Designated by Ministry of international Trade and industry

KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER

F	IEAD OFF	ICE	
6-8-	7 NISHIT	ENMA	
KITA-KU	OSAKA	530-0047	JAPAN

IKOMA TESTING LABORATORY 12128 TAKAYAMA-CHO IKOMA-CITY NARA 630-0101 JAPAN

TEST REPORT

Report No.A-034-99-C

Date: 8 October 1999

This test report is to certify that the tested device properly complies with the requirements of:

FCC Rules and Regulations Part 15 Subpart B Unintentional Radiators.

All the tests necessary to show compliance to the requirements were performed and these results met the specifications of requirement. The results of this report should not be construed to imply compliance of equipment other than that, which was tested. Unless the laboratory permission, this report should not be copied in part.

1. Applicant

Company Name	:	ORION ELECTRIC CO., LTD.
Mailing Address	:	41-1 IEHISA-CHO, TAKEFU-SHI, FUKUI 915-8555 JAPAN

2. Identification of Tested Device

Type of Devic Kind of Equipment Autho	: TV Interface Device prization : : DoC : Certification : : Verification
FCC ID	: A7RM4C6B
Device Name	: VIDEO CASSETTE PLAYER
Trade Name	: ORION
Model Number	: VP-L1
Serial Number	: ID-112-1260 \square : Prototype \boxtimes : Pre-production \square : Production
Date of Manufacture	: September 1999

3. Test Items and Procedure

- ⊠: AC Power Line Conducted Emission Measurement
- ⊠: Radiated Emission Measurement
- ⊠: Output Signal Level Measurement
- 🛛: Output Terminal Conducted Spurious Emission Measurement
- : Transfer Switch Measurement
- Above all tests were performed under: ANSI C63.4 1992
 - \boxtimes : without deviation, \square : with deviation(details are found inside of this report)

4. Date of Test

Receipt of Test Sample : 16 September 1999 Test Completed on : 4 October 1999

Fumitoshi Nagaoka Associate Director/ Ikoma Testing Laboratory

Table of Contents

0. NV	LAP ACCREDITATION AND MEASUREMENT UNCERTAINTY	
0.1.	NVLAP Accreditation	3
0.2.	Measurement Uncertainty	
	RTIFICATION OF THE COMPLIANCE	
2. GE	NERAL INFORMATION	4
2.1.	Product Description	
2.2.	Description for Equipment Authorization	5
2.3.	Test Facility	5
3. TE	STED SYSTEM	6
3.1.	Test Mode	6
3.2.	Operation of EUT System	
3.3.	Characterization and condition of EUT System	6
3.4.	BlockDiagram of EUT System	7
4. AC	POWER LINE CONDUCTED EMISSION MEASUREMENT	
4.1.	Test Procedure	
4.2.	Test Results	
4.3.	Photographs of EUT System Configuration	
	DIATED EMISSION MEASUREMENT	
5.1.	Test Procedure	
5.2.	Test Results	
5.3.	Photographs of EUT System Configuration	14
6. OU	TPUT SIGNAL LEVEL MEASUREMENT	
6.1.	Test Procedure	
6.2.	Test Results	
6.3.	Photographs of EUT System Configuration	
7. OU	TPUT TERMINAL CONDUCTED SOURIOUS EMISSION MEASUREMENT	
7.1.	Test Procedure	
7.2.	Test Results	
7.3.	Photographs of EUT System Configuration	21
8. TR.	ANSFER SWITCH MEASUREMENT	
8.1.	Test Procedure	
8.2.	Test Results	
8.3.	Photographs of EUT System Configuration	
9. LIS	T OF TEST EQUIPMENTS	25

0. NVLAP ACCREDITATION AND MEASUREMENT UNCERTAINTY

0.1. NVLAP Accreditation

KEC is accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code: 200207-0.

When a test report concerns with the NVLAP Accreditation test, the first page of the test report is sighed by NVLAP Approved Signatory together with the expression.

The report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

0.2. Measurement Uncertainty

The result of a measurement is only an approximation or estimate of the value of a specific quantity. And thus the measurand is complete only when a statement of uncertainty is given. KEC quotes Measurement Uncertainty (U)

> of +/- 4.9 dB for Radiated Emissions of +/- 2.2 dB for Conducted Emissions of +/- 1.5 dB for Output Signal Level of +/- 2.6 dB for Output Terminal Conducted Spurious Emission and of +/- 2.2 dB for Transfer Switch Measurement.

