

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200602403

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: 3G Smart Phone

Model No.: PLATINUM H5

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYPLATH5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Jun., 2020

Date of Test: 09 Jun., to 28 Jun., 2020

Date of report issued: 29 Jun., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 Jun., 2020	Original

Tested by: _____ Date: ____ 29 Jun., 2020

Reviewed by:

| Date: 29 Jun., 2020

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	32
Ω	FIIT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

Test Method:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

3.2 General Description	. 0. 2.0
Product Name:	3G Smart Phone
Model No.:	PLATINUM H5
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.75 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE200602403

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Llaws Antonna	COLIMAN DADEON	DD1140400D	4005	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919l	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

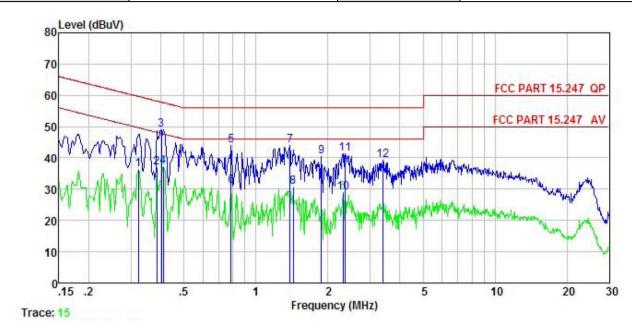
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

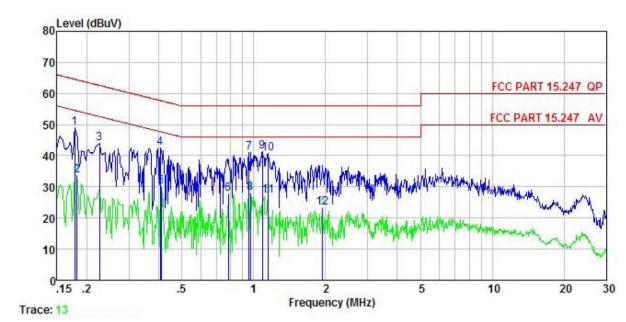
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.75 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Fraguency ronge (MHz)	Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling important and the peripheral devices at LISN that provides a 50ol 	on network (L.I.S.N.), wh pedance for the measuriing also connected to the in	ich provides a ng equipment. main power through a	
	termination. (Please refer photographs).	to the block diagram of	the test setup and	
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.			
Test setup:	Reference Plane			
	AUX Equipment E.U.T	80cm LISN Filter Filter Receiver	– AC power	
	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	twork		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

