

CERTIFICATION REPORT

Subject:	Specific Absorption Rate (SA	R) Experimental Analysis for the Bystander
Product:	Wireless Point of Sale Termina IP Modem	l with a Novatel NRM-6832 Expedite Wireless
Model:	Nurit 3010, CDPD	ations da
Client:	Lipman USA Inc.	all the colored and the colore
Address:	50 Gordon Dr. Syosset, NY 11791 USA	
Project #:	LPMB-Nurit 3010 CDPD-3507	B Certified
Prepared by	APREL Laboratories 51 Spectrum Way Nepean, Ontario K2R 1E6	A084 - Nurit 3010C
Tested by	Ken O'Donnell Engineering Technical Staff	Date:
Submitted by	Dr. Paul G. Cardinal Director, Laboratories	Date:
Approved by	Dr. Jacek J. Wojcik, P. Eng.	Date:
Page 1 of 24 51 Spectrum Way Nepean, Ontario, K	2R 1E6	Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com
© APREL 2000 This report shall no	ot be reproduced, except in full, w	vithout the express written approval of APREL Laboratories.

+ CONSULTING + RESEARCH + TRAINING + CERTIFICATION TESTING SINCE 1981

FCC ID:	O2SNURIT3010C
Applicant:	Lipman USA Inc.
Equipment:	Wireless Point of Sale Terminal with a Novatel NRM-6832 Expedite Wireless
	IP Modem
Model:	Nurit 3010, CDPD
Standard:	FCC 96 –326, Guidelines for Evaluating the Environmental Effects of Radio-
	Frequency Radiation

ENGINEERING SUMMARY

This report contains the results of the engineering evaluation performed on a Lipman Nurit 3010 wireless point of sale terminal (POS) which incorporates a Novatel NRM-6832 Expedite Wireless IP Modem. This report is supplementary to the engineering evaluation for user's hand exposure, report LPMB-Nurit 3010 CDPD-3507U. The measurements were carried out in accordance with FCC 96-326. The POS was evaluated at its nominal maximum power level (power level 2) with 100% duty factor.

For the SAR Analysis for the Bystander, the Lipman Nurit 3010 wireless point of sale terminal (POS) was tested at low, middle and high channels with the antenna oriented in two positions (at the antenna side of the terminal, 0°, and pointing straight out, 180°) as well as the keyboard, battery, antenna, right and top sides. The maximum SAR (6.18 W/kg) was found to coincide with the peak performance RF output power of channel 400 (middle, 837 MHz), with the antenna side of the DUI facing up against the bottom of the phantom and the antenna pointing straight out. Test data and graphs are presented in this report.

Based on the test results and on how the device will be used, with the duty factor of the POS intrinsically limited to less than 7% (see Appendix F), it is certified that the product meets the requirements as set forth in the above specifications, for an uncontrolled RF partial body exposure environment.

(The results presented in this report relate only to the sample tested.)

Page 2 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6 Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full, without the express written approval of APREL Laboratories.

TABLE OF CONTENTS

1. Introduction	4
2. Applicable Documents	
3. Equipment Under Investigation	
4. Test Equipment	
5. Test Methodology	5
6. Test Results	6
6.1. Transmitter Characteristics	6
6.2. SAR Measurements	7
7. Separation at 100% DF	9
8. Duty Factors	10
9. Conclusions	11
APPENDIX A. Measurement Setup and SAR Graphs	
APPENDIX B. Manufacturer's Specifications	18
APPENDIX C. Uncertainty Budget	19
APPENDIX D. Simulated Muscle Tissue Material and Calibration Technique	20
APPENDIX E. Validation Scans on a Flat Phantom	23
APPENDIX F. Duty Factor Limitation of Lipman Nurit 3010 POS	24

TABLES AND FIGURES

Figure 1. Setup and Close up of the Setup	12
Figure 2. Grid inside the Phantom	12
Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface	13
Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface	13
Figure 5. Contour Plot of the Area Scan 12.5mm Above Phantom Surface	14
Figure 6. Surface Plot of the Area Scan 12.5mm Above Phantom Surface	14
Figure 7. Zoom Scan 2.5mm Above Phantom Surface	15
Figure 8. Zoom Scan 7.5mm Above Phantom Surface	
Figure 9. Zoom Scan 12.5mm Above Phantom Surface	15
Figure 10. Overlay of the DUI's Outlines Superimposed onto the Area Scan	16
Figure 11. Local SAR versus Sensor Separation	
Figure 12. Peak Local SAR versus Separation (1g SAR)	17
Figure 13. Contour Plot of the Reference Area Scan 2.5mm Above Phantom	
Figure 14. Surface Plot of the Reference Area Scan 2.5mm Above Phantom	

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

1. INTRODUCTION

Tests were conducted to determine the Specific Absorption Rate (SAR) of a sample of a Lipman Nurit 3010 wireless point of sale terminal (POS), which incorporates a Novatel NRM-6832 Expedite Wireless IP Modem. These tests were conducted at APREL Laboratories' facility located at 51 Spectrum Way, Nepean, Ontario, Canada. A view of the SAR measurement setup can be seen in Appendix A Figure 1. This report describes the results obtained.

