

Page 1 of 51

FCC TEST REPORT

Test report On Behalf of Shenzhen Qizhilian Technology Co.,Ltd For Wireless Display Adapter Model No.: Q1, Q1PLUS, Q3, Q3PLUS, Q5, Q5PLUS, Q7, Q7PLUS

FCC ID: 2AZDX-Q1

Prepared For :

Shenzhen Qizhilian Technology Co.,Ltd

602, Building2, ZhongTaiTechnology park, Donghuan Road, Longhua street Shenzhen, China

Prepared By :

: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

 Date of Test:
 Jun. 23, 2022 ~ Jun. 30, 2022

 Date of Report:
 Jun. 30, 2022

 Report Number:
 HK2206232711-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Qizhilian Technology Co.,Ltd
Address	602, Building2, ZhongTaiTechnology park, Donghuan Road, Longhua street Shenzhen, China
Manufacture's Name	Shenzhen Qizhilian Technology Co.,Ltd
Address	602, Building2, ZhongTaiTechnology park, Donghuan Road, Longhua street Shenzhen, China
Product description	
Trade Mark:	N/A
Product name:	Wireless Display Adapter
Model and/or type reference .:	Q1, Q1PLUS, Q3, Q3PLUS, Q5, Q5PLUS, Q7, Q7PLUS
Standards	FCC Rules and Regulations Part 15 Subpart E Section 15.407 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Jun. 23, 2022 ~ Jun. 30, 2022
Date of Issue	Jun. 30, 2022
Test Result	Pass

Testing Engineer

Jan

(Gary Qian)

Technical Manager

Zden

(Eden Hu)

Authorized Signatory:

asin Irou

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

IK Per

TABLE OF CONTENTS

	-
1.1. TEST PROCEDURES AND RESULTS	5
1.2. INFORMATION OF THE TEST LABORATORY	
1.3. MEASUREMENT UNCERTAINTY	6
EUT DESCRIPTION	
2.2. OPERATION FREQUENCY EACH OF CHANNEL	
2.4. DESCRIPTION OF TEST SETUP	
GENERA INFORMATION	10
3.1. TEST ENVIRONMENT AND MODE	
3.2. DESCRIPTION OF SUPPORT UNITS	11
TEST RESULTS AND MEASUREMENT DATA	12
4.1. CONDUCTED EMISSION	12
4.3. 6DB EMISSION BANDWIDTH	
4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	23
4.5. POWER SPECTRAL DENSITY	
4.6. BAND EDGE	
4.7. SPURIOUS EMISSION	
4.8. FREQUENCY STABILITY MEASUREMENT	46
4.9. ANTENNA REQUIREMENT	
PHOTOGRAPHS OF TEST SETUP	49
PHOTOS OF THE EUT	51
	TEST RESULT SUMMARY 1.1. TEST PROCEDURES AND RESULTS. 1.2. INFORMATION OF THE TEST LABORATORY 1.3. MEASUREMENT UNCERTAINTY EUT DESCRIPTION 2.1. GENERAL DESCRIPTION OF EUT 2.2. OPERATION FREQUENCY EACH OF CHANNEL 2.3. OPERATION OF EUT DURING TESTING. 2.4. DESCRIPTION OF EUT DURING TESTING. 2.4. DESCRIPTION OF TEST SETUP. GENERA INFORMATION 3.1. TEST ENVIRONMENT AND MODE 3.2. DESCRIPTION OF SUPPORT UNITS. TEST RESULTS AND MEASUREMENT DATA 4.1. CONDUCTED EMISSION 4.2. MAXIMUM CONDUCTED OUTPUT POWER. 4.3. 6DB EMISSION BANDWIDTH. 4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH 4.5. POWER SPECTRAL DENSITY 4.6. BAND EDGE. 4.7. SPURIOUS EMISSION 4.8. FREQUENCY STABILITY MEASUREMENT 4.9. ANTENNA REQUIREMENT 4.9. ANTENNA REQUIREMENT 4.9. ANTENNA REQUIREMENT 4.9. ANTENNA REQUIREMENT PHOTOG OF THE EUT

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Т 691

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jun. 30, 2022	Jason Zhou
DIA	alle alle	and Dian	G JUG
LAKTES	the cost restriction of the	TEST.	UNK TEST