1. CERTIFICATION OF THE COMPLIANCE

This test report is to certify that the tested device properly complies with the requirements of FCC Rules and Regulations Part 15 Subpart B Unintentional Radiators.

KEC evaluation criteria for compliance:The Product complies, ifthe measured results are below the specification limit by a margin more than or equal to1/2 U (2.5 dB) for Radiated Emissions

U (2.2 dB) for Conducted Emissions

U (1.5 dB) for Output Signal Level

- U (2.6 dB) for Output Terminal Conducted Spurious Emission and
- U (2.2 dB) for Transfer Switch Measurement.

2. GENERAL INFORMATION

2.1. Product Description

The ORION Model No.VP-L1 (referred to as the EUT in this report) is a Video Cassette Player containing RF modulator.

(1) Specification

(i) Speemeanon		
· RF Modulator Frequency	: US CH. #3	Visual Carrier 61.25 MHz,
		Aural Carrier 65.75 MHz
	: US CH. #4	Visual Carrier 67.25 MHz,
		Aural Carrier 71.75 MHz
\cdot Type of RF Output Connector	: Type "F" Con	nector 75 Ω (Unbalanced)

(2) Provided terminal

- · ANT Input Terminal
- · ANT Output Terminal
- · A/V Input Terminal
- · A/V Output Terminal
- · AC Input
- · DC Input

(3) Used Oscillating Frequencies

- · 10 MHz : System Control/Servo Control Microcomputer Clock
- · 3.579545 MHz : Chrominance Subcarrier Oscillator
- · 180 kHz 300 kHz : Switching Frequency of Power Supply

(4) Rated Power Supply : AC 120 V, 60 Hz / DC 13.2 V

2.2. Description for Equipment Authorization

(1) Type of device	: 🛛 TV Interface Device
(2) Reference Rule and Specification	 FCC Rule Part 15 ☑ Section 15.107 (a) ☑ Section 15.109 (a)(c) and Section 15.115 (a) ☑ Section 15.115 (b)(1)(ii),(b)(2)(ii) and(c)(1)(ii)
(3) Kind of Equipment Authorization	: DoC Certification Verification
(4) Procedure of Application	: 🛛 Original Equipment 🗌 Modification
(5) Highest Frequency used in the Device	: 71.75 MHz
(6) Upper Frequency of Radiated Emission Measu	rement Range : 🛛 1000 MHz 🗌 2000 MHz 🗌 5000 MHz

2.3. Test Facility

All tests described	in this report were performed by:
Name:	KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER (KEC) IKOMA TESTING LABORATORY
	Open Area Test Site No.1 No.2 No.3 No.4 EMC M.C. Anechoic Chamber Xo.1 No.1 Shielded Room No.2 No.4 EMC M.C. Shielded Room
Address:	12128, Takayama-cho Ikoma-city, Nara, 630-0101 Japan
Area Test Site No Shielded Room have 25. Also the laboratory	s have been filed with the FCC under the criteria of ANSI C63.4-1992. The Open 0.4, EMC MC. Anechoic Chamber No.1, Shielded Room No.4 and EMC MC. e been accredited by the NVLAP (Lab. Code: 200207-0) based on ISO/IEC Guide y has been authorized by ITI (Interference Technology International, (UK), TUV GER) and TUV Rheinland (GER) based on their criteria for testing laboratory

