FCC 15 SUBPART C

EMI MEASUREMENT AND TEST REPORT

For

Z-Com, Inc.

7F-2, No. 9, Prosperity 1st Rd, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Ricoh Co., Ltd.

3-6, Naka-magome 1-Chome Ohta-ku, Tokyo 143-8555, Japan

FCC ID: M4Y-XI-300

May 8, 2002

This Report Con	icerns:	Equipment Type:		
🛛 Original Repo	rt	Wireless LAN Card		
Test Engineer:	Benjamin Jin			
Report No.:	R0204251			
Test Date:	April 25, 2002			
Reviewed By:	Jeff Lee - EMC En	zineer		
Reviewed Dy.		5.11001		
Prepared By:	Bay Area Compliar 230 Commercial St	nce Laboratory Corporation reet		
	Sunnyvale, CA 940 Tel: (408) 732-916 Fax: (408) 732 916	2		

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Objective 1.3 Related Submittal(s)/Grant(s)	
1.4 Test Methodology	4
1.5 TEST FACILITY	
1.6 Test Equipment List and Details 1.7 Host System Configuration List and Details	3 6
1.8 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	6
1.9 REMOTE SUPPORT EQUIPMENT LIST AND DETAILS	
2 - SYSTEM TEST CONFIGURATION	
2.1 JUSTIFICATION	
2.3 SPECIAL ACCESSORIES	
2.4 Schematics / Block Diagram	
2.5 Equipment Modifications 2.6 Configuration of Test System	7
2.7 TEST SETUP BLOCK DIAGRAM	8
3 - SUMMARY OF TEST RESULTS	9
4 - PEAK OUTPUT POWER MEASUREMENT	10
4.1 Standard Applicable	
4.2 Measurement Procedure	
5 - SPURIOUS EMISSION	
5 - SPORIOUS EMISSION	
5.2 Measurement Procedure	11
5.3 Measurement Data	11
6 - PEAK POWER SPECTRAL DENSITY	
6.1 Standard Applicable	
6.3 TEST RESULTS	
7 - 6 DB BANDWIDTH	13
7.1 Standard Applicable	
7.2 Measurement Procedure 7.3 Measurement Data	
8 - 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT	
8.1 STANDARD APPLICABLE	
8.2 Measurement Procedure	14
8.3 Test Results	
9 - ANTENNA REQUIREMENT.	
9.1 Standard Applicable	
10 - RF EXPOSURE	
11 - SPURIOUS RADIATED EMISSION DATA	
11.1 Measurement Uncertainty 11.2 EUT Setup	
11.3 Spectrum Analyzer Setup	17
11.4 Test Procedure 11.5 Corrected Amplitude & Margin Calculation	

Z-Com, Inc. & Ricoh Co., Ltd.

FCC ID: M4Y-XI-300

11.6 Summary of Test Results	
12 - CONDUCTED EMISSIONS TEST DATA	
12.1 Measurement Uncertainty	
12.2 EUT SETUP	
12.3 Spectrum Analyzer Setup	
12.4 Test Procedure	
12.5 SUMMARY OF TEST RESULTS	
12.6 Conducted Emissions Test Data	
12.7 Plot of Conducted Emissions Test Data	

1 - GENERAL INFORMATION

Applicant:	Z-Com, Inc. & Ricoh Co., Ltd.
Product Description:	Wireless LAN Card
Product Name:	XI-300
FCC ID:	M4Y-XI-300
Serial Number:	None
Transmitter Frequency:	2400-2483.5MHz
Maximum Output Power:	7.83dBm (6.07mW)
Dimension:	3.3"L x 2.1"W x 0.2"H approximately
Power Supply:	DC 5V from Printer

1.1 Product Description for Equipment Under Test (EUT)

The Wireless LAN Card (PCMCIA) designed with a transmitting method of direct sequence spread spectrum is for local area network operation, which operates at 2.4GHz ISM band and data rate up to 11Mbps. For operation of this device, it is asked for maintaining a minimum space of 20 cm from the operator of any bystanding in the users manual.

