RADIO TEST REPORT

Report No: 1707007W01

Issued for

UNNECTO HOLDING LIMITED

13/F HARBOUR COMMERCIAL BUILDING 122-124 CON-NAUGHT ROAD CENTRAL SHEUNG WAN HK, CHINA.

Product Name:	3G MOBILE PHONE
Brand Name:	unnecto ™
Model Name:	U617
Series Model:	N/A
FCC ID:	2ADR3U617
Test Standard:	FCC Part 22H and 24E

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from BZT, All Test Data Presented in this report is only applicable to presented Test sample.

BZT Testing Technology Co., Ltd

Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong,

Baoan District, Shenzhen, Guangdong, China TEL: +86-755 3307 1680 FAX: +86-755 27341758 E-mail:bruce@bzt.Cn

TEST RESULT CERTIFICATION

Applicant's name	.: UNNECTO	HOLDING LIMITED
Address	.: 13/F HARE ROAD CEN	BOUR COMMERCIAL BUILDING 122-124 CONNAUGHT NTRAL SHEUNG WAN HK, CHINA.
Manufacture's Name	.: TEM Mobil	e Limited
Address	.: 11/F, Block Shenzhen,	B, TCL Tower, Gaoxin South 1st road, Nanshan District, Guangdong China
Product name	.: 3G MOBIL	E PHONE
Brand name	.: unnecto ™	
Model and/or type reference.	.: U617	
Standards	.: FCC Part 2	22H and 24E
Test procedure	ANSI/TIA 6	03-D (2010)
under test (EUT) is in compli sample identified in the report This report shall not be repro-	ance with the duced except BZT, personal	FCC requirements. And it is applicable only to the tested in full, without the written approval of BZT, this document only, and shall be noted in the revision of the document.
Date of performance of tests	04 July. 2	017~08 July. 2017
Date of Issue	10 July. 2	017
Test Result	Pass	
Testing Er	ngineer :	Sean She (Sean she)
Technical	Manager :	(Hakim.hou)
Authorized	d Signatory :	Meali

(Vita Li)

TABLE OF CONTENTS P	age
1 INTRODUCTION	6
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 PRODUCT INFORMATION	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	9
4 MEASUREMENT INSTRUMENTS	10
5 TEST ITEMS	11
5.1 CONDUCTED OUTPUT POWER	11
5.2 PEAK TO AVERAGE RATIO	12
5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)	13
5.4 OCCUPIED BANDWIDTH	14
5.5 FREQUENCY STABILITY	15
5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	16
5.7 BAND EDGE	17
5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	18
APPENDIX ATESTRESULT	20
A1CONDUCTED OUTPUT POWER	20
A2 PEAK-TO-AVERAGE RADIO	24
A3 TRANSMITTER RADIATED POWER (EIRP/ERP)	26
A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)	29
A5 FREQUENCY STABILITY	39
A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	44
A7 BAND EDGE	52
A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	60
APPENDIX BPHOTOS OF TEST SETUP	68

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	10 July. 2017	1707007W01	ALL	Initial Issue

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D: 2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower	Reporting Only	PASS	
2.0146 24.232	Peak-to-AverageRatio	< 13 dB	PASS	
2.1046	Effective Radiated Pow-	< 7 Watts max. ERP(Part 22)		
22.913	er/Equivalent Isotropic	< 2 Watts max. EIRP(Part 24)	PASS	
24.232	Radiated Power	(22)		
2.1049				
22.917	Occupied Bandwidth	Reporting Only	PASS	
24.238				
2.1055		< 2.5 ppm (Part 22)		
22.355	Frequency Stability	Emission must remain in band	PASS	
24.235		(Part 24)		
2.1051	Spurious Emission at			
22.917	Antenna Terminals	< 43+10log10(P[Watts])	PASS	
24.238	Antenna Terminais			
2.1053	Field Strength of Spurious			
22.917	Radiation	< 43+10log10(P[Watts])	PASS	
24.238	Naulalion			
2.1051				
22.917	Band Edge	< 43+10log10(P[Watts])	PASS	
24.238				

1 INTRODUCTION

1.1 TEST FACTORY

BZT Testing Technology Co., Ltd.

Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong,

Baoan District, Shenzhen, Guangdong, China

FCC Registration No.: 701733

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. \circ

No.	Item	Uncertainty
1	RF power,conducted	±0.70dB
2	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

2 PRODUCT INFORMATION

Product Designation:	3G MOBILE PHONE	
Hardware version number:	S73M003B1_C310_BOM21_V2.01	
Software version number:	CX-504_V1.0_20161219	
FCC ID:	2ADR3U617	
	GSM/GPRS/EDGE:	
	850: 824.2 MHz ~ 848.8 MHz	
Ty Fraguency	1900: 1850.2 MHz ~ 1909.8MHz	
Tx Frequency:	WCDMA:	
	Band V: 826.4 MHz ~ 846.6 MHz	
	Band II: 1852.4 MHz ~ 1907.6 MHz	
	GSM/GPRS/EDGE:	
	850: 869.2 MHz ~ 893.8 MHz	
Rx Frequency:	1900: 1930.2 MHz ~ 1989.8 MHz	
KX Frequency.	WCDMA:	
	Band V: 871.4 MHz ~ 891.6 MHz	
	Band II: 1932.4 MHz ~ 1987.6 MHz	
Max RF Output Power:	GSM850:32.48dBm, PCS1900:29.18dBm GPRS850(1-Slot):32.46dBm, GPRS1900(1-Slot):29.16dBm GPRS850(2-Slot):32.04dBm, GPRS1900(2-Slot):28.75dBm GPRS850(3-Slot):30.55dBm, GPRS1900(3-Slot):27.30dBm GPRS850(4-Slot):30.12dBm, GPRS1900(4-Slot):26.85dBm EDGE 850(1-Slot):32.45dBm, EDGE 1900(1-Slot):29.15dBm EDGE 850(2-Slot):31.98dBm, EDGE 1900(2-Slot):28.70dBm DGE 850(3-Slot):30.52dBm, EDGE 1900(3-Slot):27.27dBm EDGE 850(4-Slot): 30.04dBm, EDGE 1900(4-Slot):26.81dBm WCDMABand V:22.82dBm, WCDMA Band II:22.68dBm	
Type of Emission:	GSM(850): 317KGXW; GSM(1900): 461KGXW GPRS(850): 326KGXW; GPRS(1900): 358KGXW EDGE(850): 322KG7W; EDGE(1900): 325KG7W WCDMA850: 4M62F9W WCDMA1900: 4M64F9W	
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM 1 is used to tested	
Antenna:	Monopole Antenna	
Antonno goini	GSM 850: 0.8dBi ,PCS 1900: 1.3dBi	
Antenna gain:	WCDMA 850: 0.8dBi, WCDMA1900: 1.3dBi	
Power Supply:	DC 3.7V by battery	
Battery parameter:	Capacity: 1400mAh, Rated Voltage: 3.7V, Charge Limit: 4.2V	
GPRS/EDGE Class:	Multi-Class12	

Extreme Temp. Tolerance: -30°C to +50°C

^{**} Note: The High Voltage 4.2 V and Low Voltage 3.5 V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10th harmonic for GSM850 and WCDMA Band V.
- 2. 30 MHz to 10th harmonic for WCDMA Band IV.
- 3. 30 MHz to 10th harmonic for GSM1900 and WCDMA Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES		
BAND	RADIATED TCS	CONDUCTED TCS	
GSM 850	GSM LINK GPRS/EDGE CLASS 12 LINK	GSM LINK GPRS/EDGE CLASS 12 LINK	
GSM 1900	GSM LINK GPRS/EDGE CLASS 12 LINK	GSM LINK GPRS/EDGE CLASS 12 LINK	
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	
WCDMA BAND II	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	

