Test Exclusion Considerations (KDB 447498 D01) The 1 g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by; [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [\sqrt{f} (GHz)] ≤ 3.0 , where - f (GHz) is the RF channel transmit frequency in GHz. - Power and distance are rounded to the nearest mW and mm before calculation. - The result is rounded to one decimal place for comparison. - When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied. | D I | Frequency | Frequency Max. Powe | | Test | Distance | (D) 1 . 1 . 1 | Test | |--------------|-----------|---------------------|------|----------|----------|---------------|-----------| | Band | (MHz) | (dBm) | (mW) | Position | (mm) | Threshold | Exclusion | | WI AND A CIL | 2402 | 150 | 00 | Head | < 5 | 10.0 | NO | | WLAN 2.4 GHz | 2462 | 15.0 | 32 | Body | 10 | 5.0 | NO | | D1 + 1 | 2400 | 0.0 | 0 | Head | < 5 | 1.9 | YES | | Bluetooth | 2480 | 8.0 | 6 | Body | 10 | 0.9 | YES | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 24 of 36 #### 14 SAR Measurements ### 14.1 PCS 1900 #### Head | GPRS 4 slots (CS1) – Duty Cycle 48.0% | | | | | | | | | | |---------------------------------------|-----|----------------|------------------|-------------|-------|----------------|-------------|--|--| | | | 1 | Power | Power [dBm] | | 1 g SAR [W/kg] | | | | | Test Position | Ch# |
Freq.
[MHz] | Tune-up
Limit | Meas. | Meas. | Scaled | Plot
No. | | | | Left Touch | 661 | 1880.0 | 24.5 | 24.23 | 0.218 | 0.232 | | | | | Left Tilt | 661 | 1880.0 | 24.5 | 24.23 | 0.108 | 0.115 | | | | | Right Touch | 661 | 1880.0 | 24.5 | 24.23 | 0.324 | 0.345 | 1 | | | | Right Tilt | 661 | 1880.0 | 24.5 | 24.23 | 0.114 | 0.121 | | | | ### Body-worn Accessory & Hotspot mode | GPRS 4 slots (CS1) – Duty Cycle 48.0% | | | | | | | | | | |---------------------------------------|---------------|-----|----------------|------------------|-------------|-------|----------------|-------------|--| | ъ. | | | T. | Power | Power [dBm] | | 1 g SAR [W/kg] | | | | Test Position | Dist.
[mm] | Ch# | Freq.
[MHz] | Tune-up
Limit | Meas. | Meas. | Scaled | Plot
No. | | | Rear | 10 | 661 | 1880.0 | 24.5 | 24.23 | 0.318 | 0.338 | | | | Front | 10 | 661 | 1880.0 | 24.5 | 24.23 | 0.326 | 0.347 | 2 | | | Bottom Edge | 10 | 661 | 1880.0 | 24.5 | 24.23 | 0.142 | 0.151 | | | | Right Edge | 10 | 661 | 1880.0 | 24.5 | 24.23 | 0.293 | 0.312 | | | #### Note(s): - 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz - \bullet ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz - $\bullet \quad \leq 0.4$ W/kg when the transmission band is ≥ 200 MHz Standard : CFR 47 FCC Rules and Regulations Part 2 Page 25 of 36 ### 14.2 WLAN (DTS Band) #### Head | 802.11b (1 Mbps) – Duty Cycle 100% | | | | | | | | | | |------------------------------------|-----|----------------|------------------|-------------|-------|----------------|-------------|--|--| | | | 1 | Power | Power [dBm] | | 1 g SAR [W/kg] | | | | | Test Position | Ch# | Freq.