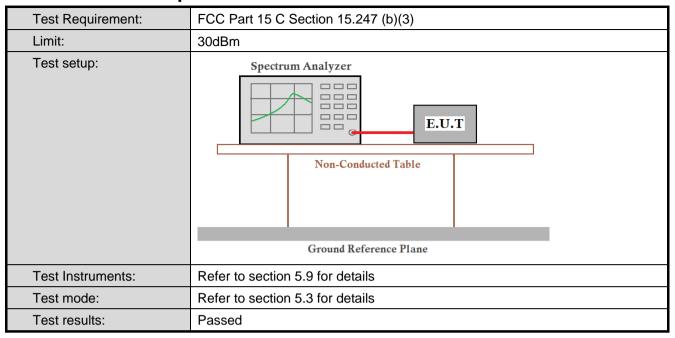
Product name:	3G Smart Phone	Product model:	PLATINUM H5
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	₫₿u₹	<u>dB</u>	dB	dBu₹	dBu₹	<u>d</u> B	
0.322	26.27	-0.53	10.74	36.39			
	26.32		10.72		48.17	-11.29	Average
0.402	38.42	-0.48	10.72	49.08	57.81	-8.73	QP
0.410	26.57	-0.47	10.72	37.15	47.64	-10.49	Average
0.788	33.84	-0.56	10.81	43.96	56.00	-12.04	QP
0.788	20.75	-0.56	10.81	30.87	46.00	-15.13	Average
1.388	33.42	-0.57	10.91	43.85	56.00	-12.15	QP
			10.92				
1.878			10.95				
2,309							
3.399	28.93	-0.42	10.91	39.28			2 8 7 7 3 colos (il.)
	MHz 0. 322 0. 385 0. 402 0. 410 0. 788 0. 788 1. 388 1. 433 1. 878 2. 309 2. 358	MHz dBuV 0.322 26.27 0.385 26.32 0.402 38.42 0.410 26.57 0.788 33.84 0.788 20.75 1.388 33.42 1.433 20.16 1.878 30.40 2.309 18.85 2.358 31.25	MHz dBuV dB 0.322 26.27 -0.53 0.385 26.32 -0.49 0.402 38.42 -0.48 0.410 26.57 -0.47 0.788 33.84 -0.56 0.788 20.75 -0.56 1.388 33.42 -0.57 1.433 20.16 -0.56 1.878 30.40 -0.52 2.309 18.85 -0.48 2.358 31.25 -0.48	MHz dBuV dB dB 0.322 26.27 -0.53 10.74 0.385 26.32 -0.49 10.72 0.402 38.42 -0.48 10.72 0.410 26.57 -0.47 10.72 0.788 33.84 -0.56 10.81 0.788 20.75 -0.56 10.81 1.388 33.42 -0.57 10.91 1.433 20.16 -0.56 10.92 1.878 30.40 -0.52 10.95 2.309 18.85 -0.48 10.95 2.358 31.25 -0.48 10.94	MHz dBuV dB dB dBuV 0.322 26.27 -0.53 10.74 36.39 0.385 26.32 -0.49 10.72 36.88 0.402 38.42 -0.48 10.72 49.08 0.410 26.57 -0.47 10.72 37.15 0.788 33.84 -0.56 10.81 43.96 0.788 20.75 -0.56 10.81 30.87 1.388 33.42 -0.57 10.91 43.85 1.433 20.16 -0.56 10.92 30.58 1.878 30.40 -0.52 10.95 40.58 2.309 18.85 -0.48 10.95 29.04 2.358 31.25 -0.48 10.94 41.43	MHz dBuV dB dB dBuV dBuV 0.322 26.27 -0.53 10.74 36.39 49.66 0.385 26.32 -0.49 10.72 36.88 48.17 0.402 38.42 -0.48 10.72 49.08 57.81 0.410 26.57 -0.47 10.72 37.15 47.64 0.788 33.84 -0.56 10.81 43.96 56.00 0.788 20.75 -0.56 10.81 30.87 46.00 1.388 33.42 -0.57 10.91 43.85 56.00 1.433 20.16 -0.56 10.92 30.58 46.00 1.878 30.40 -0.52 10.95 40.58 56.00 2.309 18.85 -0.48 10.95 29.04 46.00 2.358 31.25 -0.48 10.94 41.43 56.00	MHz dBuV dB dB dBuV dBuV dB 0.322 26.27 -0.53 10.74 36.39 49.66 -13.27 0.385 26.32 -0.49 10.72 36.88 48.17 -11.29 0.402 38.42 -0.48 10.72 49.08 57.81 -8.73 0.410 26.57 -0.47 10.72 37.15 47.64 -10.49 0.788 33.84 -0.56 10.81 43.96 56.00 -12.04 0.788 20.75 -0.56 10.81 30.87 46.00 -15.13 1.388 33.42 -0.57 10.91 43.85 56.00 -12.15 1.433 20.16 -0.56 10.92 30.58 46.00 -15.42 1.878 30.40 -0.52 10.95 40.58 56.00 -15.42 2.309 18.85 -0.48 10.95 29.04 46.00 -16.96 2.358 31.25 -0