4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibra- tion	Calibrated Until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2016.10.23	2017.10.22
Signal Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	101427	2016.10.23	2017.10.22
Communication Tester	Agilent	8960	MY48360751	2016.10.23	2017.10.22
Communication Tester	R&S	CMU200	112012	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	102086	2016.10.23	2017.10.22
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2015.03.05	2018.03.04
MXA SIGNAL Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Double Ridge Horn Antenna	COM-POWER CORPORATION	AH-840	AHA-840	2016.10.23	2017.10.22
Low frequency cable	N/A	R01	N/A	NCR	NCR
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/96287	NCR	NCR
Vector signal generator	Agilent	E8257D-521	MY45141029	2016.10.23	2017.10.22
Power amplifier	DESAY	ZHL-42W	9638	2016.10.23	2017.10.22
Band Reject fil- ter(1920-1980MHz)	COM-MW	ZBSF-1920-1980	0092	2016.10.23	2017.10.22
Band Reject fil- ter(880-915MHz)	COM-MW	ZBSF-C897.5-35	707	2016.10.23	2017.10.22
Band Reject fil- ter(1710-1785MHz)	COM-MW	ZBSF-C1747.5-75	708	2016.10.23	2017.10.22
Band Reject fil- ter(1850-1910MHz)	COM-MW	ZBSF-C1880-60	709	2016.10.23	2017.10.22
Band Reject fil- ter(2500-2570MHz)	COM-MW	ZBSF-C2535-70	710	2016.10.23	2017.10.22
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	2016.10.23	2017.10.22

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

5 TEST ITEMS

5.1 CONDUCTED OUTPUT POWER

Test overview

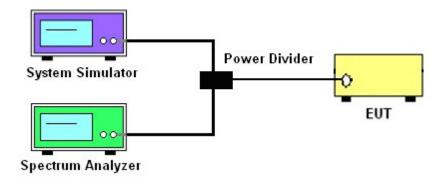
A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Test procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

Test setup

5.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows fcckdb 971168 v02r02 section
- 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis

TEST SETUP

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

- 1. The testing follows FCC KDB 971168 D01 Section 5.2.1. (for CDMA/WCDMA), Section 5.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-D-2010 Section 2.2.17.
- 2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.
- 6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW;

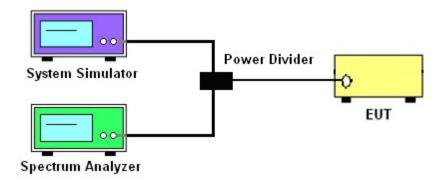
GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.


The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1 5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

5.5 FREQUENCY STABILITY

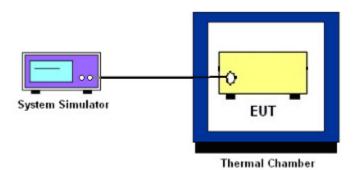
Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure


Temperature Variation

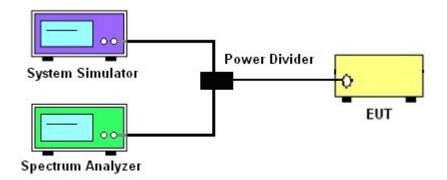
- 1. The testing follows fcckdb 971168 D01 section 9.0
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation

- 1. The testing follows FCC KDB 971168 D01 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

TEST SETUP

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS Test Overview


The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

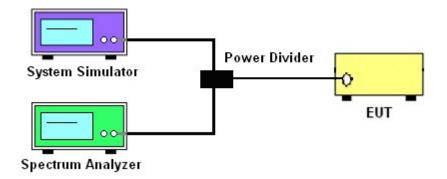
Test procedure

- 1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

Test Setup

OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


17 of 68

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

- 1.The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)
- 2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.
- 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 5. The band edges of low and high channels for the highest RF powers were measured.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

TEST SETUP

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

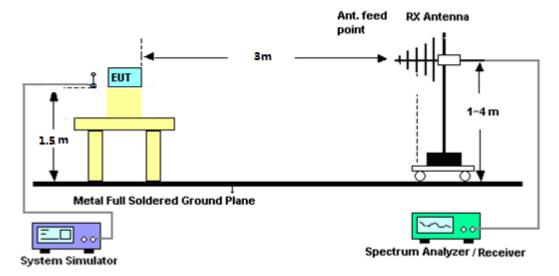
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

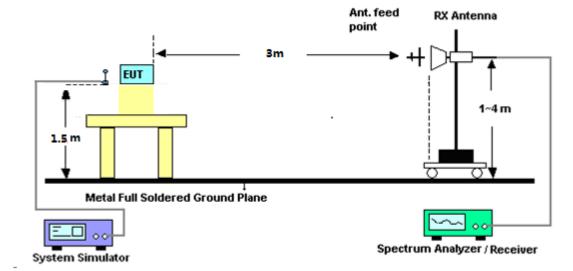
- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010-Section 2.2.12.2(b)
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize
- 9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, t ypically dBW or dBm);


P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);


LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

TEST SETUP

For radiated test from 30MHz to 1GHz

For radiated test from above 1GHz

APPENDIX ATESTRESULT A1CONDUCTED OUTPUT POWER GSM 850:

Mode	Frequency (MHz)	AVG Power(dBm)
	824.2	32.48
GSM	836.6	32.38
	848.8	32.42
	824.2	32.46
GPRS(GMSK,1-Slot)	836.6	32.36
	848.8	32.39
	824.2	32.04
GPRS(GMSK,2-Slot)	836.6	31.93
	848.8	31.94
	824.2	30.55
GPRS(GMSK,3-Slot)	836.6	30.52
	848.8	30.49
	824.2	30.07
GPRS(GMSK,4-Slot)	836.6	30.12
	848.8	30.04
	824.2	32.45
EGPRS(GMSK,1-Slot)	836.6	32.35
	848.8	32.37
	824.2	31.98
EGPRS(GMSK,2-Slot)	836.6	31.86
	848.8	31.95
	824.2	30.48
EGPRS(GMSK,3-Slot)	836.6	30.44
	848.8	30.52
	824.2	30.01
EGPRS(GMSK,4-Slot)	836.6	29.96
	848.8	30.04

PCS 1900:

Mode	Frequency	AVC Power(dPm)
Wode	(MHz)	AVG Power(dBm)
	1850.2	29.12
GSM	1880.0	29.18
	1909.8	29.17
	1850.2	29.09
GPRS(GMSK,1-Slot)	1880.0	29.16
	1909.8	29.15
	1850.2	28.65
GPRS(GMSK,2-Slot)	1880.0	28.74
	1909.8	28.75
	1850.2	27.25
GPRS(GMSK,3-Slot)	1880.0	27.30
	1909.8	27.30
	1850.2	26.81
GPRS(GMSK,4-Slot)	1880.0	26.83
	1909.8	26.85
	1850.2	29.08
EGPRS(GMSK,1-Slot)	1880.0	29.15
	1909.8	29.13
	1850.2	28.67
EGPRS(GMSK,2-Slot)	1880.0	28.68
	1909.8	28.70
	1850.2	27.24
EGPRS(GMSK,3-Slot)	1880.0	27.26
	1909.8	27.27
	1850.2	26.81
EGPRS(GMSK,4-Slot)	1880.0	26.81
	1909.8	26.81

