

Report No.: EED32I00289402 Page 1 of 38

TEST REPORT

Product: Harmony

Trade mark : Brand Charger

Model/Type reference: Harmony

Serial Number : N/A

Report Number : EED32I00289402 FCC ID : 2AG5A-BRCHAR Date of Issue : Dec. 07, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

BrandCharger Ltd
Flat H, 7/F, Mai Luen Industrial Building 23 Kung Yip Street
Kwai Chung Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

TI GROUP CO.

Tom-chen

Compiled by:

Kevin Ian (Project Engineer)

Tom chen (Test Project)

Kevin yang (Reviewer)

Dec. 07, 2016

Approved by:

Sheek Luo (Lab supervisor)

Check No.: 2457575298

2 Version

Date	Description
Dec. 07, 2016	Original
-	(65)

Page 3 of 38

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

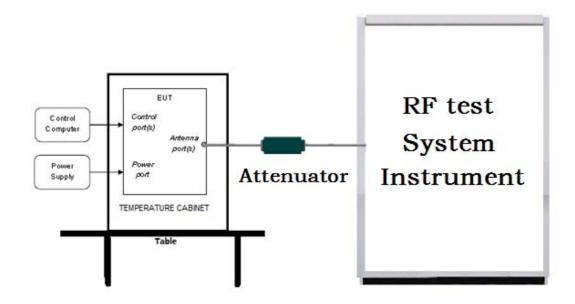
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

4 Content

Page 4 of 38

2 VERSION				•••••		2
3 TEST SUMMAF	RY			•••••		3
	•••••					
5 TEST REQUIRE	EMENT		•••••		••••••	5
5.1.1 For Co 5.1.2 For Ra 5.1.3 For Co 5.2 TEST ENVIR	onducted test setupdiated Emissions test sonducted Emissions test sonducted Emissions test on MENT	setupst setup				5 6 6
6 GENERAL INFO	ORMATION		•••••	•••••	••••••	7
6.2 GENERAL D 6.3 PRODUCT S 6.4 DESCRIPTIO 6.5 TEST LOCAT 6.6 TEST FACILI 6.7 DEVIATION F 6.8 ABNORMALIT 6.9 OTHER INFO 6.10 MEASUREM 7 EQUIPMENT LI 8 RADIO TECHN Appendix A) Appendix B) Appendix C) Appendix D) Appendix E) Appendix F) Appendix G) Appendix G) Appendix G) Appendix H)	PECIFICATION OF EUT PECIFICATION OF EUT PECIFICATION SUBJECTION N OF SUPPORT UNITS PEROM STANDARDS PEROM STANDARDS PEROM STANDARD CONTROL PROPERTY (95° PEROPETTY (95° PEROM STANDARD CONTROL PROPERTY (95° PEROM STANDARD CONTROL PROPERTY (95° PEROM STANDARD CONTROL PROPERTY (95° PEROM	CONDITIONS	RD /ELS, K=2)	diated)		
	OF TEST SETUP					
PHOTOGRAPHS	OF EUT CONSTRUC	TIONAL DETAILS	S		•••••	38



Report No. : EED32I00289402 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

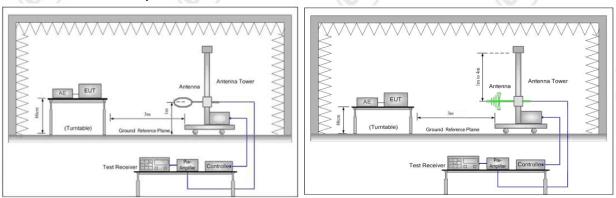
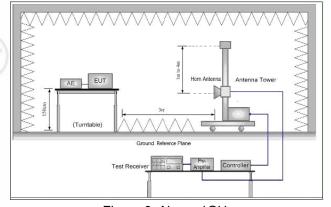
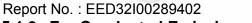
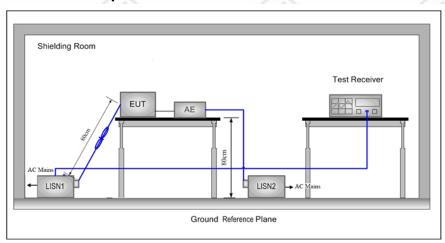


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz


Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Page 6 of 38

5.2 Test Environment

Operating Environment:		
Temperature:	22°C	
Humidity:	55% RH	
Atmospheric Pressure:	1010 mbar	

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
Test Mode	Тх	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402WHZ ~2480 WHZ	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of cate.				
-05		-0-			