[MHz] | Tune-up
Limit | Meas. | Meas. | Scaled | Plot
No. | | | | Left Touch | 6 | 2437 | 15.0 | 13.58 | 0.023 | 0.032 | | | | | Left Tilt | 6 | 2437 | 15.0 | 13.58 | 0.033 | 0.046 | 3 | | | | Right Touch | 6 | 2437 | 15.0 | 13.58 | 0.028 | 0.039 | | | | | Right Tilt | 6 | 2437 | 15.0 | 13.58 | 0.030 | 0.042 | | | | # Body-worn Accessory & Hotspot mode | 802.11b (1 Mbps) – Duty Cycle 100% | | | | | | | | | | |------------------------------------|---------------|-----|----------------|------------------|-------------|-------|----------------|-------------|--| | | 7: | | T. | Power | Power [dBm] | | 1 g SAR [W/kg] | | | | Test Position | Dist.
[mm] | Ch# | Freq.
[MHz] | Tune-up
Limit | Meas. | Meas. | Scaled | Plot
No. | | | Rear | 10 | 6 | 2437 | 15.0 | 13.58 | 0.052 | 0.072 | 4 | | | Front | 10 | 6 | 2437 | 15.0 | 13.58 | 0.007 | 0.010 | | | | Top Edge | 10 | 6 | 2437 | 15.0 | 13.58 | 0.020 | 0.028 | | | | Left Edge | 10 | 6 | 2437 | 15.0 | 13.58 | 0.008 | 0.011 | | | ### Note(s): - 1. KDB 447498 D01 Testing of other required channels within the operating mode of a frequency band is not required when the reported 1 g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg when the transmission band is ≤ 100 MHz - \bullet ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz JQA File No. : KL80140075 Issue Date : June 23, 2014 Model No. : 305SH FCC ID : APYHRO00210 Standard : CFR 47 FCC Rules and Regulations Part 2 Page 26 of 36 ### 14.3 SAR Measurement Variability In accordance with the KDB 865664 D01, these additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The DUT should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a 2nd repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a 3rd repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. #### 14.3.1 Highest Measured SAR Configuration in Each Frequency Band | Enormon Donal [MII-] | A. T. C. | Standalone SAR [W/kg] | | | |----------------------|---------------|-----------------------|-------|--| | Frequency Band [MHz] | Air Interface | Head | Body | | | 1900 | PCS 1900 | 0.324 | 0.326 | | | 2450 | WLAN 802.11b | 0.033 | 0.052 | | #### 14.3.2 Repeated SAR Measurement Results Repeated SAR measurement is not required because the highest measured SAR is < 0.80 W/kg. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 27 of 36 ### 14.4 Simultaneous Transmission SAR Analysis (KDB 447498 D01) #### 14.4.1 Simultaneous Transmission WWAN can transmit simultaneously with WLAN/Bluetooth. WLAN in 2.4 GHz band cannot transmit simultaneously with Bluetooth. | No. | Conditions | Head | Body | Hotspot | |-----|-------------------------|------|------|---------| | 1 | PCS 1900 + WLAN 2.4 GHz | YES | YES | YES | | 2 | PCS 1900 + Bluetooth | YES | YES | NO | #### 14.4.2 Standalone SAR Estimation When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · $[\sqrt{f_{(GHz)}}/7.5]$ W/kg for 1 g SAR, test separation distances ≤ 50 mm When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied. | D 1 | Frequency | Max. Power | | Max. Power | | Test | Distance | Estimated SAR | |-----------|-----------|------------|------|------------|------|--------|----------|---------------| | Band | (MHz) | (dBm) | (mW) | Position | (mm) | (W/kg) | | | | D1 ()1 | 0.400 | 8.0 | | Head | < 5 | 0.252 | | | | Bluetooth | 2480 | | 6 | Body | 10 | 0.126 | | | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 28 of 36 ### 14.4.3 Sum of the SAR for PCS 1900 + WLAN & Bluetooth ### 14.4.3.1 Head | | Simult | D.1. CAD | | | |---------------|----------|------------------|-----------|---------------------| | Test Position | PCS 1900 | WLAN