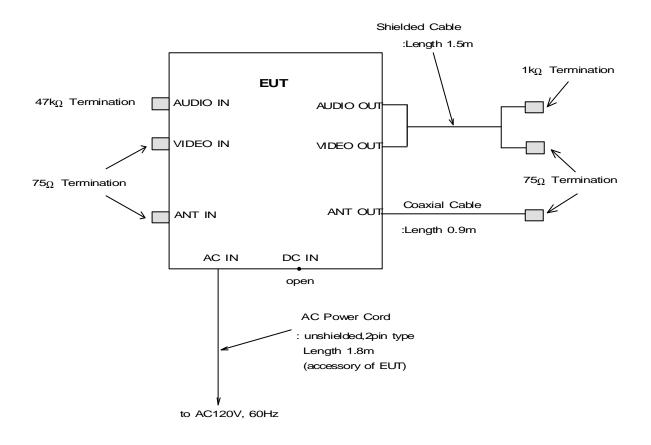
3. TESTED SYSTEM

3.1. Test Mode

The EUT have not recording function, so the compliance tests were performed only under the "Playback mode". Test of External Signal Input Mode is not performed. Because, the signal injected in A/V Input Terminal is only fed to A/V Output Terminal, and is not fed to RF Modulator. In the radiated emission measurement, the emissions were checked under the two kinds of power operation (AC/DC). As a result, the maximum emission were reported at each frequency.

3.2. Operation of EUT System

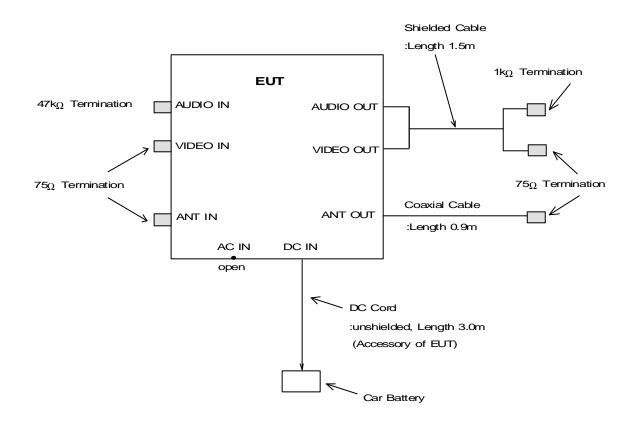
Playback mode Playback the video tape that is recorded 1V peak-to-peak VITS signal.


3.3. Characterization and condition of EUT System

 \boxtimes : normal , \square : not normal (that is

)

3.4. Block Diagram of EUT System (for Conducted and Radiated Emission Measurements)


AC Power Operation Mode

- Continued -

DC Power Operation Mode

(Excluding conducted Emission Measurement)

4. AC POWER LINE CONDUCTED EMISSION MEASUREMENT

(1)	Configure the EUT System in accordance wit	h ANSI C63.4-1992 section 7.	
(-)	\boxtimes : without deviation, \square : with deviation(det		
	See also the block diagram and the photograph		
	report.		
(2)	Connect the EUT's AC power cord to one	Line Impedance Stabilization Network	
	(LISN).	-	
(3)	Any other power cord of other equipment is	connected to a LISN different from the	
	LISN used for the EUT.		
(4)	Warm up the EUT System.		
(5)	Activate the EUT System and run the softwar	e prepared for the test, if necessary.	
(6)	Connect the spectrum analyzer (*1) to the n	neasuring port of the LISN for the EUT,	
	using a calibrated coaxial cable.		
(7)	To find out an EUT System condition, which	ch produces the maximum emission, the	
	configuration of EUT System, the position of	f the cables, and the operation mode, are	
	changed under normal usage of the EUT.		
(8)	The spectrums are scanned from 450 kHz to 30 MHz and collect the six		
	highest emissions minimum on the spectrum analyzer relative to the limits		
	in the whole range.		
(9)	The test receiver (*2) is connected to the	•	
	emissions minimum recorded above are meas	ured.	
	[Note]		
(*1)	Spectrum Analyzer Set Up Conditions		
	Frequency range : 450 kHz -	30 MHz	
	Resolution bandwidth : 10 kHz		
	Video bandwidth : 1 MHz		
	Detector function : Peak mod	e	
(*2)	Test Receiver Set Up Conditions		
		k/ Average (if necessary)	
	IF bandwidth : 10 kHz		

4.2. Test Results

Measured	LISN	Meter 1	Reading	Maximum	Limits	Margin
Frequency	Factor	Va	Vb	RF Voltage		for Limits
(MHz)	(dB)	(dBmV)	(dBmV)	(dBmV)	(dBmV)	(dB)
0.450	0.3	33.3	32.9	33.6	48.0	14.4
1.254	0.3	22.2	22.2	22.5	48.0	25.5
1.910	0.3	31.1	35.1	35.4	48.0	12.6
7.251	0.5	25.5	27.0	27.5	48.0	20.5
28.250	1.3	28.0	32.8	34.1	48.0	13.9
29.999	1.3	31.1	34.2	35.5	48.0	12.5