2. APPLICABLE DOCUMENTS

The following documents are applicable to the work performed:

- 1) FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation
- 2) ANSI/IEEE C95.1-1992, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- 3) ANSI/IEEE C95.3-1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave.
- 4) OET Bulletin 65 (Edition 97-01) Supplement C (Edition 97-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields".

3. EQUIPMENT UNDER INVESTIGATION

• Lipman Nurit 3010 wireless point of sale terminal (POS), s/n 86U04 5907107, received on 24 July 2000.

The POS will be called DUI (Device Under Investigation) in the following.

The DUI is intended to be used in the hand and may be carried in a case that hooks onto a belt. The antenna is a 5in centre-fed half-wavelengh dipole with a gain of 1 dB.

Page 4 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6 SAR Certified

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

 $\ensuremath{\textcircled{}^\circ}$ APREL 2000 This report shall not be reproduced, except in full,

A photograph of the DUI can be found in Appendix B. See the manufacturer's submission documentation for drawings and more design details.

4. TEST EQUIPMENT

- APREL Triangular Dosimetric Probe Model E-009, s/n 115, Asset # 301420
- CRS Robotics A255 articulated robot arm, s/n RA2750, Asset # 301335
- CRS Robotics C500 robotic system controller, s/n RC584, Asset # 301334
- APREL F-1, flat manikin, s/n 001
- Tissue Recipe and Calibration Requirements, APREL procedure SSI/DRB-TP-D01-033
- HP 438A power meter, s/n 2502A01684, Asset # 301417
- HP 8482A power sensor, s/n 2652A1512B, Asset # 301418
- Toshiba Laptop computer Satellite ProTM 400S (to setup device via RS232 port)

5. TEST METHODOLOGY

- 1. The test methodology utilised in the certification of the DUI complies with the requirements of FCC 96-326 and ANSI/IEEE C95.3-1992.
- 2. The E-field is measured with a small isotropic probe (output voltage proportional to E^2).
- 3. The probe is moved precisely from one point to the next using the robot (10 mm increments for wide area scanning, 5 mm increments for zoom scanning, and 2.5 mm increments for the final depth profile measurement).
- 4. The probe travels in the homogeneous liquid simulating human tissue. Appendix D contains information about the recipe and properties of the simulated tissue used for these measurements.
- 5. The liquid is contained in a manikin simulating a portion of the human body.

Page 5 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6 SAR

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

- 6. The DUI is positioned with the surface under investigation against the phantom.
- 7. All tests were performed with the highest power available from the sample DUI under transmit conditions.

More detailed descriptions of the test method is given in Section 6 when appropriate.

6. TEST RESULTS

6.1. TRANSMITTER CHARACTERISTICS

The battery-powered DUI will consume energy from its batteries, which may affect the DUI's transmission characteristics. In order to gage this effect the output of the transmitter is sampled before and after each SAR run. In the case of this DUI, with does not have an externally accessible feedpoint, the radiated power was sampled. A power meter was connected to an antenna adjacent to a fixture to hold the transmitter in a reproducible position. The following table shows the radiated RF power sampled before and after each of the six sets of data used for the worst case SAR in this report.

Scan		Relative Power Reading	Battery #
Туре	Height (mm)	(dB)	
Area	2.5	-0.3	10
Area	12.5	-0.2	-
Zoom	2.5	-	-
Zoom	7.5	-	-
Zoom	12.5	-0.5	-
Depth	2.5 - 12.5	-0.5	-

Table 1. Sampled Radiated RF Power

Page 6 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

6.2. SAR MEASUREMENTS

- RF exposure is expressed as a Specific Absorption Rate (SAR). SAR is calculated from the E-field, measured in a grid of test points as shown in Appendix A Figure 2. SAR is expressed as RF power per kilogram of mass, averaged in 10 grams of tissue for the extremities and 1 gram of tissue elsewhere.
- 2) The DUI was put into test mode for the SAR measurements via communications software supplied by the radio manufacturer running on a PC to control the channel and operating power (nominally power level 2).
- 3) Figure 3 in Appendix A shows a contour plot of the SAR measurements for the DUI (channel 400, middle, 837 MHz, antenna side, antenna pointing straight out, power level 2). The presented values were taken 2.5mm into the simulated tissue from the flat phantom's solid inner surface. Figures 1 and 2 show the flat phantom used in the measurements. A grid is shown inside the phantom indicating the orientation of the x-y grid used, with the co-ordinates (0,0) on the top left (orange dot). The x-axis is positive towards the bottom and the y-axis is positive towards the right.For this side of the DUI, the bottom was aligned with y = 1, and the antenna, with x = 2.