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

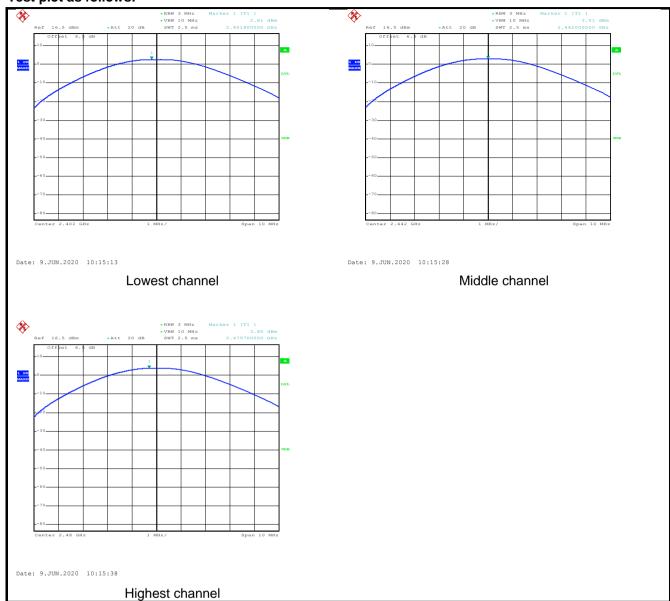
Product name:	3G Smart Phone	Product model:	PLATINUM H5
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀	<u>dB</u>	dB	dBu₹	—dBu√	<u>ab</u>	
1	0.178	38.84	-0.68	10.77	48.93	64.59	-15.66	QP
2	0.182	23.71	-0.68	10.77	33.80	54.42	-20.62	Average
3	0.226	33.82	-0.67	10.75	43.90	62.61	-18.71	QP
4	0.406	32.54	-0.63	10.72	42.58	57.73	-15.15	QP
1 2 3 4 5 6 7 8	0.410	19.96	-0.63	10.72	30.00	47.64	-17.64	Average
6	0.783	17.44	-0.65	10.81	27.65	46.00	-18.35	Average
7	0.958	30.85	-0.67	10.86	41.11	56.00	-14.89	QP
8	0.968	17.84	-0.68	10.86	28.10	46.00	-17.90	Average
9	1.088	30.94	-0.68	10.88	41.23	56.00	-14.77	QP
10	1.147	30.54	-0.69	10.89	40.84	56.00	-15.16	QP
11	1.147	16.77	-0.69	10.89	27.07	46.00	-18.93	Average
12	1.939	12.97	-0.71	10.96	23.39	46.00	-22.61	Average

Notes:

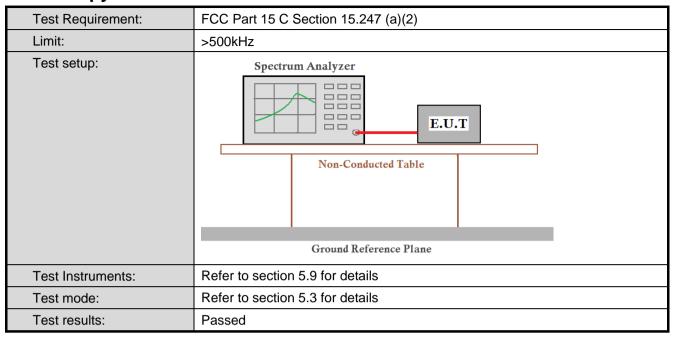
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



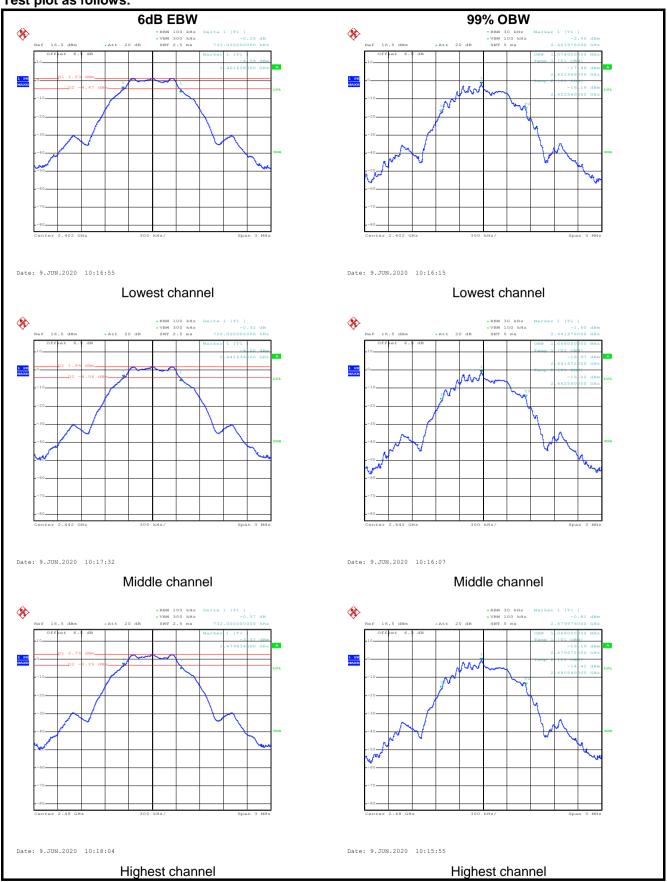
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.61		
Middle	3.01	30.00	Pass
Highest	3.80		



Test plot as follows:

6.4 Occupy Bandwidth

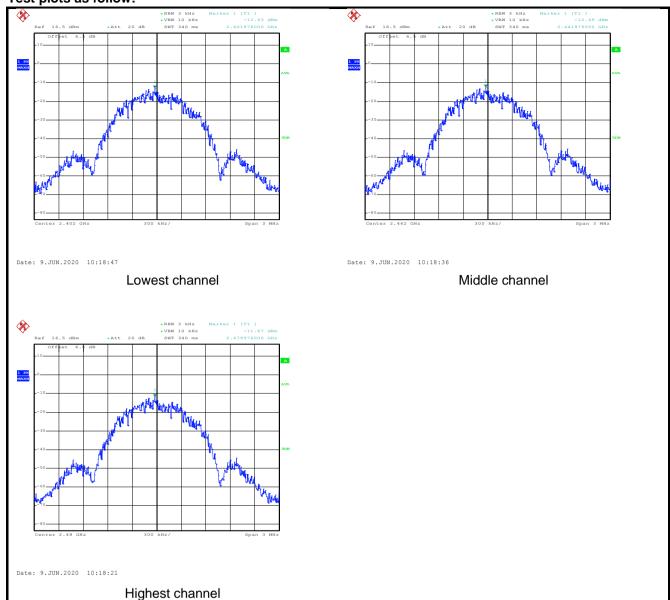


Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.732			
Middle	0.726	>500	Pass	
Highest	0.732			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.074			
Middle	1.068	N/A	N/A	
Highest	1.068			

Test plot as follows:

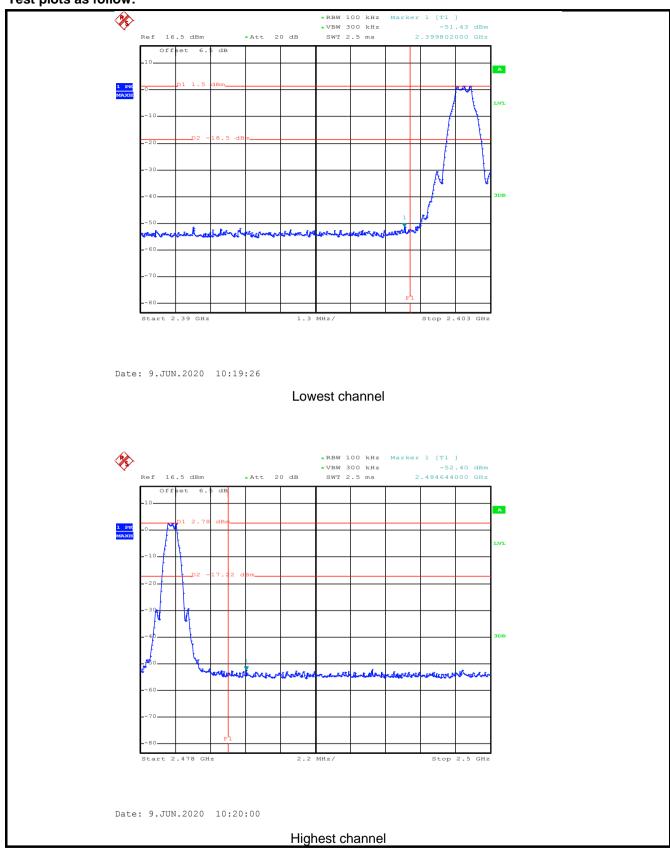
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-12.93		
Middle	-12.49	8.00	Pass
Highest	-11.67		

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

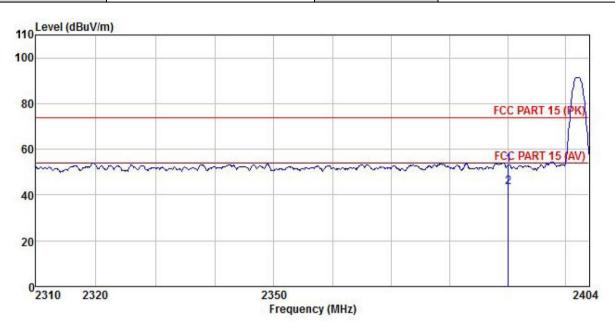
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 (FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz					
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Frequer	icy Lii	mit (dBuV/m @3 54.00		Remark verage Value				
	Above 10	GHz —	74.00		Peak Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
Test setup:	AE Washington	Test Receiver	Horn Antenna Reference Plane Pre- Amplifer Cont	Antenna Tower					
Test Instruments:	Refer to section	on 5.9 for detai	ls						
Test mode:	Refer to section	on 5.3 for detai	ls						
Test results:	Passed								