Report No. : EED32I00289402 Page 7 of 38

6 General Information

6.1 Client Information

Applicant:	BrandCharger Ltd				
Address of Applicant:	Flat H, 7/F, Mai Luen Industrial Building 23 Kung Yip Street Kwai Chung Hong Kong				
Manufacturer:	CCA DESIGNING&MANUFACTURING LIMITED				
Address of Manufacturer:	BLD 120-121TH, PINGHUAN IND.CITY PINGSHAN TOWN, SHENZHEN, 518118				
Factory:	CCA DESIGNING&MANUFACTURING LIMITED				
Address of Factory:	BLD 120-121TH, PINGHUAN IND.CITY PINGSHAN TOWN, SHENZHEN, 518118				

6.2 General Description of EUT

Product Name:	Harmony
Model No.(EUT):	Harmony
Trade Mark:	Charger (7)
EUT Supports Radios application:	BT 4.2 Dual mode(2402MHz-2480MHz)
Power Supply:	3.7V 2000mAh(Lithium battery)
USB Line:	62.5(Unshielded)
Sample Received Date:	Nov. 09, 2016
Sample tested Date:	Nov. 09, 2016 to Dec. 05, 2016

6.3 Product Specification subjective to this standard

Operation I	Frequency:	2402MI	Hz~2480MHz						
Bluetooth \	/ersion:	BT 4.2	BT 4.2 Dual mode(2402MHz-2480MHz)						
Modulation	Technique:	DSSS							
Modulation	Type:	GFSK							
Number of	Channel:	40	25			/*>			
Sample Ty	pe:	Portable	e production	(20)	·)	(3)	•)		
Antenna Ty	/ре:	Chip Ar	ntenna	6		6			
Antenna G	ain:	0.5dBi							
Test Power	r Grade:	NA	NA						
Test Softwa	are of EUT:	(manufa	(manufacturer declare) ACTsBTAPP_Index 7						
Test Voltag	je:	AC 120	AC 120V/60Hz, AC 240V/50Hz						
Operation I	Frequency eac	h of channe	ıl						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		

Report No. : EED32I00289402 Page 8 of 38

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Supplied by
USB Power Adapter	Apple	A1402	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

Report No. : EED32I00289402 Page 9 of 38

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
01)	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
2	Dadiated Courieus amission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Page 10 of 38

Report No. : EED32I00289402 **7 Equipment List**

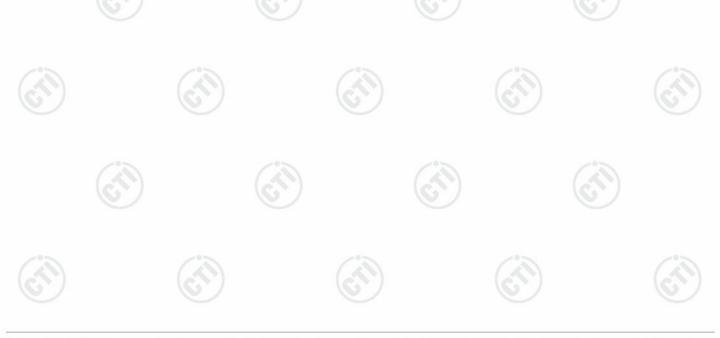
		RF test	system			
Equipment	Manufacturer	Mode No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017	
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017	
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017	
PC-1	Lenovo	R4960d	(6,1)	04-01-2016	03-31-2017	
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017	
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017	

Conducted disturbance Test											
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017						
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017						
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017						
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017						
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017						
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017						
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017						

Page 11 of 38

	3M S	emi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	(i)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	d rejection filter Sinoscite			01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

Report No. : EED32l00289402 Page 12 of 38


8 Radio Technical Requirements Specification

Reference documents for testing:

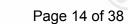
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Report No. : EED32l00289402 Page 13 of 38


Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7443	1.0811	PASS	
BLE	MCH	0.7503	1.0778	PASS	Peak
BLE	HCH	0.7529	1.0830	PASS	detector

Test Graphs

Report No. : EED32l00289402 Page 15 of 38

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-5.642	PASS
BLE	MCH	-3.598	PASS
BLE	НСН	-1.676	PASS