A different presentation of the same data is shown in Appendix A Figure 4. This is a surface plot, where the measured SAR values provide the vertical dimension, which is useful as a visualisation aid.

Similar data was obtained 12.5 mm into the simulated tissue. These measurements are presented as a contour plot in Appendix A Figure 5 and surface plot in Figure 6.

Figure 10 in Appendix A shows an overlay of the DUI's outlines, superimposed onto the contour plot previously shown as Figure 3.

Figures 3 through 6 in Appendix A show that there is a dominant peak, in the contour plots, that diminishes in magnitude with depth into the tissue simulation.

4) For the SAR Analysis for the Bystander (Table 2), wide area scans were performed for the low (991, 824 MHz), middle (400, 837 MHz) and high (799, 849 MHz) channels. The antenna was also oriented in two positions: stowed (0°) and pointing straight out (180°), with the keyboard, battery, antenna, right and

Page 7 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

top sides of the DUI facing up against the bottom of the phantom. The DUI was operating at maximum output power (power level 2) and 100% duty factor. The peak single point SAR for the scans were:

DUI side	Antenna position	Channel			Peak SAR
		L/M/H	#	Freq (MHz)	(W/kg)
keyboard	extended (180°)	low	991	824	0.31
battery side	extended (180°)	low	991	824	0.28
antenna side	extended (180°)	low	991	824	5.09
right side	extended (180°)	low	991	824	0.63
antenna	extended (180°)	middle	400	837	5.89
antenna side	extended (180°)	high	799	849	5.83
antenna side	stowed (0°)	low	991	824	5.47
antenna	stowed (0°)	middle	400	837	6.70
antenna side	stowed (0°)	high	799	849	5.43
top side	stowed (0°)	middle	400	837	0.12
battery side with carrier	stowed (0°)	middle	400	837	0.26

Table 2. SAR Measurements for the Bystander

All subsequent testing for bystander exposure (or parts of the user other than extremities) was performed on channel 400 (middle, 837 MHz), with the antenna pointing straight out (180°) and the antenna side of the DUI against the phantom.

5) Wide area scans were then performed on channel 400 (middle, 837 MHz) versus separation at 100% duty factor. The peak single point SAR for the scans were:

Table 3. SAR versus DUI Separation

	Channel		nel	DUI to phantom's inner surface	Peak SAR
	L/M/H	#	Freq (MHz)	separation (mm)	(W/kg)
	middle	400	837	13	2.33
				23	0.95
				33	0.45
Page 8 of 2	24			Project #: LPMB-Nurit	3010 CDPD-3507B
51 Spectru		•	[[S/		Tel. (613) 820-2730
Nepean, O	ntario, K2R 1E	6			Fax (613) 820 4161 nail: info@aprel.com
© APREL 2	2000		and the second second	e-n	all. IIIIO@aptel.com

© APRE This report shall not be reproduced, except in full,

- 6) Channel 400 (middle, 837 MHz) was then explored on a refined 5 mm grid in three dimensions. Figures 7, 8 and 9 show the measurements made at 2.5, 7.5 and 12.5 mm, respectively. The SAR value averaged over 1 gram was determined from these measurements by averaging the 27 points (3x3x3) comprising a 1 cm cube. The maximum SAR value measured averaged over 1 gram was determined from these measurements to be 4.54 W/kg.
- 7) To extrapolate the maximum SAR value averaged over 1 gram to the inner surface of the phantom a series of measurements were made at a few (x,y) coordinates within the refined grid as a function of depth, with 2.5 mm spacing. Figure 11 in Appendix A shows the data gathered and the exponential curves fit to them. The average exponential coefficient was determined to be $(-0.064 \pm 0.007) / \text{mm}$.
- 8) The distance from the probe tip to the inner surface of the phantom for the lowest point is 2.5 mm. The distance from the probe tip to the tip of the measuring dipole within the APREL Triangular Dosimetric Probe Model E-009 is 2.3 mm. The total extrapolation distance is 4.8 mm, the sum of these two.