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HUAK TESTING

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

FICATION

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
_M G 1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Wireless Display Adapter
Model Name:	Q1 ^{num} ^{num} ^{num}
Series Model:	Q1PLUS, Q3, Q3PLUS, Q5, Q5PLUS, Q7, Q7PLUS
Trade Mark:	N/A O ^{max}
Model Difference:	All model's the function, software and electric circuit are the same, only with a product model named different. Test sample mode: Q1.
FCC ID:	2AZDX-Q1
Operation Frequency:	IEEE 802.11a/n(HT20)5.745GHz-5.825GHz IEEE 802.11n(HT40)5.755GHz-5.795GHz
Modulation Technology:	IEEE 802.11a/n
Modulation Type:	OFDM
Antenna Type:	Internal Antenna
Antenna Gain:	1dBi
Power Source:	DC 5V from USB
Power Supply:	DC 5V from USB

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.2. OPERATION FREQUENCY EACH OF CHANNEL

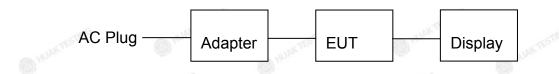
802.11a/8	02.11n(HT20)	802.1	1n(HT40)
Channel	Frequency	Channel	Frequency
149	5745	151	5755
153	5765	159	5795
157	5785	Arc	W
161	5805		ESTING
165	5825		HUAK
CAN MARY	ANI-	CALL VIE	

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING

TING - UNAN	TING	- ULAN	
Ba	ind IV (5725 - 5850 MHz	Z)	
	For 802.11a/ n HT20		
Channel Number	Channel	Frequency (MHz)	
149	Low	5745	
157	Mid	5785	
165	High	5825	
	For 802.11n HT40		
Channel Number	Channel	Frequency (MHz)	
	Low	5755	
159	High	5795	
	For 802.11n HT40		
Channel Number	Channel	Frequency (MHz)	
155	(D)	5775	


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

AC Plug	Adapter	3	EUT
	1802	1	1802

Adapter information Model: HW-059200CHQ Input: 100-240V, 50-60Hz, 0.5A Output: 5VDC, 2A

Display information Model: 24PFF3661/T3

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. GENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	CTIN

Test Mode:

Engineering mode: by select channel and modulations(The value of duty cycle is 100%)		Keep the EUT in continuous transmitting
(1000) (1000) (1000) (1000)	Engineering mode:	by select channel and modulations(The value of duty cycle is 100%)

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

TESTING	Mode	S NY TESTING	Data rate	AK TESTIN
	802.11a	O HOL	6 Mbps	O HOM
N ^G	802.11n(HT20)	-NG	MCS0	ang
	802.11n(HT40)	AUAKTESI	MCS0	HUAKTEST
Final T	est Mode:			
Оре	eration mode:	Keep the EL with modulat	JT in continuous t tion	ransmitting

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	NG / HUAKTIST	l sinc	I MARTISTIN	- STAG

Note:

HUAK TESTING

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious

Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

VCATIO,

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

4.1.1. Test Specification

Toot Boguiromont		19.9				
Test Requirement:	FCC Part15 C Section	15.207	CO HUAK TL			
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	O HUAK IS	OK TESTING			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	BuV) Average 56 to 46* 46 50			
Test Setup:	Reference Plane					
Test Mode:	TX Mode					
Test Procedure:	 The E.U.T and simul power through a line (L.I.S.N.). This proimpedance for the m The peripheral device power through a LIS coupling impedance refer to the block photographs). Both sides of A.C. conducted interferen emission, the relative the interface cables ANSI C63.10: 2013 conducted conducted	e impedance stab ovides a 50ohm easuring equipme es are also conne SN that provides with 50ohm term diagram of the line are checke ice. In order to fir e positions of equi must be change	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and d for maximum of the maximum ipment and all of ed according to			
Test Result:	PASS	O HUME .	O HOM .			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