Page 16 of 38

Test Graphs

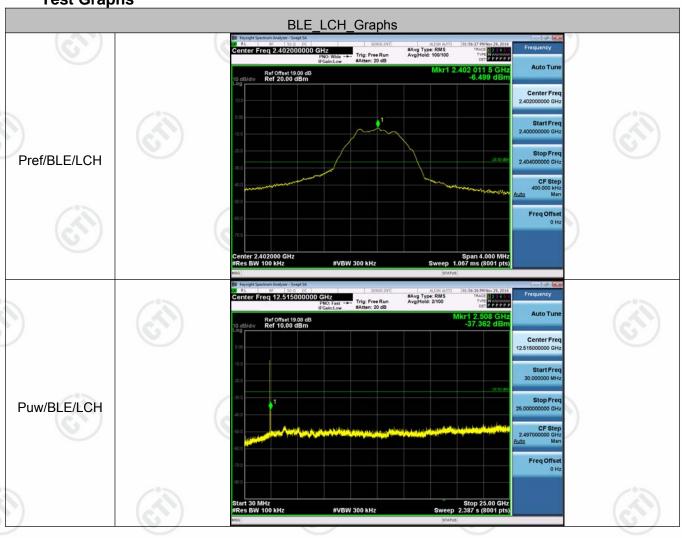

Report No. : EED32l00289402 Page 17 of 38

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-6.332	-56.722	-26.33	PASS
BLE	HCH	-2.275	-45.419	-22.28	PASS

