

Test report No. : 13024973S-A-R3 Page : 1 of 81 : April 2, 2020

FCC ID : AZD241

Issued date

SAR TEST REPORT

Test Report No.: 13024973S-A-R3

Applicant : Canon Inc.

: Wireless LAN/Bluetooth Combo Module **Type of Equipment**

Model No. : ES204 (*. Installed into the platform (1))

FCC ID : AZD241

Test Standard : FCC 47CFR §2.1093 **Test Result** : Complied (Refer to Section 3.5)

Hig	hest Reporte	d SAR(1g) [V	V/kg]		Platform	Platform Remarks (DTS band)		TS band) Remarks (UNII band))			
DTS band	U-NII band	SAR type	SAR Limit	No.	Туре	Model	Frequency [MHz]	Mode	Output p (average)	dBm	IMILI-1	Mode			Reference report number
0.25	0.42	Body-worn	1.6	1	Digital Camera	DS126836	2462	b	8.36	10.0	5180	a	8.79	10.0	This report.

- Highest reported SAR (1g) across all exposure conditions for body-touch is "0.25 W/kg (DTS)" and "0.42 W/kg (U-NII)".
- Highest reported SAR (1g) values for simultaneous transmission (Bluetooth + Wi-Fi (5GHz band)) is "0.50 W/kg (< 1.6 W/kg)".
- Since highest reported SAR (1g) on all platforms of model: ES204 (EUT) which obtained in accordance with KDB447498 (v06) was kept under 0.8 W/kg, this EUT was approved to operate multi-platform (which was tested in above.).
- Max.: Maximum, (Mode) b: IEEE 802.11b, a: IEEE 802.11a.
- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- The information provided from the customer for this report is identified in SECTION 1.
- 10. This report (-R3) is a revised version of 13024973S-A-R2. 13024973S-A, 13024973S-A-R1, 13024973S-A-R2 reports are replaced with this report.

Date of test: November 11, 12 and 19, 2019

Test engineer:

Engineer, Consumer Technology Division

Approved by:

The testing in which "Non-accreditation" is displayed is outside the accreditation

Toyokazu Imamura

Leader, Consumer Technology Division

CERTIFICATE 1266.03

scopes in UL Japan.

There is no testing item of "Non-accreditation".

Page : 2 of 81 Issued date : April 2, 2020

FCC ID : AZD241

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	13006525S-A	December 10, 2019	-	-
-R1	13006525S-A-R1	December 18, 2019	-	(p2, REVISION HISTORY, Corrected issue date)
				was: December xx, 2019->R1: December 10, 2019
-R2	13024973S-A-R2	March 30, 2020		p1&2; add revised (-R2) information,
				p4; (clause 2.1) "Rating" was changed. (was: DC 9.0 V -> R2: DC 9.0 V/5.0 V)
				p4; (clause 2.2) Add comment: "*1. The frequency band of U-NII-2C is (5500~5700) MHz. The EUT
				is not supported the frequency band of (5600~5650) MHz on this platform by the firmware."
-R3	13024973S-A-R3	April 2, 2020		p1&2; add revised (-R2) information,
		* '		p7; (clause 3.5) Corrected a mistake (asterisk number). (was: 0.417 (*2) -> R3: 0.417 (*1))

^{*.} By issue of new revision report, the report of an old revision becomes invalid.

Reference: Abbreviations (Including words undescribed in this report) (radio_r0v02_191128)

A2LA	The American Association for Laboratory Accreditation	IF .	Intermediate Frequency
AC	Alternating Current	ILAC	International Laboratory Accreditation Conference
AFH	Adaptive Frequency Hopping	ISED	Innovation, Science and Economic Development Canada
AM	Amplitude Modulation	ISO	International Organization for Standardization
Amp, AMP	Amplifier	JAB	Japan Accreditation Board
ANSI	American National Standards Institute	LAN	Local Area Network
Ant, ANT	Antenna Antenna	LIMS	Laboratory Information Management System
AP	Access Point	MCS	Modulation and Coding Scheme
ASK	Amplitude Shift Keying	MRA	Mutual Recognition Arrangement
Atten., ATT	Attenuator	N/A	Not Applicable
AV AV		NIST	National Institute of Standards and Technology
BPSK	Average Binary Phase-Shift Keying	NS NS	
	Bluetooth Basic Rate		No signal detect.
BR		NSA	Normalized Site Attenuation
BT	Bluetooth	NVLAP	National Voluntary Laboratory Accreditation Program
BTLE	Bluetooth Low Energy	OBW	Occupied Band Width
BW	BandWidth	OFDM	Orthogonal Frequency Division Multiplexing
Cal Int	Calibration Interval	P/M	Power meter
CCK	Complementary Code Keying	PCB	Printed Circuit Board
Ch., CH	Channel	PER	Packet Error Rate
CISPR	Comite International Special des Perturbations Radioelectriques	PHY	Physical Layer
CW	Continuous Wave	PK	Peak
DBPSK	Differential BPSK	PN	Pseudo random Noise
DC	Direct Current	PRBS	Pseudo-Random Bit Sequence
D-factor	Distance factor	PSD	Power Spectral Density
DFS	Dynamic Frequency Selection	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	QP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	QPSK	Quadrature Phase Shift Keying
EDR	Enhanced Data Rate	RBW	Resolution Band Width
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	RDS	Radio Data System
EMC	ElectroMagnetic Compatibility	RE	Radio Equipment
EMI	ElectroMagnetic Interference	RF	Radio Frequency
EN	European Norm	RMS	Root Mean Square
ERP, e.r.p.	Effective Radiated Power	RSS	Radio Standards Specifications
EU	European Union	Rx	Receiving
EUT	Equipment Under Test	SA, S/A	Spectrum Analyzer
Fac.	Factor	SAR	Specific Absorption Rate
FCC	Federal Communications Commission	SG	Signal Generator
FHSS	Frequency Hopping Spread Spectrum	SVSWR	Site-Voltage Standing Wave Ratio
FM	Frequency Modulation	TR	Test Receiver
Freq.	Frequency	Tx	Transmitting
FSK	Frequency Shift Keying	VBW	Video BandWidth
GFSK	Gaussian Frequency-Shift Keying	Vert.	Vertical
GNSS	Global Navigation Satellite System	WLAN	Wireless LAN
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		

Page : 3 of 81 Issued date : April 2, 2020

FCC ID : AZD241

CONTENTS		PAGE
REVISION HISTO	RY	2
	tions (Including words undescribed in this report)	
CONTENTS	1 /	
SECTION 1:	Customer information	4
SECTION 1: SECTION 2:	Equipment under test (EUT)	1
2.1	Identification of EUT	1
2.1	Product Description	
SECTION 3:	Test specification, procedures and results	
3.1	Test specification.	
3.2	Exposure limit.	6
3.3	Addition, deviation and exclusion to the test procedure	6
3.4	Test location	6
3.5	Procedure and result	7
3.6	SAR measurement procedure	8
SECTION 4:	Operation of EUT during testing	
4.1	Operation modes for SAR testing	9
4.2	RF exposure conditions	9
4.3	SAR test exclusion considerations accordance to KDB 447498 D01	10
SECTION 5:	Uncertainty assessment (SAR measurement/Daily check)	11
SECTION 6:	Confirmation before testing	
6.1	SAR reference power measurement (antenna terminal conducted average power of EUT)	
SECTION 7:	SAR Measurement results	
7.1	Liquid parameters	
7.2	SAR results: 2.4GHz band	
7.3	SAR results: 5 GHz band	
7.4	Simultaneous transmission evaluation	17
Contents of ap	pendixes	
APPENDIX 1:	Photographs of EUT and SAR test setup	18
Appendix 1-1	Photograph of platform and antenna position	18
Appendix 1-2	EUT, Platform and support equipment	
Appendix 1-3	Photograph of test setup	
APPENDIX 2:	SAR Measurement data	
	SAR plot of worst reported SAR	
	SAR plot of other SAR test conditions	
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals.	42
Appendix 3-3	Test system specification	
Appendix 3-4	Simulated tissues composition and parameter confirmation	44
Appendix 3-5	Daily check results	44
Appendix 3-6	Daily check measurement data	
Appendix 3-7	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-8	Calibration certificate: Dipole (D2450V2)	
Appendix 3-9	Calibration certificate: Dipole (D5GHzV2)	

Test report No. : 13024973S-A-R3
Page : 4 of 81
Issued date : April 2, 2020

FCC ID : AZD241

SECTION 1: Customer information

Company Name	Canon Inc.
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan
Telephone Number	+81-3-5482-7283
Contact Person	Tomohiro Suzuki

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2, SECTION 4 and Appendix 1.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT and platform

	EUT	Platform						
Type of Equipment	Wireless LAN/Bluetooth Combo Module	Digital Camera						
Model Number	ES204	DS126836						
Serial Number	DE1-C-012 3							
Condition of EUT	Engineering prototype	Engineering prototype						
Condition of EC 1	(*. Not for sale: These samples are equivalent to mass-produced items.)							
		July 29, 2019 (*. Sample for power measurement.) *. No modification by the test Lab.						
Receipt Date of Sample	October 23, 2019 (*. Sample for SAR test.) *. No modification by the test Lab.							
	*. After power measurement, the EUT was returned to	1						
Rating	DC3.3V	DC 9.0 V/ 5.0 V						
Tuning	*. The EUT is installed into the specified the platform that was operated by the re-chargeable Li-ion battery.							
Country of Mass-production	Japan	Japan						
Category Identified	Portable device (*. Since EUT may contact and/or very close to a human body during Wi-Fi or Bluetooth operation, the partial-							
Category Identified	body SAR (1g) shall be observed.)							
Feature of EUT	Model: ES204 (referred to as the EUT in this report) is a Wireless LAN/Bluetooth Combo							
reature of EOT	Module which installs into the specified platform.							
SAR Accessory	None	·						