[Calculation method]

Maximum RF Voltage (dBµV)

= Meter Reading (at maximum level of Va, Vb) + LISN Factor (dB)

[Note]

- LISN Correction Factor includes the cable loss. (1)
- The emissions at channel #3 were nearly equal to channel #4. (2)
- (3) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Environment]

Temperature 23°C

Humidity 62%

[Tested Date / Tester] 4 October 1999

Signature <u>Voshiko Kotani</u>

FRONT VIEW

REAR VIEW

5. RADIATED EMISSION MEASUREMENT

(1)	Configure the EUT System in acc	cordance with ANSI C63.4-1992 section 8.				
	\boxtimes : without deviation, \square : with d	leviation(details are found below)				
	See also the block diagram and	See also the block diagram and the photographs of EUT System configuration in this				
	report.					
(2)	If the EUT system is connected t	o a public power network, all power cords for the EUT				
	System are connected the receptacle on the turntable.					
(3)	Warm up the EUT System.					
(4)	Activate the EUT System and run the prepared software for the test, if necessary.					
(5)		e EUT System, preliminary radiated measurement are				
(0)		in that specified for final radiated measurement using the				
	spectrum analyzer (*1) and the br					
		t is performed using the spectrum analyzer (*2) and the				
	horn antenna.	is performed using the spectrum unaryzer (2) and the				
(6)		ondition, which produces the maximum emission, the				
(0)		ne position of the cables, and the operation mode, are				
	changed under normal usage of th					
(7)	6 6	30 MHz to the upper frequency of measurement range,				
(•)		ions minimum on the spectrum analyzer relative to the				
	limits in the whole range.	tons minimum on the speed and analyzer relative to the				
(8)		ix highest emissions minimum, recorded above, are				
(0)		ice using the broad band antenna or the tuned dipole				
	antenna and the test receiver (*3)					
		e measurements are performed by the horn antenna				
	and the test receive					
		halyzer(*2) with pre-amplifier.				
	[Note]					
(*1)	Spectrum Analyzer Set Up Condi					
	Frequency range	: 30 - 1000 MHz				
	Resolution bandwidth : 100 kHz					
(4)	Detector function	: Peak mode				
(*2)	Spectrum Analyzer Set Up Condi					
	Frequency range	: 1 GHz - Upper frequency of measurement range				
	Resolution bandwidth	: 1 MHz				
	Video bandwidth	: 1 MHz				
	Attenuator	: 10 dB				
(*2)	Detector function	: Peak mode				
(*3)	Test Receiver Set Up Conditions	20 1000 MIL				
	Frequency range	: 30 - 1000 MHz				
	Detector function	: Quasi-Peak				
(*4)	IF bandwidth	: 120 kHz				
(*4)	Test Receiver Set Up Conditions	1 CHz Upper frequency of maccurate and				
	Frequency range	: 1 GHz - Upper frequency of measurement range				
	Detector function	: Average				
	IF bandwidth	: 1 MHz				

5.2. Test Results

				Measuremen	t Distance 🛛	: 3m 🛛 : 1
Measured	Antenna	Meter	Reading	Maximum	Limits	Margin for
Frequency	Factor			Field Strength		Limits
		Horizontal	Vertical			
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
Test Cl	hannel #3					
61.25	10.0	< 0.0	0.8	10.8	40.0	29.2
65.75	9.5	< 0.0	< 0.0	<9.5	40.0	>30.5
122.50	16.0	< 0.0	< 0.0	<16.0	43.5	>27.5
245.00	21.7	< 0.0	< 0.0	<21.7	46.0	>24.3
Test Cl	nannel #4					
67.25	9.3	5.4	2.1	14.7	40.0	25.3
71.75	8.9	9.6	8.5	18.5	40.0	21.5
134.50	17.2	< 0.0	< 0.0	<17.2	43.5	>26.3
201.75	20.7	< 0.0	< 0.0	<20.7	43.5	>22.8
Other	emissions					
32.64	18.1	< 0.0	7.3	25.4	40.0	14.6
42.95	14.3	8.9	14.4	28.7	40.0	11.3
47.88	12.7	< 0.0	11.9	24.6	40.0	15.4
50.00	12.1	< 0.0	8.6	20.7	40.0	19.3
74.49	8.9	15.1	15.1	24.0	40.0	16.0
85.90	10.1	10.1	18.6	28.7	40.0	11.3
97.27	12.6	3.5	11.7	24.3	43.5	19.2
183.25	20.0	6.2	2.6	26.2	43.5	17.3
200.44	20.7	5.6	1.0	26.3	43.5	17.2
214.78	21.0	8.0	1.1	29.0	43.5	14.5
229.10	21.3	7.0	1.2	28.3	46.0	17.7