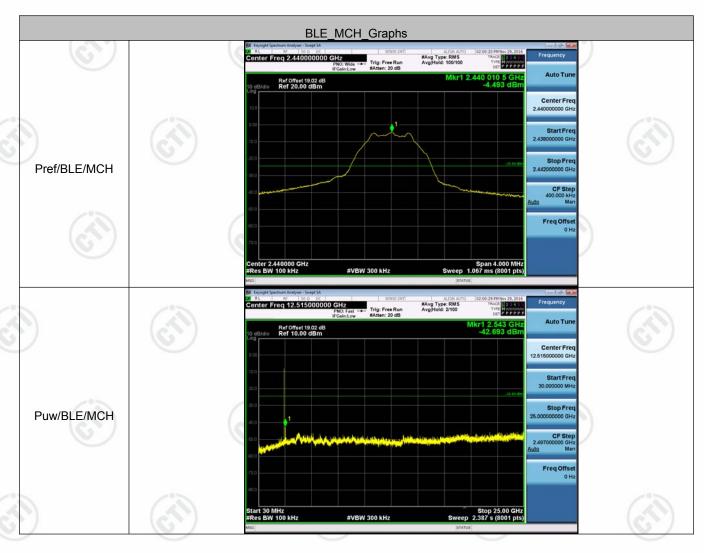
Test Graphs

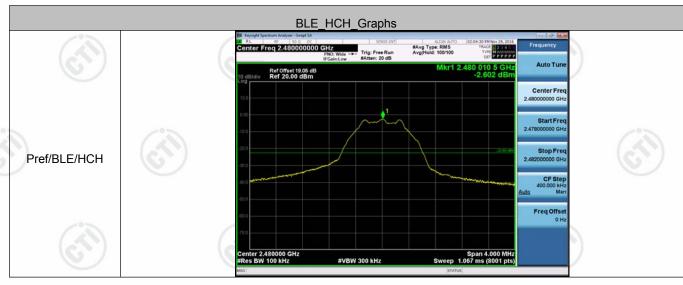

Report No. : EED32I00289402 Page 18 of 38

Appendix D): RF Conducted Spurious Emissions

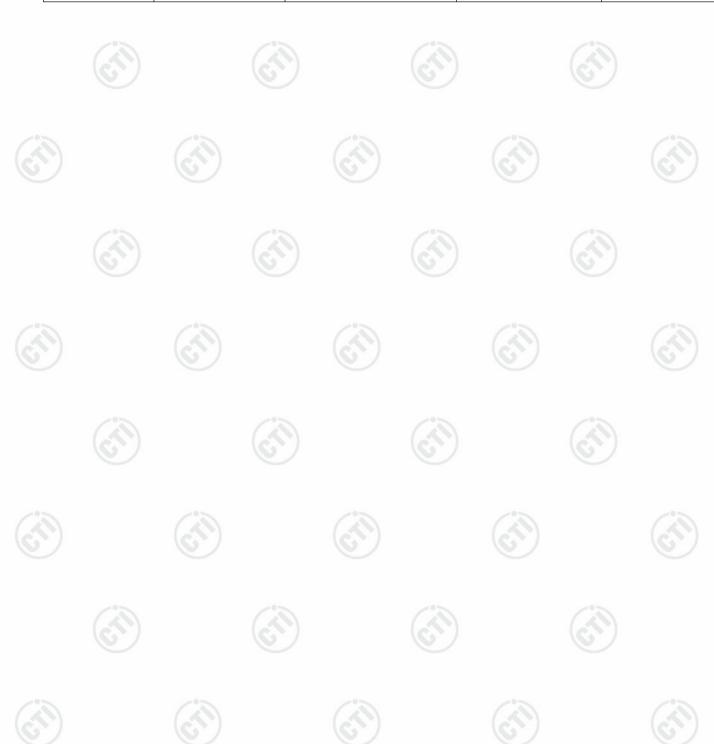
Result Table

Mode	Channel	Channel Pref [dBm] Puw[dBm]						
BLE	LCH	-6.499	<limit< td=""><td>PASS</td></limit<>	PASS				
BLE	MCH	-4.493	<limit< td=""><td>PASS</td></limit<>	PASS				
BLE	НСН	-2.602	<limit< td=""><td>PASS</td></limit<>	PASS				


Test Graphs



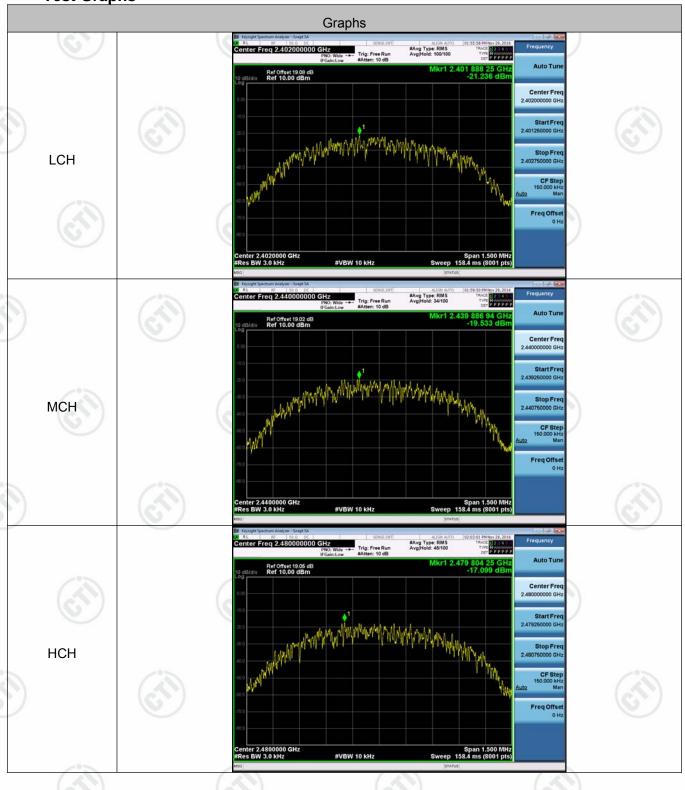




Report No. : EED32I00289402 Page 21 of 38

Appendix E): Power Spectral Density

Result Table


Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-21.236	8	PASS
BLE	MCH	-19.533	8	PASS
BLE	нсн	-17.099	8	PASS

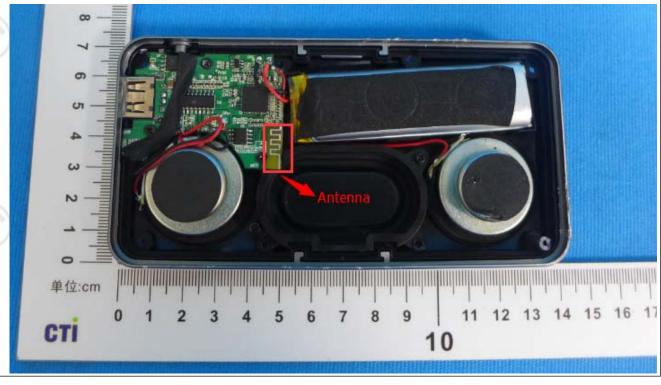
Page 22 of 38

Test Graphs

Report No.: EED32I00289402 Page 23 of 38

Appendix F): Antenna Requirement

15.203 requirement:

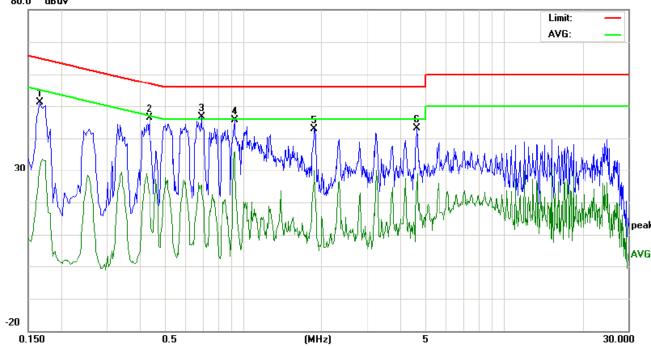

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

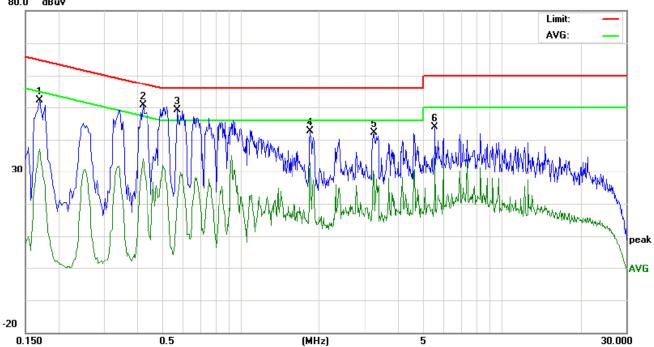
The antenna is Chip antenna and no consideration of replacement. The best case gain of the antenna is 0.5dBi.


Page 24 of 38 Report No.: EED32I00289402

Test Procedure:	-	Test frequency range :150KHz	-30MHz								
	'	1)The mains terminal disturbance voltage test was conducted in a shielded room.									
	2	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance									
		Stabilization Network) which	•	•							
	-0	power cables of all other u which was bonded to the gi									
	(4)	for the unit being measured									
	0	multiple power cables to a sexceeded.									
		3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem								
	4	4) The test was performed wit	th a vertical ground r								
		EUT shall be 0.4 m from the reference plane was bonde									
		1 was placed 0.8 m from t									
	/%	ground reference plane for	or LISNs mounted o	n top of the groun	d referenc						
	(63)	plane. This distance was be									
	(6)	All other units of the EUT a LISN 2.	nd associated equipn	nent was at least 0.8	3 m from th						
	,	5) In order to find the maximun	n emission, the relativ	re positions of equip	ment and a						
		of the interface cables r									
		conducted measurement.									
Limit:	-	(67)	(67)	(67)	7						
		Frequency range (MHz)	Limit (d	dBµV)							
		requestey range (im iz)	Quasi-peak	Average							
	-0	0.15-0.5	66 to 56*	56 to 46*							
	(3)	0.5-5	56	46							
	6	5-30	60	50							
		The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applic	_		e range 0.1						
Measurement Dat			. (3)								
		ormed on the live and neutral I			miccion wo						
guasi-Peak and A' letected.	verage ii	neasurement were performed a	at the frequencies with	i maximized peak ei	mssion we						
.0.0000											

Page 25 of 38

		Read	ling_Le	evel	Correct	N	Measurement		Limit		Margin			
No.	Freq.	(0	dBuV)		Factor	r (dBuV)		(dBu∀)		(dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	41.24		21.24	9.80	51.04		31.04	65.15	55.15	-14.11	-24.11	Р	
2	0.4380	36.54		13.02	9.90	46.44		22.92	57.10	47.10	-10.66	-24.18	Р	
3	0.6900	36.69		15.39	9.90	46.59		25.29	56.00	46.00	-9.41	-20.71	Р	
4	0.9300	35.86		26.28	9.70	45.56		35.98	56.00	46.00	-10.44	-10.02	Р	
5	1.8780	32.98		20.16	9.96	42.94		30.12	56.00	46.00	-13.06	-15.88	Р	
6	4.6420	33.03		13.97	10.00	43.03		23.97	56.00	46.00	-12.97	-22.03	Р	



Report No. : EED32I00289402 Page 26 of 38

Neutral line: 80.0 dBuV

		Reading_Level		evel	Correct	M	Measurement		Limit		Margin			
No.	Freq.	(0	dBuV)		Factor		(dBu∀)		(dB	u∨)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	42.31		27.29	9.80	52.11		37.09	64.96	54.96	-12.85	-17.87	Р	
2	0.4220	40.69		24.20	9.90	50.59		34.10	57.41	47.41	-6.82	-13.31	Р	
3	0.5740	39.13		12.01	9.90	49.03		21.91	56.00	46.00	-6.97	-24.09	Р	
4	1.8540	32.58		22.85	9.96	42.54		32.81	56.00	46.00	-13.46	-13.19	Р	
5	3.2659	32.22		11.56	10.00	42.22		21.56	56.00	46.00	-13.78	-24.44	Р	
6	5.5460	33.90		24.38	10.00	43.90		34.38	60.00	50.00	-16.10	-15.62	Р	