UMTS BAND V

Mode	Frequency(MHz)	AVG Power
WCDMA 850 RMC	826.4	22.82
	836.6	22.79
RIVIC	846.6	22.68
110004	826.4	22.79
HSDPA Subtest 1	836.6	22.76
Subtest	846.6	22.65
LICEDA	826.4	22.33
HSDPA Subtest 2	836.6	22.29
Sublest 2	846.6	22.24
110004	826.4	21.98
HSDPA Subtest 3	836.6	21.88
Sublest 5	846.6	21.93
LICDDA	826.4	21.58
HSDPA Subtest 4	836.6	21.52
Sublest 4	846.6	21.54
LIQUIDA	826.4	22.75
HSUPA Subtest 1	836.6	22.69
Sublest 1	846.6	22.21
LIGUIDA	826.4	21.84
HSUPA Subtest 2	836.6	21.79
Sublest 2	846.6	21.31
1101154	826.4	21.83
HSUPA Subtest 3	836.6	21.33
Sublest 3	846.6	20.86
LICUDA	826.4	21.50
HSUPA Subtest 4	836.6	20.95
Sublest 4	846.6	20.48
1101154	826.4	20.04
HSUPA Subtest 5	836.6	19.46
Subiesi 3	846.6	19.03

UMTS BAND II

Mode	Frequency(MHz)	AVG Power
WODAN 1000	1852.4	22.58
WCDMA 1900 RMC	1880	22.61
KIVIC	1907.6	22.68
LIODDA	1852.4	22.55
HSDPA Subtest 1	1880	22.59
Subtest	1907.6	22.66
LICDDA	1852.4	22.07
HSDPA Subtest 2	1880	22.11
Sublest 2	1907.6	22.20
LIODDA	1852.4	21.68
HSDPA Subtest 3	1880	21.71
Sublest 3	1907.6	21.78
LIODDA	1852.4	21.31
HSDPA Subtest 4	1880	21.38
Sublest 4	1907.6	21.46
	1852.4	22.48
HSUPA Subtest 1	1880	22.56
Sublest 1	1907.6	22.24
	1852.4	21.57
HSUPA Subtest 2	1880	21.57
Sublest 2	1907.6	21.27
LIQUIDA	1852.4	21.43
HSUPA Subtest 3	1880	21.07
Sublest 3	1907.6	20.81
1101127	1852.4	21.06
HSUPA Subtest 4	1880	20.63
Sublest 4	1907.6	20.47
1101104	1852.4	19.57
HSUPA Subtest 5	1880	19.15
Sublest 5	1907.6	19.06

A2 PEAK-TO-AVERAGE RADIO

Mada	Frequency	PEAK Power	AVG Power	PAR
Mode	(MHz)	(dBm)	(dBm)	(dB)
	824.2	32.59	32.48	0.11
GSM850	836.6	32.49	32.38	0.11
	848.8	32.53	32.42	0.11
	824.2	32.56	32.46	0.10
GPRS850	836.6	32.48	32.36	0.12
	848.8	32.50	32.39	0.11
	824.2	32.56	32.45	0.11
EDGE850	836.6	32.47	32.35	0.12
	848.8	32.48	32.37	0.11
	1850.2	29.23	29.12	0.11
PCS1900	1880	29.28	29.18	0.10
	1909.8	29.28	29.17	0.11
	1850.2	29.20	29.09	0.11
GPRS1900	1880	29.27	29.16	0.11
	1909.8	29.26	29.15	0.11
	1850.2	29.19	29.08	0.11
EDGE1900	1880	29.27	29.15	0.12
	1909.8	29.23	29.13	0.10

25 of 68 Report No.: 1707007	7W01
------------------------------	------

Mode	Frequency	PEAK Power	AVG Power	PAR
Mode	(MHz)	(dBm)	(dBm)	(dB)
	826.4	25.79	22.82	2.97
WCDMA 850 RMC	836.6	25.66	22.79	2.87
	846.6	25.19	22.68	2.51
	826.4	25.43	22.79	2.64
HSDPA 850	836.6	25.63	22.76	2.87
	846.6	25.32	22.65	2.67
	826.4	25.49	22.75	2.74
HSUPA 850	836.6	25.37	22.69	2.68
	846.6	25.02	22.21	2.81
	1852.4	25.42	22.58	2.84
WCDMA 1900 RMC	1880	25.14	22.61	2.53
	1907.6	25.20	22.68	2.52
	1852.4	25.12	22.55	2.57
HSDPA 1900	1880	25.58	22.59	2.99
	1907.6	25.29	22.66	2.63
	1852.4	25.03	22.48	2.55
HSUPA 1900	1880	25.47	22.56	2.91
	1907.6	25.06	22.24	2.82

A3 TRANSMITTER RADIATED POWER (EIRP/ERP)

Radiated Power (ERP) for GSM 850 MHZ								
			Result					
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
		(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max. ERP		
	824.2	23.89	0.44	6.5	29.95	Horizontal	Pass	
	824.2	25.89	0.44	6.5	31.95	Vertical	Pass	
GSM850	836.6	23.93	0.45	6.5	29.98	Horizontal	Pass	
GSIVIOSU	836.6	25.81	0.45	6.5	31.86	Vertical	Pass	
	848.8	23.89	0.46	6.5	29.93	Horizontal	Pass	
	848.8	25.88	0.46	6.5	31.92	Vertical	Pass	
	824.2	24.18	0.44	6.5	30.24	Horizontal	Pass	
	824.2	25.76	0.44	6.5	31.82	Vertical	Pass	
GPRS850	836.6	23.88	0.45	6.5	29.93	Horizontal	Pass	
GPR3630	836.6	25.63	0.45	6.5	31.68	Vertical	Pass	
	848.8	24.12	0.46	6.5	30.16	Horizontal	Pass	
	848.8	25.62	0.46	6.5	31.66	Vertical	Pass	
	824.2	24.09	0.44	6.5	30.15	Horizontal	Pass	
	824.2	25.66	0.44	6.5	31.72	Vertical	Pass	
EDOE050	836.6	24.02	0.45	6.5	30.07	Horizontal	Pass	
EDGE850	836.6	25.55	0.45	6.5	31.60	Vertical	Pass	
	848.8	23.95	0.46	6.5	29.99	Horizontal	Pass	
	848.8	25.84	0.46	6.5	31.88	Vertical	Pass	

	Radiated Power (EIRP) for PCS 1900 MHZ							
			Result					
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP.		
	1850.2	18.84	2.41	10.35	26.78	Horizontal	Pass	
	1850.2	20.55	2.41	10.35	28.49	Vertical	Pass	
PCS1900	1880.0	18.82	2.42	10.35	26.75	Horizontal	Pass	
PC31900	1880.0	20.6	2.42	10.35	28.53	Vertical	Pass	
	1909.8	18.67	2.43	10.35	26.59	Horizontal	Pass	
	1909.8	20.59	2.43	10.35	28.51	Vertical	Pass	
	1850.2	18.83	2.41	10.35	26.77	Horizontal	Pass	
	1850.2	20.38	2.41	10.35	28.32	Vertical	Pass	
GPRS1900	1880.0	18.87	2.42	10.35	26.8	Horizontal	Pass	
GPK31900	1880.0	20.3	2.42	10.35	28.23	Vertical	Pass	
	1909.8	18.67	2.43	10.35	26.59	Horizontal	Pass	
	1909.8	20.37	2.43	10.35	28.29	Vertical	Pass	
	1850.2	18.8	2.41	10.35	26.74	Horizontal	Pass	
	1850.2	20.25	2.41	10.35	28.19	Vertical	Pass	
EDGE1900	1880.0	18.68	2.42	10.35	26.61	Horizontal	Pass	
LDGE 1900	1880.0	20.35	2.42	10.35	28.28	Vertical	Pass	
	1909.8	18.76	2.43	10.35	26.68	Horizontal	Pass	
	1909.8	20.38	2.43	10.35	28.30	Vertical	Pass	