2.2 Product Description (Model: ES204, Wireless LAN/Bluetooth Combo Module)

Equipment typ	e	Transceive	r									
	Bluetooth	2.4GHzba	nd: (2402~2480)	MHz (BDR (Basic)	Data Rate), EDR (Enha	anced Data Rate), LE (Low Energy mode-PHY1&PHY2))						
		2.4GHz band: (2412~2462) MHz (b, g, n20)/(2422~2452) MHz (n40);										
Frequency of			U-NII-1: (5180~5240) MHz (a, n20, ac20) / (5190, 5230) MHz (n40, ac40) / 5210 MHz (ac80);									
operation	Wi-Fi					0, ac40) / 5290 MHz (ac80);						
), 5550, 5670) MHz (n40), ac40) / 5530 MHz (ac80);						
		<u>U-NII-3:</u> (5	5745~5825) MHz	(a, n20, ac20) / (57	⁷ 55, 5795) MHz (n40,	ac40) / 5775 MHz (ac80);						
Channel	Bluetooth		OR, EDR), 2MHz									
spacing	Wi-Fi	5 MHz (2.4	4GHz band), 20 N	MHz(U-NII-1, U-N	III- 2A, U-NII-2C, U-	NII-3)						
Bandwidth	Bluetooth	79MHz										
Dandwidui	Wi-Fi	20 MHz (b	20 MHz (b, g, a, n20, ac20), 40 MHz (n40, ac40), 80 MHz (ac80)									
Type of	Bluetooth	FHSS: GF	HSS: GFSK (*. EDR: GFSK+ π/4-DQPSK, GFSK+8DPSK)									
modulation	Wi-Fi	DSSS: DB	PSK, DQPSK, C	CK (b);								
modulation	WI-FI	OFDM: BPSK, QPSK, 16QAM, 64QAM, 256QAM (*.256QAM is only for ac80) (g, a, n20, ac20, n40, ac40, ac80)										
Power rating		DC 3.3V	DC 3.3V									
Typical and ma	aximum		*. The specification of typical and maximum tune-up tolerance limit power (which may occur) refer to remarks in below table.									
transmit power	•	*. The meas	sured output power	(conducted) as SAR	reference power refers	to section 6 in this report.						
0 :: 64				n i ince	Antenna connector	Antenna side: Not applicable (soldered)						
Quantity of An	itenna	1 piece Antenna type		Printed PCB	type	Module side: MHF4						
Antenna gain (peak)	2.98 dBi (2.	2.98 dBi (2.4GHz band), 4.94 dBi (5GHz band) (*.including cable loss)									

^{*1.} The frequency band of U-NII-2C is (5500-5700) MHz. The EUT is not supported the frequency band of (5600-5650) MHz on this platform by the firmware.

Page : 5 of 81 Issued date : April 2, 2020

: AZD241 FCC ID

[Typical and maximum transmit power]

1 y picta ta	1 ypicai and maximum u ansimi power															
		Output power (Typical and maximum) [dBn					m] (*. The measured output power (conducted) refers to section 6 in this report.)									
Mode	Data rate		2.4GHz			U-NII-1		1	U-NII-2A		U-	NII-2C			U-NII-3	
		F [MHz]	Typical	Max.	F [MHz]	Typical	Max.	F [MHz]	Typical	Max.	F [MHz]	Typical	Max.	F [MHz]	Typical	Max.
BT-BDR	1Mbps	2402 ~2480	3.0	6.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BT-EDR	(2~3)Mbps	2402 ~2480	0	3.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BT-LE	1Mbps (PHY1) 2Mbps (PHY2)	2402 ~2480	3.0	6.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ь	1~11Mbps	2412 ~2462	8.0	10.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
g	6~54Mbps	2412 ~2462	8.0	10.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
a	6~54Mbps	N/A	N/A	N/A	5180 ~5240	8.0	10.0	5260 ~5320	8.0	10.0	5500~5580, 5660~5700	8.0	10.0	5745 ~5825	8.0	10.0
n20	MCS0~7	2412 ~2462	7.0	9.0	5180 ~5240	7.0	9.0	5260 ~5320	7.0	9.0	5500~5580, 5660~5700	7.0	9.0	5745 ~5825	7.0	9.0
ac20	MCS0~8	N/A	N/A	N/A	5180 ~5240	7.0	9.0	5260 ~5320	7.0	9.0	5500~5580, 5660~5700	7.0	9.0	5745 ~5825	7.0	9.0
n40	MCS0~7	2422 ~2452	7.0	9.0	5190, 5230	7.0	9.0	5270, 5310	7.0	9.0	5510, 5550, 5670	7.0	9.0	5755, 5795	7.0	9.0
ac40	MCS0~9	N/A	N/A	N/A	5190, 5230	7.0	9.0	5270, 5310	7.0	9.0	5510, 5550, 5670	7.0	9.0	5755, 5795	7.0	9.0
ac80	MCS0~9	N/A	N/A	N/A	5210	7.0	9.0	5290	7.0	9.0	5530	7.0	9.0	5775	7.0	9.0

ac80 MCS0-9 N/A N/A S210 7.0 9.0 5290 7.0 9.0 5530 7.0 9.0 5775 7.0 9.0

F: Frequency; Max.: maximum; N/A: Not applicable; (mode) b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11a(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT)

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).

Wi-Fi and Bluetooth use same single antenna. Therefore, simultaneously transmitted SAR was not considered for the Wi-Fi of 2.4GHz band and Bluetooth (2.4GHz).

Simultaneously transmitted SAR was only considered for the Wi-Fi of 5GHz band and Bluetooth (2.4GHz).

Test report No. : 13024973S-A-R3 Page : 6 of 81

Issued date : April 2, 2020

FCC ID : AZD241

SECTION 3: Test specification, procedures and results

3.1 Test specification

FCC47CFR §2.1093: Radiofrequency radiation exposure evaluation: portable devices.

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mWg for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures.

The tests documented in this report were performed in accordance with FCC 47 CFR Parts 2, IEEE Std.1528-2013 (latest), the following FCC Published RF exposure KDB procedures, and TCB workshop updates.

F	
KDB 447498 D01 (v06):	General RF exposure guidance
KDB 248227 D01 (v02r02):	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters
KDB 865664 D01 (v01r04):	SAR measurement 100MHz to 6GHz
IEEE Std. 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the
IEEE Std. 1326-2013.	Human Head from Wireless Communications Devices: Measurement Techniques.

3.2 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / Uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg (Partial-Body)

3.3 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

3.4 Test Location

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D)

Used?	Place	Width x Depth x Height (m)	Size of reference ground plane (m)/ horizontal conducting plane	Maximum measurement distance		
	No.1 Semi-anechoic chamber	20.6 × 11.3 × 7.65	20.6 × 11.3	10 m		
	No.2 Semi-anechoic chamber	$20.6 \times 11.3 \times 7.65$	20.6 × 11.3	10 m		
	No.3 Semi-anechoic chamber	$12.7 \times 7.7 \times 5.35$	12.7 × 7.7	5 m		
	No.4 Semi-anechoic chamber	$8.1 \times 5.1 \times 3.55$	8.1 × 5.1	-		
	No.1 Shielded room	$6.8 \times 4.1 \times 2.7$	6.8 × 4.1	-		
	No.2 Shielded room	$6.8 \times 4.1 \times 2.7$	6.8 × 4.1	-		
	No.3 Shielded room	$6.3 \times 4.7 \times 2.7$	6.3 × 4.7	-		
	No.4 Shielded room	$4.4 \times 4.7 \times 2.7$	4.4 × 4.7	-		
	No.5 Shielded room	$7.8 \times 6.4 \times 2.7$	7.8×6.4	-		
	No.6 Shielded room	$7.8 \times 6.4 \times 2.7$	7.8×6.4	-		
X	No.7 Shielded room	$2.76 \times 3.76 \times 2.4$	2.76×3.76	-		
	No.8 Shielded room	$3.45 \times 5.5 \times 2.4$	3.45 × 5.5	-		
	No.1 Measurement room	$2.55 \times 4.1 \times 2.5$	2.55 × 4.1	-		

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

: 7 of 81 Page Issued date : April 2, 2020

FCC ID : AZD241

3.5 **Procedures and Results**

Test Procedure	SAI	R measurement: KDI	B 447498 D01, KD	B 248227 D01, KD	B 865664 D01	, IEC Std. 152	8						
Category	1	FCC 47CFR §2.1093 (Portable device) SAR type Partia											
D 1	2.4GH	z Band		5 GHz ba			G* 14						
Band	Bluetooth	Wi-Fi (DTS)	U-NII-1	U-NII-2A	U-NII-20	C U-	NII-3	Simultaneous Tx.					
Operation frequency [MHz]	2402~2480	2412~2472	5180~5240	5260~5320	5500~570	0 574	5~5825	14.					
Results	Complied	Complied	Complied	Complied	Complie	d Co	nplied	Complied					
Reference section of test results	Section 7.2	Section 7.3	Section 7.3	Section 7.3	Section 7.3	3 Sec	ion 7.3	Section 7.4					
SAR (1g) limit [W/kg]	1.6 W/kg	1.6 W/kg	1.6 W/kg	1.6 W/kg	1.6 W/kg	g 1.6	W/kg	1.6 W/kg					
Reported SAR (1g) [W/kg]	0.079	0.245	0.417 (*1)	0.330	0.321	0	254	< 1.6 (0.50)					
Measured SAR (1g) [W/kg]	0.045	0.168	0.316	0.243	0.274	0	.184	-					
Mode (Data rate)	BT-LE (1Mbps)	b (1Mbps)	a (6Mbps)	a (6Mbps)	a (6Mbps)) a(6	Mbps)						
Frequency [MHz]	2402	2462	5180	5260	5580	5	795						
Burst average power [dBm]	5.46	8.36	8.79	8.68	9.33	8	3.60	*. Simultaneous					
Tune-up limit [dBm]	6.0	10.0	10.0	10.0	10.0		0.0	transmission of Bluetooth and					
Tune-up factor [-]	1.13	1.46	1.32	1.36	1.17		.38	5GHz Wi-Fi.					
Duty cycle [%]	64.0	100	100	100	100		100						
Duty scaled factor [-]	1.56	1.00	1.00	1.00	1.00		.00						

Note:

- *1. SAR test was also applied to U-NII-1 band, even though the reported SAR 1g of U-NII-2A was enough lower than 1.2 W/kg.
- UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards
- "yellow marker" in the table; The highest reported SAR(1g) of each operation band (DTS, U-NII) is shaded with yellow marker.
- Since Bluetooth, Wii-Fi of 2.4GHz and Wi-Fi of 5GHz are used a same antenna, Bluetooth and Wi-Fi, DTS band and UNII band do not transmit simultaneously.
- (mode) BT-LE: Bluetooth Low Energy; a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac80: IEEE 802.11ac(80VHT). (Calculating formula) Corrected SAR to max.power (Reported SAR) (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Tune-up factor) where; Tune-up factor $[-]=1/(10^{(4)}$ max (max.power - burst average power), dB"/10)), Duty scaled factor [-]=100(%)/(4) (duty cycle, %)

Test outline: Where the EUT is built into a new platform (1), it was verified whether multi-platform conditions can be suited in according with section 2) of 5.2.2 in KDB447498 D01 (v06).