DTS Band | Bluetooth | Σ 1 g SAR
(W/kg) | | I C M 1 | 0.232 | 0.032 | | 0.264 | | Left Touch | 0.232 | | 0.252 | 0.484 | | T C TO:1 | 0.115 | 0.046 | | 0.161 | | Left Tilt | 0.115 | | 0.252 | 0.367 | | D' .l. (Ml. | 0.345 | 0.039 | | 0.384 | | Right Touch | 0.345 | | 0.252 | 0.597 | | D: 1 (m:) | 0.121 | 0.042 | | 0.163 | | Right Tilt | 0.121 | | 0.252 | 0.373 | # SAR to Peak Location Separation Ratio (SPLSR) As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required. ### **Conclusion:** Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the $1~{\rm g}$ SAR is $< 1.6~{\rm W/kg}$. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 29 of 36 # 14.4.3.2 Body-worn Accessory and Hotspot mode | | Simult | D1 CAD | | | | |---------------|----------|------------------|-----------|---------------------|--| | Test Position | PCS 1900 | WLAN
DTS Band | Bluetooth | Σ 1 g SAR
(W/kg) | | | D | 0.338 | 0.072 | | 0.410 | | | Rear | 0.338 | | 0.126 | 0.464 | | | T | 0.347 | 0.010 | | 0.357 | | | Front | 0.347 | | 0.126 | 0.473 | | | Top Edge | N/A | 0.028 | | N/A | | | Bottom Edge | 0.151 | N/A | | N/A | | | Left Edge | N/A | 0.011 | | N/A | | | Right Edge | 0.312 | N/A | | N/A | | ### SAR to Peak Location Separation Ratio (SPLSR) As the sum of the 1 g SAR is \leq 1.6 W/kg, SPLSR assessment is not required. ### Conclusion: Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the $1~{\rm g}$ SAR is $< 1.6~{\rm W/kg}$. Standard : CFR 47 FCC Rules and Regulations Part 2 Page 35 of 36 # 16 Test Instruments | Shielded Room S3 | | | | | | | | |---------------------------------|------------------|--------------|--------|-----------|----------|--|--| | Type | Model | Manufacturer | ID No. | Last Cal. | Interval | | | | E-Field Probe | ET3DV6 | SPEAG | S-2 | 2013/8 | 1 Year | | | | E-Field Probe | EX3DV4 | SPEAG | S-17 | 2013/9 | 1 Year | | | | DAE | DAE4 | SPEAG | S-3 | 2013/11 | 1 Year | | | | Robot | RX60L | Stäubli | S-7 | | N/A | | | | Probe Alignment Unit | LB5/80 | SPEAG | S-13 | | N/A | | | | Network Analyzer | 8719ET | Agilent | B-53 | 2013/9 | 1 Year | | | | Dielectric Probe | DAK-3.5 | SPEAG | S-32 | 2013/7 | 1 Year | | | | 1900MHz Dipole | D1900V2 | SPEAG | S-25 | 2013/8 | 1 Year | | | | 2450MHz Dipole | D2450V2 | SPEAG | S-6 | 2013/11 | 1 Year | | | | Signal Generator | E8257D | Agilent | B-39 | 2013/8 | 1 Year | | | | RF Power Amplifier | CGA020M602-2633R | R&K | A-51 | | N/A | | | | Directional Coupler | 4226-20 | Narda | D-87 | | N/A | | | | Radio Communication
Analyzer | MT8820C | Anritsu | B-5 | 2014/2 | 1 Year | | | | Power Meter | E4417A | Agilent | B-51 | 2013/11 | 1 Year | | | | Power Sensor | E9323A | Agilent | B-59 | 2013/6 | 1 Year | | | | Power Meter | N1911A | Agilent | B-63 | 2013/7 | 1 Year | | | | Power Sensor | N1921A | Agilent | B-64 | 2013/7 | 1 Year | | | | Attenuator | 54A-10 | Weinschel | D-28 | 2013/10 | 1 Year | | | | Attenuator | 2-20 | Weinschel | D-36 | 2013/10 | 1 Year | | | Standard : CFR 47 FCC Rules and Regulations Part 2 Page 36 of 36 # 17 Appendix Refer to separated files for the following appendixes. Appendix 1 – System Performance Check
Plots Appendix 2 – Highest SAR Test Plots Appendix 3 – Dosimetric E-Field Probe Calibration Data Appendix 4 – System Validation Dipole Calibration Data