* The test data in this test report was good for the test sample only. It may have deviation for other test samples.

1.2 Objective

This type approval report is prepared on behalf of. *Z-Com, Inc.* and Ricoh Co., Ltd. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for Output Power, Antenna Requirements, 6 dB Bandwidth, power density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Spurious Radiated Emission, and processing gain.

1.3 Related Submittal(s)/Grant(s)

Please refer to the TCB grant.

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 – 1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory Corporation. The radiated testing was performed at an antenna-to-EUT distance of 3 Meters.

1.5 Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI).

The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1998, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8568B	2610A02165	12/6/02
HP	Spectrum Analyzer	8593B	2919A00242	12/20/02
HP	Amplifier	8349B	2644A02662	12/20/02
HP	Quasi-Peak Adapter	85650A	917059	12/6/02
HP	Amplifier	8447E	1937A01046	12/6/02
A.H. System	Horn Antenna	SAS0200/571	261	12/27/02
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/02
Com-Power	Biconical Antenna	AB-100	14012	11/2/02
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/02
Com-Power	LISN	LI-200	12208	12/20/02
Com-Power	LISN	LI-200	12005	12/20/02
BACL	Data Entry Software	DES1	0001	12/20/02

1.6 Test Equipment List and Details

* Statement of Traceability: Bay Area Compliance Laboratory Corp. certifies that all calibration has been performed using suitable standards traceable to the NATIONAL INSTITUTE of STANDARDS and TECHNOLOGY (NIST).

Z-Com, Inc. & Ricoh Co., Ltd.

1.7 Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Dell	Notebook	TS30H	32288	IIRTS30HT
Lucent	Wireless LAN Card	PC24E-H-FC	01UT25334217	IMRWLPCE24H
Dell	Power Supply	PCGA-AC16V	0413039	DOC

1.8 Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Ricoh	Printer	AP2610N	PG731718018	DOC

1.9 Remote Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Dell	Notebook	TS30H	32288	IIRTS30HT

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The host system was configured for testing in a typical fashion (as a normally used by a typical user).

The EUT was tested in the normal (native) operating mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The test software, terminal.exe, provided by the customer, is started the Windows 98 terminal program under the Windows 98 operating system. Once loaded, the program sequentially exercises each system component.

The sequence used is as follows:

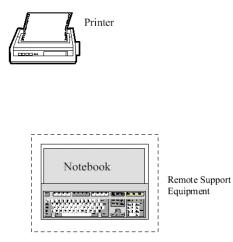
- 1. Lines of Hs scroll across the notebook monitor.
- 2. The printer output Hs.

This process is continuous throughout all tests.

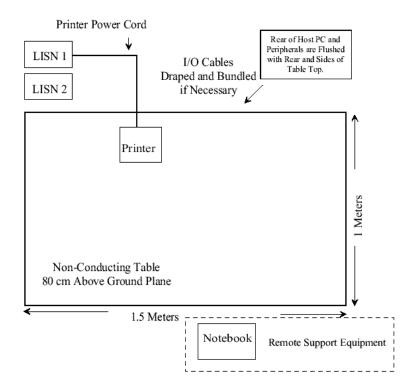
2.3 Special Accessories

As shown in section 2.5, all interface cables used for compliance testing are shielded as normally supplied by INMAC and their respective support equipment manufacturers. The host pc and other peripherals featured shielded metal connectors.

2.4 Schematics / Block Diagram


Please refer to Appendix D.

2.5 Equipment Modifications


No modifications were made by BACL Corporation to ensure the EUT to comply with the applicable limits and requirements.