Consideration of the	The highest reported SAR (1g) of this new platform (1) was kept; ≤ 0.8 W/kg.
	Since highest reported SAR (1g) on this EUT's platform obtained in accordance with KDB447498 D01 (v06) was kept under 0.8
	W/kg, this EUT was approved to operate multi-platform.

Page : 8 of 81 Issued date : April 2, 2020

FCC ID : AZD241

3.6 SAR measurement procedure

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The SAR test reference power measurement and the SAR test were proceeded with the lowest data rate (which has the higher time-based average power typically) on each operation mode. Therefore, the average output power was measured on the lower, middle (or near middle), upper and specified channels with the lowest data rate of each operation mode. The power of other data rate was also measured to confirm the time-base average power and when it's required. The power measurement result is shown in Section 6.

The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v06))

Step 2: Power reference measurement

Measurement of the E-field at a fixed location above the central position of flat phantom (or/and furthermore an interpolated peak SAR location of area scan in step 2) was used as a reference value for assessing the power drop

Step 3: Area Scan (Area scan parameters: KDB 865664 D01 (v01r04).)

The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and suitable horizontal grid spacing of EUT. Based on these data, the area of the maximum absorption was determined by splines interpolation.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5\pm1~\mathrm{mm}$	¹5·6·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\rm o}\pm1^{\rm o}$	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: ΔX_{Area} , ΔY_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test.	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 4: Zoom Scan and post-processing (Zoom scan parameters: KDB 865664 D01 (v01r04).)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

A volume of 30 mm (X) × 30 mm (Y) × 30 mm (Z) (or more) was assessed by measuring $7x^2 \times 7$ points (or more), \le 3GHz. A volume of 28 mm (X) × 28 mm (Y) × 24mm (Z) (or more) was assessed by measuring $8x^2 \times 7$ points (or more) (by "Ratio step" method (*1)), > 3 GHz. When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

			_ 3 GHz	-3 GHz
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm	3 - 4 GHz: ≤ 5 mm [*] 4 - 6 GHz: ≤ 4 mm [*]
	uniform	grid: Δz _{Zoem} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5•Δ:	z _{zoom} (n-1)
Minimum zoom scan volume	x. y. z		≥ 30 mm	3 = 4 GHz; ≥ 28 mm 4 = 5 GHz; ≥ 25 mm 5 = 6 GHz; ≥ 22 mm
P1528-2011 for c * When zoom scan is KDB 447498 is ≤ L	letails. required a 4 W/kg,≤	nd the <u>reported</u> SAR from	the area scan based I-g S.4.	num; see draft standard IEEE Restimation procedures of the applied, respectively, for

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 2. It was checked that the power drift is within ±5% in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position. The result is shown in SAR plot data of

DASY system calculation Power drift value[dB] = $20\log(\text{Ea})/(\text{Eb})$ (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m]) Limit of power drift[W] = $\pm 5\%$; Power drift limit (X) [dB] = $10\log(P_\text{drift}) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = \frac{0.21\text{dB}}{1.000}$ from E-filed relations with power; $S=E\times H=E^2/\eta=P/(4\times\pi\times r^2)$ (η : Space impedance) $\rightarrow P=(E^2\times 4\times\pi\times r^2)/\eta$

Therefore, The correlation of power and the E-filed
Power drift limit (X) dB=10log(P_drift) = 10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY system must be the less than (±) 0.21dB.

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

- The all SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Typical distance from probe tip to dipole centers is 1mm. The distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 3 mm for
- *1. "Ratio step" method parameters used; the first measurement point: "1.4mm" from the phantom surface, the initial z grid separation: "1.4mm", subsequent graded grid ratio: "1.4". These parameters comply with the requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY5 manual).

UL Japan, Inc. Shonan EMC Lab.

: 9 of 81 Page Issued date : April 2, 2020

FCC ID : AZD241

SECTION 4: Operation of EUT during testing

Operating modes for SAR testing 4.1

The EUT has Bluetooth (BDR, EDR, Low energy) and IEEE 802.11b, g, a, n(20HT), n(40HT), ac(20VHT), ac(40VHT) and ac(80VHT) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following

Continuous uainstituting trioues. The frequency and the inocuriation used in the SAX testing are shown as a following.																				
Operation mode	BDR	EDR	LI	C	b	g	n20	n40	a	n20 a		n40	ac40	ac80	a	n20	ac20	n40	ac40	ac80
band		Blueto	oth			2.4GHz					U-NI	I-1					U-NI	I-2A		
Tx band [MHz]	1	2402~2	2480		24	412~246		2422~ 2452	518	0~5240		5190, 5230		5210	52	5260~5320		5270, 5310		5290
Bandwidth [MHz]	1	1	1		20	20	20	40	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]	6	3	6		10	10	9	9	10	9	9	9	9	9	10	9	9	9	9	9
Modulation	FHSS	FHSS	FHS	S	DSSS	OFDM	OFDM (OFDM C	OFDM C	FDM O	DM C	FDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
D/R [Mbps]	1	2~3	1	2	1	6	MCS0	MCS0	6 N	ACSO M	CS0 N	ACS0	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0
Frequency tested [MHz]	2402	n/a (*1)		n/a (*1)	2412, 2437, 2462	n/a (*2)	n/a (*2)	n/a			n/a *4)	n/a (*4)	n/a (*4)	n/a (*4)	5260, 5300, 5320	n/a (*4)	n/a (*4)	n/a (*4)	n/a (*4)	n/a (*4)
Operation mode	a	n20	ac2		n40	ac40	ac80	a	n20	ac20	n40) a	nc40	ac80						
band				U-N	II-2C					U	NII-3									
Tx band [MHz]	- 5																			
		500~5 660~5			5510,55	550,5670	5530		5745~58	325	57	55, 57	795	5775						
Bandwidth [MHz]					5510,55 40	550,5670 40	5530 80	20	5745~58 20	325	57 40		795 40	5775 80						
Bandwidth [MHz] Max.power [dBm]	20	660~5	700)																
_	20	6660~5 20 9	700 20 9)	40	40	80 9	20	20	20	40	ĺ	40	80						
Max.power [dBm]	20 10	6660~5 20 9 OFDN	700 20 9) DM	40	40 9 OFDM	80 9	20 10 OFDM	20	20 9 OFDM	40 9 OFD	M Ol	40 9 FDM 0	80						
Max.power [dBm] Modulation	20 10 OFDM	6660~5 20 9 OFDN	700 20 9 1 OFI	om So	40 9 OFDM	40 9 OFDM	80 9 OFDM	20 10 OFDM	20 9 OFDM	20 9 OFDM	40 9 OFD	M OI	40 9 FDM 0	80 9 DFDM						

D/R: Data rate, n/a: SAR test was not applied.

4.2 RF exposure conditions

Antenna separation distances in each test setup plan are shown as follows.

		Mode:	,	Wi-Fi	В	luetooth	
Setup plan	Explanation of SAR test setup plan (*. Refer to Appendix 1 for test setup photographs which had been tested	.)	D [mm]	SAR Tested /Reduced	D [mm]	SAR Tested /Reduced	SAR type
Front-top-edge	An edge of front-upper portion on a camera is touched to the Flat phanton (*Initial setup)	n.	2.1	Tested	2.1	Reduced	
Front-upper	A front-upper portion on a camera is touched to the Flat phantom.		≈2.1	Tested	≈2.1	Tested	
Top-front	A front portion of top on a camera is touched to the Flat phantom.		≈7	Tested	≈30	Reduced	١.,
Front	A front of camera (right-grip and lens section) is touched to the Flat phant	om.	``	Tested	%	Reduced	Body touch
Rear	A rear of camera (View-finder, LCD side) is touched to the Flat phantom.		≈ 42	Tested	≈ 42	Reduced	touch
Left	A left surface of camera is touched to the Flat phantom.		≈ 42	Reduced	≈ 42	Reduced	
Right	A right surface of camera is touched to the Flat phantom.		≈76	Reduced	≈76	Reduced	
Bottom	A bottom surface of camera is touched to the Flat phantom.	•	≈85	Reduced	≈85	Reduced	
Rear	A rear of camera (View-finder, LCD side) is touched to the Flat phantom.		≈ 42	Reduced	≈ 42	Reduced	Front of face

D: Antenna separation distance. It is the distance from the antenna to the outer surface of platform which an operator may touch.

BLE: Bluetooth Low Energy; BDR: Basic Data Rate; EDR: Enhanced Data Rate; b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT)

^{*1.} SAR test was applied to a maximum output power channel of BDR and BT-LE(PHY1) mode for the reference purpose.

^{*2.} Since reported SAR 1g of DSSS mode which had highest output power was enough small (< 0.8 W/kg), SAR test was only applied DSSS mode.

^{*3.} SAR test of U-NII-1 band was also applied for the reference purpose, even though the reported SAR(1g) of U-NII-2A band was enough lower than 1.2 W/kg.

*4. Since the maximum output power was lower than 11a mode, the SAR test was reduced.

Size of platform (camera): 138.5 mm (width) × 97.4 mm (height) × 71.45 mm (depth)

Refer to Appendix 1 for the antenna location and the test setup photographs which had been tested.

Test report No. : 13024973S-A-R3 Page : 10 of 81 Issued date : April 2, 2020

FCC ID : AZD241

4.3 SAR test exclusion considerations accordance to KDB 447498 D01

The following is based on KDB447498D01;

Step 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

 $[(max.power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)] \times [\sqrt{f(GHz)}] \le 3.0 (for SAR(1g)), 7.5(for SAR(10g))$ formula (1) If power is calculated from the upper formula (1);

- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0 or less, SAR test can be excluded.

Step 2) At 1500 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following.

- [test exclusion thresholds, mW] = [(Power allowed at numeric threshold for 50mm in formula (1))] + [(test separation distance, mm) (50mm)] × 10 · · · · · formula (3)
- The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- Power and distance are rounded to the nearest mW and mm before calculation

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

[SAR exclusion calculations for step 1) antenna <50mm from the user, and for step 2) antenna > 50mm from the user.]