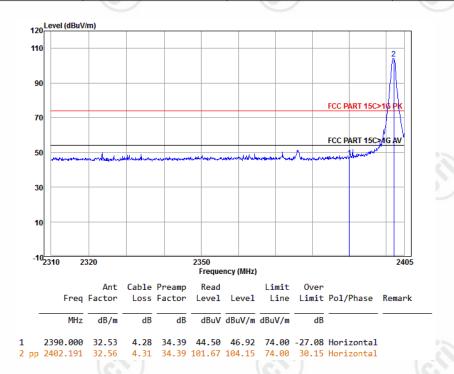
Notes:

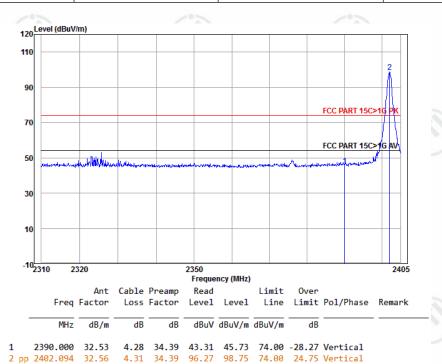
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32l00289402 Page 27 of 38

Appendix H): Restricted bands around fundamental frequency (Radiated)

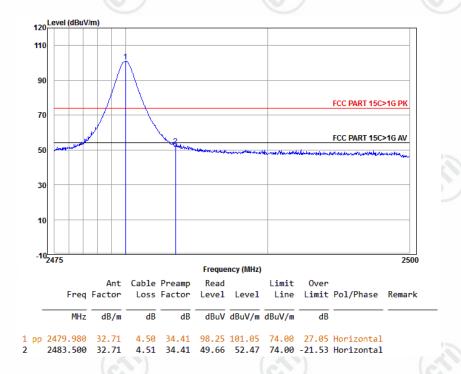
(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-02
Test Procedure:	a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is determine the maximum polarizations of the arm d. For each suspected ethe antenna was turned from 0 determined from 0 determine	on the top of a rotal echoic camber. The properties of the highest radicters away from the cop of a variable-he covaried from one mum value of the fiel entenna are set to make mission, the EUT varied to heights from 1 grees to 360 degreem was set to Peanum Hold Mode.	e table wa diation. he interfer- eight anter heter to fo d strength hake the n was arran meter to hes to find ik Detect	ence-receinna tower. ur meters n. Both horneasureme ged to its v 4 meters a the maxim	of the rotata wing antenna above the group rizontal and vient. worst case are and the rotata num reading.	o, which
Limit:	f. Place a marker at the frequency to show co bands. Save the spect for lowest and highes: Above 1GHz test proced g. Different between about to fully Anechoic Charant 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced	mpliance. Also meature analyzer plot. It channel Iture as below: It we is the test site, mber change form is 1 meter and table lowest channel, the ments are performed found the X axis ures until all frequents.	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	remissions for each por rom Semi- meter to 1 ter). t channel Y, Z axis p ing which it	Anechoic Ch. 5 meter (Abo	ambel ove
Limit:	frequency to show co bands. Save the spect for lowest and highes: Above 1GHz test proced g. Different between about 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced	mpliance. Also mean trum analyzer plot. It channel shape as below: Dove is the test site, and table lowest channel, the ments are performed found the X axis ares until all frequents (dBµV/m).	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which it	Anechoic Ch. 5 meter (Abo	ambe ove
imit:	frequency to show co bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charal 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz	mpliance. Also meatrum analyzer plot. It channel dure as below: ove is the test site, mber change form is 1 meter and table lowest channel, the ments are perforned found the X axis ures until all frequents (dBµV/m 40.0)	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	rom Semi-meter to 1 ter). t channel Y, Z axis ping which it easured war Rer Quasi-pe	Anechoic Ch. 5 meter (Abcoositioning for t is worse cases complete.	ambe
imit:	frequency to show co bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also mean strum analyzer plot. It channel I	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which it easured wa Rer Quasi-pe	Anechoic Ch. Anechoic Ch. S meter(Above as complete. mark eak Value eak Value	ambe
imit:	frequency to show co bands. Save the spect for lowest and highes: Above 1GHz test proced g. Different between about 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also mean strum analyzer plot. It channel strum as below: Sove is the test site, in the most change form and table lowest channel, the ments are performed found the X axis sures until all frequest the most channel and found the X axis sures until all frequest the most channel and found the X axis sures until all frequest the most channel and found the X axis sures until all frequest the most channel and found the X axis sures until all frequest the most channel and for the most ch	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which it easured wa Rer Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Abcoositioning for t is worse cases complete. mark eak Value eak Value eak Value	ambe
Limit:	frequency to show co bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also mean strum analyzer plot. It channel I	change fr table 0.8 is 1.5 med e Highest ned in X, s positioni	remissions for each portion Semi-meter to 1 ter). techannel Y, Z axis ping which it easured was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. Anechoic Ch. S meter(Above as complete. mark eak Value eak Value	ambe ove