FCC ID: M4Y-XI-300

2.6 Configuration of Test System

2.7 Test Setup Block Diagram

3 - SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.205	Restricted Bands	Compliant
§ 2.1091	RF Safety Requirements	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	Conducted Emission	Compliant
§15.209 (a)	Radiated Emission	Compliant
§15.209 (f)	Spurious Emission	Compliant
§15.247 (a) (2)	6 dB Bandwidth	Compliant
§15.247 (b) (2)	Peak Output Power	Compliant
§15.247 (b) (4)	RF Exposure	Compliant
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edges	Compliant
§15.247 (d)	Peak Power Spectral Density	Compliant
§15.247 (e)	Processing Gain	Compliant

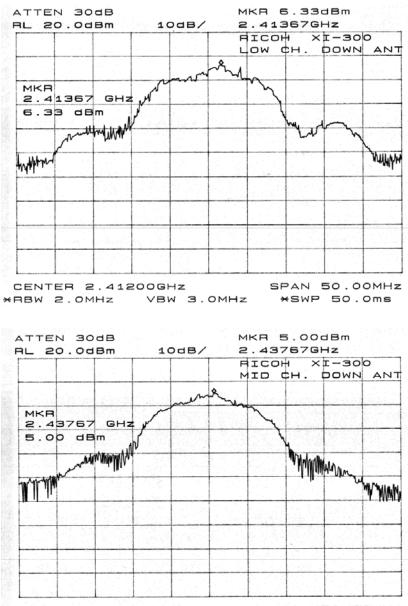
4 - PEAK OUTPUT POWER MEASUREMENT

4.1 Standard Applicable

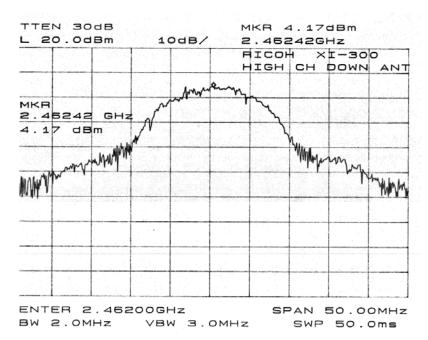
According to §15.247(b) (2), for all direct sequence systems, the maximum peak output power of the intentional radiator shall not exceed 1 Watt.

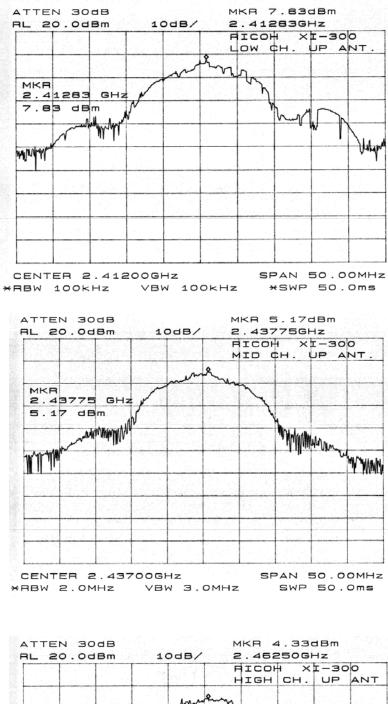
4.2 Measurement Procedure

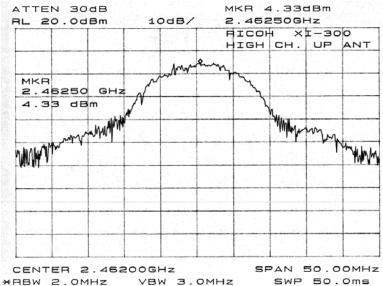
- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.


4.3 Measurement Result

Antenna	Frequency	Output Power in	Output Power	Standard	Result
Description	(MHz)	dBm	in W		
Down	Low	6.33	0.004	$\leq 1 \mathrm{W}$	Compliant
Down	Middle	5.00	0.003	$\leq 1 W$	Compliant
Down	High	4.17	0.003	$\leq 1 W$	Compliant
Up	Low	7.83	0.006	$\leq 1 \mathrm{W}$	Compliant
Up	Middle	5.17	0.003	$\leq 1 W$	Compliant
Up	High	4.33	0.003	$\leq 1 W$	Compliant


Please refer to the attached plots for more information.