								Step 2)			
						SAR exclusi	> 50mm from the user				
		T.T.	Max.	output							
Band	Tx mode	Upper Frequency [MHz]		wer lucted	Setup	Front-top-edge, Front-upper	Left	Right, Bottom			
		[IVIITIZ]	[dBm]	[mW]	D[mm]	≤5 (≈2.1)	≈7	≈9	≈42	≈42	>50
2.4GHz	BT-LE	2480	6.0	4	Judge	1.9, Reduce	Reduce	Reduce	Reduce	Reduce	≥95mW (50mm), Reduce
Z.4GHZ	b,g	2462	10.0	10	Judge	3.1, Measure	2.2, Reduce	1.7, Reduce	0.4, Reduce	0.4, Reduce	≥96mW (50mm), Reduce
U-NII-1	a	5240	10.0	10	Judge	4.6, Measure	3.3, Measure	2.5, Reduce	0.5, Reduce	0.5, Reduce	≥ 66mW (50mm), Reduce
U-NII-2A	a	5320	10.0	10	Judge	4.6, Measure	3.3, Measure	2.6, Reduce	0.5, Reduce	0.5, Reduce	≥ 65mW (50mm), Reduce
U-NII-2C	a	5700	10.0	10	Judge	4.8., Measure	0.4, Reduce	≥ 63mW (50mm), Reduce			
U-NII-3	a	5825	10.0	10	Judge	4.8, Measure	0.4, Reduce	≥ 62mW (50mm), Reduce			

D: Antenna separation distance, b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a.

Notes: 1. Power and distance are rounded to the nearest mW and mm before calculation.

<Conclusion for consideration for SAR test reduction>

- 1) For Wi-Fi operation, "Front-top-edge (*. Initial setup)", "Front-upper" and "Top-front" setup which are near an antenna is applied the SAR test in bodyliquid. The SAR test of "Front" and "Rear" setup are tested to search the SAR peak location even if the SAR test exclusion judge was "test can be reduced". The SAR test of "Left", "Right" and "Bottom" are reduced, because there have enough antenna separation distance and the SAR test exclusion judge was
- 2) For Bluetooth operation, the SAR test was only applied to the worst SAR setup of Wi-Fi operation even if the SAR test exclusion judge was "test can be reduced".
- The SAR test of front-of-face (tested by head liquid) wasn't considered, because the SAR test exclusion judge was "test can be reduced.".
- 4) The all SAR tests were conservatively performed with test separation distance 0mm.

By the determined test setup shown above, the SAR test was applied in the following procedures.

	On 2.4GHz band, in body liquid, worst SAR search by DSSS mode with a highest measurement output power channel.
Step 1	Add SAR test for OFDM mode at the worst SAR condition of DSSS mode, if it is required.
	Add SAR test for Bluetooth mode at the worst SAR condition of Wi-Fi mode.
Step 2	On U-NII-2A, band, in body liquid, worst SAR search by largest channel bandwidth mode with a highest measurement output
~Step 4	On U-NII-2A, band, in body liquid, worst SAR search by largest channel bandwidth mode with a highest measurement output power channel. Add test for another bandwidth mode, if it is required.
~Sicp 4	Repeat same test procedure in above for U-NII-2C band (step 3) and U-NII-3 band (step 4).

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

Test report No. : 13024973S-A-R3 Page : 11 of 81

Issued date : April 2, 2020

FCC ID : AZD241

SECTION 5: Uncertainty Assessment (SAR measurement/Daily check)

*. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied. Table of uncertainties are listed for ISO/IEC 17025.

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08) 1g SAR 10g SAR												
Combined measurement unce	rtainty of the mea	asurement system (k	(=1)		±	13.7%	± 13.6%					
Expande	d uncertainty (k=	=2)			±	27.4%	± 27.2%	j				
Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui(1g)	ui (10g)	Vi, veff				
A Measurement System (DASY5)						(std. uncertainty)	(std. uncertainty)					
1 Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	00				
2 Axial isotropy Error	±4.7 %	Rectangular	$\sqrt{3}$	√0.5	√0.5	±1.9 %	±1.9 %	∞				
3 Hemispherical isotropy Error	±9.6 %	Rectangular	√3	√0.5	√0.5	±3.9 %	±3.9 %	∞				
4 Linearity Error	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	00				
5 Probe modulation response	±2.4 %	Rectangular	√3	1	1	±1.4 %	±1.4 %	00				
6 Sensitivity Error (detection limit)	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	00				
7 Boundary effects Error	±4.3%	Rectangular	$\sqrt{3}$	1	1	±2.5 %	±2.5 %	00				
8 Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	00				
9 Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	00				
10 Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	√3	1	1	0%	0%	oc				
11 RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	00				
12 RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	00				
13 Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	00				
14 Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	oc				
15 Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	00				
B Test Sample Related												
16 Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5				
17 Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	145				
18 Power scaling	±0%	Rectangular	√3	1	1	±0 %	±0 %	00				
19 Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	√3	1	1	±2.9 %	±2.9 %	00				
C Phantom and Setup		Ŭ										
20 Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	√3	1	1	±4.3 %	±4.3 %	00				
21 Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97%	00				
22 Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7				
23 Measurement Liquid Permittivity Error (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7				
24 Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	√3	0.78	0.71	±2.4 %	±2.2 %	00				
25 Liquid Permittivity-temp.uncertainty (\(\square\) deg.C.)	±0.9 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.1 %	00				
Combined Standard Uncertainty						±13.7 %	±13.6 %	733				
Expanded Uncertainty (k=2)						±27.4 %	±27.2 %					

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz, Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Expanded uncertainty of the measurement system (k=1)	
Error Description (v08)	
A Measurement System (DASY5) (std uncertainty) (std uncertainty) 1 Probe Calibration Error ±6.55 % Normal 1 1 ±6.55 % ±6.55 % 2 Axial isotropy error ±4.7 % Rectangular √3 √0.5 √0.5 ±1.9 % ±1.9 % 3 Hemisphenical isotropy error ±9.6 % Rectangular √3 0 0 0 % ±2.7 % 4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 ±2.7 % ±2.7 % 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±0.6 % ±0.6 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.6 % ±0.8 %	
1 Probe Calibration Error ±6.55 % Normal 1 1 1 ±6.55 % ±6.55 % 2 Axial isotropy error ±4.7 % Rectangular √3 √0.5 √0.5 ±1.9 % ±1.9 % 3 Hemispherical isotropy error ±9.6 % Rectangular √3 0 0 0 % 0 % 0 0 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	Vi, veff
2 Axial isotropy error ±4.7 % Rectangular √3 √0.5 √0.5 ±1.9 % ±1.9 % 3 Hemispherical isotropy error ±9.6 % Rectangular √3 0 0 0 % 0 % 4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 ±2.7 % ±2.7 % 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±0.6 % ±0.6 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±2.8 % ±2.8 % 8 Response Time Error (<sms 100ms="" td="" wait)<=""> ±0.0 % Rectangular √3 1 1 ±0.3 % ±0.3 % 10 Integration Time Error (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 11 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 %<</sms>	
3 Hemispherical isotropy error ±9.6 % Rectangular √3 0 0 0 % 0 % 4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±2.8 % ±2.8 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % 9 Response Time Error (<5ms/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % 10 Integration Time Error (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 11 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 ±1.7 % ±1.7 % 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 ±2.3 % ±2.3 % 16 Deviation of the experimental source ±3.5 % Normal 1 1 ±3.5 % ±3.5 % 17 Dipole to liquid distance (10mm)±0.2mm,<2deg) ±2.0 % Rectangular √3 1 ±1.3 % ±1.3 % 18 Drift of output power (measured, <0.2dB) ±2.3 % Rectangular √3 1 ±1.3 % ±1.3 %	00
4 Probe linearity ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±0.6 % ±0.6 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 ±0.3 % ±2.8 % 9 Response Time Enror (<5ms/100ms wait)	œ
5 Probe modulation response (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±2.8 % ±2.8 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % 9 Response Time Error (<mr></mr> *smr/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % 10 Integration Time Error (<mr></mr> *smr/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % 10 Integration Time Error (<w)< td=""> ±0.0 % Rectangular √3 1 1 0 % 0 % 11 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 12 RF ambient conditions-reflections ±3.0 %</w)<>	œ
6 System detection limit ±1.0 % Rectangular √3 1 1 ±0.6 % ±0.6 % 7 Boundary effects ±4.8 % Rectangular √3 1 1 ±2.8 % ±2.8 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % 9 Response Time Error (<5ms/100ms wait)	00
7 Boundary effects ±4.8 % Rectangular √3 1 1 ±2.8 % ±2.8 % 8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % 9 Response Time Error (Sms/100ms wait) ±0.0 % Rectangular √3 1 1 0 % 0 % 10 Integration Time Error (CW) ±0.0 % Rectangular √3 1 1 0 % 0 % 11 RF ambient conditions-noise ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) <td>œ</td>	œ
8 System readout electronics (DAE) ±0.3 % Normal 1 1 1 ±0.3 % ±0.3 % 9 Response Time Error (<5ms/100ms wait)	œ
9 Response Time Error (<5ms/100ms wait)	œ
10 Integration Time Error (CW)	œ
I1 RF ambient conditions-noise ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % B Test Sample Related 1 1 ±2.3 % ±2.3 % ±3.5 % Normal 1 1 ±3.5 % ±3.5 % 16 Deviation of the experimental source ±3.5 % Normal 1 1 ±1.2 % ±1.2 % 17 Dipole to liquid distance (10mm±0.2mm,<2deg)	00
12 RF ambient conditions-reflections ±3.0 % Rectangular √3 1 1 ±1.7 % ±1.7 % 13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % B Test Sample Related 1 1 ±2.3 % ±3.5 % Normal 1 1 1 ±3.5 % ±3.5 % 16 Deviation of the experimental source ±3.5 % Normal 1 1 1 ±3.5 % ±3.5 % 17 Dipole to liquid distance (10mm±0.2mm,<2deg)	œ
13 Probe positioner mechanical tolerance ±3.3 % Rectangular √3 1 1 ±1.9 % ±1.9 % 14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % B Test Sample Related Normal 1 1 1 ±3.5 % ±3.5 % ±3.5 %	œ
14 Probe positioning with respect to phantom shell ±6.7 % Rectangular √3 1 1 ±3.9 % ±3.9 % 15 Max. SAR evaluation (Post-processing) ±4.0 % Rectangular √3 1 1 ±2.3 % ±2.3 % B Test Sample Related	œ
15 Max. SAR evaluation (Post-processing)	00
B Test Sample Related Image: Control of the experimental source ±3.5 % Normal 1 1 1 ±3.5 % ±3.5 % 17 Dipole to liquid distance (10mm±0.2mm, <2deg.)	œ
16 Deviation of the experimental source	00
17 Dipole to liquid distance (10mm±0.2mm,<2deg.)	
18 Drift of output power (measured, <0.2 dB) $\pm 2.3\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.3\%$ $\pm 1.3\%$	œ
	00
C Phantom and Setup	œ
19 Phantom uncertainty $\pm 2.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.2\%$ $\pm 1.2\%$	00
20 Algorithm for correcting SAR (e',σ: ≤5%) ±1.2 % Normal 1 1 0.84 ±1.2 % ±0.97 %	œ
21 Liquid conductivity (meas.) (DAK3.5) ±3.0 % Normal 1 0.78 0.71 ±2.3 % ±2.1 %	œ
22 Liquid permittivity (meas.) (DAK3.5) ±3.1 % Normal 1 0.23 0.26 ±0.7 % ±0.8 %	∞
23 Liquid Conductivity-temp.uncertainty (≤2deg.C.) ±5.3 % Rectangular √3 0.78 0.71 ±2.4 % ±2.2 %	00
24 Liquid Permittivity-temp.uncertainty (\leq 2deg.C.) $\pm 0.9\%$ Rectangular $\sqrt{3}$ 0.23 0.26 $\pm 0.1\%$ $\pm 0.1\%$	œ
Combined Standard Uncertainty ±11.0 % ±10.9 %	
Expanded Uncertainty (k=2) ±22.1 % ±21.8 %	