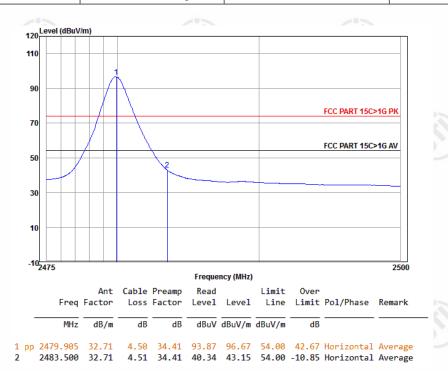



Report No.: EED32I00289402 Page 28 of 38

Test plot as follows:

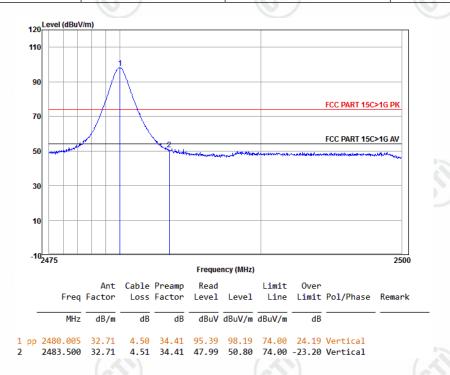
Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Worse case mode:	GFSK	('5	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Page 29 of 38



Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Worse case mode:	GFSK			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: EED32I00289402 Page 31 of 38

Appendix I): Radiated Spurious Emissions

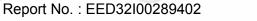
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
$(C_{i,j,j})$	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
/	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

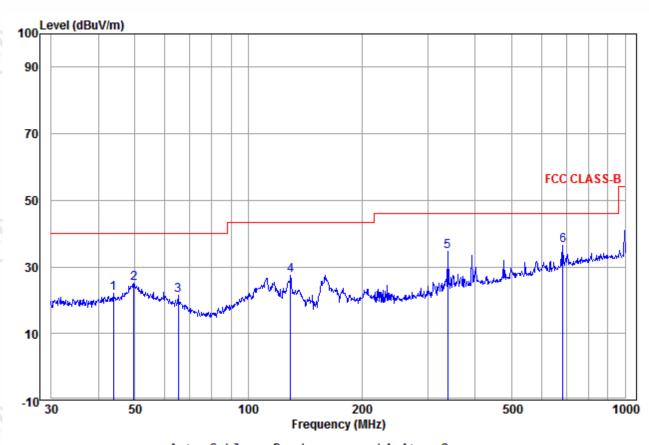
Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

	n		

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	/°5	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Page 32 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2))	
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		,							
1	43.812	14.57	0.88	6.63	22.08	40.00	-17.92	Horizontal	
2	49.707	15.08	1.38	8.66	25.12	40.00	-14.88	Horizontal	
3	65.114	12.00	1.44	7.94	21.38	40.00	-18.62	Horizontal	
4	129.468	10.97	1.58	14.82	27.37	43.50	-16.13	Horizontal	
5	338.400	14.52	2.64	17.56	34.72	46.00	-11.28	Horizontal	
6 рр	684.745	20.37	3.79	12.18	36.34	46.00	-9.66	Horizontal	

Report No. : EED32I00289402 Page 33 of 38

Test mode:	Transmitting	Vertical	· ·
------------	--------------	----------	-----

Freq		Cable Loss				Over Limit	Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			