4.4 Test Equipment


Manufacturer	Model No.	Serial No.	Calibration Due Date
Agilent	E4419b	GB40202891	4/8/03
Agilent	E4412a	US38486529	4/8/03

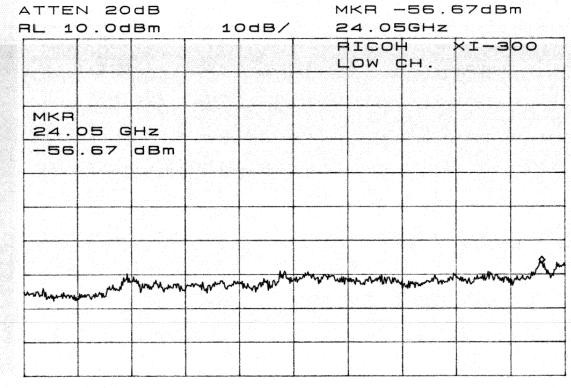
5 - SPURIOUS EMISSION

5.1 Standard Applicable

According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation f a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.

5.2 Measurement Procedure

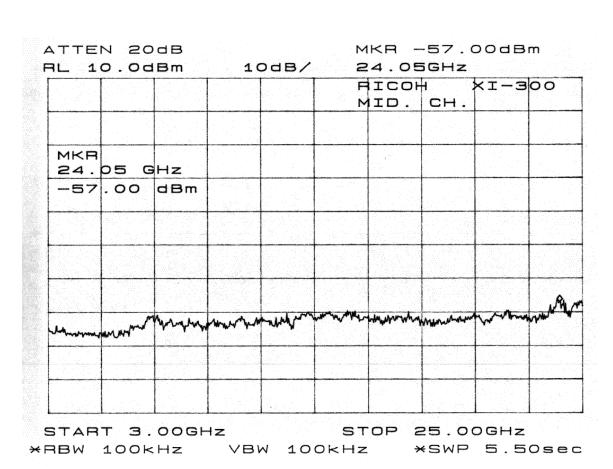
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.


5.3 Measurement Data

Please refer to the appending for more information.

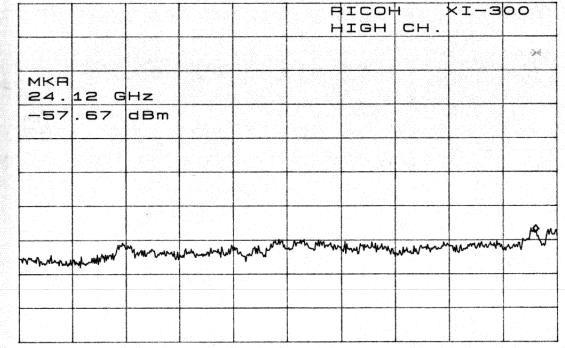
					T = 1 = 1 = 1 = 1 = 1 = 1 = 1 T = 1 = 1 T = 1 T	нісон Цом сн.		XI-300	
	A Boz	GHz							
-34	. 33	dB						Ļ	
<u></u>									
							+		
		8							
Annarch	man	Mundanna	hourserver	h h . Mar	had all all all all all all all all all a	an a	Mar Mar	Marman	
					· · · · · · · · · · · · · · · · · · ·				
						1			

ATTEN 200B △MKR -34.33dB


STOP 3.000GHz START BOMHZ *RBW 100KHz VBW 100KHz *SWP 5.50sec

START 3.00GHZ STOP 25.00GHZ *RBW 100kHz VBW 100kHz *SWP 5.50sec


					F	ICO	4	XI-300		
					N	ID.	сн.			
	я 827	GHz								
-35	. 50	dB						7		
Man Marin	mmmn	hannon	manna	nennaproved	mm	mm	hunder	homenn	m	


START 30MHzSTOP 3.000GHz*RBW 100kHzVBW 100kHz*SWP 5.50sec

					F	HICOH XI-3			00
					F	IGH	сн.		
<u>Д</u> МК	9 856	GHz							
	. 17							7	
youngerard	mon	handelier	mount	man	man	monume	mann		man

START 30MHZ STOP 3.000GHZ *RBW 100KHZ VBW 100KHZ *SWP 5.00sec

START 3.00GHzSTOP 25.00GHz*RBW 100KHzVBW 100KHz*SWP 5.50sec

6 - PEAK POWER SPECTRAL DENSITY

6.1 Standard Applicable

According to §15.247 (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Repeat above procedures until all frequencies measured were complete.