^{*} This measurement uncertainty budget is suggested by IEEE Std. 1528(2013) and determined by Schmid & Partner Engineering AG (DASY'S Uncertainty Budget).

Test report No. : 13024973S-A-R3
Page : 12 of 81
Issued date : April 2, 2020

FCC ID : AZD241

SECTION 6: Confirmation before testing

6.1 SAR reference power measurement (antenna terminal conducted average power of EUT) - Worst data rate/channel determination

*. Antenna gain (peak): 2.98 dBi (2.4GHz band), 4.94 dBi 5GHz band)

			Data	Power	Duty	Duty	Duty	M	easurem	ent Res	ult		Power o	orrecti	on	Power	
Mode	Frequ	ency	rate	Setting	cvcle		scaled	Time a	verage	Duret	power	Pov		Δ from	Tune-up	tuning	Remarks
Mode			Tate	(software)	Cycic	lactor	factor	po	wer	Durst	power	Typical	Max.	max.	factor	applied?	IXCIIIAI KS
	[MHz]	CH	[Mbps]	[-]	[%]	[dB]	[-]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]	[dB]	[-]	applied?	
BT-	2402	0	1 (DH5)	4.5	77.3	1.12	1.29	4.43	2.77	5.55	3.59	3.0	6.0	-0.45	1.11	tuned-up	-
BDR	2440	19	1 (DH5)	4.5	77.3	1.12	1.29	3.84	2.42	4.96	3.13	3.0	6.0	-1.04	1.27	tuned-up	-
DDK	2480	39	1 (DH5)	4.5	77.3	1.12	1.29	3.15	2.07	4.27	2.67	3.0	6.0	-1.73	1.49	tuned-up	-
BT-LE	2402	0	1	4.5	64.0	1.94	1.56	3.52	2.25	5.46	3.52	3.0	6.0	-0.54	1.13	tuned-up	-
(PHY1)	2 44 0	19	1	4.5	64.0	1.94	1.56	2.94	1.97	4.88	3.08	3.0	6.0	-1.12	1.29	tuned-up	-
(FII11)	2480	39	1	4.5	64.0	1.94	1.56	2.24	1.67	4.18	2.62	3.0	6.0	-1.82	1.52	tuned-up	-
BT-LE	2402	0	2	4.5	34.4	4.63	2.91	0.81	1.21	5.44	3.50	3.0	6.0	-0.56	1.14	tuned-up	-
(PHY2)	2440	19	2	4.5	34.4	4.63	2.91	0.24	1.06	4.87	3.07	3.0	6.0	-1.13	1.30	tuned-up	-
(FH12)	2480	39	2	4.5	34.4	4.63	2.91	-0.46	0.90	4.17	2.61	3.0	6.0	-1.83	1.52	tuned-up	-

(PHY2)	2440	19	2	4.5	34.4	4.63	2.91	0.24	1.06	4.87	3.07	3.0	6.0	-1.13	1.30	tuned-up	-
` /	2480	39	2	4.5	34.4	4.63	2.91	-0.46	0.90	4.17	2.61	3.0	6.0	-1.83	1.52	tuned-up	-
*. Sin	ce the m	aximu	m tuning	-up powe	r of B7	Γ-EDR v	was 3 dI	3 smalle	than BT	-BDR, tl	ne power	measure	ement of	BT-EL	OR was on		
	2412	1	11	9	100	0.00	1.00	8.72	7.45	8.72	7.45	8.0	10.0	-1.28	1.34	tuned-up	*.Initial channel.
11b	2437	6	1	9 9 9	100	0.00	1.00	8.63	7.29	8.63	7.29	8.0	10.0	-1.37	1.37	tuned-up	-
	2462	11	1		100	0.00	1.00	8.36	6.85	8.36	6.85	8.0	10.0	-1.64	1.46	tuned-up	-
11g	2412 2437	<u>1</u>	6	6	100	0.00	1.00	8.54 8.46	7.14 7.01	8.54 8.46	7.14 7.01	8.0 8.0	10.0	-1.46 -1.54	1.40 1.43	tuned-up tuned-up	
ng	2462	11	6	9 9 9	100	0.00	1.00	8.20	6.61	8.20	6.61	8.0	10.0	-1.80	1.51	tuned-up	-
	2412	1	MCS0		100	0.00	1.00	7.75	5.96	7.75	5.96	7.0	9.0	-1.25	1.33	tuned-up	-
11n	2437	6	MCS0	<u>8</u> 8	100	0.00	1.00	7.66	5.83	7.66	5.83	7.0	9.0	-1.34	1.36	tuned-up	-
(20HT)	2462	11	MCS0	8	100	0.00	1.00	7.41	5.51	7.41	5.51	7.0	9.0	-1.59	1.44	tuned-up	-
11n	2422	3 6	MCS0	- 8	100	0.00	1.00	7.68	5.86	7.68	5.86 5.78	7.0	9.0	-1.32	1.36	tuned-up	-
(40HT)	2437	6	MCS0	8 8 8	100	0.00	1.00	7.62	5.78	7.62	5.78	7.0	9.0	-1.38	1.37	tuned-up	-
(10111)	2452	9	MCS0	8	100	0.00	1.00	7.50	5.62	7.50	5.62	7.0	9.0	-1.50	1.41	tuned-up	-
	5180	36 40 44 48 52 56	6	8	100	0.00	1.00	8.79	7.57	8.79	7.57	8.0	10.0	-1.21	1.32	n/a (default)	-
	5200	40	6	8	100	0.00	1.00	8.81	7.60	8.81	7.60	8.0 8.0	10.0	-1.19	1.32	n/a (default)	-
	5220	44	6	8	100	0.00	1.00	8.83	7.64	8.83	7.64	8.0	10.0	-1.17	1.31		*.Initial channel.
	5240 5260	48	6	8	100 100	0.00	1.00	8.77	7.53 7.38	8.77 8.68	7.53 7.38	8.0	10.0	-1.23 -1.32	1.33 1.36	n/a (default)	- *.Initial channel.
	5280	56	6 6	8 8 8 8 8	100	0.00	1.00	8.68 8.59	7.23	8.59	7.23	8.0 8.0	10.0	-1.32	1.38	n/a (default)	
	5300	60	6	8	100	0.00	1.00	8.65	7.33	8.65	7.33	8.0	10.0	-1.35	1.36	n/a (default)	-
11a	5320	64		8	100	0.00	1.00	8.54	7.14	8.54	7.14	8.0	10.0	-1.46	1.40	n/a (default)	-
	5500	100	<u>6</u>	8 10	100	0.00	1.00	9.56	9.04	9.56	9.04	8.0	10.0	-0.44	1.11	tuned-up	*.Initial channel.
	5580	116	6	10	100	0.00	1.00	9.33	8.57	9.33	8.57	8.0	10.0	-0.67	1.17	tuned-up	-
	5700	140	6	10	100	0.00	1.00	9.09	8.11	9.09	8.11	8.0	10.0	-0.91	1.23	tuned-up	-
	5745	149	6	10	100	0.00	1.00	8.60	7.24	8.60	7.24 7.13	8.0	10.0	-1.40	1.38	tuned-up	*.Initial channel.
	5785	157	6	10	100	0.00	1.00	8.53	7.13	8.53	7.13	8.0	10.0	-1.47	1.40	tuned-up	-
	5825	165	6	10	100	0.00	1.00	8.45	7.00	8.45	7.00	8.0	10.0	-1.55	1.43	tuned-up	-
	5180 5200	36	MCS0 MCS0	7 7 7	100	0.00	1.00	8.02 8.03	6.34	8.02 8.03	6.34 6.35	7.0 7.0 7.0	9.0 9.0	-0.98 -0.97	1.25 1.25	n/a (default) n/a (default)	
	5220	40 44	MCS0	/	100	0.00	1.00	8.08	6.35 6.43	8.08	6.43	7.0	9.0	-0.97	1.23	n/a (default)	-
	5240	48	MCS0		100	0.00	1.00	8.01	6.32	8.01	6.32	7.0	9.0	-0.99	1.26	n/a (default)	[- -
	5260	48 52 56 60	MCS0	7 7 7 7	100	0.00	1.00	7.92	6.19	7.92	6.19	7.0 7.0 7.0	9.0	-1.08	1.28	n/a (default)	-
	5280	56	MCS0	7	100	0.00	1.00	7.82	6.05	7.82	6.05	7.0	9.0	-1.18	1.31	n/a (default)	_
11n	5300		MCS0	7	100	0.00	1.00	7.89	6.15	7.89	6.15	7.0	9.0	-1.11	1.29	n/a (default)	
(20HT)	5320	64	MCS0	7	100	0.00	1.00	7.78	6.00	7.78	6.00	7.0	9.0	-1.22	1.32	Il a (delault)	-
	5500	100	MCS0	7 9 9 9 9	100	0.00	1.00	8.76	7.52	8.76	7.52	7.0 7.0 7.0 7.0	9.0	-0.24	1.06	tuned-up	-
	5580	116	MCS0	9	100	0.00	1.00	8.53	7.13	8.53	7.13 6.78	7.0	9.0	-0.47	1.11	tuned-up	-
	5700	140	MCS0	99	100	0.00	1.00	8.31	6.78	8.31	6.78	7.0	9.0	-0.69	1.17	tuned-up	-
	5745 5785	149 157	MCS0 MCS0	9	100 100	0.00	1.00 1.00	7.80 7.76	6.03 5.97	7.80 7.76	6.03 5.97	7.0 7.0	9.0 9.0	-1.20 -1.24	1.32 1.33	tuned-up	-
	5825	165	MCS0	9	100	0.00	1.00	7.68	5.86	7.68	5.86	7.0	9.0	-1.32	1.36	tuned-up tuned-up	-
	5180		MCS0		100	0.00	1.00	8.03	6.35	8.03	635		9.0	-0.97	1.25	n/a (default)	-
	5200	36 40	MCS0	7 7 7	100	0.00	1.00	8.03	6.35 6.35	8.03	6.35 6.35	7.0 7.0 7.0 7.0 7.0 7.0	9.0 9.0	-0.97	1.25	n/a (default)	-
	5220	44	MCS0	7	100	0.00	1.00	8.06	6.40	8.06	6.40	7.0	9.0	-0.94	1.24	n/a (default)	-
	5240	44 48 52	MCS0	7	100	0.00	1.00	7.99	6.30	7.99	6.30	7.0	9.0	-1.01	1.26	n/a (default)	-
	5260	52	MCS0	7	100	0.00	1.00	7.91	6.18	7.91	6.18	7.0	9.0 9.0	-1.09	1.29	n/a (default)	-
	5280	56	MCS0	7	100	0.00	1.00	7.81	6.04	7.81	6.04	7.0	9.0	-1.19	1.32	n/a (default)	-
11ac	5300	60	MCS0	7	100	0.00	1.00	7.90	6.17	7.90	6.17	7.0	9.0	-1.10	1.29	n/a (default)	-
(20VHT)	5320	64	MCS0	7	100	0.00	1.00	7.77	5.98	7.77	5.98	7.0	9.0	-1.23	1.33	n/a (default)	-
	5500	100	MCS0 MCS0	7 7 7 7 9	100	0.00	1.00	8.77	7.53	8.77	7.53	7.0 7.0	9.0	-0.23	1.05	tuned-up	-
	5580 5700	116 140	MCS0 MCS0	9	100	0.00	1.00	8.55 8.33	7.16 6.81	8.55 8.33	7.16 6.81	7.0	9.0 9.0	-0.45 -0.67	1.11 1.17	tuned-up tuned-up	-
	5745	140	MCS0	0	100	0.00	1.00	7.80	6.03	7.80	6.03	70	9.0	-1.20	$\frac{1.17}{1.32}$	tuned-up tuned-up	
	5785	157	MCS0	9 9 9	100	0.00	1.00	7.72	5.92	7.72	5.92	7.0 7.0	9.0	-1.28	1.34	tuned-up	-
	5825	165	MCS0	<u></u>	100	0.00	1.00	7.67	5.85	7.67	5.85	7.0	9.0	-1.33	1.36	tuned-up	- -
	1															T	(cont'd)