Radiated Power (ERP) for WCDMA Band V							
				Re	esult		
Mode	Frequency	S G.Level	Cable	Gain	PMeas E.R.P	Polarization	Conclusion
		(dBm)	loss	(dBi)	(dBm)	Of Max.ERP	
	826.4	14.39	0.44	6.5	20.45	Horizontal	Pass
	826.4	16.23	0.44	6.5	22.29	Vertical	Pass
Band V	836.6	14.33	0.45	6.5	20.38	Horizontal	Pass
Danu v	836.6	16.20	0.45	6.5	22.25	Vertical	Pass
	846.6	14.18	0.46	6.5	20.22	Horizontal	Pass
	846.6	16.13	0.46	6.5	22.17	Vertical	Pass

Radiated Power (EIRP) for WCDMA Band II									
			Result						
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion		
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP			
	1852.4	12.36	2.41	10.35	20.30	Horizontal	Pass		
	1852.4	14.13	2.41	10.35	22.07	Vertical	Pass		
Band II	1880.0	12.35	2.42	10.35	20.28	Horizontal	Pass		
Danu II	1880.0	14.16	2.42	10.35	22.09	Vertical	Pass		
	1907.6	12.52	2.43	10.35	20.44	Horizontal	Pass		
	1907.6	14.23	2.43	10.35	22.15	Vertical	Pass		

A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)

Occupied Bandwidth for GSM 850 band							
Mode	Frequency(MHz)	Occupied Bandwidth (99%)(kHz)	Emission Bandwidth (-26dBc)(kHz)				
Low Channel	824.2	248.15	315.6				
Middle Channel	836.6	247.10	315.8				
High Channel	848.8	246.41	316.6				
	Occupied Bandwidth for GPRS 850 band						
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth				
Mode		(99%)(kHz)	(-26dBc)(kHz)				
Low Channel	824.2	244.81	326.0				
Middle Channel	836.6	246.91	317.8				
High Channel	848.8	245.82	315.5				
	Occupied Bandy	vidth for EGPRS 850 band					
Mode	Fragues av(MHz)	Occupied Bandwidth	Emission Bandwidth				
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)				
Low Channel	824.2	247.08	315.3				
Middle Channel	836.6	246.23	320.0				
High Channel	848.8	249.02	322.2				

Occupied Bandwidth for GSM1900 band							
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth				
Mode	Frequency(IVIFIZ)	(99%)(kHz)	(-26dBc)(kHz)				
Low Channel	1850.2	250.43	319.2				
Middle Channel	1880.0	246.65	321.3				
High Channel	1909.8	252.79	460.7				
	Occupied Bandwidth for GPRS 1900 band						
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth				
Mode		(99%)(kHz)	(-26dBc)(kHz)				
Low Channel	1850.2	246.74	318.8				
Middle Channel	1880.0	248.32	315.2				
High Channel	1909.8	251.72	357.7				
	Occupied Bandy	width for EDGE 1900 band					
Mode	Fraguanay(MHz)	Occupied Bandwidth	Emission Bandwidth				
iviode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)				
Low Channel	1850.2	246.26	325.2				
Middle Channel	1880.0	248.50	316.7				
High Channel	1909.8	246.24	306.8				

Occupied Bandwidth for UMTS band V						
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth			
Mode	Frequency(MHZ)	(99%)(MHz)	(-26dBc)(MHz)			
Low Channel	826.4	4.0767	4.619			
Middle Channel	836.6	4.0817	4.611			
High Channel	846.6	4.0772	4.616			

Occupied Bandwidth for UMTS band II						
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth			
iviode	Frequency(MHZ)	(99%)(MHz)	(-26dBc)(MHz)			
Low Channel	1852.4	4.0884	4.632			
Middle Channel	1880	4.0926	4.632			
High Channel	1907.6	4.0915	4.643			

GSM 850 CH 128

GSM 850 CH 190

GSM 850 CH 251

GPRS 850 CH 128

GPRS 850 CH 190

GPRS 850 CH 251

EDGE 850 CH 128

EDGE 850 CH 190

EDGE 850 CH 251

PCS 1900 CH 512

PCS 1900 CH 661

PCS 1900 CH 810

GPRS 1900 CH 512

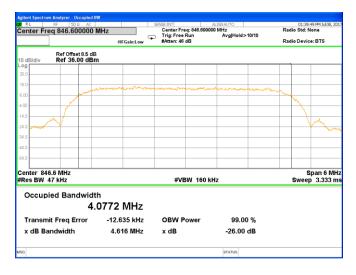
GPRS 1900 CH 661

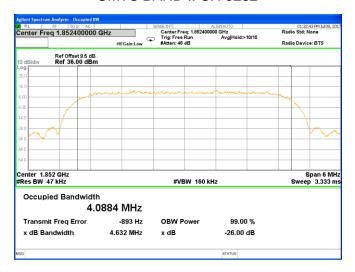
GPRS 1900 CH 810

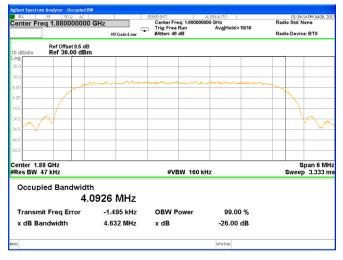
EDGE 1900 CH 512

EDGE 1900 CH 661


EDGE 1900 CH 810


UMTS BAND V CH 4132


UMTS BAND V CH 4183


UMTS BAND V CH 4233

UMTS BAND II CH 9262

UMTS BAND II CH 9400

UMTS BAND II CH 9538

A5 FREQUENCY STABILITY Normal Voltage = 3.7V.; Battery End Point (BEP) = 3.5 V.; Maximum Voltage = 4.2 V

GSM 850 Middle Channel/836.6MHz								
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result			
50		35.62	0.043					
40		19.58	0.023					
30		13.61	0.016					
20		14.82	0.018					
10	Normal Voltage	28.09	0.034					
0		13.98	0.017	2.5ppm	PASS			
-10		18.33	0.022					
-20		34.85	0.042					
-30		31.97	0.038					
25	Maximum Voltage	27.66	0.033					
25	BEP	25.36	0.030					

GPRS 850 Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		23.99	0.029						
40		14.84	0.018						
30		29.25	0.035		PASS				
20		34.92	0.042						
10	Normal Voltage	18.09	0.022						
0		15.10	0.018	2.5ppm					
-10		32.09	0.038						
-20		12.53	0.015						
-30		12.03	0.014						
25	Maximum Voltage	33.48	0.040						
25	BEP	27.36	0.033						

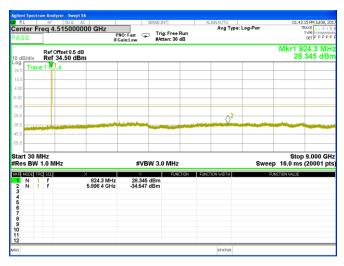
	EDGE 850 Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		25.44	0.030							
40		23.52	0.028							
30		24.97	0.030		PASS					
20		17.61	0.021							
10	Normal Voltage	17.08	0.020							
0		33.81	0.040	2.5ppm						
-10		25.45	0.030							
-20		19.64	0.023							
-30		22.55	0.027							
25	Maximum Voltage	22.72	0.027							
25	BEP	34.66	0.041							