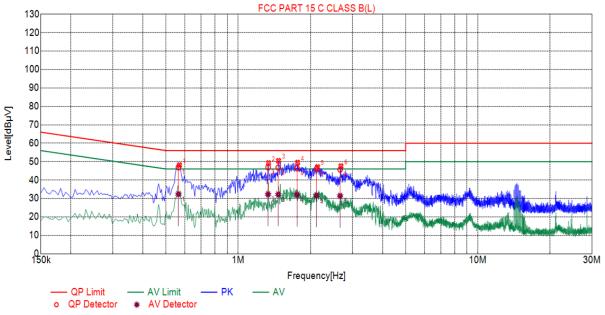
4.1.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)										
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	Feb. 17, 2023					
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023					
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 18, 2022	Feb. 17, 2023					
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



TEST RESULTS

PASS

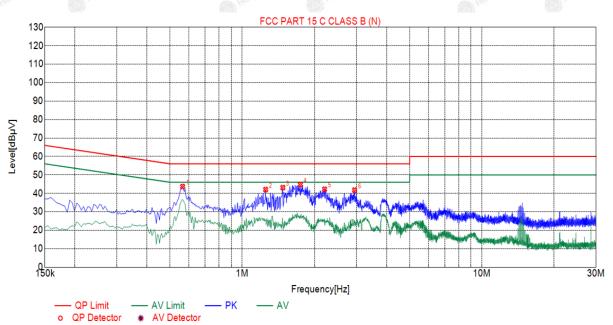
All the test modes completed for test. only the worst result of (802.11a at 5745MHz) was reported as below:

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.5685	48.09	20.05	56.00	7.91	28.04	PK	L				
2	1.3380	49.26	20.10	56.00	6.74	29.16	PK	L				
3	1.4730	50.46	20.10	56.00	5.54	30.36	PK	L				
4	1.7700	49.47	20.14	56.00	6.53	29.33	PK	L				
5	2.1435	47.07	20.16	56.00	8.93	26.91	PK	L				
6	2.6835	47.53	20.21	56.00	8.47	27.32	PK	L				

Final Data Lis

	ппа											
N	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBµV]	Туре
	1	0.5628	20.06	46.92	56.00	9.08	26.86	32.36	46.00	13.64	12.30	L
	2	1.3325	20.10	46.91	56.00	9.09	26.81	32.30	46.00	13.70	12.20	L
2	3	1.4693	20.10	46.78	56.00	9.22	26.68	32. <mark>1</mark> 8	46.00	13.82	12.08	L
	4	1.7592	20.14	46.42	56.00	9.58	26.28	31.95	46.00	14.05	11.81	L
	5	2.1221	20.16	46.06	56.00	9.94	25.90	31.64	46.00	14.36	11.48	L
	6	2.6620	20.21	45.71	56.00	10.29	25.50	31.42	46.00	14.58	11.21	L
					F1		and the set of a					•


Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Suspected List

NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	0.5640	43.69	20.06	56.00	12.31	23.63	PK	N			
2	1.2525	42.04	20.09	56.00	13.96	21.95	PK	N			
3	1.4775	43.11	20.10	56.00	12.89	23.01	PK	Ν			
4	1.7475	44.79	20.14	56.00	11.21	24.65	PK	Ν			
5	2.2065	42.22	20.17	56.00	13.78	22.05	PK	Ν			
6	2.9445	41.77	20.21	56.00	14.23	21.56	PK	Ν			

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 16 of 51

4.2. MAXIMUM CONDUCTED OUTPUT POWER

4.2.1. Test Specification

HUAK TESTING

Test Requirement:	FCC Part15 E Section 15.407(a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E					
Limit:	Frequency (MHz)Band Limit5725-58501 W					
Test Setup:	Power meter EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the 					
Test Result:	PASS					
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power					
Note: The test double anten module is the same.	na is simultaneously transmitted, and the transmitting					

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.2.2. Test Instruments

RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023					
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023					
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023					
RF cable	Times	🔊 1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023					
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

		Config	uration Band IV (5725 - 585	50 MHz)	
Мос	de	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result
11;	a	CH149	11.73	30	PASS
11;	a	CH157	9.99	30	PASS
11;	а	CH165	10.33	30	PASS
11n H	T20	CH149	11.75 million	30	PASS
11n H	T20	CH157	12.20	30	PASS
11n H	T20	CH165	11.62	30	PASS
11n H	T40	CH151	11.73	30	PASS
11n H	T40	CH159	11.62	30	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