(cont'd)

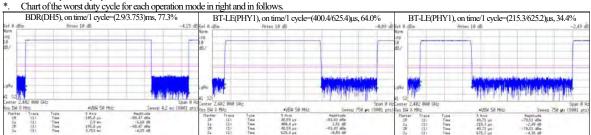
Test report No. : 13024973S-A-R3
Page : 13 of 81
Issued date : April 2, 2020

FCC ID : AZD241

(cont'd)

(cora ti)			Data	Power	Duty	Duty	Duty	M	[easuren	ent Res	ult		Power c	orrecti	on	Power	
Mode	Frequ	ency	rate	Setting		factor	scaled	Time a	verage	Duret	nomor		wer	Δ from		tuning	Remarks
Mode			Tate	(software)	Cycic	racior	factor	po	wer	Durst	power	Typical	Max.	max.	factor	_	IXCIIIAI KS
	[MHz]	CH	[Mbps]	[-]	[%]	[dB]	[-]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]	[dB]	[-]	applied?	
	5190	38	MCS0	7	100	0.00	1.00	7.97	6.27	7.97	6.27	7.0	9.0	-1.03	1.27	n/a (default)	-
	5230	46	MCS0	7	100	0.00	1.00	8.01	6.32	8.01	6.32	7.0	9.0	-0.99	1.26	n/a (default)	-
	5270	54	MCS0	7	100	0.00	1.00	7.84	6.08	7.84	6.08	7.0	9.0	-1.16	1.31	n/a (default)	-
110	5310	62	MCS0	7	100	0.00	1.00	7.80	6.03	7.80	6.03	7.0	9.0	-1.20	1.32	n/a (default)	-
11n (40HT)	5510	102	MCS0	9	100	0.00	1.00	8.66	7.35	8.66	7.35	7.0	9.0	-0.34	1.08	tuned-up	-
(40111)	5550	110	MCS0	9	100	0.00	1.00	8.54	7.14	8.54	7.14	7.0	9.0	-0.46	1.11	tuned-up	-
	5670	134	MCS0	9	100	0.00	1.00	8.35	6.84	8.35	6.84	7.0	9.0	-0.65	1.16	tuned-up	-
	5755	151	MCS0	9	100	0.00	1.00	7.75	5.96	7.75	5.96	7.0	9.0	-1.25	1.33	tuned-up	-
	5795	159	MCS0	9	100	0.00	1.00	7.69	5.87	7.69	5.87	7.0	9.0	-1.31	1.35	tuned-up	-
	5190	38	MCS0	7	100	0.00	1.00	7.97	6.27	7.97	6.27	7.0	9.0	-1.03	1.27	n/a (default)	-
	5230	46	MCS0	7	100	0.00	1.00	8.01	6.32	8.01	6.32	7.0	9.0	-0.99	1.26	n/a (default)	-
	5270	54	MCS0	7	100	0.00	1.00	7.84	6.08	7.84	6.08	7.0	9.0	-1.16	1.31	n/a (default)	-
11ac	5310	62	MCS0	7	100	0.00	1.00	7.80	6.03	7.80	6.03	7.0	9.0	-1.20	1.32	n/a (default)	-
(40VHT)	5510	102	MCS0	9	100	0.00	1.00	8.67	7.36	8.67	7.36	7.0	9.0	-0.33	1.08	tuned-up	-
(101111)	5550	110	MCS0	9	100	0.00	1.00	8.54	7.14	8.54	7.14	7.0	9.0	-0.46	1.11	tuned-up	-
	5670	134	MCS0	9	100	0.00	1.00	8.33	6.81	8.33	6.81	7.0	9.0	-0.67	1.17	tuned-up	-
	5755	151	MCS0	9	100	0.00	1.00	7.76	5.97	7.76	5.97	7.0	9.0	-1.24	1.33	tuned-up	-
	5795	159	MCS0	9	100	0.00	1.00	7.68	5.86	7.68	5.86	7.0	9.0	-1.32	1.36	tuned-up	-
	5210	42	MCS0	7	100	0.00	1.00	8.43	6.97	8.43	6.97	7.0	9.0	-0.57	1.14	n/a (default)	-
11ac	5290	58	MCS0	7	100	0.00	1.00	8.24	6.67	8.24	6.67	7.0	9.0	-0.76	1.19	n/a (default)	
(80VHT)	5530	106	MCS0	8	100	0.00	1.00	8.09	6.44	8.09	6.44	7.0	9.0	-0.91	1.23	tuned-up	-
	5775	155	MCS0	9	100	0.00	1.00	8.24	6.67	8.24	6.67	7.0	9.0	-0.76	1.19	tuned-up	-

- *. SAR test was applied.
- *. The SAR test powers by setting power were not more than 2dB lower than maximum tune-up power (KDB 447498 D01 (v06) requirement).
- *. On 2.4GHz band, according to KDB248227 D01, SAR is required for g, and n20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is >1.2 W/kg.
- *. On 5GHz band, when the same transmission mode configurations have the same maximum output power on the same channel for the a/n/ac modes, the channel with the largest bandwidth and the lowest data rate is selected.
- *. When the specified maximum output power is the same for both U-NII-1 band and U-NII-2A band, begin SAR measurement in U-NII-2A band, and if the highest reported SAR for U-NII-2A band is; \$1.2 W/kg, SAR is not required for U-NII-1 band/>1.2 W/kg, both bands should be tested independently for SAR.