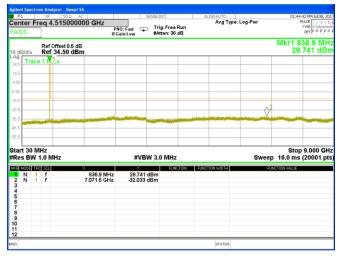
	GSM 1900 Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		11.71	0.006							
40		21.46	0.011		PASS					
30		34.88	0.019							
20		18.56	0.010	Within Au-						
10	Normal Voltage	28.68	0.015							
0		21.03	0.011							
-10		30.26	0.016	Band						
-20		30.56	0.016							
-30		22.44	0.012							
25	Maximum Voltage	18.17	0.010							
25	BEP	34.92	0.019							

	GPRS 1900 Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		15.56	0.008							
40		35.24	0.019		PASS					
30		33.93	0.018							
20		22.47	0.012	Within Au-						
10	Normal Voltage	16.51	0.009							
0		22.11	0.012	thorized						
-10		28.71	0.015	Band						
-20		28.02	0.015							
-30		29.15	0.016							
25	Maximum Voltage	34.22	0.018							
25	BEP	27.75	0.015							

EDGE 1900 Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	•		Limit	Result				
50		19.48	0.010						
40		27.57	0.015		PASS				
30		16.20	0.009						
20		25.74	0.014	Within Au-					
10	Normal Voltage	21.59	0.011						
0		25.52	0.014	thorized					
-10		32.45	0.017	Band					
-20		15.41	0.008						
-30		35.86	0.019						
25	Maximum Voltage	27.78	0.015						
25	BEP	26.70	0.014						

	WCDMA V Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		25.59	0.031							
40		14.46	0.017							
30		22.41	0.027		PASS					
20		16.12	0.019							
10	Normal Voltage	21.85	0.026							
0		20.77	0.025	2.5ppm						
-10		22.58	0.027							
-20		22.41	0.027							
-30		34.84	0.042							
25	Maximum Voltage	16.90	0.020							
25	BEP	24.33	0.029							

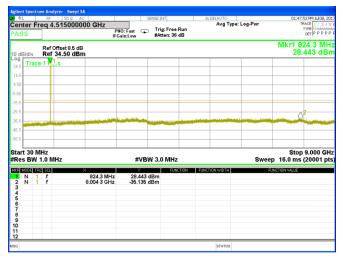

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

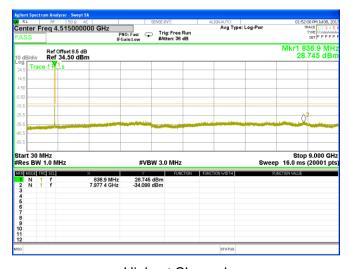

	WCDMA II Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		21.34	0.011							
40		32.88	0.017		PASS					
30		21.45	0.011							
20		18.96	0.010	Within Au- thorized						
10	Normal Voltage	33.22	0.018							
0		28.59	0.015							
-10		27.58	0.015	Band						
-20		11.89	0.006							
-30		18.25	0.010							
25	Maximum Voltage	36.00	0.019							
25	BEP	34.91	0.019							

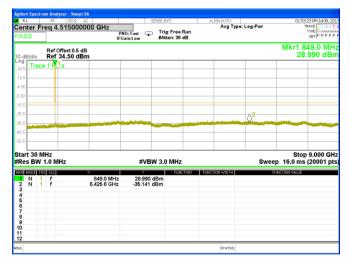
^{1.} The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS GSM 850 BAND

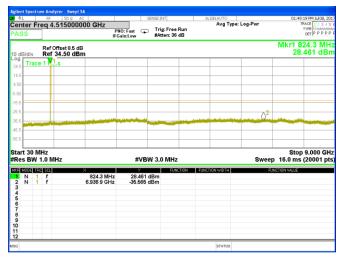
Lowest Channel




Highest Channel


GPRS 850 BAND

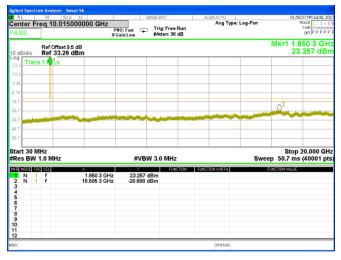
Lowest Channel

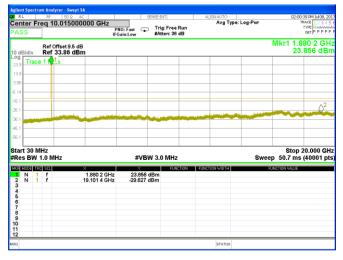


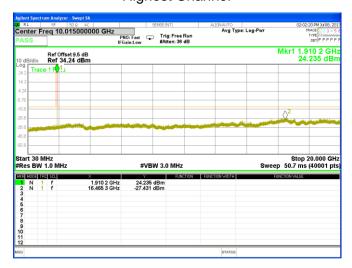

Highest Channel


EDGE 850 BAND

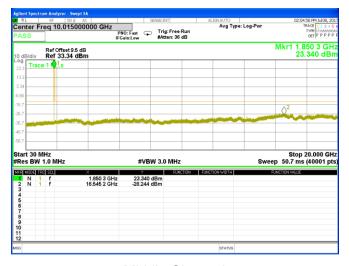
Lowest Channel

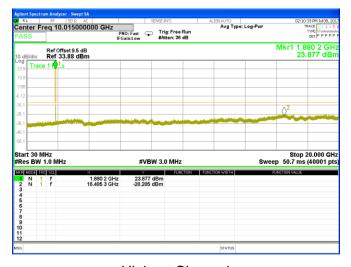



Highest Channel


GSM1900 BAND(30M-20G)

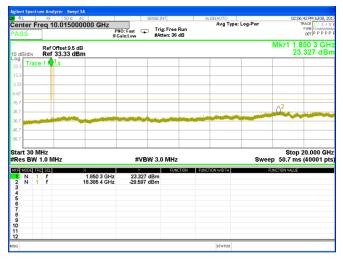
Lowest Channel

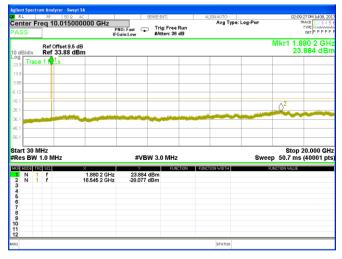



Highest Channel

GPRS1900 BAND(30M-20G)

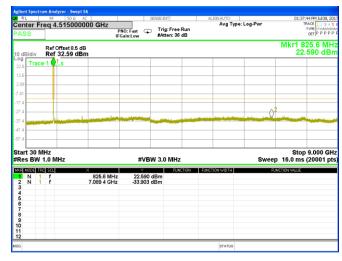
Lowest Channel



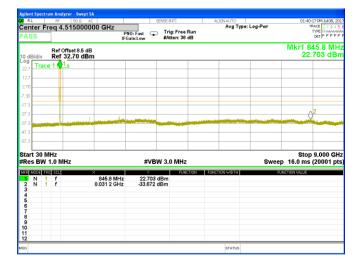

Highest Channel

EDGE 1900 BAND(30M-20G)

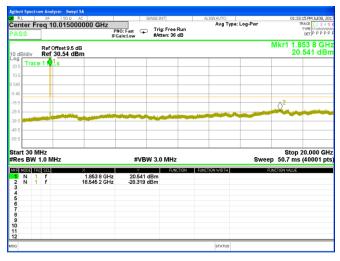
Lowest Channel




Highest Channel


WCDMA Band V (RMC 12.2Kbps)