Applying the exponential coefficient over the 4.8 mm to the maximum SAR value averaged over 1 gram that was determined previously, we obtain the maximum SAR value at the surface averaged over 1 gram, 6.18 W/kg.

7. SEPARATION AT 100% DF

The measurements of highest local SAR versus separation of the DUI from the bottom of the phantom (Section 6.2.5) will enable the maximum 1g SAR measured for a separation of 3 mm (previous section) to be interpolated for other separations.

If the data for Figure 11 is fitted to an exponential equation we get:

Peak Local SAR = $7.874 e^{-0.0888 * (separation)}$

A similar equation will exist for the maximum 1g SAR versus separation:

Maximum 1g SAR = k e $^{-0.0888 * (separation)}$

Page 9 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

 $\ensuremath{\textcircled{}}$ APREL 2000 This report shall not be reproduced, except in full,

Using this equation with the previous section's data:

Maximum 1g SAR at the surface = 6.18 W/kg Tissue to DUI separation = 3 mm,

results in a k = 8.064 W/kg, which corresponds to the maximum 1g SAR when the separation is 0 mm. A conservative maximum 1g SAR of 1.18 W/kg (1.6 W/kg reduced by our measurement uncertainty) would occur for a separation of 21.6 mm.

At a standard separation distance of 4 cm the maximum 1g SAR would be 0.23 W/kg.

8. DUTY FACTORS

The manufacturer's software limits the operation further to 6.9% (see Appendix F).

The test software supplied by Novatel Wireless permitted the SAR testing to be performed with a duty factor of 100%. However, testing with a duty factor of 6.9% was not possible.

Consequently, the maximum 1g SAR for the end product, with a maximum 6.9% duty factor, has to be estimated using proportional scaling with respect to the duty factor. The **maximum 1g SAR value at the surface averaged over 1 gram is** 0.43 W/kg.

Page 10 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6 SAR Certified

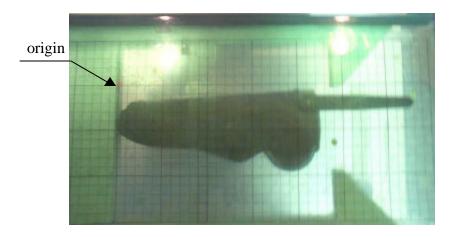
9. CONCLUSIONS

The maximum Specific Absorption Rate (SAR) averaged over 1 gram, determined at 837 MHz (channel 400, middle, antenna side, antenna pointing straight out, power level 2) of the Lipman Nurit 3010 wireless point of sale terminal (POS), which incorporates a Novatel NRM-6832 Expedite Wireless IP Modem operating with a 100% duty factor, is 6.18 W/kg. The overall margin of uncertainty for this measurement is ± 26.1 % (Appendix C). The SAR limit given in the FCC 96-326 safety guideline for uncontrolled RF partial body exposure (1.6 W/kg reduced by the measurement uncertainty) is 1.18 W/kg.

Since the POS duty factor is limited to 6.9% by the manufacture's (Lipman, see Appendix F) software, the maximum SAR averaged over 1 gram at this duty factor would be 0.43 W/kg.

Considering the above, this unit as tested, and as it will be marketed, with a duty factor of less than 7%, is found to be compliant with this requirement.

© APREL 2000 This report shall not be reproduced, except in full, without the express written approval of APREL Laboratories.