6.3 Test Results

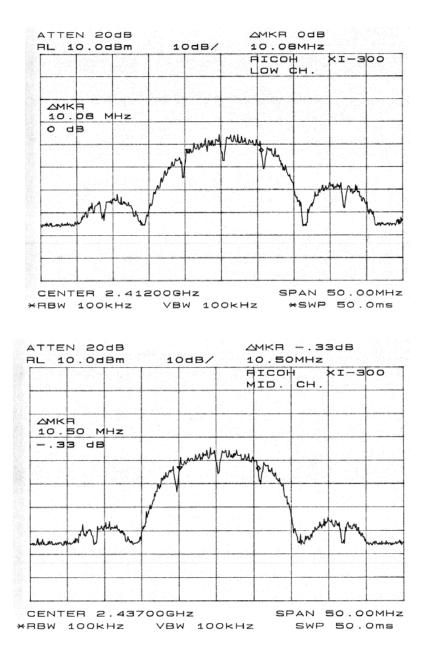
Please refer to the attached plot(s).

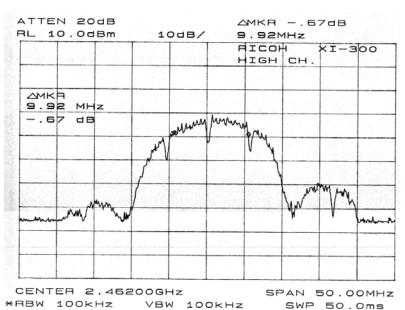
AL 1				Dab/		ICOH	1600	×1-3	00
			1.6/1.2	with the	1	OW C		^a	
		1. A 2. 1		25.072	9-02-03 (1.2.2		()6
MKD								<u></u>	
2.4	1016	O GH	łz						
and the second second	. 17								
	1.14						0.4.		
mathand	mm	mom	mm	m	1	minin	mon	mm	mm
A. All	IN. A			W	half				
				1	141				-
					a 1457				
							19 (1 ^{9 (1}))		
									1
1.91								n far	
CENT	ER 2	. 415	2000	GHZ		SE	PAN	6.00	омн
	3.0k				OKHz			2.0	
	N 20				N	KR -	-42.	17d8	m
	0.00		10	DOB/		. 437			a di
				2.2.5	1.	ICOF	1	1 m m m m m m	300
					N	ID.	сн.		
		1.1		i en en en	1.12			100	- C
мкя				1.00					
And a second	3777		łz						
	1 1								10 (1977) 10
-42	. 17	dBm	건설소					Nev 3	1.12.23
						MARMAL AN	unalhila	Abablin	IN Inte
			whenver	Monry	MMM	MAnnum	mylyh	www.	MMM
	. 17 MWWW		whinin	Monghing	Mayuny	MMMMM	myhyn	www	MMM
			whini	Winnyanya	, army	MANNIN	honyhyhv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMM
			uphung vurb	Mproyany	, www. Why	MANNIN	myhyhv	www.	- AMAMA
			where	Wmithing	, and white	MANNA	unyhyhv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMM
			whinip	Workney	, agrand Why	MANNIN	unyhyhv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MhAmh
				Mmunu	(MA) MA)	Munun	unyhyn	-WWW.MV	4/hAph
	WWW	MMMM 2.437	20001	GHz					
	4ww.~1k/	MMMM 2.437	20001	GHz					
	WWW	MMMM 2.437	20001	GHz					
	WWW	ммуул 2. 437 Нz	20001	GHz	OKHZ		SWP	2.0	kse
		ммуул 2. 437 . Hz	70000 VBI	GHz	OK Hz	1KR - 2.464	SWP -38. 4820	2.0 50de GHz)kse 3m
	ER 2 3.0k	ммуул 2. 437 . Hz	70000 VBI	GHz W 3.	OKHZ M Z	IKR -	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m
	ER 2 3.0k	ммуул 2. 437 . Hz	70000 VBI	GHz W 3.	OKHZ M Z	1KR - 2.464	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m 300
	ER 2 3.0k	ммуул 2. 437 . Hz	70000 VBI	GHz W 3.	OKHZ M Z	IKR -	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m
	ER 2 3.0k	ММ/// 2.437 Нz dB Bm	70000 VBI	GHz W 3.	OKHZ M Z	IKR -	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m 300
	ER 2 3.0k N 20 0.0d	ММ/// 2. 437 НZ dB Bm 0. GH	70000 VBI	GHz W 3.	OKHZ M Z	IKR -	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m 300
	ER 2 3.0k	ММ/// 2. 437 НZ dB Bm 0. GH	70000 VBI	GHz W 3.	OKHZ M Z	IKR -	SWP -38. 4820	2.0 50de GHz XI-3)kse 3m 300
	ER 2 3.0k 0.0d 5482	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k 0.0d 5482	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k N 20 0.0d	2.437 Hz dB Bm 0 GH dBm	70000 VBI	GHZ W 3.	OKHZ M Z	IKR -	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k 0.0d 5482 .50	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k 0.0d 5482 .50	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k 0.0d 5482 .50	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300
	ER 2 3.0k 0.0d 5482 .50	2.437 Hz dB Bm 0 GH dBm	20000 VBI 10	GHZ W 3.	OKHZ M Z	1KR - 2.464 1ICOH	-38. 4820 4 CH.	2.0 50de GHz XI-3	300