[Note]

(1) Antenna Factor includes the cable loss.

(2) * mark in Measured Frequency : Measured with the tuned dipole antenna.

no mark in Measured Frequency : M

: Measured with the broadband antenna.

(3) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

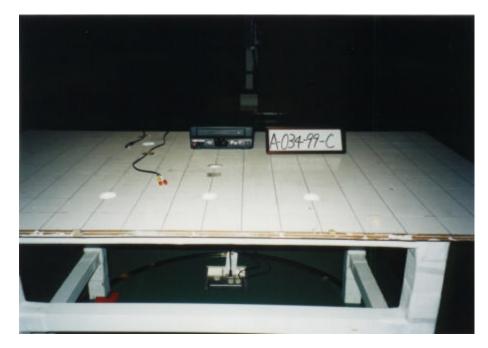
[Calculation method]

Maximum Field Strength (dBµV/m)

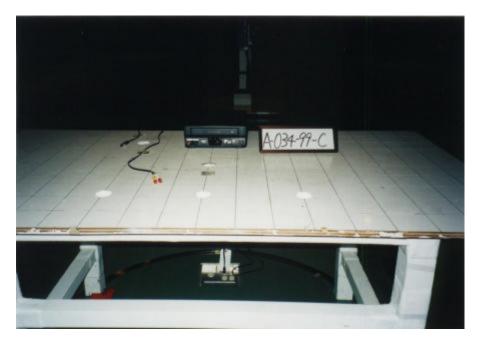
= Meter Reading (at maximum level of Horizontal or Vertical) $(dB\mu V)$ + Antenna Factor (dB)

[Environment]

Temperature: 27°C


[Tested Date/ Tester] 1 October 1999 Humidity: 63%

Signature


Yoshiko Kotani

AC Power Operation Mode

FRONT VIEW

REAR VIEW

- Continued -

DC Power Operation Mode

FRONT VIEW

REAR VIEW

6. OUTPUT SIGNAL LEVEL MEASUREMENT

(1)	Configurate the EUT System in accordance with ANSI C63.4-1992 section 12.2. \square : without deviation, \square : with deviation(details are found below)
	See also the block diagram and the photographs of EUT System configuration
(0)	in this report.
(2)	Unused RF input/output terminals are terminated in the proper impedance.
(3)	Activate the EUT system.
(4)	Set the spectrum analyzer as follows.
	Frequency Span : 1 MHz
	Resolution bandwidth : 100 kHz
	Video bandwidth : 3 MHz
	Detector function : Peak mode
(5)	The RF output terminal is connected to the spectrum analyzer through the matching
	transformer with a calibrated 50 Ω coaxial cable.
(6)	Then, the RF output signal level is measured under the EUT condition produced the
	maximum signal level.

6.2. Test Results

Emission Frequency [MHz]	Factor Signal Leve		Maximum Signal Level [dBμV/75Ω]	Limits [dBμV/75Ω]
<u>Test Channel #3</u>				
61.25	6.1	59.1	65.2	69.5
65.75	6.1	42.9	49.0	56.5
<u>Test Channel #4</u>				
67.25	6.1	59.0	65.1	69.5
71.75	6.1	42.5	48.6	56.5

[Note]

- (1) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test.
- (2) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.
- (3) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Calculation method] Maximum Signal Level ($dB\mu V/75\Omega$)

= Meter Reading ($dB\mu V/50\Omega$) + Correction Factor (dB)