Lowest Channel




Highest Channel


WCDMA Band II (RMC 12.2Kbps)(30M-20G)

Lowest Channel

Highest Channel

A7 BAND EDGE

GSM 850

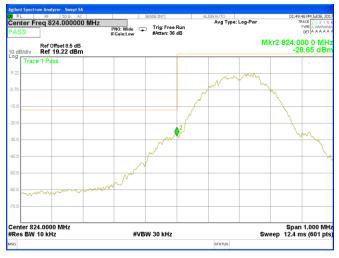
Lowest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

GPRS 850


Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

EDGE 850

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

GSM 1900

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

GPRS 1900

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

EDGE 1900

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

WCDMA Band VRMC 12.2Kbps

Lowest Band Edge

Highest Band Edge

WCDMA Band IIRMC 12.2Kbps

Lowest Band Edge

Highest Band Edge

A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT GSM 850: (30-9000)MHz

		GSM	850: (30-9	000)MHz			
	The W	orst Test R	esults Ch	annel 128/	824.2 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
	(dBm)	7 ii ii (GDI)	2000	(dBm)	(dBm)	(dB)	· Oldiniy
1648.14	-40.41	9.40	4.75	-35.76	-13.00	-22.76	Н
2472.27	-39.91	10.60	8.39	-37.70	-13.00	-24.70	Н
3296.83	-31.06	12.00	11.79	-30.85	-13.00	-17.85	Н
1648.20	-43.20	9.40	4.75	-38.55	-13.00	-25.55	V
2472.54	-44.25	10.60	8.39	-42.04	-13.00	-29.04	V
3296.65	-43.56	12.00	11.79	-43.35	-13.00	-30.35	V
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz		
Fragues av (MIII-)	S G.Lev	Ant/dD:\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1672.81	-41.33	9.50	4.76	-36.59	-13.00	-23.59	Н
2509.49	-40.38	10.70	8.40	-38.08	-13.00	-25.08	Н
3346.09	-32.08	12.20	11.80	-31.68	-13.00	-18.68	Н
1672.80	-43.25	9.40	4.75	-38.60	-13.00	-25.60	V
2509.47	-44.54	10.60	8.39	-42.33	-13.00	-29.33	V
3346.19	-43.78	12.20	11.82	-43.40	-13.00	-30.40	V
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz		
	S G.Lev	Λ :=4(«ID:)	1.000	PMea	Limit	Margin	Dolovitu
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1697.30	-41.21	9.60	4.77	-36.38	-13.00	-23.38	Н
2546.14	-39.63	10.80	8.50	-37.33	-13.00	-24.33	Н
3395.08	-32.21	12.50	11.90	-31.61	-13.00	-18.61	Н
1697.55	-44.56	9.60	4.77	-39.73	-13.00	-26.73	V
2546.33	-44.17	10.80	8.50	-41.87	-13.00	-28.87	V
3395.12	-43.10	12.50	11.90	-42.50	-13.00	-29.50	V

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

GPRS 850: (30-9000)MHz

13 030. (30-9000)N	/II IZ						
		GPRS	850: (30-9	000)MHz			
	The W	orst Test R	esults Ch	annel 128/	824.2 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
i requericy(ivii iz)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folanty
1648.45	-41.36	9.40	4.75	-36.71	-13.00	-23.71	Н
2472.34	-40.00	10.60	8.39	-37.79	-13.00	-24.79	Н
3296.89	-31.24	12.00	11.79	-31.03	-13.00	-18.03	Н
1648.42	-44.42	9.40	4.75	-39.77	-13.00	-26.77	V
2472.64	-45.17	10.60	8.39	-42.96	-13.00	-29.96	V
3296.50	-43.81	12.00	11.79	-43.60	-13.00	-30.60	V
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz		
	S G.Lev	Λ :=4(=ID:)	1.000	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1673.07	-40.32	9.50	4.76	-35.58	-13.00	-22.58	Н
2509.82	-39.85	10.70	8.40	-37.55	-13.00	-24.55	Н
3345.99	-32.15	12.20	11.80	-31.75	-13.00	-18.75	Н
1672.83	-43.33	9.40	4.75	-38.68	-13.00	-25.68	V
2509.61	-44.03	10.60	8.39	-41.82	-13.00	-28.82	V
3346.08	-43.45	12.20	11.82	-43.07	-13.00	-30.07	V
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
Frequency(MHZ)	(dBm)	Anii(ubi)	L055	(dBm)	(dBm)	(dB)	Polarity
1697.62	-41.57	9.60	4.77	-36.74	-13.00	-23.74	Н
2546.15	-39.49	10.80	8.50	-37.19	-13.00	-24.19	Н
3394.96	-30.85	12.50	11.90	-30.25	-13.00	-17.25	Н
1697.53	-43.33	9.60	4.77	-38.50	-13.00	-25.50	V
2546.34	-45.23	10.80	8.50	-42.93	-13.00	-29.93	V
3395.09	-43.93	12.50	11.90	-43.33	-13.00	-30.33	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

EDGE 850: (30-9000)MHz

3E 850: (30-9000)N		EGPRS	S 850: (30-	9000)MHz					
	The Worst Test Results Channel 128/824.2 MHz								
F	S G.Lev	A1(1D')	1 -	PMea	Limit	Margin	D-Is it		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
1648.11	-40.86	9.40	4.75	-36.21	-13.00	-23.21	Н		
2472.38	-39.20	10.60	8.39	-36.99	-13.00	-23.99	Н		
3296.55	-32.19	12.00	11.79	-31.98	-13.00	-18.98	Н		
1648.41	-44.47	9.40	4.75	-39.82	-13.00	-26.82	V		
2472.29	-44.72	10.60	8.39	-42.51	-13.00	-29.51	V		
3296.73	-42.80	12.00	11.79	-42.59	-13.00	-29.59	V		
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz				
Fragues av/MIIa)	S G.Lev	۸ nat/dD:\	Loss	PMea	Limit	Margin	Dolority		
Frequency(MHz)	(dBm)	Ant(dBi)	LUSS	(dBm)	(dBm)	(dB)	Polarity		
1673.08	-40.67	9.50	4.76	-35.93	-13.00	-22.93	Н		
2509.46	-39.37	10.70	8.40	-37.07	-13.00	-24.07	Н		
3346.26	-32.00	12.20	11.80	-31.60	-13.00	-18.60	Н		
1673.10	-43.16	9.40	4.75	-38.51	-13.00	-25.51	V		
2509.74	-44.78	10.60	8.39	-42.57	-13.00	-29.57	V		
3346.04	-43.49	12.20	11.82	-43.11	-13.00	-30.11	V		
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz				
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
Frequency(MHZ)	(dBm)	Anti(ubi)	L055	(dBm)	(dBm)	(dB)	Polarity		
1697.50	-40.14	9.60	4.77	-35.31	-13.00	-22.31	Н		
2546.55	-39.61	10.80	8.50	-37.31	-13.00	-24.31	Н		
3395.02	-31.71	12.50	11.90	-31.11	-13.00	-18.11	Н		
1697.27	-44.29	9.60	4.77	-39.46	-13.00	-26.46	V		
2546.44	-45.31	10.80	8.50	-43.01	-13.00	-30.01	V		
3395.05	-42.53	12.50	11.90	-41.93	-13.00	-28.93	V		