CENTER 2.462000GHZ SPAN 6.000MHz *RBW 3.0KHz VBW 3.0KHZ SWP 2.0Ksec

7 - 6 DB BANDWIDTH

7.1 Standard Applicable


According to §15.247(a)(2), for direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.


7.2 Measurement Procedure

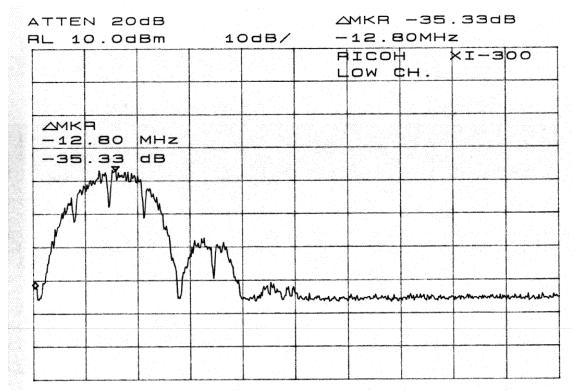
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

7.3 Measurement Data

The minimum 6dB bandwidth was 9.92MHz, which was greater than 500 kHz standard limit. Please refer to appending plot for more information.

8 - 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable


According to §15.247(c), in *any* 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) see §15.2057(c)).

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 Test Results

Please refer to the appending plot for more information.

 START 2.40000GHz
 STOP 2.48350GHz

 *RBW 100kHz
 VBW 100kHz
 *SWP 50.0ms

*RBW 100KHz VBW 100KHz SWP 50.0ms

9 - ANTENNA REQUIREMENT

9.1 Standard Applicable

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.2 Antenna Connected Construction

The directional gain of antenna used for transmitting is 2 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

10 - RF EXPOSURE

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time						
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)						
	Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	$*(180/f^2)$	30						
30-300	27.5	0.073	0.2	30						
300-1500	/	/	f/1500	30						
1500-15000	1500-15000 /		1.0	30						

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

- P = power input to antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 $R = \hat{d}istance$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 7.83 (dBm) Maximum peak output power at antenna input terminal: 6.07 (mW) Antenna Gain (typical): 2 (dBi) Maximum antenna gain: 1.58 (numeric) Prediction distance: 3 (cm) Predication frequency: 2400 (MHz) MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2) Power density at predication frequency: 0.085 (mW/cm^2) Maximum allowable antenna gain: 18.62 (numeric) Maximum allowable antenna gain: 12.70 (dBi)

Test Result

The predicted power density level at 3 cm is 0.085 mW/cm². This is below the uncontrolled exposure limit of 1mW/cm² at 2400 MHz.