VCATION

4.3. 6DB EMISSION BANDWIDTH

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
Limit:	>500kHz						
Test Setup:							
Test Mode:	Spectrum Analyzer Eur Transmitting mode with modulation Image: Constraint of the sector of						
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 						
Test Result:	PASS						

4.3.2. Test Instruments

RF Test Room											
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due						
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023						
RF cable	Times	5 1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023						
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test data

I I Par	10.	al part	and HO.	ul par	Aller HU.
Band IV (5725	5 - 5850 MHz)				
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
11a 🌒	CH149	5745	16.000	0.5	PASS
11a	CH157	5785	15.800	0.5	PASS
11a	CH165	5825	16.040	0.5	PASS
11n HT20	CH149	5745	16.400	0.5	PASS
11n HT20	CH157	5785	16.480	0.5	PASS
11n HT20	CH165	5825	16.640	0.5	PASS
11n HT40	CH151	5755	35.520	0.5	PASS
11n HT40	CH159	5795	35.440	0.5	PASS

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EST FIF

Band IV (5725 - 5850 MHz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦К

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 23 of 51

4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	N/A

4.4.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CATIO,

Page 24 of 51

HUAK TESTING

4.5. POWER SPECTRAL DENSITY

4.5.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F					
Limit:	≤11.00dBm/MHz for Band I 5150MHz-5250MHz ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz					
Test Setup:	Spectrum Analyzer					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 					
Test Result:	PASS					

4.5.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	[©] 1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.5.3. Test data

	Co	nfiguration Ban	d IV (5725 -	5850 MHz)	
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result
11a 🗥	CH149	3.25	-0.086	3.16	30	PASS
11a	CH157	3.74	-0.086	3.65	30	PASS
11a	CH165	3.53	-0.086	3.44	30	PASS
11n HT20	CH149	4.47	-0.086	4.38	30	PASS
11n HT20	CH157	5.29	-0.086	5.20	30	PASS
11n HT20	CH165	4.34	-0.086	o 4.25	30	PASS
11n HT40	CH151	1.75	-0.086	1.66	30	PASS
11n HT40	CH159	1.54	-0.086	1.45	30	PASS

Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EST H

Band IV (5725 – 5850 MHz)

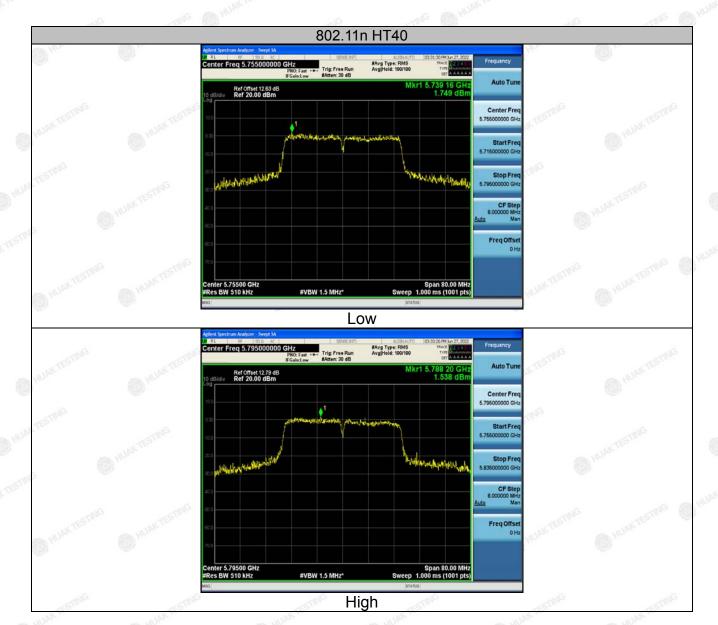
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 27 of 51

Report No.: HK2206232711-2E

NG


¦К

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.6. BAND EDGE

4.6.1. Test Specification

FCC CFR47 Part 15E Section 15.407
ANSI C63.10 2013
 (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge. The limit of frequency below 1GHz and which fall in restricted ba nds should complies 15.209.
Ant. feed point FEUT I
Transmitting mode with modulation
 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATION

Test Procedure:	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.
Test Result:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.6.2. Test Instruments

	Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Receiver	R&S	ESRP3	HKE-005	Feb. 18, 2022	Feb. 17, 2023			
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023			
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023			
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023			
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023			
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023			
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023			
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A			
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023			
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A			
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A			
Hf antenna	Schwarzbeck	LB-180400-K F	HKE-031	Feb. 18, 2022	Feb. 17, 2023			
RF cable	Tonscend	1-18G	HKE-099	Feb. 18, 2022	Feb. 17, 2023			
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

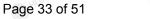
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

	UPAR TEST	-NAR TES	- i i i ilian		UANTES	IN ALL TES
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
ြ (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Deteotor Type
5650	54.15	-2.06	52.09	68.2	-16.11	peak
5700	85.31	-1.96	83.35	105.2	-21.85	peak
5720	87.51	-2.87	84.64	110.8	-26.16	peak
5725	104.65	-2.14	102.51	122.2	-19.69	peak


Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.01	-2.06	48.95	68.2	-19.25	peak
5700	85.23	-1.96	83.27	105.2	-21.93	peak
5720	87.64	-2.87	84.77	110.8	-26.03	peak
5725	107.33	-2.14	105.19	122.2	-17.01	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

IΕ

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	🥙 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
⁶ 5850	106.66	-1.97	104.69	122.2	-17.51	peak
5855	90.91	-2.13	88.78	110.8	-22.02	peak
5875	83.25	-2.65	80.6	105.2	-24.6	peak
5925	51.06	-2.28	48.78	68.2	-19.42	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
ာ (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
5850	111.63	-1.97	109.66	122.2	-12.54	peak
5855	88.24	-2.13	86.11	110.8	-24.69	peak
5875	85.16	-2.65	82.51	105.2	-22.69	peak
5925	50.14	-2.28	47.86	68.2	-20.34	peak

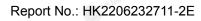
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal


Frequency	Meter Reading	Factor	Emission Level	🥙 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
se 5650	53.16	-2.06	51.1	68.2	-17.1	peak
5700	82.66	-1.96	80.7	105.2	-24.5	peak
5720	90.43	-2.87	87.56	110.8	-23.24	peak
5725	108.72	-2.14	106.58	122.2	-15.62	peak
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.		NK TESTING	"IAK TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	60.68	-2.06	58.62	68.2	-9.58	peak
5700	92.67	-1.96	90.71	105.2	-14.49	peak
5720	89.52	-2.87	86.65	110.8	-24.15	peak
5725	104.79	-2.14	102.65	122.2	-19.55	peak

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
⁶ 5850	107.24	-1.97	105.27	122.2	-16.93	peak
5855	91.42	-2.13	89.29	110.8	-21.51	peak
5875	84.9	-2.65	82.25	105.2	-22.95	peak
5925	52.43	-2.28	50.15	68.2	-18.05	peak 🤷 (

Vertical:

	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	MHz)
peak	-17.8	122.2	104.4	-1.97	106.37	5850
peak	-20.51	110.8	90.29	-2.13	92.42	5855
peak	-28.83	105.2	76.37	-2.65	79.02	5875
peak	-19.7	68.2	48.5	-2.28	50.78	5925

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	🤷 Limits	Margin	Detector Turpe
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	54.74	-2.06	52.68	68.2	-15.52	peak
5700	86.53	-1.96	84.57	105.2	-20.63	peak
5720	84.34	-2.87	81.47	110.8	-29.33	peak
5725	105.68	-2.14	103.54	122.2	-18.66	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	59.72	-2.06	57.66	68.2	-10.54	peak
5700	91.59	-1.96	89.63	105.2	-15.57	peak
5720	84.2	-2.87	81.33	110.8	-29.47	peak
5725	108.72	-2.14	106.58	122.2	-15.62	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) (dB)		 Detector Type
⁶ 5850	109.6	-1.97	107.63	122.2	-14.57	peak
5855	89.17	-2.13	87.04	110.8	-23.76	peak
5875	83.03	-2.65	80.38	105.2	-24.82	peak
5925	54.18	-2.28	o 51.9	68.2	-16.3	peak

Vertical:

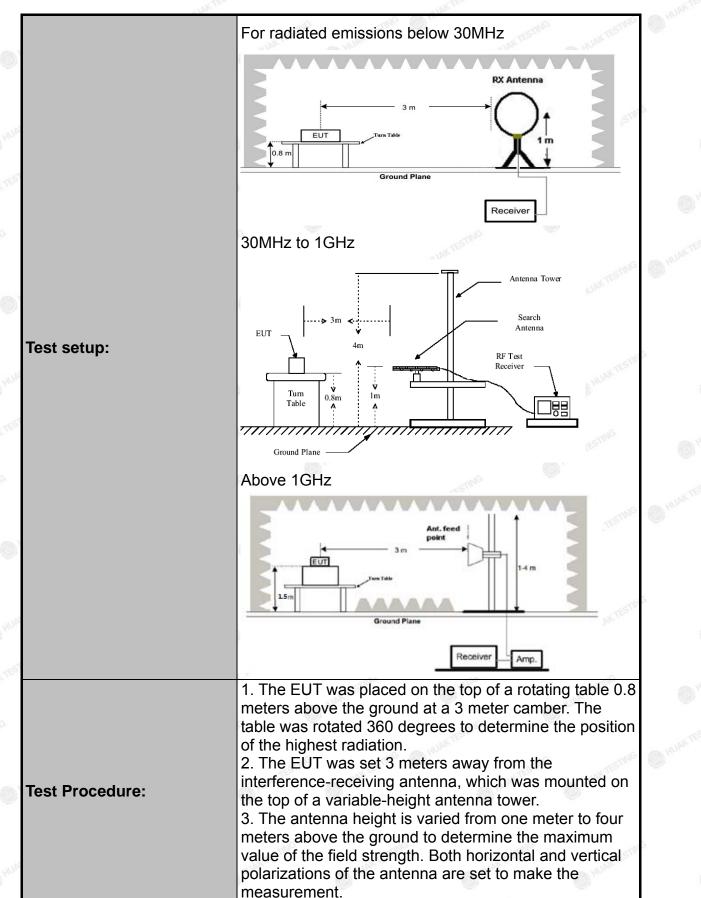
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
5850	102.99	-1.97	101.02	122.2	-21.18	peak
5855	87.78	-2.13	85.65	110.8	-25.15	peak
5875	79.92	-2.65	77.27	105.2	-27.93	peak
5925	52.51	-2.28	50.23	68.2	-17.97	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7. SPURIOUS EMISSION