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

PCS 1900: (30-20000)MHz

5 1900: (30-20000)		DCS 1	900: (30-2	0000)MHz			
	The Wor	st Test Res	sults for C	hannel 512	2/1850.2MH	z	
Fragues (MIII)	S G.Lev	Ant/dD:\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
3700.00	-33.80	12.60	12.93	-34.13	-13.00	-21.13	Н
5550.21	-34.27	13.10	17.11	-38.28	-13.00	-25.28	Н
7400.73	-33.03	11.50	22.20	-43.73	-13.00	-30.73	Н
3700.51	-35.45	12.60	12.93	-35.78	-13.00	-22.78	V
5550.39	-34.67	13.10	17.11	-38.68	-13.00	-25.68	V
7400.56	-31.71	11.50	22.20	-42.41	-13.00	-29.41	V
	The Wor	st Test Res	sults for C	hannel 661	I/1880.0MH	z	
Fraguenov(MHz)	S G.Lev	۸ ۱/ حاD: <i>۱</i>	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
3760.18	-33.56	12.60	12.93	-33.89	-13.00	-20.89	Н
5639.92	-34.99	13.10	17.11	-39.00	-13.00	-26.00	Н
7520.08	-33.28	11.50	22.20	-43.98	-13.00	-30.98	Н
3760.12	-35.92	12.60	12.93	-36.25	-13.00	-23.25	V
5639.92	-34.15	13.10	17.11	-38.16	-13.00	-25.16	V
7520.12	-33.16	11.50	22.20	-43.86	-13.00	-30.86	V
	The Wor	st Test Res	sults for C	hannel 810	D/1909.8MH	z	
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
r requericy(ivii iz)	(dBm)	Anti(abi)	L055	(dBm)	(dBm)	(dB)	Folarity
3819.42	-34.83	12.60	12.93	-35.16	-13.00	-22.16	Н
5729.20	-34.17	13.10	17.11	-38.18	-13.00	-25.18	Н
7638.90	-32.20	11.50	22.20	-42.90	-13.00	-29.90	Н
3819.47	-35.39	12.60	12.93	-35.72	-13.00	-22.72	V
5729.46	-34.07	13.10	17.11	-38.08	-13.00	-25.08	V
7639.36	-32.19	11.50	22.20	-42.89	-13.00	-29.89	V

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

GPRS 1900: (30-20000)MHz

30-20000	,	GPRS1	900: (30-2	0000)MHz				
	The Wor		•		2/1850.2MH	z		
Fragues (NALL)	S G.Lev	A m4(-ID:)	Loss	PMea	Limit	Margin	Dalesit	
Frequency(MHz)	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dB)	Polarity	
3700.33	-33.60	12.60	12.93	-33.93	-13.00	-20.93	Н	
5550.66	-34.61	13.10	17.11	-38.62	-13.00	-25.62	Н	
7400.95	-33.56	11.50	22.20	-44.26	-13.00	-31.26	Н	
3700.51	-35.81	12.60	12.93	-36.14	-13.00	-23.14	V	
5550.35	-33.94	13.10	17.11	-37.95	-13.00	-24.95	V	
7400.56	-32.45	11.50	22.20	-43.15	-13.00	-30.15	V	
The Worst Test Results for Channel 661/1880.0MHz								
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
	(dBm)			(dBm)	(dBm)	(dB)		
3759.91	-33.82	12.60	12.93	-34.15	-13.00	-21.15	Н	
5640.06	-35.12	13.10	17.11	-39.13	-13.00	-26.13	Н	
7520.29	-32.73	11.50	22.20	-43.43	-13.00	-30.43	Н	
3760.29	-35.25	12.60	12.93	-35.58	-13.00	-22.58	V	
5640.26	-34.64	13.10	17.11	-38.65	-13.00	-25.65	V	
7519.87	-32.48	11.50	22.20	-43.18	-13.00	-30.18	V	
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	z		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
Frequency(MHZ)	(dBm)	Ant(abi)	L055	(dBm)	(dBm)	(dB)	Folarity	
3819.31	-34.08	12.60	12.93	-34.41	-13.00	-21.41	Н	
5729.05	-34.57	13.10	17.11	-38.58	-13.00	-25.58	Н	
7639.11	-32.54	11.50	22.20	-43.24	-13.00	-30.24	Н	
3819.45	-35.47	12.60	12.93	-35.80	-13.00	-22.80	V	
5729.08	-34.79	13.10	17.11	-38.80	-13.00	-25.80	V	
7639.31	-32.42	11.50	22.20	-43.12	-13.00	-30.12	V	

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

EDGE 1900: (30-20000)MHz

GE 1900: (30-2000)	-,	EGPRS	1900: (30-	20000)MHz	Z				
The Worst Test Results for Channel 512/1850.2MHz									
Frequency(MHz)	S G.Lev	A = 4(-UD :)	Loss	PMea	Limit	Margin	Dalerit		
	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dB)	Polarity		
3700.07	-33.96	12.60	12.93	-34.29	-13.00	-21.29	Н		
5550.50	-34.42	13.10	17.11	-38.43	-13.00	-25.43	Н		
7400.85	-32.73	11.50	22.20	-43.43	-13.00	-30.43	Н		
3700.51	-35.23	12.60	12.93	-35.56	-13.00	-22.56	V		
5550.30	-34.43	13.10	17.11	-38.44	-13.00	-25.44	V		
7400.67	-32.07	11.50	22.20	-42.77	-13.00	-29.77	V		
The Worst Test Results for Channel 661/1880.0MHz									
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
	(dBm)			(dBm)	(dBm)	(dB)			
3759.96	-33.86	12.60	12.93	-34.19	-13.00	-21.19	Н		
5640.22	-34.93	13.10	17.11	-38.94	-13.00	-25.94	Н		
7519.84	-32.40	11.50	22.20	-43.10	-13.00	-30.10	Н		
3760.26	-35.46	12.60	12.93	-35.79	-13.00	-22.79	V		
5640.33	-34.20	13.10	17.11	-38.21	-13.00	-25.21	V		
7520.07	-33.06	11.50	22.20	-43.76	-13.00	-30.76	V		
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	z			
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
Frequency(MHZ)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folarity		
3819.31	-33.86	12.60	12.93	-34.19	-13.00	-21.19	Н		
5729.50	-35.23	13.10	17.11	-39.24	-13.00	-26.24	Н		
7639.17	-33.25	11.50	22.20	-43.95	-13.00	-30.95	Н		
3819.80	-34.62	12.60	12.93	-34.95	-13.00	-21.95	V		
5729.47	-34.80	13.10	17.11	-38.81	-13.00	-25.81	V		
7639.39	-32.88	11.50	22.20	-43.58	-13.00	-30.58	V		