APPENDIX A. Measurement Setup and SAR Graphs

Figure 1. Setup and Close up of the Setup

Figure 2. Grid inside the Phantom

Page 12 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

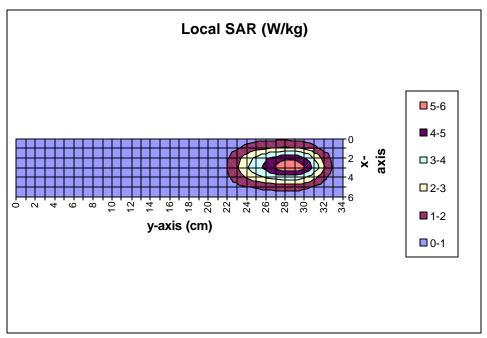


Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface

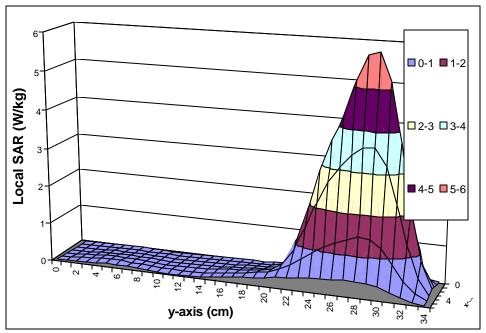


Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface

Page 13 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

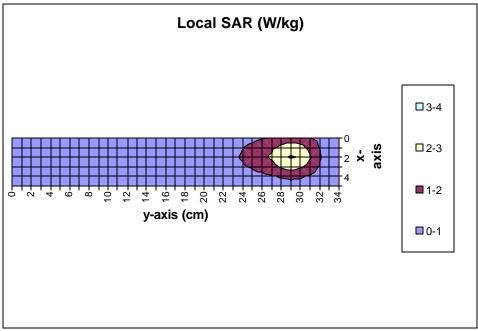


Figure 5. Contour Plot of the Area Scan 12.5mm Above Phantom Surface

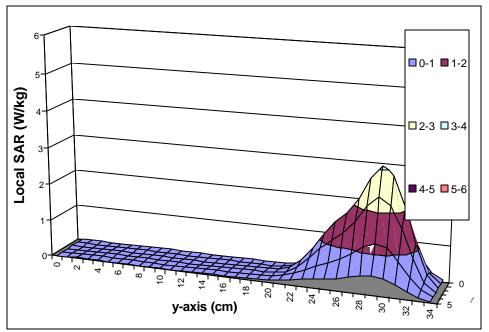


Figure 6. Surface Plot of the Area Scan 12.5mm Above Phantom Surface

Page 14 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

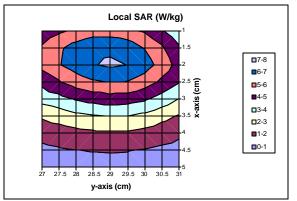


Figure 7. Zoom Scan 2.5mm Above Phantom Surface

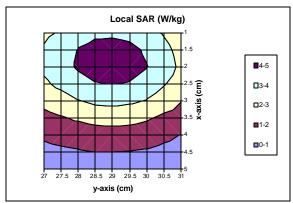


Figure 8. Zoom Scan 7.5mm Above Phantom Surface

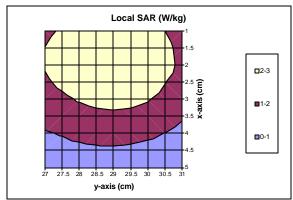


Figure 9. Zoom Scan 12.5mm Above Phantom Surface

Page 15 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

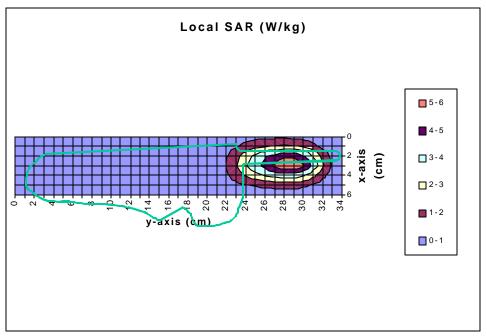


Figure 10. Overlay of the DUI's Outlines Superimposed onto the Area Scan

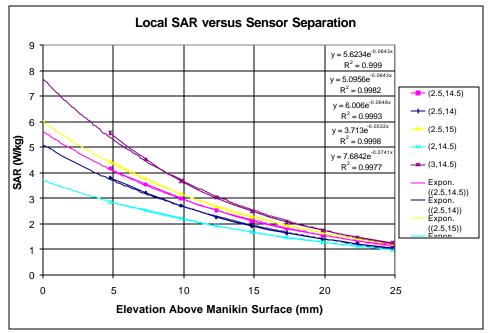


Figure 11. Local SAR versus Sensor Separation

Page 16 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6 (SAR Catified Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

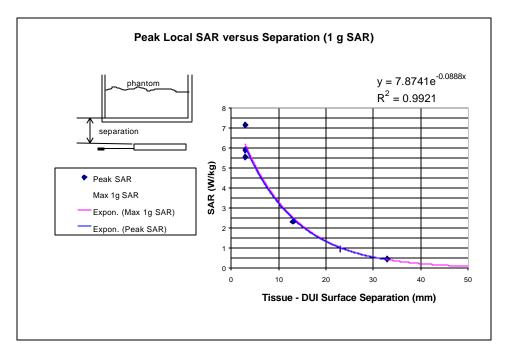


Figure 12. Peak Local SAR versus Separation (1g SAR)

Page 17 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

APPENDIX B. Manufacturer's Specifications

Antenna stowed (0° position)

Antenna extended (180° position)

The antenna is a 5in centre-fed half-wavelengh dipole with a gain of 1 dB (See manufacturer's submission documentation for drawings and more design details)

Page 18 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

APPENDIX C. Uncertainty Budget

Uncertainties Contributing to the Ove	ncertainties Contributing to the Overall Uncertainty		
Type of Uncertainty	Specific to	Uncertaint	y
Power variation due to battery condition	phone	5.9%	
Extrapolation due to curve fit of SAR vs depth	phone	23.0%	
Extrapolation due to depth measurement	setup	3.2%	
Conductivity	setup	6.0%	
Density	setup	2.6%	
Tissue enhancement factor	setup	7.0%	
Voltage measurement	setup	1.5%	
Probe sensitivity factor	setup	3.5%	
		26.1%	RSS

Page 19 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

APPENDIX D. Simulated Muscle Tissue Material and Calibration Technique

The mixture used was based on that presented SSI/DRB-TP-D01-033, "Tissue Recipe and Calibration Requirements".