1 pp	48.843	15.01	1.31	19.99	36.31	40.00 -3.69 Vertical
2	68.151	10.99	1.45	13.52	25.96	40.00 -14.04 Vertical
3	111.347	12.27	1.57	21.47	35.31	43.50 -8.19 Vertical
4	160.909	10.16	1.73	18.76	30.65	43.50 -12.85 Vertical
5	257.422	12.58	2.35	17.42	32.35	46.00 -13.65 Vertical
6	584.790	18.74	3.42	8.09	30.25	46.00 -15.75 Vertical

Report No. : EED32l00289402 Page 34 of 38

Transmitter Emission above 1GHz

Worse case	/orse case mode:			Test chann	nel:	Lowest	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	44.89	42.28	74.00	-31.72	Pass	• н
1306.407	30.47	2.63	34.85	43.67	41.92	74.00	-32.08	Pass	H
1680.831	31.20	2.99	34.53	43.48	43.14	74.00	-30.86	Pass	H
4804.000	34.69	5.11	34.35	43.96	49.41	74.00	-24.59	Pass	Н
7206.000	36.42	6.66	34.90	39.04	47.22	74.00	-26.78	Pass	Н
9608.000	37.88	7.73	35.08	38.91	49.44	74.00	-24.56	Pass	Н
1129.964	30.05	2.43	35.04	45.51	42.95	74.00	-31.05	Pass	V
1483.727	30.84	2.81	34.69	43.65	42.61	74.00	-31.39	Pass	V
1998.475	31.70	3.23	34.30	43.20	43.83	74.00	-30.17	Pass	V
4804.000	34.69	5.11	34.35	40.60	46.05	74.00	-27.95	Pass	V
7206.000	36.42	6.66	34.90	38.52	46.70	74.00	-27.30	Pass	V
9608.000	37.88	7.73	35.08	39.11	49.64	74.00	-24.36	Pass	V

Worse case	mode:	GFSK		Test chani	nel:	Middle	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1153.210	30.11	2.46	35.01	44.67	42.23	74.00	-31.77	Pass	Н
1446.435	30.77	2.78	34.72	43.97	42.80	74.00	-31.20	Pass	S H
1943.292	31.62	3.19	34.34	43.19	43.66	74.00	-30.34	Pass	Н
4880.000	34.85	5.08	34.33	43.29	48.89	74.00	-25.11	Pass	Н
7320.000	36.43	6.77	34.90	40.52	48.82	74.00	-25.18	Pass	Н
9760.000	38.05	7.60	35.05	38.88	49.48	74.00	-24.52	Pass	Н
1127.091	30.05	2.43	35.04	44.18	41.62	74.00	-32.38	Pass	V
1495.101	30.86	2.82	34.68	45.00	44.00	74.00	-30.00	Pass	V
2055.225	31.83	3.39	34.31	42.81	43.72	74.00	-30.28	Pass	V
4880.000	34.85	5.08	34.33	41.80	47.40	74.00	-26.60	Pass	V
7320.000	36.43	6.77	34.90	41.40	49.70	74.00	-24.30	Pass	V
9760.000	38.05	7.60	35.05	39.84	50.44	74.00	-23.56	Pass	V

Page 35 of 38

Worse case	Worse case mode:			Test chann	nel:	Highest	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	34.96	44.47	42.26	74.00	-31.74	Pass	. Н
2013.795	31.73	3.27	34.30	43.97	44.67	74.00	-29.33	Pass	Н
2218.323	32.19	3.84	34.35	43.33	45.01	74.00	-28.99	Pass	₩
4960.000	35.01	5.05	34.31	40.46	46.21	74.00	-27.79	Pass	Н
7440.000	36.45	6.89	34.90	39.98	48.42	74.00	-25.58	Pass	Н
9920.000	38.22	7.47	35.02	40.25	50.92	74.00	-23.08	Pass	Н
1260.670	30.37	2.58	34.90	43.88	41.93	74.00	-32.07	Pass	V
1495.101	30.86	2.82	34.68	45.58	44.58	74.00	-29.42	Pass	V
1968.184	31.65	3.21	34.32	43.29	43.83	74.00	-30.17	Pass	V
4690.000	34.44	5.16	34.39	40.40	45.61	74.00	-28.39	Pass	V
7440.000	36.44	6.87	34.90	39.33	47.74	74.00	-26.26	Pass	V
9920.000	38.23	7.46	35.01	38.30	48.98	74.00	-25.02	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Report No. : EED32I00289402 Page 36 of 38

PHOTOGRAPHS OF TEST SETUP

Test Model No.: Harmony

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00289402 Page 38 of 38

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00289401 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