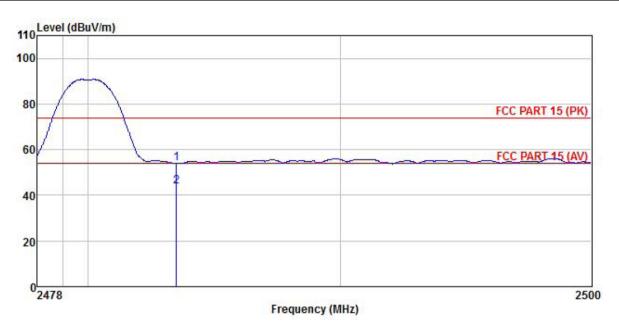
Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor							
	MHz	dBu∜	— <u>dB</u> /m	<u>dB</u>	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

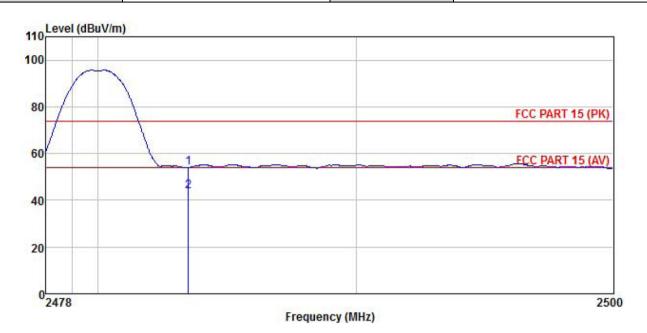
Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq					x Preamp r Factor Level				
	MHz	dBu∇	— <u>d</u> B/m		дБ	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



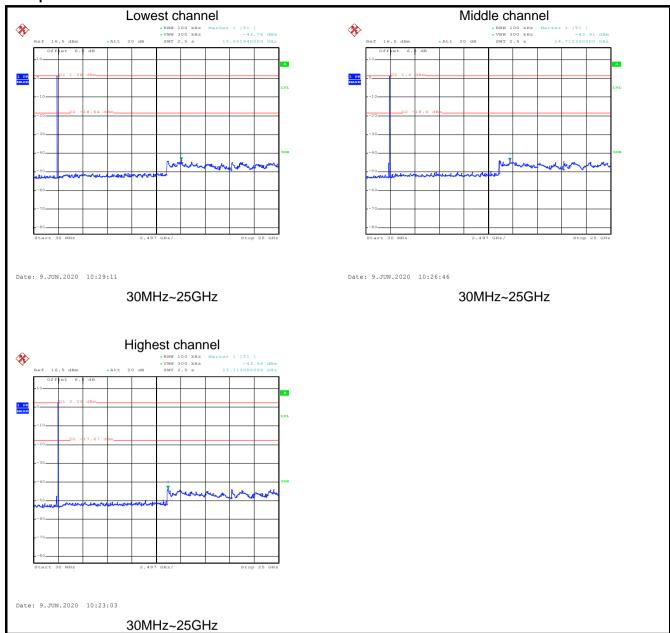
	Freq	ReadA Freq Level				Preamp Factor			Over Limit	
	MHz	dBu∜	dB/m	₫B	dB	dB	dBuV/m	$\overline{dBuV/m}$	dB	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∇		 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