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

UMTS band V(30-9000)MHz

5 band v(30-9000)		WCDMA	Band V: (3	80-9000)MF	Ηz			
	The v	vost testre	•					
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
	(dBm)			(dBm)	(dBm)	(dB)		
1652.22	-41.49	9.40	4.75	-36.84	-13.00	-23.84	Н	
2479.24	-39.73	10.60	8.39	-37.52	-13.00	-24.52	Н	
3305.79	-31.48	12.00	11.79	-31.27	-13.00	-18.27	Н	
1652.01	-43.16	9.40	4.75	-38.51	-13.00	-25.51	V	
2479.45	-44.36	10.60	8.39	-42.15	-13.00	-29.15	V	
3305.45	-43.15	12.00	11.79	-42.94	-13.00	-29.94	V	
The Worst Test Results Channel 4183/836.6MHz								
Frequency(MHz)	S G.Lev	Λ := 4/ dD;)	Loss	PMea	Limit	Margin	Polarity	
	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dB)		
1672.79	-40.59	9.50	4.76	-35.85	-13.00	-22.85	Н	
2509.69	-40.53	10.70	8.40	-38.23	-13.00	-25.23	Н	
3346.13	-31.65	12.20	11.80	-31.25	-13.00	-18.25	Н	
1673.18	-44.53	9.40	4.75	-39.88	-13.00	-26.88	V	
2509.52	-44.89	10.60	8.39	-42.68	-13.00	-29.68	V	
3346.12	-43.68	12.20	11.82	-43.30	-13.00	-30.30	V	
	The Wo	orst Test R	esults Cha	annel 4233	/846.6MHz			
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
Frequency(MHZ)	(dBm)	Ant(abi)	L055	(dBm)	(dBm)	(dB)	Folanty	
1693.51	-40.18	9.60	4.77	-35.35	-13.00	-22.35	Н	
2539.34	-40.14	10.80	8.50	-37.84	-13.00	-24.84	Н	
3385.98	-31.93	12.50	11.90	-31.33	-13.00	-18.33	Н	
1693.24	-43.49	9.60	4.77	-38.66	-13.00	-25.66	V	
2539.27	-44.45	10.80	8.50	-42.15	-13.00	-29.15	V	
3386.02	-42.74	12.50	11.90	-42.14	-13.00	-29.14	V	

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

UMTS band II(30-20000)MHz

WCDMA Band II: (30-20000)MHz								
The Worst Test Results for Channel 9262/1852.4MHz								
S G.Lev	Ant(dBi)	1	PMea Limit	Limit	Margin	Polarity		
(dBm)		LOSS	(dBm)	(dBm)	(dB)			
-33.48	12.60	12.93	-33.81	-13.00	-20.81	Н		
-34.77	13.10	17.11	-38.78	-13.00	-25.78	Н		
-32.16	11.50	22.20	-42.86	-13.00	-29.86	Н		
-35.35	12.60	12.93	-35.68	-13.00	-22.68	V		
-34.64	13.10	17.11	-38.65	-13.00	-25.65	V		
-32.05	11.50	22.20	-42.75	-13.00	-29.75	V		
The Worst Test Results for Channel 9400/1880MHz								
S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
(dBm)			(dBm)	(dBm)	(dB)			
-34.91	12.60	12.93	-35.24	-13.00	-22.24	Н		
-34.87	13.10	17.11	-38.88	-13.00	-25.88	Н		
-32.79	11.50	22.20	-43.49	-13.00	-30.49	Н		
-34.55	12.60	12.93	-34.88	-13.00	-21.88	V		
-35.13	13.10	17.11	-39.14	-13.00	-26.14	V		
-31.90	11.50	22.20	-42.60	-13.00	-29.60	V		
The Wors	st Test Res	ults for Ch	nannel 953	8/1907.6MF	lz			
S G.Lev	Ant(dRi)	Loce	PMea	Limit	Margin	Polarity		
(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folarity		
-34.70	12.60	12.93	-35.03	-13.00	-22.03	Н		
-34.75	13.10	17.11	-38.76	-13.00	-25.76	Н		
-33.56	11.50	22.20	-44.26	-13.00	-31.26	Н		
-35.36	12.60	12.93	-35.69	-13.00	-22.69	V		
-33.90	13.10	17.11	-37.91	-13.00	-24.91	V		
-32.99	11.50	22.20	-43.69	-13.00	-30.69	V		
	S G.Lev (dBm) -33.48 -34.77 -32.16 -35.35 -34.64 -32.05 The Wor S G.Lev (dBm) -34.91 -34.87 -32.79 -34.55 -35.13 -31.90 The Wors S G.Lev (dBm) -34.70 -34.75 -33.56 -35.36	The Worst Test Res S G.Lev (dBm) Ant(dBi) -33.48 12.60 -34.77 13.10 -32.16 11.50 -35.35 12.60 -34.64 13.10 -32.05 11.50 The Worst Test Res S G.Lev (dBm) Ant(dBi) -34.91 12.60 -34.87 13.10 -32.79 11.50 -34.55 12.60 -35.13 13.10 -31.90 11.50 The Worst Test Res S G.Lev (dBm) Ant(dBi) -34.70 12.60 -34.75 13.10 -35.36 11.50 -35.36 12.60	The Worst Test Results for Cr S G.Lev (dBm) Ant(dBi) Loss -33.48 12.60 12.93 -34.77 13.10 17.11 -32.16 11.50 22.20 -35.35 12.60 12.93 -34.64 13.10 17.11 -32.05 11.50 22.20 The Worst Test Results for Cr S G.Lev (dBm) Ant(dBi) Loss -34.91 12.60 12.93 -34.87 13.10 17.11 -32.79 11.50 22.20 -34.55 12.60 12.93 -35.13 13.10 17.11 -31.90 11.50 22.20 The Worst Test Results for Cr S G.Lev (dBm) Ant(dBi) Loss -34.70 12.60 12.93 -34.75 13.10 17.11 -33.56 11.50 22.20 -35.36 12.60 12.93	The Worst Test Results for Channel 926 S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -33.48 12.60 12.93 -33.81 -34.77 13.10 17.11 -38.78 -32.16 11.50 22.20 -42.86 -35.35 12.60 12.93 -35.68 -34.64 13.10 17.11 -38.65 -32.05 11.50 22.20 -42.75 The Worst Test Results for Channel 940 S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -34.91 12.60 12.93 -35.24 -34.91 12.60 12.93 -35.24 -34.87 13.10 17.11 -38.88 -32.79 11.50 22.20 -43.49 -34.55 12.60 12.93 -34.88 -35.13 13.10 17.11 -39.14 -31.90 11.50 22.20 -42.60 The Worst Test Results for Channel 953 S G.Lev (dBm) Ant(dBi)<	The Worst Test Results for Channel 9262/1852.4MH S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) Limit (dBm) -33.48 12.60 12.93 -33.81 -13.00 -34.77 13.10 17.11 -38.78 -13.00 -32.16 11.50 22.20 -42.86 -13.00 -35.35 12.60 12.93 -35.68 -13.00 -34.64 13.10 17.11 -38.65 -13.00 -32.05 11.50 22.20 -42.75 -13.00 The Worst Test Results for Channel 9400/1880MH; S G.Lev (dBm) Ant(dBi) Loss PMea Limit (dBm) (dBm) (dBm) (dBm) (dBm) -34.91 12.60 12.93 -35.24 -13.00 -34.87 13.10 17.11 -38.88 -13.00 -32.79 11.50 22.20 -43.49 -13.00 -35.13 13.10 17.11 -39.14 -13.00 -31.90 11.50 <	The Worst Test Results for Channel 9262/1852.4MHz S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) Limit (dBm) Margin (dBm) -33.48 12.60 12.93 -33.81 -13.00 -20.81 -34.77 13.10 17.11 -38.78 -13.00 -25.78 -32.16 11.50 22.20 -42.86 -13.00 -29.86 -35.35 12.60 12.93 -35.68 -13.00 -25.65 -34.64 13.10 17.11 -38.65 -13.00 -25.65 -32.05 11.50 22.20 -42.75 -13.00 -29.75 The Worst Test Results for Channel 9400/1880MHz S G.Lev (dBm) Ant(dBi) Loss PMea Limit Margin (dBm) (dBm) (dBm) (dB) -34.91 12.60 12.93 -35.24 -13.00 -22.24 -34.87 13.10 17.11 -38.88 -13.00 -25.88 -32.79 11.50 22.20 -43.49 </td		

(2)Above 6GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

APPENDIX BPHOTOS OF TEST SETUP

RADIATED SPURIOUS EMISSION

*****END OF THE REPORT***