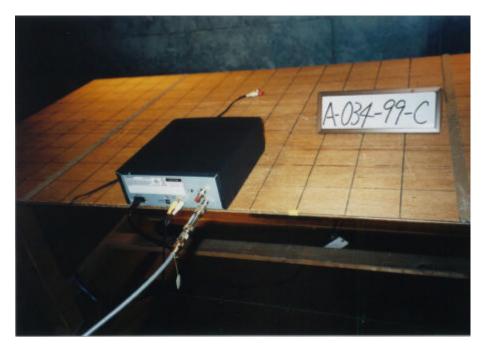
[Environment]

Temperature: 23°C

Humidity: 62%

[Summary of Test Results]

Minimum margin was 4.3 dB at 61.25 MHz, test channel #3


[Tested Date/ Tester] 4 October 1999

Signature

Yoshiko Kotani

REAR VIEW

AC Power Operation Mode

DC Power Operation Mode

7. OUTPUT TERMINAL CONDUCTED SOURIOUS EMISSION MEASUREMENT

(1)	Configurate the EUT System in accordance with ANSI C63.4-1992 section 12.2.				
	\boxtimes : without deviation, \square : with deviation(details are found below)				
	See also the block diagram and the photo	graphs of EUT System configuration			
	in this report.				
(2)	Unused RF input/output terminals are ter	minated in the proper impedance.			
(3)	Activate the EUT system.				
(4)	Set the spectrum analyzer as follo	DWS.			
	Frequency Span	: 1 MHz			
	Resolution bandwidth	: 100 kHz			
	Video bandwidth	: 3 MHz			
	Detector function	: Peak mode			
(5)	The RF output terminal is connected to	the spectrum analyzer through the matching			
	transformer with a calibrated 50 Ω coaxis	al cable.			
(6)	The spectrum was scanned from 30 M	Hz to more than 4.6 MHz below the visual			
	carrier frequency, and from more than	7.4 MHz above the visual carrier frequency to			
	1000 MHz, and the three highest emis	sions are selected under the EUT condition			
	produced the maximum signal level at ea	ch frequency range.			
(7)	Then, the RF output terminal conducted spurious emission level is measured under the				
	EUT condition produced the maximum	signal level.			

7.2. Test Results

Emission Frequency [MHz]	Correction Factor [dB]	Meter Reading [dBμV/50Ω]	Maximum Signal Level [dBμV/75Ω]	Limits [dBμV/75Ω]
<u>Test Channel #3</u>				
47.78 52.28 56.65 70.29 74.79 122.50 ** 56.65	$ \begin{array}{c} 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ \end{array} $	$12.7 \\ 6.5 \\ 28.9 \\ 7.3 \\ 11.4 \\ 17.9 \\ < 0.0$	18.8 12.6 35.0 13.4 17.5 24.0 <6.1	39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5
<u>Test Channel #4</u> 53.80 58.30 62.65	6.1 6.1 6.1	12.5 6.6 27.0	18.6 12.7 33.1	39.5 39.5 39.5
76.30 80.80 134.61 ** 62.65	6.1 6.1 6.1	$8.0 \\ 10.0 \\ 13.3 \\ < 0.0$	14.1 16.1 19.4 <6.1	39.5 39.5 39.5 39.5

[Note]

- (1) **: To except the effect of lower sideband of sound sub-carrier frequency component, if set the resolution bandwidth of spectrum analyzer to 30 kHz, these interference become to this value.
- (2) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test. And the meter readings descrived above are corrected by the gain of pre-amplifier.
- (3) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

(4) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Calculation method] Maximum Signal Level (dBμV/75Ω)

= Meter Reading $(dB\mu V/50\Omega)$ + Correction Factor (dB)

[Environment]

Temperature: 23°C

Humidity: 62%

[Summary of Test Results]

Minimum margin was 15.5 dB at 122.50 MHz, test channel #3

[Tested Date/ Tester] 4 October 1999

Signature

Y. Kolam Yoshiko Kotani

The tested device configuration is the same as the output signal level measurement. (See 6.3 Photographs of EUT System Configuration.)