 * CH-Chernel Max Maximum now not not consider (mode) BT LE-Physicoth Low Engravity. IEEE 802.11a, p. IEEE 802.11a
- *. CH: Channel; Max: Maximum; n/a: not applied; (mode) BT-LE: Bluetooth Low Energy; b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT), ac20: IEEE 802.11ac(20VHT), ac40: IEEE 802.11n(40VHT), ac80: IEEE 802.11ac(80VHT).
- *. Calculating formula: Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

 Duty cycle: (duty cycle, %) = (Tx on time, ms) / 10 cycle time, ms) × 100, where Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)

 AMax. (Deviation form maximum power, dB) = (Burst power measured (average, dBm)) (Max.tune-up limit power (average, dBm))

 Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1/(10 ^("Deviation from max, dB"/10))
- *. Date measured: October 9, 2019 / Measured by: H. Naka/Place: Preparation room of No. 7 shield room. (25 deg.C/50 %RH)
- *. Uncertainty of antenna port conducted test (Average power); 0.98 dB (BW20MHz and BW40MHz) / 1.06 dB (BW80MHz).
- *. Uncertainty of Duty cycle and time measurement: 0.262 %

Test report No. : 13024973S-A-R3 : 14 of 81 Page

: April 2, 2020

FCC ID : AZD241

Issued date

SECTION 7: SAR Measurement results

November 11, 12 and 19, 2019 Hiroshi Naka Measurement date: Measurement by:

7.1 Liquid parameters

					Li	iquid par	ameters (*a)				ΔSA	R Coeffi	cients(*b)	
Liquid	Frequency [MHz]	P	'ermittivi	ty (εr) [-]		Conductivity [S/m]				Temp.	Depth	ΔSAI	0 10/1	Correction	Date measured
type		Target	Measured		Limit	Target	Measured		Limit	[deg.C.]	[mm]	ДЗАІ	([%]	required?	Date measureu
		Target	Value	∆er [%]	[%]	rargei	Value	Δσ[%]	[%]	[ucg.c.]	[mm]	(1g)	(10g)	(*c)	
	5500	48.61	46.37	-4.6		5.650	5.805	+2.7	±5	22.9	150	+0.80	-	Not Required.	November 11, 2019
Body	5580	48.50	46.27	-4.6	±5	5.743	5.913	+3.0				+0.79	-	Not Required.	before SAR test
	5700	48.34	46.14	-4.6		5.883	6.079	+3.3				+0.75	-	Not Required.	belofe SAIX test
	5745	48.27	46.03	-4.7		5.936	6.135	+3.4		22.9		+0.77	-	Not Required.	November 11, 2019
Body	5785	48.22	45.95	-4.7	±5	5.982	6.206	+3.7	±5		150	+0.77	-	Not Required.	before SAR test
	5825	48.17	45.89	-4.7		6.029	6.253	+3.7				+0.77	-	Not Required.	ocioie san iesi
	5180	49.04	46.94	-4.3		5.276	5.389	+2.1	1			+0.81	-	Not Required.	
	5220	48.99	46.91	-4.2		5.323	5.449	+2.4			+0.79	-	Not Required.		
Body	5240	48.96	46.86	-4.3	±5	5.346	5.468	+2.3	±5	22.9	150	+0.80	-	Not Required.	November 12, 2019
Бойу	5260	48.93	46.82	-4.3	±3	5.369	5.479	+2.0	±3	22.9	150	+0.81	-	Not Required.	before SAR test
	5300	48.88	46.75	-4.4		5.416	5.519	+2.3				+0.81	-	Not Required.	
	5320	48.85	46.72	-4.4		5.439	5.542	+2.3				+0.81	-	Not Required.	
	2402	52.76	50.71	-3.9		1.904	1.918	+0.7				+1.22	-	Not Required.	
Body	2412	52.75	50.69	-3.9	±5	1.914	1.934	+1.0	±5	22.0	150	+1.39	-	Not Required.	November 19, 2019
Бойу	2437	52.72	50.60	-4.0	±3	1.938	1.964	+1.4 ±5	22.9	150	+1.56	-	Not Required.	before SAR test	
	2462	52.68	50.51	-4.1		1.967	2.001	+1.7				+1.75	-	Not Required.	

The target values of (2000, 2450, 3000 and 5800) MHz are parameters defined in Appendix A of KDB 865664 D01. For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

Liq	uid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Во	dy	(2402, 2412, 2437, 2462) MHz	2450 MHz	within ±50MHz of calibration frequency	7.37	± 12.0 %
Во	dy	(5180, 5220, 5240) MHz	5250 MHz	within ±110 MHz of calibration frequency	4.42	±13.1 %
Во	dy	(5260, 5300, 5320) MHz	5250 MHz	within ±110 MHz of calibration frequency	4.42	±13.1 %
Во	dy	(5500, 5580, 5700) MHz	5600 MHz	within ±110 MHz of calibration frequency	3.83	±13.1 %
Во	dy	(5745, 5785, 5825) MHz	5750 MHz	within ±110 MHz of calibration frequency	4.01	±13.1 %

^{*}b. Calculating formula: $\Delta SAR(1g) = Car \times \Delta ar + C\sigma \times \Delta \sigma, Car = 7.854E + 4x^3 + 9.402E - 3x^2 - 2.742E - 2x^2 + 0.2026 / C\sigma = 9.804E - 3x^3 - 8.661E - 2x^2 + 2.981E - 2x^2 + 0.7829$

^{*}c. Since the calculated \Delta SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by \Delta SAR correction. Calculating formula: Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%))/100 Calibration frequency of the SAR measurement probe (and used conversion factors for each frequency.)

The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Test report No. : 13024973S-A-R3 : 15 of 81 Page Issued date : April 2, 2020

FCC ID : AZD241

7.2 SAR test results: 2.4GHz band

[SAR measurement results (2.4GHz band)]

	SAR measurement results													eporte	d SAR [W/kg]			
Test	setu	р		Mode	Frequency		Measured SAR [W/kg] SAR			SAR	Duty	Duty cycle Output burst average		average	CAD	SAR			
Position	C	LCD	Battery ID	60k27.	[MHz] (Channel)	Data	Max.val	lue of multi-peak		plot#in	correction		power correction		SAR Corrected			Remarks	
		position		Initial mode.	66(0)	rate	Meas.	ASAR sign	ASAR corrected	2.2	Duty		Measured. [dBm].		Tune-up factor	(*a)	Туре	Limit	
Step 1: 2.4GHz	p 1: 2.4GHz Band, Body liquid																		
Front-top-edge*	0	CL.rvs	#58	b*	2412(1)*	1 _{Mbps}	0.160	Positive	n/a	1-2	100	1.00	8.72	10.0	1.34	0.214	Body, 1g	1.6	-
Front-upper	0	CL.rvs	#59	b*	2412(1)*	1 _{Mbps}	0.177	Positive	n/a	1-3	100	1.00	8.72	10.0	1.34	0.237	Body, 1g	1.6	-
Top-front	0	CL.rvs	#58	b*	2412(1)*	1 _{Mbps}	0.109	Positive	n/a	1-4	100	1.00	8.72	10.0	1.34	0.146	Body, 1g	1.6	-
Front (Lens)	0	CL.rvs	#58	b*	2412(1)*	1 _{Mbps}	n/a	Positive	n/a	1-8	*. Zoo	om scar	n was no	perfor	ned, beca	use the mea	sured int	erpola	ted maximum
Rear (LCD)	0	CL.rvs	#58	b*	2412(1)*	1 _{Mbps}	n/a	Positive	n/a	1-9	SAR	value o	f area sca	an was e	nough sn	nall.		-	
Front-upper	0	CL.rvs	#59	b*	2437(6)	1 _{Mbps}	0.177	Positive	n/a	1-5	100	1.00	8.63	10.0	1.37	0.242	Body, 1g	1.6	-
Front-upper	0	CL.rvs	#59	b*	2462(11)	1 _{Mbps}	0.168	Positive	n/a	1-1	100	1.00	8.36	10.0	1.46	0.245	Body, 1g	1.6	*.Higher, 2.4GHz.
Front-upper		CL.rvs		BDR	2402	1 _{Mbps}	0.055	Positive	n/a	1-6	77.3	1.29	5.55	6.0	1.11	0.0788	Body, 1g	1.6	-
Front-upper	0	CL.rvs	#59	BT -LE	2402	1 _{Mbps}	0.045	Positive	n/a	1-7	64.0	1.56	5.46	6.0	1.13	0.0793	Body, 1g	1.6	-

Notes: *. The higher reported SAR on each configuration in this operation band is marked (shaded yellow marker).

- (mode) BT-LE: Bluetooth Low Energy; b: IEEE 802.11b, g: IEEE 802.11g, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT); Max.: maximum.; n/a: not applied. Gap: It is the separation distance between the platform surface and the bottom outer surface of phantom; LCD position: CL.rvs.: Close-reverse, Refer to Appendix 1 for more detail. Battery ID: Refer to Appendix 1. During test, the EUT was operated with full charged battery and connected to the host PC via an USB cable.
- Reported SAR (W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor) *a. Calculating formula: Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1/(10 \(^{\circ}\) Deviation from max., \(\delta \text{B}^{\circ}\)/10))

(Clause 5.2, 2.4GHz SAR Procedures, in KDB248227 D01 (v02r02))

5.2.1 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- $\underline{1)} \quad \text{When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is ≤ 0.8 W/kg. The section of the section of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is ≤ 0.8 W/kg. The section of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is ≤ 0.8 W/kg. The section of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is ≤ 0.8 W/kg. The section of the section of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is ≤ 0.8 W/kg. The section of the$ required for 802.11b DSSS in that exposure configuration. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported
- SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 5.2.2 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- SAR test of OFDM mode was reduced, because the estimate reported SAR of OFDM mode was ≤ 1.2 W/kg by using the highest reported SAR of DSSS mode

OFDN		imum tune-u DSSS		nce limit FDM	OFDM scaled factor [-]	DSSS wo	rst reported SAR(1g	g) value	Estimated SAR (1g) value:	Exclusion limit	Standalone SAR test
mode	[dBm]	[mW] (a)	[dBm]	[mW](b)	(b)/(a)×100	SAR type	Setup	[W/kg]	OFDM [W/kg]	[W/kg]	require?
g	10.0	10	10.0	10	1.00	Body-touch, 1g	Front-upper	0.245	0.245	≤ 1.2	No
n20	10.0	10	9.0	8	0.80	Body-touch, 1g	Front-upper	0.245	0.196	≤ 1.2	No
n40	10.0	10	9.0	8	0.80	Body-touch, 1g	Front-upper	0.245	0.196	≤ 1.2	No

^{*. (}mode) b: IEEE 802.11b, g: IEEE 802.11g, n20: IEEE 802.11n(20HT), n40: IEEE 802.11n(40HT).