This EUT is intended to be installed in printer and is thus classed as mobile equipment.

11 - SPURIOUS RADIATED EMISSION DATA

11.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

11.2 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4 - 1992. The specification used was the FCC 15 Subpart C limits.

The EUT was inserted into the printer. The printer was connected with a remote support notebook.

The printer was connected 110Vac/60Hz power source.

External I/O cables were draped along the edge of the test table and bundle when necessary.

11.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 26GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency	30 MHz
Stop Frequency	26GHz
Sweep Speed	Auto
IF Bandwidth	1 MHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

11.4 Test Procedure

For the radiated emissions test, the Host PC system and all support equipment power cords were connected to the AC floor outlet since the power supply used in the EUT did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "**Qp**" in the data table.

11.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Subpart C. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Subpart C Limit

11.6 Summary of Test Results

According to the data in section 11.7, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section</u> 15.205, 15.207 and 15.247, and had the worst margin of:

-5.5 dBµV at 2308.00 MHz in the Vertical polarization, intentional emission

-8.5 dBµV at 2063.00 MHz in the Horizontal polarization, intentional emission

-7.8 dBµV at 2088.00 MHz in the Horizontal polarization, intentional emission

-5.3 dBµV at 192.06 MHz in the Horizontal polarization, unintentional emission

Z-Com, Inc. & Ricoh Co., Ltd.

FCC ID: M4Y-XI-300

Intentional Emission, 30MHz to 26GHz, 3 meters

INDICATED		TABLE	Anti	ENNA	Corre	CTION FA	ACTOR	CORRECTED AMPLITUDE	FCC Subpa		
Frequency	Ampl.	Commente	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m	Comments	Degree	Meter	H/ V	dBµV/m	DB	DB	dBµV/m	dBµV/m	dB
			Low Fr	equency	and Lo	cal Freque	ency 203	8MHz			
2412.00	80.1	Fund.	210	1.2	Н	28.1	3.4	30.0	81.6	/	/
2412.00	81.4	Fund.	330	1.5	V	28.1	3.4	30.0	82.9	/	/
2308.00	47.1	AVG	270	1.0	V	28.1	3.4	30.0	48.6	54	-5.5
2038.00	43.2	AVG	160	2.0	Н	28.1	3.4	30.0	44.7	54	-9.3
4076.00	33.8	AVG	210	1.5	Н	31.4	4.7	30.0	39.9	54	-14.1
4076.00	32.1	AVG	190	1.2	V	31.4	4.7	30.0	38.2	54	-15.8
			Middle I	Frequence	ey and L	local Freq	uency 20	63MHz			
2437.00	86.20	Fund.	30.00	1.20	V	28.1	3.4	30.0	87.7	/	/
2437.00	85.1	Fund.	90	1.0	Н	28.1	3.4	30.0	86.6	/	/
2063.00	44.10	AVG	310	1.20	Н	28.1	3.4	30.0	45.6	54	-8.5
2063.00	43.5	AVG	270	1.5	V	28.1	3.4	30.0	45.0	54	-9.1
4126.00	35.2	AVG	220	1.2	V	31.4	4.7	30.0	41.3	54	-12.7
4126.00	34.7	AVG	250	1.0	Н	31.4	4.7	30.0	40.8	54	-13.2
			High Fi	requency	y and Lo	ocal Frequ	ency 208	8MHz			
2462.00	85.5	Fund.	90	1.2	V	28.1	3.4	30.0	87.0	/	/
2462.00	76.9	Fund.	60	1.5	Н	28.1	3.4	30.0	78.4	/	/
2088.00	44.7	AVG	120	1.2	Н	28.1	3.4	30.0	46.2	54	-7.8
2088.00	44.2	AVG	180	1.5	V	28.1	3.4	30.0	45.7	54	-8.3
4176.00	35.1	AVG	60	1.5	V	31.4	4.7	30.0	41.2	54	-12.8
4176.00	34.4	AVG	45	1.5	Н	31.4	4.7	30.0	40.5	54	-13.5

* There was no apparent emission after the 1st harmonics.