De-ionised water	52.8%
Sugar	45.3%
Salt	1.5%
HEC	0.3 %
Bactericide	0.1 %
Mass density, ρ	1.30 g/ml (The density used to determine SAR from the measurements was the recommended 1040 kg/m ³ found in Appendix C of Supplement C to OET Bulletin 65, Edition 97-01).

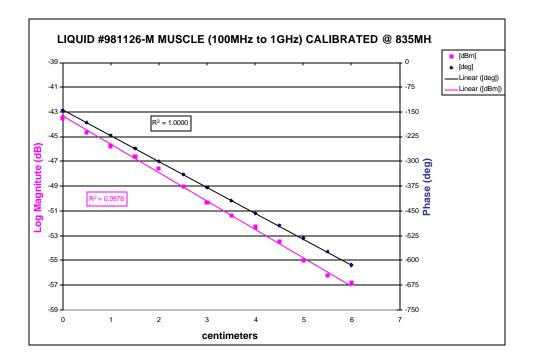
Dielectric parameters of the simulated tissue material were determined using a Hewlett Packard 8510 Network Analyser, a Hewlett Packard 809B Slotted Line Carriage, and an APREL SLP-001 Slotted Line Probe.

The dielectric properties at 835 MHz are:

	APREL	OET 65 Supplement	Δ (%) (OET)
Dielectric constant, ε_r	58.6	56.11	4.4%
Conductivity, σ [S/m]	1.09	0.946	15.3%
Tissue Conversion Factor, γ	7.8	-	_

Page 20 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com


© APREL 2000 This report shall not be reproduced, except in full,

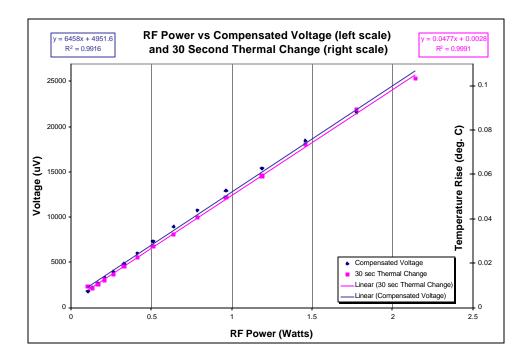
+ CONSULTING + RESEARCH + TRAINING + CERTIFICATION TESTING SINCE 1981

SIMULATION FLUID # CALIBRATION DATE	981126-M 31-Jul-00
CALIBRATED BY	Ken O'Donnell
Frequency Range	100MHz-1GHz
Frequency Calibrated	835 MHz
Tissue Type	Muscle

Position	Amplitude	Phase	
[cm]	[dBm]	[deg]	[deg]
0	-43.48	-143.7	-143.7
0.5	-44.66	177.8	-182.2
1	-45.77	138.3	-221.7
1.5	-46.58	99.6	-260.4
2	-47.61	61.03	-298.97
2.5	-48.99	21.06	-338.94
3	-50.3	-18.14	-378.14
3.5	-51.34	-58.06	-418.06
4	-52.27	-96.03	-456.03
4.5	-53.47	-134.13	-494.13
5	-55.04	-171.99	-531.99
5.5	-56.22 -56.8	145.77 105.82	-574.23 -614.18
-			
∆dB1	-6.82	∆d e g₁	-234.44
∆dB₂	-6.68	∆deg₂	-235.86
∆dB3	-6.5	∆d e g₃	-234.33
∆dB4	-6.89	∆deg₄	-233.73
∆dBs	-7.43	∆d e gs	-233.02
∆dBs	-7.23	∆d e gs	-235.29
∆dB7	-6.5	∆d e gr	-236.04
△ dBAVG [dB]	-6.86	∆degkvc [deg]	-234.672857
dBave (¤ave)[dB/cm]	-2.29	degava (βava) [deg/cm]	-78.2242857
(a _{AVG}) [NP/cm]	-0.263426699	(β _{AVG}) [rad/cm]	-1.36527134
f [Hz]	8.35E+08		
μ[H/cm]		-	
	1.25664E-08		
ε. [F/cm]	8.854E-14		
-	58.6		
er			
Seffective	1.09		