4.7.1.1. Test Specification

HUAK TESTING

9kHz to 40G)1 (HUPP	HUPIN HUPIN			
TES IN		KDB 789033 D02 v02r01					
	9kHz to 40GHz						
3 m							
Horizontal &	Vertical		- G	O HOW			
Transmitting	mode with	modulat	ion				
Frequency	Detector	RBW	VBW	Remark			
9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value			
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
STING	Peak	1MHz	3MHz	Peak Value			
Above 1GHz	Peak	1MHz	10Hz	Average Value			
shall not exc (3) For trans band: All em shall not exc (4) For trans band:	eed an e.i.r smitters op issions outs eed an e.i.r smitters op	r.p. of −2 perating side of th r.p. of −2 perating	7 dBm/N in the 5 ie 5.47-5 7 dBm/N in the 5	1Hz. .47-5.725 GHz .725 GHz band 1Hz. .725-5.85 GHz			
dBm/MHz at edge increas above or belo or below the 15.6 dBm/MH and from 5 increasing lin edge.	75 MHz or sing linearl ow the ban band edge Hz at 5 MHz MHz abo nearly to a l	r more a ly to 10 d edge, a e increas z above o ove or evel of 2	bove or dBm/M and from ing linea or below below tl 7 dBm/N	below the band Hz at 25 MHz 25 MHz above only to a level of the band edge, he band edge 1Hz at the band			
	Horizontal & Transmitting Frequency 9kHz-150kHz 150kHz- 30MHz- 30MHz-1GHz Above 1GHz (1) For tran band: All em shall not exc (2) For tran band: All em shall not exc (3) For trans band: All em shall not exc (3) For trans band: All em shall not exc (4) For trans band: en shall not exc (4) For trans band: f	Horizontal & Vertical Transmitting mode with Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak (1) For transmitters of band: All emissions out shall not exceed an e.i.r. (2) For transmitters of band: All emissions out shall not exceed an e.i.r. (3) For transmitters of band: All emissions out shall not exceed an e.i.r. (3) For transmitters of band: All emissions out shall not exceed an e.i.r. (4) For transmitters of band: (i) All emissions shall dBm/MHz at 75 MHz of edge increasing linear above or below the band edge 15.6 dBm/MHz at 5 MHz and from 5 MHz abo increasing linearly to a ledge. The limit of frequency b	Horizontal & VerticalTransmitting mode with modulatFrequencyDetectorRBW9kHz-150kHzQuasi-peak200Hz150kHz-Quasi-peak9kHz30MHzQuasi-peak120KHz30MHzQuasi-peak120KHzAbove 1GHzPeak1MHz(1)For transmitters operatingband:All emissions outside of the shall not exceed an e.i.r.p. of -2(2)For transmitters operatingband:All emissions outside of the shall not exceed an e.i.r.p. of -2(3)For transmitters operatingband:All emissions outside of the shall not exceed an e.i.r.p. of -2(3)For transmitters operatingband:All emissions outside of the shall not exceed an e.i.r.p. of -2(4)For transmitters operatingband:(i)All emissions shall be limiddBm/MHz at 75 MHz or more andedge increasing linearly to 10above or below the band edge, ator below the band edge increas15.6dBm/MHz at 5 MHz above orincreasing linearly to a level of 2edge.The limit of frequency below 1Git	Horizontal & VerticalTransmitting mode with modulationFrequencyDetectorRBWVBW9kHz-150kHzQuasi-peak200Hz1kHz150kHz-Quasi-peak9kHz30kHz30MHz-1GHzQuasi-peak120KHz300KHz30MHz-1GHzQuasi-peak120KHz300KHzAbove 1GHzPeak1MHz3MHzAbove 1GHzPeak1MHz10Hz(1) For transmitters operating in the band: All emissions outside of the 5.15- shall not exceed an e.i.r.p. of -27 dBm/N(2) For transmitters operating in the band: All emissions outside of the 5.47-5 shall not exceed an e.i.r.p. of -27 dBm/N(3) For transmitters operating in the 5 band: All emissions outside of the 5.47-5 shall not exceed an e.i.r.p. of -27 dBm/N(4) For transmitters operating in the 5 band:(i) All emissions shall be limited to a dBm/MHz at 75 MHz or more above or edge increasing linearly to 10 dBm/M above or below the band edge, and from or below the band edge increasing linear 15.6 dBm/MHz at 5 MHz above or below th increasing linearly to a level of 27 dBm/N			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

T 59

Test Procedure:	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak,
Test results:	quasi-peak or average method as specified and then reported in a data sheet. PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7.2. Test Data

Remark: All the test modes completed for test. The worst case of Radiated Emission

is CH 149; the test data of this mode was reported.

Below 1GHz

Horizontal

	Suspe	cted List								
3		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	63.0130	-14.25	35.86	21.61	40.00	18.39	100	328	Horizontal
	2	84.3744	-17.68	40.59	22.91	40.00	17.09	100	359	Horizontal
8	3	237.7878	-13.07	42.48	29.41	46.00	16.59	100	357	Horizontal
1	4	402.8529	-9.11	42.71	33.60	46.00	12.40	100	217	Horizontal
	5	828.1381	-1.18	42.42	41.24	46.00	4.76	100	209	Horizontal
	6	955.3353	0.02	38.31	38.33	46.00	7.67	100	150	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Vertical

QP Detector

Su	ispe	cted List								
N	0	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity
	0.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
8	1	59.1291	-14.48	38.38	23.90	40.00	16.10	100	80	Vertical
	2	110.5906	-14.78	38.38	23.60	43.50	19.90	100	258	Vertical
<	3	164.9650	-17.19	42.75	25.56	43.50	17.94	100	5	Vertical
÷.	4	211.5716	-14.24	44.16	29.92	43.50	13.58	100	155	Vertical
	5	488.2983	-7.31	38.52	31.21	46.00	14.79	100	68	Vertical
	6	564.0340	-5.58	34.78	29.20	46.00	16.80	100	56	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
10 10 10 10 10 10 10 10 10 10 10 10 10 1	HUM HUM	HUM
	-	
	TESTING	TESTING
TEST	HUN	HUM TESTING