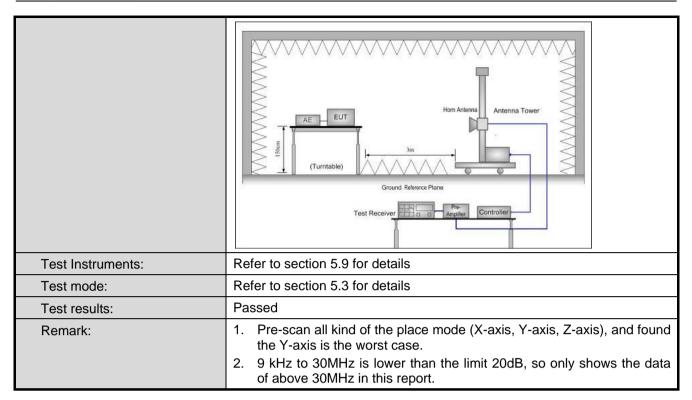
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that it produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VB	sW	W Remark	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above IGIIZ	RMŞ	1MHz	3M	Hz	Average Value	
Limit:	Frequency	/ L	imit (dBuV/m @	23m)		Remark	
	30MHz-88M		40.0			Quasi-peak Value	
	88MHz-216N		43.5			Quasi-peak Value	
	216MHz-960N		46.0			Quasi-peak Value	
	960MHz-1G	Hz	54.0		C	Quasi-peak Value	
	Above 1GH	lz 🖳	54.0			Average Value	
Test Procedure:			74.0	•		Peak Value table 0.8m(below	
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	iation. was set 3 r hich was mo na height is to determine that and veneasurement suspected en the anter the rota tab maximum reaseceiver system sandwidth with sion level of ecified, then would be rease margin wou	neters away united on the to varied from one the maximurtical polarization. The enna was tuned ading. The was turned ading. The was set the EUT in petesting could be ported. Other ld be re-tested	from the top of a top	ne intervariant of the areas arranged areas areas degree areas ped	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	EUT	3m < 4m			Antenna Search Antenn Test ceiver —	1	

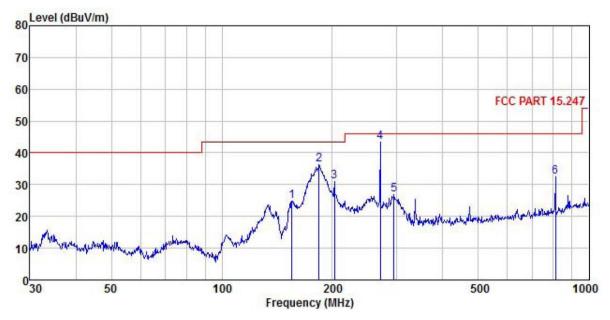


Measurement Data (worst case):

Below 1GHz:

Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu₹		<u>dB</u>	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2 3 4 5	33.445 36.001 180.017 270.375 312.179 810.265	49.73 46.67 40.33 40.89 40.32 35.06	12.36 12.64 16.90 18.58 18.73 21.01	0.36 0.34 0.68 0.82 0.88 1.41	0.00 0.00 0.00 0.00 0.00	29.94 28.97 28.50 28.48	28.94 31.79 31.45	43.50 46.00 46.00	-7.51 -10.29 -14.56 -14.21 -14.55 -16.68	QP QP QP QP


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	3G Smart Phone	Product Model:	PLATINUM H5
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna Level Factor				Preamp Factor			Over Limit	Remark
	MHz	dBu₹	dB/m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2 3 4 5	155. 364 183. 844 202. 810 270. 375 294. 114 810. 265	38. 76 47. 33 40. 64 52. 63 35. 84 38. 32	17.12 18.31 18.58 18.68	0.62 0.69 0.72 0.82 0.85 1.41	0.00 0.00 0.00	28.94 28.81 28.50 28.46	36.20 30.86 43.53 26.91	43.50 43.50 46.00 46.00	-18.77 -7.30 -12.64 -2.47 -19.09 -13.42	QP QP QP QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz

	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	52.16	30.78	6.80	2.44	41.81	50.37	74.00	-23.63	Vertical			
4804.00	50.41	30.78	6.80	2.44	41.81	48.62	74.00	-25.38	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	45.52	30.78	6.80	2.44	41.81	43.73	54.00	-10.27	Vertical			
4804.00	46.33	30.78	6.80	2.44	41.81	44.54	54.00	-9.46	Horizontal			

Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	51.42	30.96	6.86	2.47	41.84	49.87	74.00	-24.13	Vertical	
4884.00	52.79	30.96	6.86	2.47	41.84	51.24	74.00	-22.76	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	42.65	30.96	6.86	2.47	41.84	41.10	54.00	-12.90	Vertical	
4884.00	43.97	30.96	6.86	2.47	41.84	42.42	54.00	-11.58	Horizontal	

Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	53.62	31.11	6.91	2.49	41.87	52.26	74.00	-21.74	Vertical	
4960.00	55.47	31.11	6.91	2.49	41.87	54.11	74.00	-19.89	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	46.51	31.11	6.91	2.49	41.87	45.15	54.00	-8.85	Vertical	
4960.00	45.97	31.11	6.91	2.49	41.87	44.61	54.00	-9.39	Horizontal	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.