Page 21 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

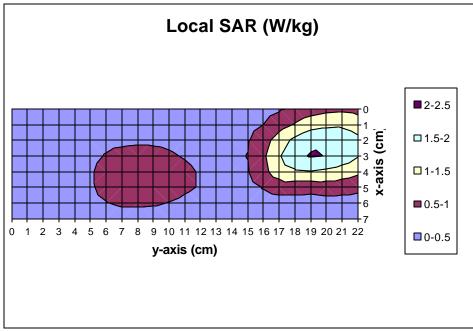
Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com


© APREL 2000 This report shall not be reproduced, except in full,

+ CONSULTING • RESEARCH • TRAINING • CERTIFICATION TESTING SINCE 1981

835 MHz Data (Heike & Tony) Muscle with E-115

						delta T	Sum	Thermal	
RF Power			Ch0	Ch1	Ch2	(30 sec)	Vi/Ei	SAR	
V	dBm	R&S	uV	uV	uV	deg. C		W/kg	
0.10666	20.28	-25.61	391	1196	2954	0.0093	1792,736	0.86	
0.133352	21.25		439	1440	3638	0.0086	2177.984	0.80	
0.169044	22.28		513	1782	4517	0.0102	2689.029	0.94	
0.210863	23.24	-22.65	586	2173	5542	0.0125	3276.59	1.16	
0.263027	24.2	-21.69	684	2661	6787	0.0147	3999.08	1.36	
0.328095	25.16	-20.73	830	3247	8276	0.0185	4875.658	1.71	
0.412098	26.15	-19.74	1001	4028	10205	0.0227	6012.429	2.10	
0.509331	27.07	-18.82	1196	4932	12402	0.0273	7312.846	2.53	
0.639735	28.06	-17.83	1440	6079	15137	0.0331	8940.589	3.06	
0.787046	28.96	-16.93	1733	7397	18188	0.0405	10779.67	3.75	
0.966051	29.85	-16.04	2100	8960	21680	0.0495	12918.42	4.58	
1.188502	30.75	-15.14	2515	10815	25806	0.0592	15441.16	5.48	
1.458814	31.64	-14.25	3052	13086	30640	0.0736	18455.06	6.81	
1 220 020	32.5	-13.39	3662	15503	35718	0.0893	21651.69	8.26	
1.778279	32.5	-13.35	3002	13003	30/10	0.0055	21001.09	0.20	
2.142891	33.31		4395	18335	41528	0.1031	21651.69	9.54	
2.142891 Dir	33.31 ectional Co ional inline		4395 25.89 20		41528	0.1031 I file data)	25349.01		ŕ): 835 MH:
2.142891 Dir	33.31 ectional Co ional inline	-12.58 upler factor attenuation	4395 25.89 20 1.658	18335 dB (Asset dB	41528 100251 ca	0.1031 I file data)	25349.01	9.54	ŕ): 835 MH:
2.142891 Dir Addit Density Conductivit Heat Capa	33.31 ectional Co ional inline Se ty icity (c)	-12.58 upler factor attenuation ensitivity (e)	4395 25.89 20 1.658	18335 dB (Asset dB 1.721 2.5815 1.3 10.8 2.775	41528 100251 ca 1.68 2.52 g/cm ³ mS/cm J/C/g	0.1031 I file data) - Sensor S 1300 1.08 2775	ensitivity in kg/m ³ S/m J/C/kg	9.54	ŕ): 835 MH:
2.142891 Dir Addit Density Conductivi Heat Capa Exposure	33.31 ectional co ional inline Se ty acity (c) Time	-12.58 upler factor attenuation ensitivity (e) η = 1.50 e	4395 25.89 20 1.658	18335 dB (Asset dB 1.721 2.5815 1.3 10.8 2.775 30	41528 100251 ca 1.68 2.52 g/cm ³ mS/cm J/C/g seconds	0.1031 I file data) - Sensor S 1300 1.08 2775 30	ensitivity in kg/m³ S/m J/C/kg seconds	9.54	ŕ): 835 MH:
2.142891 Dir Addit Density Conductivit Heat Capa Exposure	33.31 ectional Co ional inline Se ty icity (c)	-12.58 upler factor attenuation ensitivity (e) η = 1.50 e	4395 25.89 20 1.658	18335 dB (Asset dB 1.721 2.5815 1.3 10.8 2.775 30 11722.36	41528 100251 ca 1.68 2.52 g/cm ³ mS/cm J/C/g seconds uV/W	0.1031 I file data) - Sensor S 1300 1.08 2775 30 0.011722	25349.01 ensitivity in kg/m ³ S/m J/C/kg seconds V/W	9.54	ŕ}: 835 MH:
2.142891 Dir Addit Density Conductivit Heat Capa Exposure [*] Slope of M	33.31 ectional co ional inline Se ty acity (c) Time	-12.58 upler factor attenuation ensitivity (e) η = 1.50 e tage (m _V)	4395 25.89 20 1.658	18335 dB (Asset dB 1.721 2.5815 1.3 10.8 2.775 30	41528 100251 ca 1.68 2.52 g/cm ³ mS/cm J/C/g seconds uV/W	0.1031 I file data) - Sensor S 1300 1.08 2775 30	25349.01 ensitivity in kg/m ³ S/m J/C/kg seconds V/W	9.54	ř): 835 MH
2.142891 Dir Addit Density Conductivi Heat Capa Exposure ⁻ Slope of M -standard	33.31 ectional Co ional inline Se by icity (c) Time leasure Vot error or m v	-12.58 upler factor attenuation ensitivity (e) η = 1.50 e tage (m _V)	4395 25.89 20 1.658 2.487	18335 dB (Asset dB 1.721 2.5815 1.3 10.8 2.775 30 11722.36	41528 100251 ca 1.68 2.52 g/cm ³ mS/cm J/C/g seconds uV/W	0.1031 I file data) - Sensor S 1300 1.08 2775 30 0.011722	25349.01 ensitivity in kg/m ³ S/m J/C/kg seconds V/W V/W	9.54 mV/ (mW/cn	Ŷ: 835 MH:


Page 22 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

APPENDIX E. Validation Scans on a Flat Phantom

Figure 13. Contour Plot of the Reference Area Scan 2.5mm Above Phantom

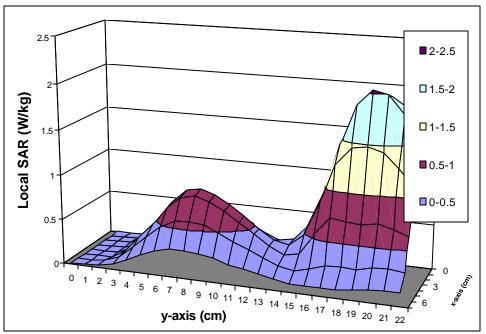


Figure 14. Surface Plot of the Reference Area Scan 2.5mm Above Phantom

Page 23 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

© APREL 2000 This report shall not be reproduced, except in full,

APPENDIX F. Duty Factor Limitation of Lipman Nurit 3010 POS

Lip LIPMAN U.S.A. Inc. The Ideal Solution®

50 Gordon Drive Syosset, New York 11791

September 14, 2000

Federal Communications Commision Equipment Authorization Branch 7435 Oakland Mills Road Columbia, MD 21406

To Whom It May Concern:

A typical authorization financial transaction in the POS industry consists of approximately 100 bytes of request that is transmitted by the POS device and 50 bytes of response received by the POS device. The fastest transaction time that has been achieved on the CDPD network was 3 seconds. A regular transaction time is about 6 seconds and it takes another 10 seconds before the next transaction can be run after swiping the next card and entering the amount.

To be conservative, we will still assume that we can transmit one transaction per 3 sec continuously. According to Novatel Wireless, CDPD transmits at a maximum of 19200 bits per second, which would be 57600 bits in 3 seconds. The maximum duty factor is therefore 100 bytes * 8 bits/byte / 57600 = 0.0139 or 1.4%.

Some of the financial institutions may require the terminal to submit all transactions as a batch at the end of each day. During this batch upload terminal uploads all necessary transactions to the host computer.

The current maximum byte stream transmitted for a transaction in a batch upload is 250.

Assuming the worst condition situation, the terminal will submit one transaction (500-byte stream, double the size of current numbers) per 3 seconds. According to Novatel Wireless, CDPD transmits at a maximum of 19200 bits per second, which would be 57600 bits in 3 seconds. The maximum duty factor is therefore 500 (bytes per transaction) * 8 bits/byte / 57600 bits (per 3 seconds shortest transaction interval) = 0.0694 or 6.9%.

Sincerely, Bulent Ozayaz Chief Engineer

Page 24 of 24 51 Spectrum Way Nepean, Ontario, K2R 1E6

© APREL 2000

Project #: LPMB-Nurit 3010 CDPD-3507B Tel. (613) 820-2730 Fax (613) 820 4161 e-mail: info@aprel.com

This report shall not be reproduced, except in full, without the express written approval of APREL Laboratories.