Unintentional Emission, 30MHz to 1000MHz, 3 meters

INDICA	TED	TABLE	ANTE	CNNA	Corri	ECTION F	ACTOR	CORRECTED AMPLITUDE	FCC 15 (Class B
Frequency	Ampl.	Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m	Degree	Meter	H/ V	dBµV/m	dB	dB	dBµV/m	dBµV/m	dB
192.06	46.1	110	3.0	Н	14.4	2.7	25.0	38.2	43.5	-5.3
334.08	45.8	350	2.5	Н	15.0	2.6	25.0	38.4	46	-7.6
200.45	43.7	80	3.5	Н	12.4	4.6	25.0	35.7	43.5	-7.8
80.81	45.3	230	1.2	V	9.6	1.4	25.0	31.3	40	-8.7
467.07	40.6	0	0.0	V	17.8	3.7	25.0	37.1	46	-8.9
133.68	44.2	60	1.2	V	12.6	2.0	25.0	33.8	43.5	-9.7
233.89	42.5	30	3.0	Н	12.0	1.2	25.0	30.7	46	-15.3

Report # R0204251_Rpt

12 - CONDUCTED EMISSIONS TEST DATA

12.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

12.2 EUT Setup

The measurement was performed at the Open Area Test Site, using the same setup per ANSI C63.4 - 1992 measurement procedure. The specification used was FCC 15 Subpart C limits.

The EUT was inserted into the printer. The printer was connected with a remote support notebook.

The printer was connected 110Vac/60Hz power source.

External I/O cables were draped along the edge of the test table and bundle when necessary.

12.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency	450 kHz
Stop Frequency	
Sweep Speed	
IF Bandwidth	10 kHz
Video Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

12.4 Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

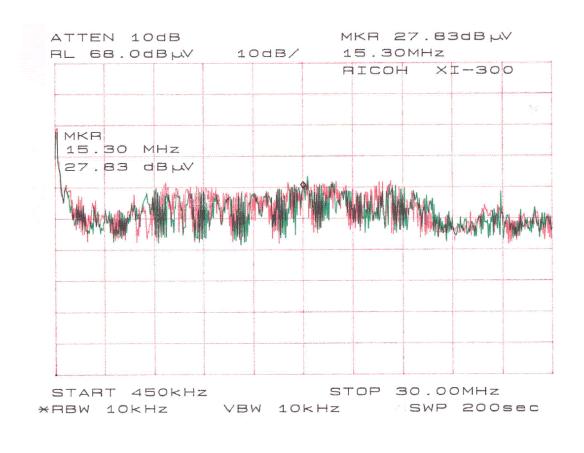
Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "**Qp**".

Z-Com, Inc. & Ricoh Co., Ltd.

12.5 Summary of Test Results

According to the data in section 12.6, the EUT <u>complied with the FCC</u> Conducted margin for a Class B device, with the *worst* margin reading of:


-2.2 dBµV at 0.550 MHz in the Line mode, 450kHz~30MHz

12.6 Conducted Emissions Test Data

	LINE CON	FCC C	LASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dBμV	Qp/Ave/Peak	Line/Neutral	dBμV	dB
0.550	45.8	Qp	Line	48	-2.2
0.480	43.2	Qp	Neutral	48	-4.8
2.680	37.1	Qp	Neutral	48	-10.9
19.770	31.5	Qp	Line	48	-16.5
2.960	30.2	Qp	Line	48	-17.8
12.940	25.4	Qp	Neutral	48	-22.6

12.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference.

Report # R0204251_Rpt