8. TRANSFER SWITCH MEASUREMENT

(1)	Configurate the EUT System in accordance with ANSI C63.4-1992 section 12.2.			
	\boxtimes : without deviation, \square : with deviation(details are found below)			
	See also the block diagram and the photographs of EUT System configuration			
	In this report.			
(2)	Unused RF input/output terminals are terminated in the proper impedance.			
(3)	Activate the EUT system.			
(4)	Set the spectrum analyzer as follows.			
	Frequency Span : 1 MHz			
	Resolution bandwidth : 100 kHz			
	Video bandwidth : 3 MHz			
	Detector function : Peak mode			
(5)	The antenna input terminal is connected to the input of pre-amplifier through the			
	matching transformer with a calibrated 50 Ω coaxial cable. And the output of pre-			
	amplifier is connected to the spectrum analyzer.			
(6)	Then, the signal level on the antenna input terminal is measured under the EUT condition			
	produced the maximum signal level.			

8.2. Test Results

Emission Frequency	Correction Factor	Meter Reading	Maximum Signal Level	Limits	
[MHz]	[dB]	$[dB\mu V/50\Omega]$	[dBμV/75Ω]	[dBμV/75Ω]	
<u>Test Channel #3</u> 61.25	2.0	3.8	5.8	9.5	
<u>Test Channel #4</u> 67.25	2.1	2.0	4.1	9.5	

[Note]

- (1) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test. And the meter readings descrived above are corrected by the gain of pre-amplifier.
- (2) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Calculation method]

Maximum Signal Level ($dB\mu V/75\Omega$)

= Meter Reading $(dB\mu V/50\Omega)$ + Correction Factor (dB)

[Environment]

Temperature: 23°C

Humidity: 62%

[Summary of Test Results]

Minimum margin was 3.7 dB at 61.25 MHz, test channel #3

[Tested Date/ Tester] 4 October 1999

Signature

Y. Kolam Yoshiko Kotani

REAR VIEW

AC Power Operation Mode

DC Power Operation Mode

9. LIST OF TEST EQUIPMENTS

Equipment	Manufacturer	Model No.	Speecifications	KEC Control No.	Test Item (*)	Last Cal.	Next Cal.
Test Receiver	Rohde & Schwarz	ESH3	Frequency Range 9kHz-30MHz	FS-48-2	1	1999/9	2000/6
		ESVS10	Frequency Range 20MHz-1GHz	FS-60	2	1999/6	2000/6
Spectrum Analyzer	Rohde & Schwarz	FSA	Frequency Range 100 Hz-1.8 GHz	SA-35	2	1999/7	2000/7
	Hewlett Packard	8568B	Frequency Range 100 Hz-1.5 GHz	FS-46-3	1,3,4,5	1999/6	2000/6
Pre-amplifier	Anritsu	MH648A	Frequency Range 100 Hz-1.2 GHz	AM-28	4,5	1999/6	2000/6
Biconical Antenna	Schwarzbeck	BBA9106	Frequency Range 30MHz-300MHz	AN-219	2	1999/2	2000/2
Log- Periodic Antenna	Schwarzbeck	UHALP9108 A	Frequency Range 300MHz-1GHz	AN-218	2	1999/2	2000/2
Tuned Dipole Antenna	Kyoritsu	KBA-511AS	Frequency Range 25MHz-500MHz	AN-132	N/A	1999/3	2000/3
, intoiniu		KBA-611S	Frequency Range 500MHz-1GHz	AN-115	N/A	1999/3	2000/3
LISN	Kyoritsu	KNW-407	Frequency Range 150kHz-30MHz	FL-107	1	1999/4	2000/4
Impeadance Transformer	NMC	MB-009	Frequency Range 10MHz-2GHz 50Ω: 75Ω	AX-61	3,4	1999/8	2000/8
Matching Transfomer	Anritsu	MG614A	Frequency Range 10MHz-1.2GHz 50Ω: 75Ω	AX-28-4	5	1998/12	1999/12

[Note]		
Test Item (*):	1:	Conducted Emission Measurement
	2:	Radiated Emission Measurement
	3:	Output Signal level Measurement
	4:	Output Terminal Conducted Spurious Measurement
	5:	Transfer Switch Measurement
	N/A	A: Not Applicable
The overall program	n of	calibration and verification of equipment is designed and
		that measurements made by KEC are traceable to national
standards of measur	emer	it or equivalent abroad.