Test report No. : 13024973S-A-R3 : 16 of 81 Page Issued date : April 2, 2020

FCC ID : AZD241

SAR test results: 5GHz band 7.3

[SAR measurement results (5GHz band)]

STITE III WAS	SAR measurement results													enorte	d SAR	[W/kø]			
Test	setm)			Frequency	Court		ed SAI	R [W/kg]	GLD	Duty c	vcle			average	SAR			
				Mode "**"	[MHz]	Data			ulti-peak	SAR plot#in	correct			er corr		SAR			Remarks
Position "*": Initial position.	Gap			Initial	(Channel)	rate		ΔSAR	ΔSAR	Appendix	Duty I	Duty	Measured.	Max.	Tune-up	Corrected (*a)	Type	Limit	
: initial position.	lmmi	position	ID	mode.	Initial ch.		Meas.	sign	corrected	2-2			[dBm].			(*a)			
Step 2: U-NII-2A	(and	l U-NI	I-1) Ba	and, E	ody liquid														
Front-top-edge*	0	CL.rvs	#58	a*	5260(52)*	6 _{Mbps}	0.243	Positive	n/a	2-1	100	1.00	8.68	10.0	1.36	0.330	Body, 1g	1.6	*.Higher, U-NII-2A.
Front-upper	0	CL.rvs	#59	a*	5260(52)*	6 _{Mbps}	0.179	Positive	n/a	2-3	100	1.00	8.68	10.0	1.36	0.243	Body, 1g	1.6	-
Top-front	0	CL.rvs	#59	a*	5260(52)*	$6 \mathrm{Mbps}$	0.185	Positive	n/a	2-4	100	1.00	8.68	10.0	1.36	0.252	Body, 1g	1.6	-
Front (Lens)	0	CL.rvs	#59	a*	5260(52)*	6 _{Mbps}	n/a	Positive	n/a	2-9							easured i	nterpo	lated maximum
Rear (LCD)	0	CL.rvs	#58	a*	5260(52)*	6 _{Mbps}	n/a	Positive	n/a		SAR va	lue o			enough s	small.			
Front-top-edge*	0	CL.rvs	#58	a*	5300(60)	$6 \mathrm{Mbps}$	0.217	Positive	n/a	2-5	100	1.00	8.65	10.0	1.36	0.295	Body, 1g	1.6	-
Front-top-edge*	0	CL.rvs	#59	a*	5320(64)	$6 \mathrm{Mbps}$	0.221	Positive	n/a	2-6	100	1.00	8.54	10.0	1.40	0.309	Body, 1g	1.6	-
Front-top-edge*	0	CL.rvs	#58	a*	5180(36)	$6 \mathrm{Mbps}$	0.316	Positive	n/a	2-2	100	1.00	8.79	10.0	1.32	0.417	Body, 1g	1.6	*.Higher, U-NII-1.
Front-top-edge*	0	CL.rvs	#58	a*	5220(44)	$6 \mathrm{Mbps}$	0.279	Positive	n/a	2-7	100	1.00	8.83	10.0	1.31	0.365	Body, 1g	1.6	-
Front-top-edge*	0	CL.rvs	#58	a*	5240(48)	6 _{Mbps}	0.256	Positive	n/a	2-8	100	1.00	8.77	10.0	1.33	0.340	Body, 1g	1.6	-
Step 3: U-NII-2C	Bar	d, Bod	ly liqui											•					
Front-top-edge*	0	CL.rvs			5500(100)*	$6 \mathrm{Mbps}$	0.252	Positive	n/a	3-2	100	1.00	9.56	10.0	1.11	0.280	Body, 1g	1.6	-
Front-upper	0	CL.rvs	#59	a*	5500(100)*	$6 \mathrm{Mbps}$	0.187	Positive	n/a	3-3	100	1.00	9.56	10.0	1.11	0.208	Body, 1g	1.6	-
Top-front	0	CL.rvs	#59	a*	5500(100)*	6 _{Mbps}	0.191	Positive	n/a	3-4	100	1.00	9.56	10.0	1.11	0.212	Body, 1g	1.6	-
Front (Lens)	0	CL.rvs	#59		5500(100)*	6 _{Mbps}	n/a	Positive	n/a	3-6							easured i	nterpo	lated maximum
Rear (LCD)	0	CL.rvs	#58	a*	5500(100)*	$6 \mathrm{Mbps}$	n/a	Positive	n/a	3-7	SAR va	lue o		an was	enough s				
Front-top-edge*	0	CL.rvs	#59	a*	5580(116)	$6 \mathrm{Mbps}$	0.274	Positive	n/a	3-1		1.00	9.33	10.0	1.17	0.321	Body, 1g	1.6	*.Higher, U-NII-2C
Front-top-edge*	0	CL.rvs		a*	5700(140)	$6 \mathrm{Mbps}$	0.221	Positive	n/a	3-5	100	1.00	9.09	10.0	1.23	0.272	Body, 1g	1.6	-
Step 4: U-NII-3 I	Band	_		_															
Front-top-edge*	0	CL.rvs			5745(149)*	$6 \mathrm{Mbps}$	0.184	Positive	n/a	4-1	100	1.00	8.60	10.0	1.38	0.254	Body, 1g	1.6	*.Higher, U-NII-3
Front-upper	0	CL.rvs	#59		5745(149)*	$6 \mathrm{Mbps}$	0.131	Positive	n/a	4-2		1.00	8.60	10.0	1.38	0.181	Body, 1g	1.6	-
Top-front	0	CL.rvs	#59		/		0.128	Positive	n/a	4-3	100	1.00	8.60	10.0	1.38	0.177	Body, 1g	1.6	-
Front (Lens)	0	CL.rvs	#59	a*		•	n/a	Positive	n/a	4-6							easured i	nterpo	lated maximum
Rear (LCD)	0	CL.rvs	#58	a*	,	$6 \mathrm{Mbps}$	n/a	Positive	n/a			lue o			enough s				
Front-top-edge*	0	CL.rvs	#58	a*	5785(157)	$6 \mathrm{Mbps}$	0.165	Positive	n/a	4-4		1.00	8.53	10.0	1.40	0.231	Body, 1g		-
Front-top-edge*	0	CL.rvs	#58	a*	5825(165)	$6 \mathrm{Mbps}$	0.142	Positive	n/a	4-5	100	1.00	8.45	10.0	1.43	0.203	Body, 1g	1.6	-

Notes: *.

Initial Test Position SAR Test Reduction Procedure. According to KDB248227D01

- Highest reported SAR(1g) is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.
 Highest reported SAR(1g) is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in standalone exposure condition were evaluated until a SAR(1g)≤0.8 W/kg was reported.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR(1g) is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR(1g) is ≤1.2 W/kg or all required test channels are considered.

The higher reported SAR on each configuration in this operation band is marked (shaded yellow marker). (mode) a: IEEE 802.11a; Max.: maximum.; n/a: not applied. Gap: It is the separation distance between the platform surface and the bottom outer surface of phantom; LCD position: CL.rvs.: Close-reverse, Refer to Appendix 1 for more detail. Battery ID: Refer to Appendix 1. During test, the EUT was operated with full charged battery and connected to the host PC via an USB cable. ing formula:

Reported SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled) × (Tune-up factor)

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)

Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1/(10 ^ (*Deviation from max., dB"/10))

^{*}a. Calculating formula:

Test report No. : 13024973S-A-R3 Page : 17 of 81

: April 2, 2020

FCC ID : AZD241

Issued date

10012

7.4 Simultaneous transmission evaluation

*. Simultaneous transmission SAR measurement (Volume Scan) was not required because the sum of the simulated SAR(1g) was < 1.6 W/kg.

	Simu	ıltaneous tra	nsmission scena	rio	ΣSAR	SPLSR	Antenna separation	SPLSR	Volume
Test	,	Wi-Fi	Highest Repo	rted SAR (*1)	(lg:≤l.6)	Check?	distance-	(≤0.04)	Scan?
position	mode	band	Wi-Fi Bluetoot		(1g: \(\simegram)	(Yes/No)	design base [mm]	(50.04)	(Yes/No)
	b,g	2.4GHz	0.25 W/kg	0.08 W/kg	*. not supported	n/a	n/a	n/a	n/a
E	a	U-NII-1	0.42 W/kg	0.08 W/kg	0.50 W/kg	<1.6, No	0 (*. same antenna)	n/a	No
Front-	a	U-NII-2A	0.33 W/kg	0.08 W/kg	0.41 W/kg	<1.6, No	0 (*. same antenna)	n/a	No
top-edge	a	U-NII-2C	0.32 W/kg	0.08 W/kg	0.40 W/kg	<1.6, No	0 (*. same antenna)	n/a	No
	a	U-NII-3	0.25 W/kg	0.08 W/kg	0.33 W/kg	<1.6, No	0 (*. same antenna)	n/a	No

Note: *1. These values are measured higher reported SAR (1g) of each operation band. Refer to section 7.2 and 7.3.

- *. This wireless module supports both Wi-Fi and Bluetooth on a same antenna.
- *. Wi-Fi (5GHz) and Bluetooth can transmit simultaneously. *. Wi-Fi (2.4GHz) and Bluetooth can not transmit simultaneously.
- *. Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the SAR(1g) is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

(Estimated method)

The following is based on KDB447498D01; When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

 $[(max.\ power\ of\ channel,\ including\ tune-up\ tolerance,\ mW)/(minimum\ test\ separation\ distance,\ mm)]\cdot [\sqrt{f(GHz)/x}]\ W/kg$

- *. for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR
- *. 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.
- *. When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion.

[Estimated ΣSAR1g of simultaneous transmission]

	M' E	Upper Frequency		Max. Power				Estimated S.	AR 1g value	Estimated Σ	SPLSR check	Antenna separation	SPLSR	Volume
Setup	Wi-Fi	[GI	Hz]	Wi-Fi		В	Т	Wi-Fi	BT	SAR 1g value	required?	distance b/w Wi-Fi and	SPLSR (≤0.04)	Scan?
	mode	Wi-Fi	BT	[dBm]	[mW]	[dBm]	[mW]	VV I-F1	ы	(≤1.6 W/kg)	(Yes/No)	BT [mm]	(50.04)	(Yes/No)
	b,g	2.462	2.48	10.0	10	6.0	4	0.42 W/kg	0.17 W/kg	*. not supported	n/a	n/a	n/a	n/a
E	a	5.24	2.48	10.0	10	6.0	4	0.61 W/kg	0.17 W/kg	0.78 W/:kg	<1.6, No	0 (*. same antenna)	n/a	No
Front-top-	a	5.32	2.48	10.0	10	6.0	4	0.62 W/kg	0.17 W/kg	0.79 W/:kg	<1.6, No	0 (*. same antenna)	n/a	No
edge	a	5.7	2.48	10.0	10	6.0	4	0.64 W/kg	0.17 W/kg	0.81 W/:kg	<1.6, No	0 (*. same antenna)	n/a	No
	a	5.825	2.48	10.0	10	6.0	4	0.64 W/kg	0.17 W/kg	0.81 W/:kg	<1.6, No	0 (*. same antenna)	n/a	No

^{*. (}mode) BT: Bluetooth; b: IEEE 802.11b, g: IEEE 802.11g, a: IEEE 802.11a; Max.: maximum.; n/a: not applied.