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	58.41	-4.59	53.82	74 🔘 🕬	-20.18	peak
3647	44.74	-4.59	40.15	54	-13.85	AVG
11570	50.98	4.21	55.19	74	-18.81	peak
11570	41.35	4.21	45.56	54	-8.44	AVG
		w			Ś	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turce
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	61.78	-4.59	57.19	74	-16.81	peak
3647	43.22	-4.59	38.63	54	-15.37	AVG
11570	57.5	4.21	61.71	74	-12.29	peak
11570	40.26	4.21	44.47	54	-9.53	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.11	-4.59	55.52	74	-18.48	peak
3647	40.72	-4.59	36.13	54	-17.87	AVG
11570	52.95	4.21	57.16	74	-16.84	peak
11570	40.62	4.21	44.83	54	-9.17	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
3647	60.17	-4.59	55.58	74	-18.42	peak
3647	45.21	-4.59	40.62	54	-13.38	AVG
11570	51.05	4.21	55.26	74	-18.74	peak
11570	41.62	4.21	45.83	54	-8.17	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56.73	-4.59	52.14	74	-21.86	peak
3647	41.56	-4.59	36.97	54	-17.03	AVG
11650	50.64	4.84	55.48	74	-18.52	peak
11650	39.15	4.84	43.99	54	-10.01	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK TES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	51.49	-4.59	46.9	74	-27.1	peak
3647	44.16	-4.59	39.57	54	-14.43	AVG
11650	50.13	4.84	54.97	74	-19.03	peak
11650	39.92	4.84	44.76	54	-9.24	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Measuring frequencies from 1 GHz to the 40 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
 (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of

15.205, then the general radiated emission limits in 15.209 apply.(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Page 46 of 51

4.8. FREQUENCY STABILITY MEASUREMENT

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT EUT AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS				
Remark:	N/A Martin Committee				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

*

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.988	-12	5824.986	-14
5.8G Band	5V HUMET	5745.021	o ^{se} 21	5825.016	16
HUANIL	5.75V	5745.034	34	5824.985	-15

Mode	Temperature (℃)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	-30	5744.986	-14	5824.975	-25
	-20	5744.979	-21	5824.996	-4 HUA
	-10	5744.968	-32	5825.022	22
	0	5745.031	31	5825.046	46
5.8G Band	10	5744.994	-6	5825.033	33
	20	5745.031	31	5824.977	-23
	30	5744.967	-33	5825.021	21
	40	5744.994	-6	5825.034	34
	50	5745.027	27	5825.023	23

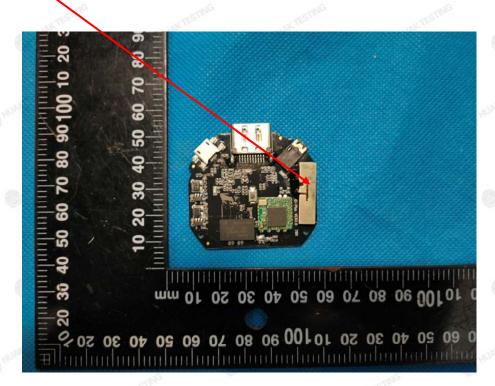
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.9. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, which use a special interface and cannot easily replace. The directional gains of antenna used for transmitting is 1dBi.

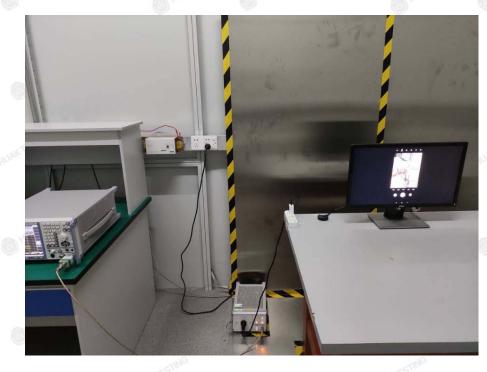
WIFI ANTENNA


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5. PHOTOGRAPHS OF TEST SETUP

Radiated Emissions


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 50 of 51

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

PAT

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com